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ABSTRACT This paper proposes a new non-stationary three-dimensional (3D) channel model for a physical
millimeter wave (mm-Wave) multiple-input multiple-output (MIMO) channel. This MIMO channel model
is driven by the trajectory of a moving point scatterer, which allows us to investigate the impact of a
single moving point scatterer on the propagation characteristics in an indoor environment. Starting from the
time-variant (TV) channel transfer function, the temporal behavior of the proposed non-stationary channel
model has been analyzed by studying the TV micro-Doppler characteristics and the TV mean Doppler shift.
The proposed channel model has been validated by measurements performed in an indoor environment
using a MIMO radar kit operating at 24 GHz. For the measurement campaign, we used a single swinging
pendulum as a model for a moving point scatterer. The trajectory of the pendulum has been captured
by an inertial measurement unit attached to the pendulum and by a motion capture camera system. The
measured trajectories are fed into the proposed mm-Wave MIMO channel model. The results obtained for
the micro-Doppler characteristics show an excellent agreement between the proposed MIMO channel model
and real-world measured channels in the presence of a moving point scatterer. We believe that our model can
serve as a basis for the development of novel non-stationary MIMO channel models capturing the effects
caused by moving objects and people.

INDEX TERMS MIMO channel, channel measurements, mean Doppler shift, mm-Wave channels, non-
stationary channels, multipath propagation, radar, spectrogram, time-frequency analysis.

I. INTRODUCTION
In recent years, millimeter wave (mm-Wave) communica-
tions has been proposed as key enabler for the development of
the fifth generation (5G) communication systems [1]. Hence,
mm-Wave technologies have gained a great attention from
both research institutes and industries due to large bandwidth
availability, which offers high transmission data rates [2].
In order to exploit important benefits of mm-Wave commu-
nications, a detailed knowledge of the corresponding chan-
nel propagation is crucial [3]. Mm-Wave radio propagation
characteristics differ from channels with sub-6 GHz bands in
terms of high path loss, high delay resolution, and blockage
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caused by humans crossing the line of sight [4]. Therefore,
a number of channel models for mm-Wave bands between
6 and 100 GHz have been investigated and developed for
various scenarios, such as outdoor [5]–[7], indoor [8]–[11],
and vehicle-to-vehicle [12], [13]. For completeness, it should
be mentioned that channel models for outdoor propagation
scenarios and sub-6GHz mobile-to-mobile (M2M) commu-
nications have also been studied in the literature. In this
paper, we focus on the analysis of indoor fixed-to-fixed (F2F)
communications considering systems operating in the mm-
Wave bands. Therefore, the proposed model differs from
M2M communications in a way that the angle-of-departure
(AOD) and angle-of-arrival (AOA) of the transmitted wave
and the received wave, respectively, are determined by the
position of a moving point scatterer and are therefore related
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to each other. In anM2M communication scenarios, however,
the AOD and the AOA of the wave incidents are independent
random variables. Thus, by using the trajectory of a moving
point scatterer, we derive a trajectory-driven channel model.

In [9], a measurement-based spatio-temporal channel
model for the 60 and 70GHz frequency bands has been
presented by Haneda et al. for indoor environments, such
as large office rooms, shopping malls, and stations. It has
been shown that the measured spatio-temporal radio chan-
nel characteristics of the two frequency bands demonstrate
similar behaviour for such environments. Maltsev et al. have
developed a non-stationary mm-Wave channel model for
the 60 GHz frequency band by using a quasi-deterministic
modeling approach [14]. The authors have measured
power delay profiles of the underlying mm-Wave channel.
Rappaport et al. [8] have presented indoor and outdoor
measurement-based mm-Wave channel models for 28, 38,
60, and 73 GHz frequency bands. In [11], radio propagation
measurements of mm-Wave channel characteristics at the
28 GHz frequency band have been presented for in-building
environments. The authors have mainly investigated the dis-
tribution of scatterers in the considered indoor area.

In practice, an indoor propagation environment induces
significant distortions on a signal propagating through that
medium. These distortions are caused by multipath propa-
gation and the Doppler effect arising from the motion of
people within the indoor space. In this context, designing
accurate and reliable channel models is of vital importance
for the design and performance analysis of mm-Wave com-
munication systems operating under real-world conditions.
Therefore, several studies have been conducted to character-
ize the propagation delays and Doppler frequencies of the
underlying channel. More importantly, propagation charac-
teristics, such as spherical wavefronts, multipath scattering,
and time-variant channel properties in space-time-frequency
domains need to be thoroughly analyzed.

