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ABSTRACT The alarming annual growth in the number of people affected by Major Depressive Disorder
(MDD) is a problem on a global scale. In the primary scrutiny of depression, Electroencephalography (EEG)
is one of the analytical tools available. Machine Learning (ML) and Deep Neural Networks (DNN) methods
are the most common techniques for MDD diagnosis using EEG. However, these ML methods heavily
rely on manually annotated EEG signals, which can only be generated by experts, for training. This also
necessitates a large amount of memory and time constraints. The requirement of huge amounts of data to
foresee emerging tendencies or undiscovered alignments is enforced. This article develops an unsupervised
learning method for identifying MDD in light of these difficulties. The preprocessed EEG is used to extract
three quantitative biomarkers (Band Power: Beta, Delta, and Theta), and three signal features (Detrended
Fluctuation Analysis (DFA), Higuchi’s Fractal Dimension (HFD), and Lempel-Ziv Complexity (LZC)).
Through the extracted features, an undirected graph is created using the features as a weight along the edges,
with nodes as channels in EEG recording. The bifurcation of the subjects in either of the classes (MDD or N)
is done by implementing spectral clustering. A 98% accuracy with a 2.5% of miss-classification error is
achieved for the left hemisphere. In contrast, a 97% accuracy with a 3.3% CEP (or miss-classification error
or Classification Error Percentage) is achieved for the right hemisphere. FP1 and F8 channels have achieved
the highest possible level of classification accuracy.

INDEX TERMS Unsupervised classification, biomarkers, bandpower, EEG signal, depression.

I. INTRODUCTION
Anxiety, irritability, and a general lack of interest in or
interaction with the outside world are hallmarks of Major
Depressive Disorder (MDD), a spectrum of complex and var-
ied symptoms. In terms of prevalence and economic impact,
depression is the most common mental condition worldwide,
according to the World Health Organization [1]. About one
in fifteen adults experience symptoms each year. Close to
264 million people all over the world are battling this silent
killer. Many people all over the world were severely affected
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by the COVID-19 pandemic. More than half of the Indian
population experiences anxiety and depression, according to
a survey conducted after COVID-19 [2].

The various scales or scores are typically used to
determine the diagnostic procedures for MDD. The phys-
ical therapist performing the assessments will signifi-
cantly impact these measures. Investigating techniques that
considerably lessen the load and automatically assist in
the early detection of MDD is extremely important for
researchers.

Electroencephalography (EEG) is generally used to study
brain activation, particularly in physiological settings [16].
According to [17], the brain activity that the EEG measures
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TABLE 1. Research articles based on EEG quantitative biomarkers.

primarily reflects the neurological system and mental states.
These recordings are an essential tool for understanding how
the brain functions and, consequently, for diagnosing and
tracking significantly impact [18] including epilepsy, insom-
nia, seizures, etc. EEG signals are visually complex, non-
stationary, and have inherent non-linearity thus, extraction of
its peculiar characteristics is a difficult task. This necessitates
the use of advanced dynamic algorithms. Other difficulties
include the signal’s short magnitude range, which makes
it susceptible to disturbances (e.g., physiological or non-
physiological artifacts).

As a result, several EEG-based biomarkers can efficiently
address the aforementioned problems by differentiating
between healthy and MDD participants under varied therapy
responses [19]. Machine Learning (ML) techniques are used
for the majority of analyses that are based on classification.
To verify the effectiveness ofML techniques, a sizable dataset
is required. The majority of analyses for the classification are
done utilizing machines. In order to evaluate the performance
of the proposed algorithm using the limited EEG data avail-
able, cross-validation techniques are used, which can result
in overfitting and data leaking [7]. A huge amount of labeled
training data is essential for the deep learning approaches’
accuracy [20]. The process of labeling EEG signals is
extremely time-consuming and requires the pathologist’s

competence [21]. Analysis of unlabeled data, however, can be
beneficial.

