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Abstract

We consider two related linear PDE's perturbed by a fractional Brownian motion. We allow

the drift to be discontinuous, in which case the corresponding deterministic equation is ill-posed.

However, the noise will be shown to have a regularizing e�ect on the equations in the sense that we

can prove existence of solutions for almost all paths of the fractional Brownian motion.

MSC Classi�cation Numbers: 60H15, 60H10, 60G22, 60H05, 60J55

Key words: Rough paths, Stochastic PDEs, regularization by noise, local times, fractional Brow-

nian motion.

1 Introduction

In this paper we study examples of the so called regularization by noise phenomenon for a class of linear
equations perturbed by fractional Brownian motion. In short, this is the name given to the phenomenon
that occurs when ill-posed deterministic equations becomes well-posed by adding stochastic terms.

More speci�cally, assume b ∈ L1(Rd;L∞([0, T ];Rd))∩L∞([0, T ]×Rd;Rd) is a given function and let
BH be a d-dimensional fractional Brownian motion (fBm). In this paper we will study two di�erent but
related linear stochastic PDE's where b acts as a drift term. The stochastic transport equation reads

∂tu(t, x) + b(t, x) · ∇u(t, x) + c(t, x)u(t, x) +∇u(t, x) · ḂHt = 0, u(0, x) = u0(x) (1)

where u0 ∈ C1
b (R), and we allow c to be a distribution in the sense that c is the distributional derivative

of a bounded function. In the case that c = div b this is called the continuity equation which we also
may de�ne as the measure valued equation

∂tµt + div(bµt) + div(µtḂ
H
t ) = 0, µ|t=0 = µ0 (2)

where µ0 is a given measure. We see that u(t, x) is equal to the Radon-Nykodim derivative of µt w.r.t.
Lebesgue measure.

Both equations are related to the stochastic ordinary equation

φt(x) = x+

∫ t

0

b(r, φr(x))dr +BHt , (3)

in the sense that the push-forward µt := (φt)]µ0 solves the continuity equation (2) and the composition

u(t, x) := u0(φ−1
t (x)) exp{−

∫ t
0
c(r, φr(φ

−1
t (x))dr} solves the transport equation (1). This means that if

we can show the regularization e�ect of the fBm on (3) there is hope to solve the corresponding stochastic
PDE's (1) and (2).

Both equations involves terms of the form YtḂ
H
t , but we know that the fBm is P -a.s. not di�erentiable

so one should integrate the equations in time to produce terms on the form
∫ t

0
YsdB

H
s . But even at this

stage there is ambiguity. Indeed, since for H 6= 1
2 the fBm is not a semi-martingale there is no Itô-theory

to make sense of this integral. Moreover, to enjoy the regularization e�ect of fBm on (3) we need to
have H < 1

2 . Since the trajectories of BH are P -a.s. Hölder continuous with exponent strictly smaller
than H, and the solutions themselves cannot be expected to have higher regularity, also the integration
theory by Young is out of reach for these equations.
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As the title of the paper suggest, we shall interpret the integrals in the rough path setting, meaning
we will use the iterated integrals of BH and the theory of controlled paths to give meaning to these
integrals.

We will discuss the equations separately. For notational simplicity we write B for the fBm.

1.1 The stochastic continuity equation

Integrating the continuity equation in time, and assuming we have the above mentioned integration
theory, we get

µt +

∫ t

0

div(bµs)ds+

∫ t

0

div(µsdBs) = µ0 (4)

regarded as a measure valued equation, namely for every η ∈ C∞c (Rd)

µt(η) = µ0(η) +

∫ t

0

µs(b(s, ·) · ∇η)ds+

∫ t

0

µs(∇η · dBs)

where µt(η) :=
∫
Rd η(x)dµt(x), µt(∇η) = (µt(∂x1η), . . . , µt(∂xdη)) and · is the dot-product on Rd.

We will show that the solution is on the form µt = (φt)]µ0. To see this, heuristically, take η ∈ C∞c (Rd)
and suppose we have some kind of Itô-Stratonovich-formula for the fractional Brownian motion in the
rough path setting. We should have

η(φt(x)) = η(x) +

∫ t

0

∇η(φr(x)) · b(r, φr(x))dr +

∫ t

0

∇η(φr(x)) · dBHr .

Integrating w.r.t. µ0 produces the desired formula provided we can use integration by parts.
The authors in [2] show existence of a unique solution to (3) and the results will be included in Section

4.

1.2 The stochastic transport equation

Integrating the linear transport equation in time gives

u(t, x) +

∫ t

0

b(s, x) · ∇u(s, x)ds+

∫ t

0

c(s, x)u(s, x)ds+

∫ t

0

∇u(s, x) · dBs = u0(x). (5)

It is well known that the corresponding deterministic equation might develop discontinuities when b is
irregular. Moreover, a weak formulation of the deterministic equation is not straightforward. Integrating
against a test function η ∈ C∞c (R), we see that the term

∫
R b(t, x) · ∇u(t, x)η(x)dx does not allow for

integration by parts unless there is some regularity on b. We will choose the noise in such a way that
the solution is weakly di�erentiable, thus circumventing integration by parts. Notice, however, that we
will still use a (spatially) weak formulation of the equation.