In general, the level of detail required for channel modeling
greatly depends on the system parameters, such as the carrier
frequency, the bandwidth, the propagation environment, and
the configuration of the transmitter and receiver antennas.
Zheng et al. [15] mentioned that the channel parameters,
such as amplitude, phase, and Doppler frequency shifts, are
environment-dependent and their values change with differ-
ent locations and orientations. Gustafson et al. [16] presented
a measurement-based multipath clustering channel model for
a double-directional multiple-input multiple-output (MIMO)
system. They showed that the angular cluster characteristics
are related to the geometry of the room. They also discussed
the impact of fixed objects on the channel characteristics.
The studies in [17] demonstrated that the distribution of the
coherence bandwidth depends on the velocity of the moving
object and its position with respect to the transmitter antenna.

According to the aforementioned studies, designing chan-
nel models, especially for indoor communications under non-
stationary conditions, requires a detailed knowledge of the
dynamics of the underlying wireless channel characteristics.

In the literature, several models have been designed to ana-
lyze and represent the time-variant (TV) Doppler character-
istics, which are caused by the mobility of moving objects
in indoor spaces [18]–[20]. A three-dimensional (3D) non-
stationary cluster-based single-input single-output (SISO)
channel model has been proposed in [20] for design of human
activity recognition systems. In [20], the human body motion
has been modelled by a cluster of synchronized moving
point scatterers. The authors of [20] have derived expressions
for the TV Doppler frequencies by using the TV angles-of-
motion (AOM), TVAOA and TVAOD. In [21], a 3D stochas-
tic double-spherical channel model has been developed for
mm-Wave MIMO communication systems. To characterize
human body motions, a dynamic channel model has been
presented in [22], where the human body segments weremod-
elled by using different geometrical shapes, such as cylinders
and spheres.

Owing to the Doppler effect, human motion results in tem-
poral changes of the channel characteristics. These changes
are usually studied through the spectrogram of the chan-
nel and are commonly referred to as micro-Doppler signa-
tures. Theoretical investigations of micro-Doppler signatures
require a prior knowledge of the exact time-variant trajec-
tories of the different human body segments, such as head,
shoulders, upper arms, lower arms, hands, upper legs, etc.
To the best of the authors’ knowledge, analytical studies on
the kinetic and mechanical modeling of human body motion
are limited in the context of channel modeling. In this regard,
several studies assume that the human body can be repre-
sented by a single point scatterer. A traditional assumption
is to consider a spherical object as a single point scatterer,
for which analytical expressions for the TV trajectories are
available [23]. For example, the estimation and analysis of
the micro-Doppler signatures of a slow-moving target have
been presented in [24] by using a forward scattering SISO
radar system. As a target, the authors considered a swinging
pendulum that is placed on a moving trolley. The analy-
sis of the TV Doppler characteristics of a non-stationary
channel in the presence of a swinging pendulum, which is
attached to the ceiling of the room, can be found in [25]
and [26]. In [25], the authors presented a 3D indoor channel
model for radio-frequency (RF) sensing. They described the
moving object’s (pendulum’s) trajectory by the TV speed,
TV AOM, and the TV elevation AOA. It has been shown
that the proposed model allows to describe the channel state
information (CSI) of measured RF data, that has been col-
lected by using a commercial Wi-Fi system. In [26], a 3D
non-stationary single-input multiple-output (SIMO) channel
model has been proposed for the mobility analysis of a single
swinging pendulum as a moving point scatterer. The TV
spectrogram and the TV mean Doppler shift caused by the
motion of the pendulum have been analyzed. The model has
been validated by measured data recorded by using radar kit
operating at 24GHz. Special attention has been paid to the
impact of the receiver antenna positions on the amplitude of
the TV Doppler spectral components.
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FIGURE 1. 3D geometrical channel model for an NT × NR MIMO system with a single
moving scatterer SM at the TV position (x(t), y (t), z(t)) and K fixed scatterers SF

k at fixed
positions (xF

k , yF
k , zF

k ) for k = 1,2, . . . ,K .