In this study, the authors present a method for pri-
mary EEG signal decoding of depression utilizing an
unsupervised approach. Quantitative EEG biomarkers are
used in the analysis in order to successfully address the
difficulties and problems associated with working with
raw EEG information. The framework designed is an
entire system that starts with pre-processing the data and
extracts six carefully selected EEG-based features to accu-
rately describe the signal. To decode the patients into
two categories—Normal and MDD—these features are
converted into a weighted graph and spectral clustering
minutely segregates the nodes through weights associated.
The full layout of the created framework is displayed
in Fig.1.

The following are the major contributions:
• The developed framework is a fully unsupervised
method to predict MDD, doing away without labeling
and reliance on the expert directly. Additionally, the
complexity of calculation and time (in terms of train
and test time of a model designed) are both considerably
lowered. To effectively handle problems like overfitting
and data leaking, the dependency on the large data set is
effectively decreased.
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FIGURE 1. Comprehensive proposed framework for MDD.

• Through electrodes, the neural data collected at various
frequencies from various brain regions can be translated
into cortical activity. The developed system is dependent
on the signal extraction characteristics and the resulting
quantitative EEG biomarkers. It is commendable that
the challenge of working with a direct EEG signal is
addressed. Additionally, by employing signal-derived
features, non-stationary and non-linear EEG properties
can be effectively examined.

• To comprehend the relationship and interdependency
between the inter and intra-hemispheric electrode pairs,
a thorough analysis is conducted. Also, the author has
used spatial and temporal reliance as a function of the
particular channel.

• The computational complexity and time required by the
suggested framework are lower than those of the current
deep neural network methods. Where C is the total
number of channels, the computational complexity of
the spectral clustering is O(C3).

The paper is structured as follows: In Section II, a complete
analysis of the various techniques used to predict MDD is
discussed. Section III elaborates on the entire overview of the
designed methodology for the model. The experimental setup
is presented in Section IV, followed by a detailed discussion
of the results obtained with concluding remarks and future
scope in Section V.

II. LITERARY SURVEY
The subject’s age and medical history, which are typically
absent and have an impact on the diagnosis process and
delay the person’s early treatment, are key factors that deter-
mine how the subject will behave. As a result, objective
neuroimaging biomarkers (also known as ‘‘neuro markers’’)
have the benefit of being clinically unbiased, which inspires

researchers to use a subject’s EEG as a tool to screen
for various mental disorders like Alzheimer’s disease [22],
depression, anxiety, and seizures.

The majority of the research focused on using EEG sig-
nals to analyze depression, and it typically included feature
extraction or raw, preprocessed EEG signals for trainingmod-
els. In [6], nearly 33 participants’ resting-state EEG records
are used to develop a DeprNet, a CNN model (18 Normal
and 15 MDD). This convolution model achieved a maximum
accuracy of 91% for subject-wise split data and 99% for
record-wise split data.

Similarly in [8], a CNN-LSTM is used to analyze
single-channel EEG data from the right and left hemispheres
of the brain in experiments with a sample size of 30 partici-
pants. Despite the accuracy being 97.66%, the author claimed
that the main issue was computational complexity. For the
same dataset, a CNN model with 13 convolutional layers
and a 95.49% accuracy is obtained [23]. In [24], a model
with 6 CNN layers structure is touted as being more effective
and less complex. An exhaustive survey on different current
DNN models built on EEG-based MDD prediction is pre-
sented in [25].

The researchers either work on the raw EEG signals or
on the extracted features from the signal. These studies
focus on searching for different linear or non-linear patterns
to identify MDD. An exhaustive analysis of all previous
research, particularly models built on quantitative biomark-
ers from EEG and characteristics analyzed and tabulated
in TABLE.1.