1.3 Related literature and main contributions

The linear transport equation has been studied extensively. When the noise term is removed, Di Perna
and Lions [5], showed that when b ∈ L1([0, T ];W 1,1

loc (Rd)) with linear growth and div b ∈ L1([0, T ]×Rd),
the equation is well posed. Notice that the regularity restrictions on b is needed in order to make a
de�nition of a solution as indicated above. These results were later generalized to the setting of bounded
variation vector �elds by Ambrosio in [1].

The stochastic version driven by Brownian motion with Stratonovich formulation, i.e.
∫ t

0
∇u(s, x) ◦

dBs, has also received some attention. We mention the results in [9] and [17], developed simultaneously
and independently, using two somewhat di�erent techniques.

An approach of using rough paths for regularization by noise was used in [6], building on [7]. The
techniques of [6] and [7] are similar in spirit to the present paper in the sense that they both use
calculation on the occupation measures. The main advantage of [6] and [7] is that they o�er a more
de�ned separation between the probabilistic considerations and the analysis of the involved ODE and
PDE's, thus making the approach suitable for di�erent types of driving noise. In the present paper one
needs to carefully keep track of P -null sets because many of the estimates are only shown to be true
under expectation. On the other hand it gives some �exibility since some of the expressions are semi
explicit via the local time.
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The paper [6] consider drifts for which div b ∈ L∞([0, T ] × Rd), and allow for linear growth. When
d = 1 this is restricts to (locally) Lipschitz drift, but when d > 1 this condition is much weaker than
Lipschitz. Another di�erence from the current paper is that [6] considers H ∈ ( 1

3 ,
1
2 ). For the technique

in the current paper to work, we need to have H < 1
3 which makes the rough path theory a bit more

involved.
The main advantage of the technique of the present paper is that the solution can easily be seen to

be smoother in space, so that there is no need for integration by parts on the drift term, which is the
reason for restricting to bounded divergence on b in [6].

In addition, we include a part where d = 1 where the proof is much simpler. The proof is based on a
local-time technique that was introduced in [18] to study the Stochastic Heat Equation.

The main contribution of the present paper is to introduce the notion of "local time solutions", see
De�nition 6.3. This notion is introduced to compensate for the lack of integration by parts for the
drift term in (5), and in fact allows to de�ne a notion of solution when the multiplicative term c in (5)
is allowed to be a distribution. Section 6.3 presents examples where one can check that the local time
solutions actually gives rise to solutions that �ts into the framework of the rough path integration theory.

1.4 Notation

For Banach spaces V,W we denote L(V ;W ) the set of all continuous linear mappings from V to W .
For simplicity we denote L(V ) := L(V ;R). If the spaces V and W are �nite dimensional, and we can
identify L(V ⊗W ) with L(V ;L(W )). In particular, for a su�ciently smooth function f : V → W the
k'th derivative is considered as a map ∇kf : V → L(V ⊗k;W ).

For T > 0 de�ne the simplex ∆(n)(s, t) := {(r1, . . . , rn) ∈ [0, T ]n : s < r1 < · · · < rn < t}. For γ > 0

denote by Cγ2 ([0, T ];V ) the space of all functions f : ∆(2)(0, T )→ V such that ‖f‖γ := sups<t
|f(s,t)|
|t−s|γ <

∞. Given a path X : [0, T ]→ V its increment is denoted Xst := Xt−Xs and we denote by Cγ([0, T ];V )
the set of all path such that its increment belongs to Cγ2 ([0, T ];V ).

For an integer p the p-step truncated tensor algebra

T (p)(Rd) :=

p⊕
n=0

(Rd)⊗n

is equipped with the product (a⊗ b)(n) =
∑n
k=0 a

(n−k) ⊗ b(k).
We recall the following Taylor formula for a function f : V →W that is m+ 1 times di�erentiable

f(x)− f(y) =

m∑
k=1

∇kf(y)

k!
(x− y)⊗k +Rfm(x, y) (6)

where |Rfm(x, y)| . |x− y|m+1. More speci�cally, we shall use the explicit formula

Rfm(x, y) =
1

m!

∫ 1

0

∇m+1f(y + u(x− y))(1− u)mdu(x− y)⊗(m+1). (7)

We shall frequently use the space L1(Rd;L∞([0, T ];Rd)) with norm denoted by

‖f‖∞,1 :=

∫
Rd
‖f(·, x)‖L∞([0,T ];Rd)dx.

For simplicity the norm in the space L∞([0, T ]× Rd;Rd) will be denoted ‖ · ‖∞.

2 Elements of Controlled Rough Paths

The theory of rough paths was �rst introduced by Terry Lyons in the late 90's, see [16]. The insight of
this work is that even though solutions to ODE's driven by rough signals are typically not continuous
as a function of the signals themselves, by adding extra information, namely the iterated integrals of
the driving signals, one obtains a topology for which there is continuity of the solutions. The theory
was further developed by Gubinelli, [12] and [13], who introduced the notion of controlled paths which
de�nes spaces that are well suited for constructing solutions of the rough ODE's.
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In the present paper we shall use controlled paths as one of our main tools. See [10] for an introduction.
It should be noted that the full theory of rough paths is not necessary for the present paper since there
will be cancellations of the "area" of the rough paths due to the structure of the noise term in (1) and
(2). Still, this machinery is convenient to understand the equations as expansions in the driving noise.