The goal of this paper is to extend the analysis of a SIMO
channel presented in [26] to a MIMO channel model. To this
aim, we propose a method for the design of a 3D trajectory-
driven non-stationary MIMO channel model for a moving
point scatterer in an indoor environment. We investigate the
TVmicro-Doppler signature of the moving point scatterer for
different MIMO links. As a mechanical model for moving
point scatterer, we consider a single pendulum swinging in a
fixed direction. Hence, the proposed channel model is driven
by the trajectory of a swinging pendulum. By considering the
trajectory of the pendulum,we derive an analytical expression
for the trajectory-driven TV channel transfer function (CTF)
and the corresponding complex channel gain of the MIMO
system. The input signals of the trajectory-driven MIMO
channel model are the TV positions of the swinging pendu-
lum, which can be computed analytically [26]. We analyse
the TV Doppler characteristics, such as the spectrograms and
the TV mean Doppler shifts of different MIMO links. The
theoretical results are validated through real-world measured
data. Here, the comparison is made by using three different
sets of measured data. Set 1 corresponds to the measured RF
channel, which is obtained by using a mm-WaveMIMO radar
kit (Ancortek SDR-KIT 2400T2R4) operating at 24 GHz.
Set 2 and Set 3 contain the information about the TV tra-
jectory of the moving point scatterer. The data of Set 2 has
been recorded by using an inertial measurement unit (IMU)
sensor [27], which was attached to the swinging pendulum.
On the other hand, the data of Set 3 has been obtained from
a motion capture (MOCAP) camera system [28]. In our
scenario, the camera system captures the trajectories of the
pendulum by using markers attached to the ball. The perfect
match between the TV spectrograms of the measured RF
signals and those of the proposed trajectory-driven mm-Wave
MIMO channel model ascertains the validity of themodel and
the usefulness of the work.

Considering the MIMO channel, we studied the impact
of the antenna positions (MIMO links) on the TV spec-
trograms and the TV mean Doppler shifts. To the best of

our knowledge, the impact of different MIMO links on the
micro-Doppler signatures of a moving point scatterer has not
been studied yet. In this regard, the main novelties of this
paper are as follows:

1) We propose a 3D non-stationary mm-Wave MIMO
channel model for a moving object modelled by a point
scatterer in indoor environments.

2) We derive analytical expressions for trajectory-driven
CTFs and the corresponding complex channel gains.

3) We investigate the impact of the antenna positions on
the TVDoppler spectrogram and the TVmean Doppler
shift.

4) We demonstrate the correctness of the concept by val-
idating the proposed trajectory-driven channel model
using measured RF data, IMU data, and MOCAP data.

5) We present a framework for pre- and post-processing
of RF, IMU, and MOCAP measurement data sets.

6) We perform a qualitative and quantitative analysis to
evaluate the accuracy of the proposed model.

The remaining part of the paper is structured as follows.
Section II presents a 3D geometrical MIMO channel model
for an indoor environment with a single moving scatterer
and K fixed scatterers. The proposed trajectory-driven chan-
nel model and the spectrogram analysis are presented in
Section III and Section IV, respectively. The measurement
and numerical results are provided in Section V. Finally,
the conclusion is drawn in Section VI.

II. 3D INDOOR GEOMETRICAL CHANNEL MODEL
In this section, we present a 3D indoor geometrical channel
model for the propagation scenario illustrated in Fig. 1. The
propagation scenario consists of NT fixed transmitter anten-
nasATj (j = 1, 2, . . . ,NT ),NR fixed receiver antennasARi (i =
1, 2, . . . ,NR), a moving scatterer SM , and K fixed scatterers
SFk (k = 1, 2, . . . ,K ). The jth transmitter antenna ATj and
the ith receiver antenna ARi are set at the predefined positions
(xTj , y

T
j , z

T
i ) and (xRi , y

R
i , z

R
i ), respectively. A moving point
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scatterer SM is depicted in Fig. 1 by a red pentagon, which
has the TV coordinates x(t), y(t), and z(t) describing the
3D trajectory C(t) = (x(t), y(t), z(t)). We assume single-
bounce scattering and non-line of sight conditions. As shown
in Fig. 1, we denote by dTj (t) the Euclidean distance between
the moving scatterer SM and the jth transmitter antenna ATj ,
whereas dRi (t) stands for the Euclidean distance between the
ith receiver antenna ARi and the moving scatterer SM . The
distances dTj (t) and d

R
i (t) can be expressed in terms of the

TV coordinates x(t), y(t), and z(t) of SM as

dTj (t) =
√
(x(t)− xTj )

2 + (y(t)− yTj )
2 +(z(t)− zTj )

2 (1)

dRi (t) =
√
(x(t)− xRi )

2 + (y(t)− yRi )
2 +(z(t)− zRi )

2. (2)

In the propagation scenario, we also consider multiple
stationary objects, such as furniture, decoration items, and
walls, which are modelled by K fixed scatterers SFk (k =
1, 2, . . . ,K ) as depicted in Fig. 1. The position of the kth
fixed scatterer is denoted by (xFk , y

F
k , z

F
k ). Analogously to (1)

and (2), the Euclidean distance between the fixed scatterer SFk
and the jth (ith) transmitter (receiver) antenna is denoted by
dTj,k (d

R
i,k ) and given by

dTj,k =
√
(xFk − x

T
j )

2 + (yFk − y
T
j )

2 + (zFk − z
T
j )

2 (3)

and

dRi,k =
√
(xFk − x

R
i )

2 + (yFk − y
R
i )

2 + (zFk − z
R
i )

2 (4)

respectively.