III. METHODOLOGY
Continuously fluctuating EEG data differs from subject to
subject and channel to channel, demanding the use of an unsu-
pervised technique to minimize the impact of EEG variation
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FIGURE 2. Trends between several biomarkers that were recovered from MDD and normal subjects using (a) Beta (b) Delta (c) Theta.

on the detection outcomes. The proposed unsupervised
framework is developed employing the linear and non-linear
EEG biomarkers to effectively and efficiently address the
issues and help in primary diagnosis.

A. NOISE REMOVAL
Noise and artifacts are always present in the raw EEG data
that are obtained as a result of a subject’s brain activity. Raw
data is processed through a band-pass filter adjusted at a
frequency of 0.5–40Hz to remove high-frequency noise and
rapid spikes, and a 50Hz notch aids in the removal of residual
low-frequency noise signals. Independent Component Anal-
ysis (ICA) [26] eliminates artifacts produced in the signal
due to any slight body movement or changes in the recording
device’s voltage.

B. BIOMARKERS EXTRACTION
Biomarkers are frequently used to refer to signal qualities
or properties that are statistically quantified as indicators for
particular biological or pathological processes. The authors
have extracted a total of six biomarkers to account for the
linear and non-linear features of EEG data. TABLE 2 con-
tains a comprehensive parametric analysis of each of the six
biomarkers.

• BANDPOWER
EEG signals are separated into five distinct spectral
frequencies, including Alpha, Beta, Gamma, Theta, and
Delta. We can parameterize the impact of a certain fre-
quency band on a biological activity under investigation
by measuring the relative bandpower of these frequency
bands. Welch’s Periodogram [27] is used to calculate
the bandpower of in-deterministic and fluctuating EEG
signals. In the method applied, non-stationary EEG sig-
nals are windowed (ωn) into brief data segments of
sizeK with the assumption that the EEGdatawill remain
stationary within that particular time frame. Then, using
Equation(1), the power spectral density (S~ ) of these
brief periods is computed.

S~ (ωn)
△
=

1
K

K−1∑
j=0

Pxj,J (ωn) (1)

The periodogram for the Jth time period is denoted
here by P. Welch’s periodogram is considered

computationally efficient for analyzing bandpower as it
employs Fast Fourier Transform (FFT).

RP =

∫
∞

−∞
[S~ (ωn)]frequency band∫

∞

−∞
[S~ (ωn)]

(2)

The relative band strengths (RP) of three different
frequency ranges (Beta, Delta, and Theta) are used
to conduct this analysis. Alpha and Gamma are not
included here as we could not find an evident change
in the values for MDD and N subjects. According to
the findings from Fig. 2, the Beta, Delta, and Theta
bands were more effective discriminators for MDD
subjects than the Alpha band. In subjects with MDD,
there is an increase in the power of the Theta band
and the Beta band, while the right hemisphere also
showed the same trend. There appears to be a correla-
tion between the Theta and Beta bands in people with
MDD [12].

• SIGNAL EXTRACTED FEATURES
- - Detrended Fluctuation Analysis:

Signals or objects are said to be self-similar if
there are components that are identical to the item
exactly or roughly, or if the component is sta-
tistically similar across scales. A non-stationary,
fluctuating signal’s long-range correlation param-
eter can be calculated using DFA [28], a scaling
analysis. The entire DFA analysis of an EEG sig-
nal is described in the Algorithm 1. This analysis
dynamically adjusts the window size along a loga-
rithmic scale as the input size varies. Additionally,
a first-degree polynomial is used to fit the detrended
data.

Algorithm 1 DFA
1: Input: Raw EEG Signal: ~ = {~1, ~2, . . . , ~N }

2: Detrended signal y(r) =
∑r

i (xi − x̄).
3: Non-overlapping Segments 2Ks:Length s.
4: Variance 𭟋2

s (K ) for each segments.
5: Output: Deterended Fluctuation 𭟋(s)

𭟋(s) =

√√√√ 1
2Ks

2Ks∑
n=1

𭟋2
s (K ) (3)
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- - Higuchi’s Fractal Dimension:
The statistical complexity metric known as a fractal
dimension (FD) investigates the impact of sample
size on the dynamics of a complicated time series’s
features through space and time. The Algorithm 2
offers instructions on how to apply Higuchi’s algo-
rithm [29] to EEG signals. Through observations,
it is found that the divergences in the HFD values
are least observed in the subject’s Channel-Wise
data.