Throughout this section we �x some γ ∈ (0, 1
2 ) and let p be the integer part of 1

γ . A γ-rough path is
a mapping

X : ∆(2)(0, T )→ T (p)(Rd)

(s, t) 7→ (1, X
(1)
st , . . . , X

(p)
st )

that satis�es an algebraic (Chen's) relation

Xst = Xsu ⊗Xut, (8)

and an analytic relation

|X(n)
st | ≤ C|t− s|nγ n = 1, . . . , p, for some C > 0. (9)

We denote by C γ the set of all rough paths equipped with the metric

%γ(X, X̃) :=

p∑
n=1

sup
t6=s

|X(n)
st − X̃

(n)
st |

|t− s|nγ
.

Given a function X ∈ C1([0, T ];Rd) we can consider its canonical lift to a rough path

Xst := (1, Xst,

∫ t

s

Xsr ⊗ Ẋrdr, . . . ,

∫
∆(p)(s,t)

Ẋr1 ⊗ · · · ⊗ Ẋrpdr1 . . . drp). (10)

We denote by C γ
g the closure of the canonical lift of C1([0, T ];Rd) in the rough path topology 1 . An

element X ∈ C γ
g will be referred to as a geometric rough path and it satis�es the identity

sym(X
(n)
st ) =

1

n!

(
X

(1)
st

)⊗n
. (11)

Given a rough path X ∈ C γ , we shall say that a mapping

Y : [0, T ] −→
p⊕

n=1

L((Rd)⊗n)

t 7−→ (Y
(1)
t , . . . Y

(p)
t )

is a controlled (by X) path if the functions

Y
(k)]
st := Y

(k)
t −

p∑
n=k

Y (n)
s X

(n−k)
st k = 1, . . . , p

are such that Y (k)] ∈ C(p+1−k)γ
2 ([0, T ];L((Rd)⊗k), i.e.

|Y (k)]
st | . |t− s|(p+1−k)γ . (12)

We denote by Dpγ
X the set of all paths controlled by X, and we equip this linear space with the

semi-norm

‖Y‖X =

p∑
k=1

‖Y (k)]‖(p+1−k)γ .

1sometimes written C 0,γ
g in the literature, whereas C γg is reserved for paths satisfying (11). While C 0,γ

g is strictly

included in C γg one can use �geodesic approximations� and interpolation to show C γ
′

g ⊂ C 0,γ
g ⊂ C γg for γ′ < γ, so that one

can still approximate elements satisfying (11) at the expense of choosing a smaller γ.
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Conditioned on (Y
(1)
0 , . . . , Y

(p)
0 ) we get a norm which controls the ‖ · ‖∞-norm of Y in the following way.

We have Y
(k)
t = Y

(k)]
0t +

∑p
n=k Y

(n)
0 X

(n−k)
0t so that

‖Y (k)‖∞ ≤ T (p+1−k)γ‖Y (k)]‖(p+1−k)γ +

p∑
n=k

|Y (n)
0 |‖X‖(n−k)γT (n−k)γ

. ‖Y‖X + %γ(0,X)|Y0|. (13)

If we consider two paths Y and Ỹ, controlled by X and X̃ respectively, we introduce the �distance�

‖Y; Ỹ‖X,X̃ :=

p∑
k=1

‖Y (k)] − Ỹ (k)]‖(p+1−k)γ .

Similar as above have the following estimate

max
n=1,...,p

‖Y (n) − Ỹ (n)‖∞ ≤ ‖Y; Ỹ‖X,X̃ + %γ(X, 0)|Y0 − Ỹ0|+ %γ(X, X̃)|Ỹ0|.

We de�ne the total space

C γ n Dpγ :=
⊔

X∈Cγ

{X} ×Dpγ
X

equipped with its natural topology, i.e. the weakest topology such that

C γ n Dpγ −→ C γ ×
p⊕
k=1

C
(p+1−k)γ
2 ([0, T ];L((Rd)⊗k))

(X,Y) 7−→
(
X,⊕pk=1Y

(k)]
)

is continuous.
If f is a scalar valued function with higher Hölder regularity, i.e. |fst| . |t− s|β for some β ≥ pγ and

a controlled path Y ∈ Dpγ
X we can de�ne the product as a controlled path fY.

Lemma 2.1. The mapping

Cβ ×Dpγ
X → Dpγ

X

(f,Y) 7→ (fY (1), . . . , fY (p))

is bilinear and continuous when β ≥ pγ.

Proof. To see that the mapping is well de�ned is su�cies to notice that

(fY )
(k)]
st = fstY

(k)
t + fsY

(k)]
st

satis�es the required time-regularity when β ≥ pγ. To see continuity of this map we can similarly write

|(fY )
(k)]
st − (f̃ Ỹ )

(k)]
st | ≤ |t− s|β‖f − f̃‖β‖Y (k)‖∞

+ |t− s|(p+1−k)γ‖f − f̃‖∞‖Y (k)] − Ỹ (k)]‖(p+1−k)γ .