III. MIMO CHANNEL MODEL
In this section, we present the TV-CTF of theNT×NR MIMO
channel. As depicted in Fig. 1, the radio waves travel from
the jth transmitter antenna ATj to the moving (fixed) scatterer
SM (SFk ) and impinges at the ith receiver antenna ARi . Hence,
the TV-CTF Hi,j(t, f ′) of the link from ATj to ARi can be
presented as:

Hi,j(t, f ′) = HM
i,j (t, f

′)+
K∑
k=1

HF
i,j,k (f

′) (5)

where HM
i,j (t, f

′) and HF
i,j,k (f

′) stand for the components
caused by the moving scatterer SM and the kth fixed scatterer
SFk , respectively. The TV-CTF determined by the moving
scatterer SM can be expressed as

HM
i,j (t, f

′) = cMi,je
j[θMi,j−2π (f

′
+fc)τ

′M
i,j (t)]. (6)

where cMi,j , fc, θ
M
i,j , and τ

′M
i,j (t) denote a fixed path gain, a car-

rier frequency, a phase, and a TV propagation delay of the
moving point scatterer. respectively. The second term of (5)
can be expressed as

HF
i,j,k (f

′) = cFi,j,ke
j[θFi,j,k−2π (f

′
+fc)τ

′F
i,j,k ]. (7)

Analogously, the TV-CTF HF
i,j,k (f

′) of the kth fixed scat-
terer is determined by a fixed path gain cFi,j,k , a phase θFi,j,k

and a propagation delay τ
′F
i,j,k associated with the kth fixed

scatterer. It is worth noting that both phases θMi,j and θFi,j,k
in (6) and (7), respectively, are modelled as independent
and identically distributed (i.i.d.) random variables, each of
them following a uniform distribution over the interval from
−π to π . The TV propagation delay τ

′M
i,j (t) of the radio

wave travelling from the jth transmitter antenna ATj to the ith
receiver antenna ARi via the moving point scatterer SM can be
computed in terms of the Euclidean distances dTj (t) and d

R
i (t)

as follows

τ
′M
i,j (t) =

dTj (t)+ d
R
i (t)

c0
(8)

where c0 denotes the speed of light. Similarly, the time-
invariant propagation delays τ

′F
i,j,k of the wave propagating

from the jth transmitter antenna ATj to the ith receiver antenna
ARi via the fixed scatterer SFk can be computed in terms of the
Euclidean distances dTj,k and d

R
i,k as

τ
′F
i,j,k =

dTj,k + d
R
i,k

c0
. (9)

The TV Doppler shift corresponding to the link from ATj to
ARi can be obtained by computing the derivative τ̇

′M
i,j (t) of the

TV delay τ
′M
i,j (t) as follow [25]:

f Mi,j (t) = −fcτ̇
′M
i,j (t). (10)

IV. SPECTROGRAM ANALYSIS
In this section, we present the spectrogram capturing the
effect of a single moving point scatterer. From the spec-
trogram, we can compute the TV mean Doppler shift. The
TV Doppler spectrogram of the communication link between
ATj and ARi is denoted by Si,j(f , t). The computation of the
TV Doppler spectrogram Si,j(f , t) of the complex TV-CTF
HM
i,j (t, f

′) determined by the moving scatterer SM is per-
formed in the following five steps. First, the channel impulse
response hMi,j(t, τ

′) is computed by taking the inverse Fourier
transform ofHM

i,j (t, f
′) with respect to frequency f ′ as follows

hMi,j(t, τ
′) =

B/2∫
−B/2

HM
i,j (t, f

′) exp
(
j2π f ′τ ′

)
df ′. (11)

In the second step, we compute the complex channel gain
µi,j(t) representing the channel link from ATj to ARi by inte-
grating hMi,j(t, τ

′) over τ ′ from 0 to the maximum propagation
delay τ ′max, i.e.,

µi,j(t) =

τ ′max∫
0

hMi,j(t, τ
′)dτ ′ (12)

≈ cMi,je
j
[
θMi,j−2π fcτ

′M
i,j (t)

]
. (13)

In the third step, the complex channel gain µi,j(t) is multi-
plied by a sliding window function w(t), which is a positive
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even function with normalized energy, as follows

xi,j(t ′, t) = µi,j(t)w(t ′ − t). (14)

For the slidingwindow function, we use the Kaiser window
function that is given by

w(t) =


I0
{
β

√
1−

(
2t
T0
− 1

)2}
I0(β)