Algorithm 2 HFD
1: Input: Raw EEG Signal: ~ = {~1, ~2, . . . , ~N }

2: New sub time series are computed yab, such that a ∈

{1, . . . ,Kmax}.
3: Where yab = {y(a), y(a+b), y(a+2b), . . . , y(a+

N−a
b .b)

4: Compute length lb(a) of each new time series, yab.
5: Compute length of the curve, l(b) =

N−1
[N−a

b ]b2
∑[N−a

b ]
i=1 |x(a+ ib) − x(a+ (i− 1)b)|

6: Slope H for the straight line (ln(1/b), ln (l(b))).
7: Output: H

- - LZC:
The Lempel-Ziv algorithm [30], which is described
in Algorithm. 3, comprehends the complexity or
unpredictability of an EEG signal, which is the
consequence of scalp activity. It is assessed by the
analysis of binary sequences of the signal. For each
subject, the provided EEG data ~ is altered in a
binary sequence (B) : {b1, b2, b3, . . . , bn}.

Algorithm 3 LZC
1: Input: EEG signal into Binary Sequence B
2: Divide the B into two sub-word SQ; SQπ last term omit-

ted.
3: Fixed Prefix Q /∈ v(SQπ ).
4: Increment complexity counter c(n) normalize CLZC it

as [30], [31]
5: Output: CLZC

Along with HFD and LZC, DFA has been recognized as
a potential discriminator. According to Fig. 3a, depression is
associated with lower DFA values as well as a noticeable dip
for MDD subjects. The study conducted in [32] also reported
similar conclusions. In HFD, an opposite trend is examined.
According to Fig.3b, a higher value is observed in subjects
with MDD. Although Fig.3c shows a rise in values. A similar
conclusion was drawn in [33].

C. GRAPH THEORY AND SPECTRAL
CLUSTERING APPROACH
The graph approach is widely accepted in understanding
the hidden data characteristics and the various abnormal-
ities. Through, graph brain mapping is more easily done.

To effectively understand the brain network, the EEG cap-
tured is represented as a graph(G), which is a rudimentary
representation of the brain topology. Here, the (V ) vertices
(or nodes) are connected to the (E) edges (or links). Thus,
G = (V ,E). To study, the human brain nodes represent brain
regions (i.e. EEG electrodes/sensors) while edges are links of
associations (i.e. features or connections). The various steps
are shown in Fig.4.

• Defining the vertices in brain network The brain net-
work’s vertices (or nodes) significantly play an impor-
tant role in the outcome and the analysis of the brain
functionality [34]. The nodes are defined in the network
using two approaches and we have implemented both
of them in our study. The first is ‘‘individual chan-
nel’’ which relies on the predefined standard place-
ments of the EEG electrodes on the scalp [35]. This is
implemented using the Channel-wise data matrix. The
second approach is based on EEG source connectivity
that can be implemented by subdividing the scalp into
various regions-of-interest [36]. This is done using the
Hemisphere-wise matrix.

• Defining the Edges The edges are connections between
the various electrodes or brain regions. It showcases the
various patterns of connectivity and relationship among
brain activity. In our study, the edges are defined using
correlation among the individual channels and the two
hemispheres through a tuple of the five different features
extracted above.

• Compute the connectivity matrix (W ) The connectiv-
ity matrix is also commonly known as the adjacency
matrix. It defines the information regarding the associa-
tions among connectivity patterns. The size of thematrix
in our study is CC in which the rows (i) and columns (j)
denote nodes, and matrix entries (eij) denote edges.

W =


eij if (vi, vj) ∈ E
0 if i == j
inf otherwise

(4)

The connectivity matrix is as shown below:

W =

∥∥∥∥∥∥∥∥
e11 .. .. e1C
.. e22 .. ..