2.1 Integration of Controlled Rough Paths

Following [10] we denote by Cα,β2 ([0, T ]) the space of functions Ξ : ∆(2)(0, T )→ R such that

‖Ξ‖α := sup
s<t

|Ξst|
|t− s|α

<∞ and ‖δΞ‖β := sup
s<u<t

|δΞsut|
|t− s|β

<∞

where δΞsut := Ξst − Ξsu − Ξut. We equip the space with the semi-norm ‖Ξ‖α,β := ‖Ξ‖α + ‖δΞ‖β . The
following result is sometimes referred to as the �sewing lemma�:
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Lemma 2.2. Assume 0 < α ≤ 1 < β. Then there exists a unique continuous linear map

I : Cα,β2 ([0, T ])→ Cα([0, T ])

such that (IΞ)0 = 0 and
|(IΞ)st − Ξst| . |t− s|β .

More speci�cally,

I(Ξ)st = lim
|P|→0

∑
[u,v]∈P

Ξuv (14)

where P denotes a partition of [s, t] and |P| its mesh. The limit can be taken along any sequence of
partitions and is independent of this choice.

For a proof, see [10]. It is clear from (14) that Cθ2 ([0, T ]) ⊂ ker(I) for θ > 1.
We are ready to de�ne the integral of a controlled rough path. For X ∈ C γ and Y ∈ Dpγ

X let

Ξst :=

p∑
n=1

Y (n)
s X

(n)
st .

Chen's relation (8) gives X
(n)
st =

∑n
k=0X

(n−k)
su ⊗X(k)

ut , so that

δΞsut =

p∑
n=1

Y (n)
s (X

(n)
st −X(n)

su )−
p∑

n=1

Y (n)
u X

(n)
ut =

p∑
n=1

Y (n)
s

n∑
k=1

X(n−k)
su ⊗X(k)

ut −
p∑

n=1

Y (n)
u X

(n)
ut

=

p∑
k=1

p∑
n=k

Y (n)
s X(n−k)

su ⊗X(k)
ut −

p∑
k=1

Y (k)
u X

(k)
ut =

p∑
k=1

(
p∑

n=k

Y (n)
s X(n−k)

su − Y (k)
u

)
X

(k)
ut

= −
p∑
k=1

Y (k)]
su X

(k)
ut .

From (9) and (12) each term can be bounded by C|t − s|(p+1)γ for an appropriate constant C. Conse-
quently |δΞsut| . |t− s|(p+1)γ . Since (p+ 1)γ > 1 we arrive at the following de�nition:

De�nition 2.3. Let X ∈ C γ and let Y ∈ Dpγ
X . We de�ne the rough path integral of Y w.r.t. X as∫ t

s

YrdXr := (IΞ)st (15)

with I and Ξ as above.

Remark 2.4. For a smooth path X with its geometric lift (10) the rough path integral and the usual
calculus coincide, i.e. ∫ t

s

YrdXr =

∫ t

s

YrẊrdr,

for all Y ∈ Cγ([0, T ];L(Rd)). Indeed, we may de�ne Y (n) = 0 for n = 2, . . . p. Even though in general
(12) is not satis�ed for k = 1, if we de�ne

Ξst := YsXst

we get δΞsut = −YsuXut so that Ξ ∈ C1,1+γ
2 ([0, T ]).

The rest of this section is devoted to obtaining a �local Lipschitz�-type estimate when we regard the
above as a mapping

C γ n Dpγ → C
γ,(p+1)γ
2 ([0, T ]).

Indeed, let X, X̃ ∈ C γ and let Y and Ỹ be controlled by X and X̃ respectively. De�ne Ξ as before and

Ξ̃st :=

p∑
n=1

Ỹ (n)
s X̃

(n)
st .
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Lemma 2.5. Assume %γ(0,X), ‖Y‖X, |Y0| ≤ M for some constant M , and similarly for X̃ and Ỹ.
Then there exists a constant CM such that

‖Ξ− Ξ̃‖γ,(p+1)γ ≤ CM (|Y0 − Ỹ0|+ ‖Y; Ỹ‖X;X̃ + %γ(X, X̃)).

Proof. We begin by decomposing

Ξst − Ξ̃st =

p∑
n=1

Y (n)
s X

(n)
st −

p∑
n=1

Ỹ (n)
s X̃

(n)
st

=

p∑
n=1

Y (n)
s (X

(n)
st − X̃

(n)
st ) +

p∑
n=1

(Y (n)
s − Ỹ (n)

s )X̃
(n)
st

so that

|Ξst − Ξ̃st| ≤
p∑

n=1

‖Y (n)‖∞‖X(n) − X̃(n)‖nγ |t− s|nγ +

p∑
n=1

‖Y (n) − Ỹ (n)‖∞‖X̃(n)‖nγ |t− s|nγ

≤ |t− s|γ max
n=1,...,p

‖Y (n)‖∞%γ(X, X̃) + |t− s|γ%γ(0, X̃) max
n=1,...,p

‖Y (n) − Ỹ (n)‖∞.

Using (13) we can �nd a constant C̃M such that

‖Ξ− Ξ̃‖γ ≤ C̃M (‖Y; Ỹ‖X,X̃ + |Y0 − Ỹ0|+ %γ(X, X̃)).