, 0 ≤ t ≤ T0

0, otherwise

(15)

where T0 is the length of the window, and β is parameter
that controls the shape of the window function. The symbol
I0(·) stands for the modified Bessel function of the first kind
of zero order. In the fourth step, we compute the short-time
Fourier transform (STFT) of the signal xi,j(t ′, t) in (14) with
respect to t ′, i.e.,

Xi,j(f , t) =

∞∫
−∞

xi,j(t ′, t)e−i2π ft
′

dt ′. (16)

Finally, by computing the squared magnitude of the STFT
Xi,j(f , t) in (16), we obtain the TV Doppler spectrogram of
the link from ATj to ARi as

Si,j(f , t) = |Xi,j(f , t)|2. (17)

By computing the first moment of the TV Doppler spec-
trogram Si,j(f , t) in (17), we obtain the TV mean Doppler
frequency B(1)µi,j (t). Hence, the TV mean Doppler shift can be
formulated as [25]

B(1)µi,j (t) =

∫
∞

−∞
fSi,j(f , t)df∫

∞

−∞
Si,j(f , t)df

. (18)

Alternatively, the TV mean Doppler shift of the proposed
trajectory-driven channel model can also be computed by
using the TV Doppler shifts f Mi,j (t) of the corresponding mov-
ing point scatterer SM as follows [25]

B(1)
f Mi,j

(t) =
(cMi,j)

2f Mi,j (t)

(cMi,j)
2 +

∑K
k=1(c

F
i,j,k )

2
. (19)

V. MEASUREMENTS AND NUMERICAL RESULTS
This section presents the measurement setup for capturing the
trajectory of a moving point scatterer in an indoor environ-
ment. The analyses of the results obtained from the measure-
ments and the analytical model are also discussed. The indoor
propagation environment is a roomwith awidth of 6m, length
of 11.5m, and height of 2.5m. In the room, there exist fixed
objects, such as chairs, tables, boards, and computers and a
moving point scatterer. As a point scatterer, we consider a
single swinging pendulum, which is a medicine ball weighing
3 kg. We attach the pendulum to the ceiling of the laboratory
room by using a rope with length L = 1.52m. From the
geometrical representation of the swinging pendulum shown

FIGURE 2. Propagation environment used for experimental setup with a
radar sensing system and IMU.

in Fig. 3, we can compute the trajectory (displacements) x(t),
y(t), and z(t) of the pendulum as follows [26]:

x(t) = L sin
(
arcsin

(xmax

L

)
cos

(√ g
L
t
))

(20)

y(t) = 0 (21)

z(t) = L
{
1− cos

[
arcsin

(x(t)
L

)]}
, (22)

where g and xmax represent the gravity acceleration and the
maximum displacement in x-direction, respectively. The TV
positions x(t), y(t), and z(t) characterize the TV trajectory
of the pendulum C(t) = (x(t), y(t), z(t)). The TV trajectory
C(t) is the input signal of the trajectory-driven channel model,
which we refer hereafter as the analytical model. Starting
from the mathematical trajectory C(t) (pendulum model),
we can compute the TV spectrogram Si,j(t, f ) as outlined in
Section IV and depicted in Fig. 4(a).

A. MEASUREMENT SCENARIO FOR RADAR SENSING
The mobility of the pendulum is captured with the MIMO
radar sensing system SDR-KIT 2400T2R4 from Ancortek
operating at 24GHz. The radar system has two transmitter
and four receiver directional antennas. The transmitted chirp
signals have a bandwidth of 250MHz with 1ms chirp dura-
tion. While employing a full MIMO setup, i.e., 2×4 antenna
configurations, we experience a mixture of micro-Doppler
signature patterns of the swinging pendulum corresponding
to several MIMO sub-links. To avoid this subchannel co-
interference, we used only the 2 × 2 MIMO configuration,
in which this mixture of patterns is not negligible. More-
over, to reduce the impact of the subchannel co-interference,
we subtracted the TV spectrograms of different links from
each other as follows:

Š1,1(f , t) = Ŝ1,1(f , t)+ αŜ2,1(f , t) (23)

Š2,1(f , t) = Ŝ2,1(f , t)+ βŜ1,1(f , t) (24)

S?1,1(f , t) = Š1,1(f , t)− Š2,1(f , t) (25)

where Š1,1(f , t) (Š2,1(f , t)) represents the TV spectrograms
of the link AT1 − A

R
1 (AT1 − A

R
2 ) consisting of the patterns of
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spectrograms from the other link AT1 − AR2 (AT1 − AR1 ). The
symbols α and β are weighting factors associated with the
spectrograms of the interfering subchannel. Thus, we com-
pute the TV spectrogram of the desired AT1 −A