.. .. .. ..

eC1 .. .. eCC

∥∥∥∥∥∥∥∥ (5)

In our analysis, the binarization of the connectivity
matrix is not done using anymanual threshold condition.
This matrix with the weights on the edges is directly fed
to the next step of clustering using the spectral method.

• Analysis of the Graph using Spectral Clustering
The graph constructed for three data matrix are shown
in Fig.12. Through this graph, an interconnection among
the various channels is showcased in different cases.
Here, each node is a channel, and the connection or (link)
is generated based on the W . In the case of Fig.12. (b)
and Fig.12. (c) are for the Left and Right hemispheres.
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FIGURE 3. Trends between several signal features that were recovered from MDD and normal subjects using (a) DFA, (b) HFD, and (c) LZC.

Here, we observe two separate graphs each forMDD and
N subjects. This showcases the bifurcation of channels
between the two classes. After the similarity matrix is
created. Then normalized spectral clustering specified in
the Algorithm 4 is carried out. One of the important steps
in spectral clustering is Eigen decomposition, some-
times called spectral decomposition, which is the fac-
torization of the Lnorm into eigenvalues and vectors [37].
In the case of object clusters, this decomposition is used
as the function of cost minimization. Spectral clustering
offers an attractive alternative approach, where cluster
data use eigenvectors of a similarity matrix derived from
the original dataset.

Algorithm 4 Spectral Clustering
1: Input:Channels:C , EEG (Data Matrices): D,
2: Similarity MatrixWij
3: Laplacian matrix: L

L = λ −W (6)

Here λ is the diagonal matrix with the elements

λ =

j∑
k=1

Wij (7)

The normalized Laplacian matrix is

Lnorm = λ−
1
2 Lλ−

1
2 (8)

4: Eigenvectors u1, . . . . . . uz
5: Let U ∈ RC×z eigenvector columns
6: K-means algorithm on U with mean µj

Kj = argimin
k∑
j=1

∑
W ϵU

||W − µj||
2 (9)

7: Output: Clusters Z1 and Z2

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. ENVIRONMENTAL SETTINGS
The simulation platform employed is Python 3.6.9
(Google Colab platform) and Matlab R2021a. Packages
MNE-Python [26], eeglib [38], and Yet Another Spindle

Algorithm (YASA) [39] are used to preprocess the raw EEG
signals and extract the necessary features. Table.3 lists the
system requirements. In order to make it easier for other
researchers to replicate the results, the code will be made
publicly available on GitHub after publication.

B. EEG DATA
The data employed for study in this is compiled by Mum-
taz [40] University of Sains Malaysia Hospital (HUSM).
62 people with major depressive disorder and 58 normal
subjects have been monitored and recorded their EEG for at
least a 5-minute. In order to record these, 10-20 electrodes
in a standard locations system are used. The data is recorded
across twenty channels (FP1, FP2, F7, F3, FZ, F4, F8, T3, C3,
CZ, C4, T5, P3, PZ, P4, T6, A2-A1, O1, and O2) under two
conditions, only the Eyes Closed (EC) and Eyes Open (EO).

C. DATA MATRICES FORMATION
The Data Matrix designed to be fed in the model design has
the size of 120 × 6 (with 120 subjects and six features).
There are three distinct Data matrices for analysis: Mean,
Channel-wise, and Hemisphere-wise. As a result of averag-
ing, a mean Data Matrix is constructed for all the features
derived from each subject using the raw EEG data overall
20 channels. Channel-wise data is made for each channel,
containing the respective channel’s feature data of all the
120 subjects. Hemisphere-wise data is further considered to
compare and contrast taking place in each hemisphere (Left
and Right of the brain). Data Matrix for the left hemisphere
incorporates averaging the feature data from the EEG chan-
nels {FP1 - T5} for each subject. At the same time, the Data
Matrix corresponding to the right hemisphere is taken into
account by averaging EEG channels’ feature data {FP2 - T6}.
The mathematical description is presented in Table.4.