Similarly,

δΞsut − δΞ̃sut = −
p∑

n=1

Y (n)]
su X

(n)
ut +

p∑
n=1

Ỹ (n)]
su X̃

(n)
ut

= −
p∑

n=1

Y (n)]
su (X

(n)
ut − X̃

(n)
ut ) +

p∑
n=1

(Y (n)]
su − Ỹ (n)]

su )X̃
(n)
ut

so that

‖δ(Ξ− Ξ̃)‖(p+1)γ ≤
p∑

n=1

‖Y (n)]‖(p+1−n)γ‖X(n) − X̃(n)‖nγ +

p∑
n=1

‖Y (n)] − Ỹ (n)]‖(p+1−n)γ‖X̃(n)‖nγ

≤M(%γ(X, X̃) + ‖Y; Ỹ‖X,X̃).

2.2 Controlling solutions of ODE's

In this section we will show how to control solutions of ODE's perturbed by a rough path X ∈ C γ . Fix
a function b ∈ C1

b ([0, T ]× Rd;Rd) and denote by φ·(x) the solution of the perturbed ODE

φt(x) = x+

∫ t

0

b(r, φr(x))dr +Xt. (16)

When there is no chance of confusion we shall denote the solution of (16) by φt for notational
convenience. Notice that we shall later on be interested in φt as a function of x, but for this section we
leave it �xed. We have

φst =

∫ t

s

b(r, φr)dr +Xst =: Rφst +Xst

where |Rφst| . |t − s| by the boundedness of b. Let f ∈ Cpb (Rd;Rd), so that we can view ∇kf : Rd →
L((Rd)⊗(k+1)). We shall lift the composition f(φ) to a controlled path in Dpγ

X .

Lemma 2.6. Assume X is a geometric rough path. Then the mapping s 7→ (f(φs), . . . ,∇p−1f(φs))
belongs to Dpγ

X , i.e. if we introduce the ad-hoc notation

f(φ)
(k)]
st := ∇k−1f(φt)−

p∑
n=k

∇nf(φs)X
(n−k)
st , k = 1, . . . , p

we have f(φ)(k)] ∈ C(p+1−k)γ
2 ([0, T ];L((Rd)⊗(k+1))).
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Proof. Begin by writing

φ⊗nst = (Rφst +Xst)
⊗n =

n∑
q=0

(
n

q

)
sym((Rφst)

⊗(n−q) ⊗X⊗qst ).

For a su�ciently smooth function g : Rd → L(V ) where V is a �nite-dimensional Banach space, we have
from Taylor's formula

g(φt)− g(φs) =

m∑
n=1

∇ng(φs)

n!
(φst)

⊗n +Rgm(φs, φt)

=

m∑
n=1

∇ng(φs)X
(n)
st +Rgm(φs, φt) (17)

+

m∑
n=1

n∑
q=1

(
n

q

)
∇ng(φs)

n!
((Rφst)

⊗(n−q) ⊗X⊗qst ).

In the above we have used that X satis�es (11) so that ∇ng(φs)
X⊗nst
n! = ∇ng(φs)X

(n)
st since ∇ng only

acts on symmetric tensors. Furthermore, the second term . |φst|m+1 . |t− s|(m+1)γ , and the third term

. |t − s|. With g = ∇kf and m = p − k − 1 it follows that f(φ)(k)] ∈ C(p−k)γ
2 ([0, T ];L((R)d)⊗(k+1)),

thus proving the lemma.

Remark 2.7. We note that the symmetry of ∇ng in the proof of Lemma 2.6 is the reason that the full
generality of the theory of rough paths is not needed in this paper.

Corollary 2.8. For f ∈ Cpb (Rd;Rd) we may de�ne
∫
f(φr)dXr as the rough path integral of f(φ) w.r.t.

X as in (15).

2.3 Stability w.r.t. the driving path

The purpose of this section is to prove local Lipschitz continuity of the mapping

C γ → C γ n Dpγ

X 7→ (X, f(φ))

where φ is the solution to (16), f ∈ Cpb (Rd;Rd) and f(φ) denotes the lift as described in the previous

section. We begin with some trivial bounds, namely let X̃ ∈ C γ and denote by φ̃ the solution to (16)
when we replace X by X̃, i.e.

φ̃st =

∫ t

s

b(r, φ̃r)dr + X̃st =: Rφ̃st + X̃st.

One can check that (see [6], Lemma A.7)

‖φ− φ̃‖γ ≤ C(T,∇b)‖X − X̃‖γ . (18)

Clearly this implies ‖φ− φ̃‖γ . %γ(X, X̃) and also ‖Rφ −Rφ̃‖γ . %γ(X, X̃).

It follows that ‖φ⊗n − φ̃⊗n‖nγ . %γ(X, X̃) by induction: assume this holds for n− 1. Then

|φ⊗nst − φ̃⊗nst | ≤ |φ
⊗(n−1)
st ||φst − φ̃st|+ |φ⊗(n−1)

st − φ̃⊗(n−1)
st ||φ̃st|

≤ 2|t− s|nγ%γ(X, X̃)

by the induction hypothesis combined with (18).
The main result of this section is the following.