R
1 link S

?
1,1(f , t)

as follows

S?1,1(f , t) = Ŝ1,1(f , t)(1− β)+ Ŝ2,1(f , t)(α − 1). (26)

If α and β are very small compared to 1, i.e., α � 1 and
β � 1, then we can write

S?1,1(f , t) ≈ Ŝ1,1(f , t)− Ŝ2,1(f , t). (27)

As Ŝ1,1(f , t) ≥ 0 and Ŝ2,1(f , t) ≥ 0 are in general different,
we can set S?1,1(f , t) to zero for all values of f and t for which
the difference in (27) is negative. Thus, we obtain

S?1,1(f , t) ≈ Ŝ1,1(f , t). (28)

The same approach can be applied on the other links,
which results in S?2,1(f , t)≈ Ŝ2,1(f , t), S

?
1,2(f , t)≈ Ŝ1,2(f , t),

and S?2,2(f , t) ≈ Ŝ2,2(f , t). To form communication distinct
links, we placed the antennas in a distributed manner as
shown in Fig. 2. The antennas are connected to the radar
kit with cables of length 3m each. The transmitter and the
receiver antennas are set at the positions (xTj , y

T
j , z

T
j ) and

(xRi , y
R
i , z

R
i ), respectively, as illustrated in Fig. 3. The coordi-

nates of the antennas and pendulum parameters, such as the
maximum displacement xmax, and the length of the rope L are
listed in Table 1. The emitted waves from the jth transmit-
ter antenna will encounter the pendulum, and the scattered
waves impinge at the ith receiver antenna. Subsequently,
the received signals are stored and processed for further
analysis. Then, we analyse the TV Doppler spectrogram of
each link as illustrated in Fig. 4(d).

B. TRAJECTORY CAPTURING BY USING THE IMU
To obtain measurement of the pendulum trajectory, we use
MetaMotionR sensor fusion [27]. The IMU sensor is attached
to the swinging pendulum as shown in Fig. 2. By using a
smartphone, we control the IMU and record the data files
via Bluetooth. The data files contain quaternions and linear
accelerations of the pendulum. They are applied to compute
the Euler angles to rotate the linear accelerations as shown
in Fig. 4(b). Then, we have employed a quadratic regression
method to smooth the rotated linear accelerations. Thereafter,
we have computed the velocities and the trajectory (positions)

TABLE 1. Parameters of the measurement setup.

by integrating linear accelerations. Due to an experimental
error, there are linear and quadratic drifts in the velocity and
the trajectory. These drifts have been compensated by using
the zero-update (ZUPT) algorithm [29]. The TV drift-free
horizontal displacement x(t) and the vertical displacement
z(t) of the recorded data from the IMU are compared with
those of the pendulum model given in (20) and (22), respec-
tively. It is worth noting that to fit the displacements of the
IMU data to those of the pendulum model, it is required to
calibrate the IMU data by shifting and scaling the graphs in
both axes. In our analysis, we have normalized the trajectories
obtained from the IMU data as follows

x̃(t) =
max
t
(x(t))

max
t
(xIMU(t))

xIMU(t) (29)

ỹ(t) = 0 (30)

z̃(t) =
max
t
(z(t))

max
t
(zIMU(t))

zIMU(t). (31)

Alternatively, the z(t) displacement can be computed by
using the x(t) displacement of the IMU data by means of
the relationship in (22). However, this is only true if an
analytical solution (a mathematical model) is known. There-
fore, it is important to develop a channel model that can
be used as a reference model to replicate the real chan-
nel. Thus, the final obtained (normalized) trajectory C̃(t) =
(x̃(t), ỹ(t), z̃(t)) will be used as the input signal of the IMU
data-driven channel model and to compute its correspond-
ing TV micro-Doppler signatures S̃i,j(f , t) as illustrated in
Fig. 4(b).

C. TRAJECTORY MEASUREMENTS USING A MOTION
CAPTURE (MOCAP) CAMERA SYSTEM
To validate the correctness of the proposed channel model,
we also recorded the trajectory of the swinging pendulum
by using the MOCAP camera system. The adopted MOCAP
camera system is based on the Qualisys capture system [30].
This MOCAP system features the highest-performing tech-
nology that is currently available on the market. The setup
of the Qualisys MOCAP system is shown in Fig. 5, where
8 Miqus hybrid cameras are used. The Miqus hybrid cam-
eras allow us to capture the mobility of the object by using
either a marker-based tracking or a marker-less tracking sys-
tem. The Miqus hybrid cameras [31] are dual mode cam-
eras capable of streaming full high definition (HD) color
video at 85 frames per second or streaming marker data
at 340 frames per second. In our preliminary experiment,
a collection of MOCAP data is conducted by using Qual-
isys Track Manager (QTM) [32] based on a marker tracking
system. The tracking can be performed in real-time or by
post-processing. In the proposed experiment, markers have
been placed on the swinging pendulum. Based on the selected
markers, a virtual reference frame is established in the center
of mass (CoM) of the medicine ball. The QTM’s advanced
3D six-degree of freedom (6DOF) tracker computes 3D and
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FIGURE 3. Geometrical representations of the MIMO links: (a) AT
1 − AR

1 , (b) AT
1 − AR

2 , (c) AT
2 − AR

1 , and (d) AT
2 − AR

2 , respectively.