D. PARAMETERS FOR ANALYSIS
The results are analyzed in terms of classification as well as
clustering. Thus, the evaluation parameters for both are con-
sidered. The first classification metric is discussed followed
by clustering.

• Confusion Matrix
A confusion matrix, also known as an error matrix,
is used to evaluate the performance of a supervised
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FIGURE 4. Spectral clustering of an EEG signal.

TABLE 2. Overview of the designed framework parametrically.

TABLE 3. System specifications.

model by comparing the predicted output of the model
to the actual output. The matrix has four different
categories, namely true positives a, false positives c,
true negatives b, and false negatives d . Here, a rep-
resents the number of true positives (correctly pre-
dicted positive instances), c represents the number of

false positives (incorrectly predicted positive instances),
b represents the number of true negatives (correctly
predicted negative instances), and d represents the num-
ber of false negatives (incorrectly predicted negative
instances).
The confusion matrix is an important tool for evaluating
the performance of any model. The following are the
advantages of it a)Detailed breakdown of predictions:
The confusion matrix provides a detailed breakdown
of the predictions made by the model, including the
number of true positives, false positives, true negatives,
and false negatives. This information can be used to
understand the strengths and weaknesses of the model
and to identify areas for improvement. b) Helps in
identifying the impact of misclassifications: By ana-
lyzing the different types of misclassifications (false
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TABLE 4. Mathematical description of data matrices.

FIGURE 5. Whisker plot for (a) Mean data matrix, (b) Left and (c) Right regions of the brain.

FIGURE 6. Extracted features for left hemisphere with normal subjects.

positives and false negatives), we can determine the
impact of each type of error on the overall performance
of the model. c) Enables the selection of appropri-

ate performance metrics: The confusion matrix pro-
vides the necessary information to calculate a range
of performance metrics, such as accuracy, precision,
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FIGURE 7. Extracted features for left hemisphere with MDD subjects.

FIGURE 8. Correlation analysis (a) FP1 Channel and (b) Mean data matrix. (The values in red indicate which
pairs of variables have correlations significantly different from zero).

TABLE 5. A comparative study of the classification parameters with the existing state of art methods.

recall, and F1 score. These metrics can be used to
evaluate the performance of the model and to com-
pare different models. d) Helps in fine-tuning the

model: The information provided by the confusion
matrix can be used to fine-tune the model, such as
adjusting the decision threshold, changing the feature
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FIGURE 9. Unsupervised classification of the labels for left hemisphere data matrix.

FIGURE 10. Unsupervised classification of the labels for right hemisphere data matrix.

FIGURE 11. Unsupervised classification of the labels for mean data matrix.

selection, or using a different algorithm altogether.
This can help to improve the overall performance of the
model.

• Accuracy Accuracy, in terms of correct label match,
refers to the proportion of instances in a dataset for
which the model’s prediction matches the actual (cor-
rect) label.

Acc =
a+ b

a+ b+ c+ d
(10)

• Sensitivity
Sensitivity, also known as recall or true positive rate, is a
performancemetric derived from a confusionmatrix that
measures the proportion of positive instances that are
correctly identified by the model. In other words, sensi-
tivity measures the model’s ability to correctly identify
positive instances. Mathematically, sensitivity can be
defined as follows:

Sen =
a

a+ d
(11)
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FIGURE 12. Graph brain network for a) Mean data matrix, b) Left hemisphere, and c) Right hemisphere.

TABLE 6. Time complexity study of the proposed method with other state
of art in literature.

Sensitivity is an importantmetric, especially in problems
where correctly identifying positive instances is critical,
such as in medical diagnosis. A high sensitivity means
that the model is able to correctly identify most of the
positive instances in the dataset, while a low sensitivity
indicates that the model is missing many of the positive
instances.