Lemma 2.9. Assume %γ(X, 0), %γ(X̃, 0) ≤ M and f ∈ Cpb (Rd;Rd). Then there exists a constant CM
such that

‖f(φ); f(φ̃)‖X,X̃ ≤ CM%γ(X, X̃).
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Proof. We shall use the formula (17) to show that ‖f(φ)(k)]−f(φ̃)(k)]‖(p−k)γ ≤ CM%γ(X, X̃), which will
prove the claim. Towards this goal, for a function g smooth enough, the remainder term of the Taylor
expansion satis�es

Rgm(φs, φt)−Rgm(φ̃s, φ̃t) =

∫ 1

0

(1− r)m+1

m!
∇m+1g(φs + rφst)dr

(
φ
⊗(m+1)
st − φ̃⊗(m+1)

st

)
+

∫ 1

0

(1− r)m+1

m!

(
∇m+1g(φs + rφst)−∇m+1g(φ̃s + rφ̃st)

)
dr
(
φ̃
⊗(m+1)
st

)
.

For the �rst term above we have . |t − s|(m+1)γ‖∇m+1g‖∞%γ(X, X̃). For the second term we use,
uniformly in r ∈ [0, 1]

|∇m+1g(φs + rφst)−∇m+1g(φ̃s + rφ̃st)| ≤ ‖∇m+2g‖∞(|φs − φ̃s|+ r|φst − φ̃st|)
. ‖∇m+2g‖∞%γ(X, X̃).

Together with the bound |φ̃⊗(m+1)
st | . |t− s|(m+1)γ we see that

‖Rgm(φ·, φ·)−Rgm(φ̃·, φ̃·)‖(m+1)γ . %γ(X, X̃).

Fix integers q ≥ 1 and n ≥ 0. Using the estimate |a⊗ b− a′⊗ b′| ≤ |a− a′||b|+ |a′||b− b′| repeatedly,
it is easy to check that

|∇g(φs)(X
⊗n
st ⊗ (Rφst)

⊗q)−∇g(φ̃s)(X̃
⊗n
st ⊗ (Rφ̃st)

⊗q| . |t− s|%γ(X, X̃).

This combined with (17) gives

‖f(φ)(k)] − f(φ̃)(k)]‖(p−k)γ . %γ(X, X̃)

which ends the proof of the lemma.

Combining the above Lemma, Lemma 2.5 and Remark 2.4 we get

Corollary 2.10. Let X ∈ C γ
g . Then there exists a family of smooth paths Xε such that∫ ·
0

f(φεr)Ẋ
ε
rdr →

∫ ·
0

f(φr)dXr in Cγ([0, T ]),

as ε→ 0.

2.4 Stability w.r.t. the drift

Let us �x X ∈ C γ and we consider the ODE (16). Assume we have a sequence of functions bε such that
there exists a solution of for every ε > 0 to

φεt = x+

∫ t

0

bε(r, φ
ε
r)dr +Xt.

We will show stability in the sense of controlled rough paths when we assume that φε converges in an
appropriate topology. This convergence will be shown to hold in Proposition 4.15 for our particular case.

Lemma 2.11. Assume φε converges in Cγ to the solution of (16). Then for any f ∈ Cpb (Rd;Rd) we
have that the lift of f(φε) converges in Dpγ

X to f(φ), and as ε→ 0∫ ·
0

f(φεr)dXr →
∫ ·

0

f(φr)dXr

where the above convergence is in Cγ .

Proof. Note that the second claim follows from the �rst in connection with Remark 2.2.
To see the �rst claim, one has to show

lim
ε→0
‖f(φ)(k)] − f(φε)(k)]‖(p−k)γ = 0

for all k = 0, 1, . . . , p − 1. The proof follows the same lines as the proof of Lemma 2.9 with minor
modi�cations, noting that X = X̃.
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2.5 An Itô-Stratonovich formula

For the sake of being self-contained, we include a change-of-variable formula for our particular case. Let
η ∈ C∞c (Rd) and assume φ· solves (16). If X is a smooth path usual calculus yields,

d

dt
η(φt) = ∇η(φt) · b(t, φt) +∇η(φt) · Ẋt.

We can generalize this to geometric rough paths.

Lemma 2.12. Suppose η ∈ C∞c (Rd) and X is a rough path above X. Then we have

η(φt) = η(x) +

∫ t

0

η(φr) · b(r, φr)dr +

∫ t

0

∇η(φr)dXr.

where the last term is the rough path integral.

Proof. Let 0 ≤ u ≤ v ≤ t and use Taylor's formula to write, as in (17)

η(φ)uv =

p∑
n=1

∇nη(φu)

n!
(φuv)

⊗n +Rηp(φu, φv) = ∇η(φu)Rφuv +

p∑
n=1

∇nη(φu)X(n)
uv + Ξuv

where

Ξuv := Rηp(φu, φv) +

p∑
n=2

n−1∑
q=1

(
n

q

)
∇nη(φu)

n!
((Rφuv)

⊗(n−q) ⊗X⊗quv )

and notice that Ξ ∈ C1+γ
2 ([0, T ]) ⊂ ker(I). We have

lim
|P|→0

∑
[u,v]∈P

∇η(φu) ·
∫ v

u

b(r, φr)dr = lim
|P|→0

∫ t

0

∑
[u,v]∈P

∇η(φu)1[u,v](r) · b(r, φr)dr

=

∫ t

0

∇η(φr) · b(r, φr)dr

where we used continuity of ∇η and dominated convergence in the last step. Note that the above
reasoning does not use any regularity requirements on b.