FIGURE 4. Block diagrams demonstrating the steps to compute the spectrograms Si,j (f , t), S̃i,j (f , t), S̄i,j (f , t), and Ŝi,j (f , t) of the
(a) analytical model, (b) IMU data-driven model, (c) Qualisys (MOCAP) data-driven model, and (d) measured channel, respectively.

6DOF data by using two-dimensional (2D) data points with
minimal latency. Thus, the obtained trajectory of the pen-
dulum C̄(t) = (x̄(t), ȳ(t), z̄(t)) will be used to compute the
MOCAP data-driven channel model. For reasons of com-
parison, we can then compute TV micro-Doppler signature
S̄i,j(f , t), as shown in Fig. 4(c).

Finally, by using the TV micro-Doppler signature, we can
obtain the TV mean Doppler shift. We conducted another
experiment with the swinging pendulum by using simul-
taneously the IMU sensor, the MOCAP camera system,
and the radar kit configured for the SISO communication
link. To investigate the performance of the MOCAP camera
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FIGURE 5. Propagation environment used for experimental setup with a
MOCAP system and IMU.

FIGURE 6. TV x(t) displacements of the mechanical model, the measured
IMU data, and the MOCAP data.

FIGURE 7. TV z(t) displacements of the mechanical model, the measured
IMU data, and the MOCAP data.

FIGURE 8. Similarity score (in %) of the x(t) displacement of the
mechanical model, the measured IMU data, and the MOCAP data.

system, we computed the TV-CTF H̄i,j(t, f ′) and its corre-
sponding mean Doppler shift B̄(1)Hi,j (t) by using the trajectory
obtained from the MOCAP data.

Figures 6 and 7 illustrate x(t) and z(t) displacements
obtained from the mechanical model, the MOCAP data, and
the IMU data. We can see that all models match well and
demonstrate a good agreement. To investigate the accuracy of
the conducted data, we computed a similarity score between
the mechanical model and the recorded data. The similarity

FIGURE 9. Similarity score (in %) of the z(t) displacement of the
mechanical model, the measured IMU data, and the MOCAP data.

FIGURE 10. Spectrograms Ŝ1,1(f , t), S̃1,1(f , t), and S1,1(f , t) of the
(a) measured channel, (b) IMU data-driven channel, and (c) analytical
model, respectively, for the AT

1−AR
1 link.

score can be obtained by using

η =

1−
∥∥∥Ea? − Ea∥∥∥∥∥∥Ea?∥∥∥

 100% (32)

where Ea? and Ea stand for the measured and analytical data,
respectively. By replacing Ea? and Ea with x(t) and x̃(t),
respectively, we can compute the similarity score between
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FIGURE 11. Spectrograms Ŝ2,1(f , t), S̃2,1(f , t), and S2,1(f , t) of the
(a) measured channel, (b) IMU data-driven model, and (c) analytical
model, respectively, for the AT

1−AR
2 link.

the displacements of the mechanical (pendulum) model and
the recorded trajectories. Hence, the similarity score of the
displacements x(t) and z(t) obtained from the MOCAP
data, the IMU data, and the mechanical model can be seen
in Figs. 8 and 9. We can observe that the MOCAP data
obtained from the QTM system outperforms the one of the
IMU data when comparing to the mechanical (pendulum)
model.

D. TV SPECTROGRAM AND MEAN DOPPLER SHIFT
The TV spectrograms for the MIMO links AT1−A

R
1 , A

T
1−A

R
2 ,

AT2 −A
R
1 , and A

T
2−A

R
2 are shown in Figs. 10, 11, 12, and 13,

respectively. The TV spectrograms of the measured chan-
nel Ŝi,j(f , t), the IMU data-driven channel S̃i,j(f , t), and the
analytical channel model Si,j(f , t) for the link AT1 − AR1 are
demonstrated in Figs. 10(a), 10(b), and 10(c), respectively.
From a comparison of the results shown in Figs. 10(a)−10(c),
we can observe an excellent agreement between the TV
micro-Doppler signatures of the measured channel, the
IMU-driven channel, and the analytical channel model. The

FIGURE 12. Spectrograms Ŝ1,2(f , t), S̃1,2(f , t), and S1,2(f , t) of the
(a) measured channel, (b) IMU data-driven model, and (c) analytical
model, respectively, for the AT

2−AR
1 link.