• Specificity Specificity is a performance metric derived
from a confusion matrix that measures the proportion
of negative instances that are correctly identified by the
model. In other words, specificity measures the model’s
ability to correctly identify negative instances. Mathe-
matically, specificity can be defined as follows:

Spec =
b

b+ d
(12)

Specificity is an important metric, especially in prob-
lems where correctly identifying negative instances is
critical. A high specificity means that the model is able
to correctly identify most of the negative instances in the
dataset, while a low specificity indicates that the model
is incorrectly identifying many of the negative instances
as positive.

The quality of input datasets plays a crucial role in
the assessment of clustering algorithms. Clustering validity

indices use two features to help interpret the clusters pro-
duced in a cohort: compactness and separability. D is the
Data Matrix for any of the three cases designed as in the
Subsection. C and shown in Table.5. These are clustered in
two clusters Z1 and Z2. The following different metrics are
used to evaluate these groups.

• RI
In this index, instead of investigating the correlation
between the correct labels and those that get assigned,
it evaluates the relationship between points within
the datasets [41]. It is also suitable for unsupervised
approaches because it can be utilized without labels.
Mathematically, an index is defined in Eq.(13) as the
ratio of the frequency of agreements to the total number
of pairs matched. The index lies in the range ri ∈ [0, 1],
where, 0 is the index of disagreement and 1 for similar-
ity. nC2 is the total number of terms classified.

ri =
a+ b
nC2

(13)

• ARI
With ARI , you can easily and effectively get the results
comparedwith K-means (the blob shape being isotropic)
to those achieved by spectral clustering algorithms (nor-
mally in ‘‘folded’’ shapes) without making any assump-
tions about the cluster structure. ARI [42] is formulated
as shown in Eq.(14).

ARI =
ri− Ex(ri)

max(ri) − Ex(ri)
(14)

• Classification Error Percentage (CEP)
The number of labels that the desired model misiden-
tified for the chosen clustering approach is shown by
(CEP). The clustering method labels and the orig-
inal labels are contrasted. Mathematically, CEP is
Eq.(15) [43]

CEP =
MissClassifiedPattern

TotalPatterns
(15)

E. EXPERIMENTAL STUDY AND DISCUSSION
Experimental validation is done to investigate the various
aspects of the study. The various data matrix as showcased
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TABLE 7. Designed framework accuracy analysis for channel-wise data. in Table.4 is provided to the model. The designed model
is based on spectral clustering, the hyper-parameters for
this algorithm is the number of clusters. Also, to compare
our results with other standard and fast clustering algo-
rithms K-means is taken. The hyper-parameters tunned in
K-means are the number of iterations, the number of clus-
ters, and the method of cluster initialization. The number
of iterations is taken as 1000, and the number of clus-
ters is chosen using the Elbow method. The method for
initialization is to take a random selection of seeds for
centroids.

In Fig.5, an underlying statistical distribution of various
biomarkers is demonstrated graphically. The observations
are: (a) The Mean Data Matrix has a higher proportion of
outliers than hemisphere-wise data. Compared to the left and
right hemispheres’ respective accuracy rates of 95% and 77%,
the Mean Data Matrix’s overall accuracy for spectral group-
ing is 90%. (b) For the right hemisphere compared to the left,
the data is more skewed. Through the box plot, it is observed
that the distribution is heavy-tailed and this eventually affects
the node partitioning in spectral clustering. This is also evi-
dent in the results tabulated in Table. 8. In spectral clustering
results values for ARI and RI are reported higher for the left
in contrast to the compared to the right. The overall Data
Matrix is not normally distributed, being skewed as a result
of which K-means accuracy drastically decreases although
being less computationally complex and simple than spectral
clustering.

The distribution of features extracted for the Left hemi-
sphere for the Normal subject is shown in Fig.6 and for MDD
in Fig.7. The observation is: DFA has more crest and valley
than Normal as compared to MDD subjects. Similarly, HFD
is flat for MDD subjects. An evident difference is observed
between both the feature set that can be utilized to get the
clusters.