Finally, we have

η(φt)− η(x) = I(η(φ·))0,t = lim
|P|→0

∑
[u,v]∈P

η(φ)uv

= lim
|P|→0

∑
[u,v]∈P

(
∇η(φu)Rφuv +

p∑
n=1

∇nη(φu)X(n)
uv + Ξuv

)

= I(∇η(φ·)R
φ
··) + I(

p∑
n=1

∇nη(φ·)X
(n)
·· ) + I(Ξ)

=

∫ t

0

∇η(φr) · b(r, φr)dr +

∫ t

0

∇η(φr)dXt

by de�nition of the rough path integral.

2.6 Integrated ODE's

To emphasize that the solution of (16) depends on the initial value x, we denote its solution by φ·(x),
i.e.

φt(x) = x+

∫ t

0

b(r, φr(x))dr +Xt.

Let ν be a �nite signed measure on Rd, and f = (f (1), . . . , f (d)) ∈ Cpb (Rd;Rd). In later chapters we shall
be interested in expressions on the form

ν(f(φ·)) :=

(∫
R
f (1)(φ·(x))dν(x), . . . , f (d)(φ·(x))dν(x)

)
∈ L(Rd)

as a controlled path in order to de�ne
∫ t

0
ν(f(φr))dXr in the rough path sense. Similar results as the

previous chapters holds, summarized below.
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Proposition 2.13. Retain the hypotheses and notations respectively from Corollary 2.8, Corollary 2.10,
Lemma 2.11 and assume f ∈ Cpb (Rd;Rd). The following holds.

1. The rough path integral
∫ t

0
ν(f(φr))dXr is well de�ned.

2. Let X ∈ C γ
g . Then there exists a family of smooth paths Xε such that∫ ·

0

ν(f(φεr))Ẋ
ε
rdr →

∫ ·
0

ν(f(φr))dXr in Cγ([0, T ]),

as ε→ 0, where φε denotes the solution of (16) with X replaced by Xε.

3. If ν(f(φε· ))→ ν(f(φ·)) in C
γ we have∫ ·

0

ν(f(φεr))dXr →
∫ ·

0

ν(f(φr))dXr in Cγ([0, T ]),

as ε→ 0.

Proof. Begin with the �rst assertion. Integrating (17) w.r.t. ν gives

∫
Rd
f(φ(x))

(k)]
st dν(x) =

p−k−1∑
n=1

n∑
q=1

∫
Rd

∇f (k+n)(φs(x))

q!
(R

φ(x)
st )⊗q ⊗X⊗(n−q)

st dν(x)

+

∫
Rd
R∇

kf
p−k−1(φs(x), φt(x))dν(x).

Since ν is �nite and b is bounded we get for each k, n and q

|
∫
Rd

∇k+nf(φs(x))

q!
(R

φ(x)
st )⊗qdν(x)| . |t− s|.

Furthermore

|
∫
Rd
R∇

kf
p−k−1(φs(x), φt(x))dν(x)| .

∫
Rd
|φst(x)|p−kdν(x) . |t− s|(p−k)γ ,

so that
∫
Rd f(φ·(x))dν(x) is a controlled path and(∫

Rd
f(φ(x))dν(x)

)(k)]

st

=

∫
Rd
f(φ(x))

(k)]
st dν(x).

Using linearity, boundedness of b and dominated convergence the reader is invited to complete the
remaining steps of the proof.

3 Fractional Brownian motion and Girsanov's theorem

In this section we introduce the fractional Brownian motion as well as the technical tools we shall need
in the remainder of the paper. More speci�cally the representation in terms of a fractional integral
operator allows us to formulate the appropriate version of Girsanov theorem. The notion of strong local
non-determinism is then used to infer technical bounds that are useful for studying local time estimates
later in the paper. Finally we mention how one can construct a rough path lift of the fractional Brownian
motion.

A 1-dimensional centered Gaussian process, B = {Bt, t ∈ [0, T ]}, is called a fractional Brownian
motion (fBm) with Hurst parameter H ∈ (0, 1

2 ) if the covariance is given by

RH(t, s) := E[BtBs] =
1

2

(
t2H + s2H − |t− s|2H

)
.

Observe that B has stationary increments and its trajectories are Hölder continuous of index H − ε for
all ε > 0.
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Denote by E the set of step functions on [0, T ] and denote by H the Hilbert space de�ned as the
closure of E with respect to the inner product

〈1[0,t], 1[0,s]〉H = RH(t, s).

The mapping 1[0,t] 7→ Bt can be extended to an isometry between H and a Gaussian subspace of L2(Ω).
For a function f ∈ L2([a, b]), we de�ne the left fractional Riemann-Liouville integral by

Iα0+f(x) =
1

Γ(α)

∫ x

0

(x− y)α−1f(y)dy

for α > 0. Denote by Iα0+(L2([a, b])) the image of L2([a, b]) under Iα0+ and by Dα
a+ its inverse.