Doppler frequency has positive (negative) values, when
the pendulum swings towards (away from) the transmit-
ter antenna AT1 . When the swinging pendulum reaches
its local minimum and maximum displacements as shown
in Figs. 6 and 7, then its speed of motion reaches 0m/s.
Hence, the TV Doppler frequency corresponding to the
motion of the pendulum approaches 0Hz. Similar, obser-
vations can be seen in Figs. 11, 12, and 13 for the links
AT1 −A

R
2 , A

T
2 −A

R
1 , and AT2 −A

R
2 , respectively. From the

results in Figs. 10−13, the impact of the transmitter and the
receiver antenna positions on the spectrograms in terms of
the amplitude of the Doppler frequency can be seen. In fact,
the wave travel distance has an impact on the corresponding
propagation delay, which is directly related to the Doppler
shift.

We have also investigated the TV mean Doppler shifts
B̂(1)i,j (t), B̃

(1)
i,j (t), and B(1)i,j (t) of the measured channel, the

IMU-driven channel, and the analytical channel models,
respectively. In Figs. 14−17, we have illustrated the TV
mean Doppler shifts for the different MIMO links. Similar to
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FIGURE 13. Spectrograms Ŝ2,2(f , t), S̃2,2(f , t), and S2,2(f , t) of the
(a) measured channel, (b) IMU data-driven model, and (c) analytical
model, respectively, for the AT

2−AR
2 link.

FIGURE 14. The TV mean Doppler shift of B(1)
µ1,1

(t) of the AT
1−AR

1 link.

the spectrograms in Figs. 10−13, an impact of the different
antenna positions (MIMO links) on the frequency range of
the TV mean Doppler shift can be observed in Figs. 14−17.

FIGURE 15. The TV mean Doppler shift B(1)
µ2,1

(t) of the AT
1−AR

2 link.

FIGURE 16. The TV mean Doppler shift B(1)
µ1,2

(t) of the AT
2−AR

1 link.

FIGURE 17. The TV mean Doppler shift B(1)
µ2,2

(t) of the AT
2−AR

2 link.

Furthermore, we can observe an excellent match between the
TV mean Doppler shift of the measured channel, the IMU
data-driven channel, and the analytical channel model. This
confirms the usefulness of the proposed model for all MIMO
links considering different antenna positions. As we men-
tioned earlier, we also conducted MOCAP data for the tra-
jectories of the pendulum, while configuring the radar kit as
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FIGURE 18. The TV mean Doppler shift B(1)
µ1,1

(t) of the SISO channel.

a SISO system and activating the IMU sensor too. Fig. 18
shows the corresponding TV mean Doppler shift for this
experiment. We can see that the results of all models exhibit
an excellent agreement.

VI. CONCLUSION
In this paper, we have proposed a 3D trajectory-driven non-
stationary mm-Wave MIMO channel model for a moving
point scatterer. We have presented the TV-CTF capturing
the effect of the mobility of the moving point scatterer.
We have studied the TV Doppler characteristics of the pro-
posed channel model, i.e., the TV Doppler spectrogram and
the TV mean Doppler shift. The TV micro-Doppler signa-
ture of the proposed channel model has been validated by
measured data, which are obtained by using a MIMO radar
operating at 24 GHz. The obtained results have shown excel-
lent agreement between the measured data and the proposed
trajectory-driven channel model.Moreover, we have captured
the TV trajectory of the pendulum by using both the IMU
sensor and the QTM-based MOCAP camera system. The
accuracy of the proposed non-stationary channel model has
been confirmed by demonstrating a perfect match between
the TV Doppler spectrograms of the measured (radar, IMU,
MOCAP) data and the analytical model. We have also inves-
tigated the impact of the differentMIMO links on the Doppler
spectrogram of the received signal. The results demonstrate
the importance of the antenna elements position for the anal-
ysis of the micro-Doppler signatures caused by the mobility
of an object. Furthermore, the comparison analysis of the
trajectories obtained from the MOCAP and IMU sensor data
show that the MOCAP system outperforms the IMU sensor
with respect to the analytical trajectory-driven model. It is
important to obtain a set of data that can accurately replicate
the fingerprints of real-life activities. We believe that our
trajectory-driven channel model can serve as a basis for the
derivation of a generic indoor channel model reproducing the
Doppler characteristics caused by a moving point scatterer.
As a future work, this model can be extended by considering
multiple moving scatterers.
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