The inter-dependency between the hemispheres and indi-
vidual channels is examined through a correlation study.
The results for two cases: the channel (FP1) and the Mean
Data Matrix are shown here. There is a visible change in
the correlation between biomarkers. The inferences drawn
from Fig.8 are: (a) Beta Band Power is uncorrelated to HFD
while linearly related to LZC. (b) DFA and Delta Band Power
are positively correlated. (c) while the remaining features
demonstrate no relationship among them. In Fig.8 for Mean
Data Matrix prominent conclusions are: (a) Beta Band Power
is uncorrelated to all the other features while having a small
positive relation with LZC. (b) Theta Band Power and DFA
are having a linearly increasing and decreasing relationship
with HFD respectively.

The methodology is also compared with the other exist-
ing methods in the literature in terms of Hemisphere-wise
accuracy and time complexity. The works compared have
also tested their models on the same dataset. The accuracy
is compared in Table.5. The method proposed has achieved
98% accuracy in the left hemisphere and 97% in the right
hemisphere. A comparison of the time complexity of different
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TABLE 8. Cluster analysis for biomarkers on hemisphere-wise data.

proposed models is tabulated in Table. 6. The proposed
method takes no time for testing as its unsupervised. In this
model, as the data is given, the graph is constructed for
the whole data at once and results get displayed. In case,
any new subject is introduced. The subject’s features will be
mapped on the current centroid information of the existing
clusters and a nearby centroid will be assigned to the new
subject.

The role of EEG captured through individual channels
is also important to understand. In Table.7 various param-
eters pertaining to the classification and unsupervised clus-
tering are investigated. The general observations drawn are:
The maximum accuracy is recorded for channel FP1; with
ARI = 0.8389 and CEP = 0.0417. This channel is
normally associated with cogitative, memory and percep-
tions of an individual. The other extreme reported is for
channel F4 with negative values of ARI = −0.0060 and
CEP = 0.480. The clustering of the Mean Data Matrix
is shown in Fig.11. The labels are overlapping in nature
and not linearly separable for the features LZC and Theta
Band Power. Although the results obtained from the K-means
algorithm make a clear demarcation and make them linearly
separable.The results of the left hemisphere have minimum
overlapping as shown in Fig.9 and for the right hemisphere
in Fig.10.

Classification accuracy of spectral clustering is more as
compared to the K-means. Thus, spectral clustering offers
a better solution as compared to K-means. The comparison
in terms of the hemisphere is given in Table.8. In both the
cases of the hemisphere, the values of ARI and RI are high
which indicates the structure similarity although the CEP
value maps the original labels with the obtained label. The
author also has compared results with the other work carried
out on the same dataset using a graph method [44]. It is
designed using the oblique visibility graph, then the parame-
ters are given to the standard SVM with RBF kernel for the
classification.

V. CONCLUSION
In this article, the model has been designed for the com-
puterized detection of depression that effectively reduces the
cost incurred in the annotation of EEG signals. Additionally,
there is a reduction in the complexity of time and space
involved in training large networks. The primary analysis of
any new ailment or brain condition can be easily done with

small sample size and in the absence of data labels. This
model works on features extracted from the EEG signal along
with a few prominent biomarkers. A Data Matrix encap-
sulates a full mapping of brain activity and its correlation
among various areas of the brain. An accuracy of 98% is
achieved for the Left hemisphere, whereas the accuracy of
the right hemisphere is 97%. Channel FP1 has the greatest
improvement in terms of channel accuracy, with a gain of
96%. Additional biomarkers including the Hurst Exponent,
Hjorth Complexity, and Spectral Asymmetry Index (SASI)
will be investigated in future studies. This method allows
a full understanding of the EEG signal. Additionally, it’s
important to consider how each biomarker influences our
general comprehension and accuracy in order to identify a
more widely used and uncomplicated spectrum partitioning
strategy.
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