We de�ne KH(t, s) as

KH(t, s) = cHΓ

(
H +

1

2

)
s

1
2−H

(
D

1
2−H
t− uH−

1
2

)
(s),

for some constant cH and write KH for the operator from L2([0, T ]) onto I
H+ 1

2
0+ (L2) associated with the

kernel KH(t, s). It follows that

RH(t, s) =

∫ t∧s

0

KH(t, u)KH(s, u)du.

Moreover, if W = {Wt : t ∈ [0, T ]} is a standard Brownian motion B can be represented as

Bt =

∫ t

0

KH(t, s)dWs. (19)

A d-dimensional fractional Brownian motion is a d-dimensional process where the components are
independent 1-dimensional fractional Brownian motions.

Theorem 3.1 (Girsanov's theorem for fBm). Let u = {ut, t ∈ [0, T ]} be an Rd-valued, {Ft}t∈[0,T ]-

adapted process with integrable trajectories and set B̃t = Bt +
∫ t

0
usds, t ∈ [0, T ]. Assume that

(i)
∫ ·

0
usds ∈ (I

H+ 1
2

0+ (L2([0, T ]))d, P -a.s.

(ii) E[ξT ] = 1 where

ξT := exp

{
−
∫ T

0

K−1
H

(∫ ·
0

urdr

)
(s) · dWs −

1

2

∫ T

0

∣∣∣∣K−1
H

(∫ ·
0

urdr

)
(s)

∣∣∣∣2 ds
}
.

Then the shifted process B̃ is an {Ft}t∈[0,T ]-fractional Brownian motion with Hurst parameter H under

the new probability P̃ de�ned by dP̃
dP = ξT .

Moreover, for every p > 1 we have E[|ξT |p] ≤ Cp(‖b‖∞), where Cp(·) is an increasing function.

For a proof we refer to [19]. In particular, the moment-estimate is found in the proof of Theorem 3,
[19].

In the absence of the independent increments one has for H = 1
2 , we shall use the following fact (see

[21, Theorem 3.1]).

Lemma 3.2. The fractional Brownian motion is strong local non-deterministic, i.e. there exists a
constant c such that

V ar(Bt : (Bs)s:|t−s|≥r) ≥ cr2H . (20)

Given an m-dimensional Gaussian vector Z ∼ N (0,Σ) it is well known that

|Σ| = V ar(Zm)V ar(Zm−1|Zm) . . . V ar(Z1|Zm . . . Z2), (21)

and so from Cramer's rule we get

(Σ−1)j,j = (V ar(Zj |Z1, . . . , Ẑj , . . . , Zm))−1 (22)

From the above we can prove the following technical estimates on the fractional Brownian motion.
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Proposition 3.3. Given a fractional Brownian motion there exists C such that∫
Rm

m∏
j=1

|vj |k exp

−1

2
V ar

 m∑
j=1

vjBsj

 dv1 . . . dvm ≤ Cm
√

(km)!

m∏
j=1

|sj − sj−1|−H(1+2k) (23)

for all (s1, . . . , sm) ∈ ∆(m)(0, T ), and we read s0 = 0.

Proof. De�ne the matrix Ai,j = E[BsiBsj ], let X ∼ N (0, A−1) and denote by X̃ the km-dimensional
Gaussian vector

X̃i = Xj for (j − 1)k + 1 ≤ i ≤ jk.
Rewrite the right hand side of (23) as

(2π)m/2|A|−1/2E[

m∏
j=1

|Xj |k] = (2π)m/2|A|−1/2E[

km∏
i=1

|X̃i|]

≤ (2π)m/2|A|−1/2

( ∑
σ∈Skm

km∏
i=1

E[X̃iX̃σ(i)]

)1/2

≤ (2π)m/2|A|−1/2

( ∑
σ∈Skm

km∏
i=1

E[X̃2
i ]1/2E[X̃2

σ(i)]
1/2

)1/2

= (2π)m/2|A|−1/2

 ∑
σ∈Skm

m∏
j=1

E[X2
j ]k

1/2

= (2π)m/2|A|−1/2

(km)!

m∏
j=1

E[X2
j ]k

1/2

,

where we have used [15, Theorem 1] in the �rst inequality. Then we get from (22) that

(A−1)j,j ≥ c|sj+1 − sj |2H ∧ |sj − sj−1|2H ≥ c|sj − sj−1|4H

where we have used (20) and |sj+1 − sj | ≤ 1 in the two last steps, respectively. Using (21) and (20) we
get that

|A|−1/2 ≤ c−m
m∏
j=1

|sj − sj−1|−H

The result follows.

As noted in Remark 2.7, it turns out that the structure of the noise will not see the full rough path
lift of the fBm. Still we mention that the fractional Brownian motion can be lifted to a rough path,
as was �rst done in [22]. We shall, however, refer to [20] for a di�erent construction where the authors
construct the iterated integrals using a Stratonovich-Volterra-type representation.

Theorem 3.4 (Theorem 1.1. in [20]). Let B be a fractional Brownian motion admitting the representa-
tion (19). For 1 ≤ n ≤ b 1

H c de�ne

B(n) : ∆(2)(0, T )→ (Rd)⊗n

component wise, i.e. for any tuple {i1, . . . in} in {1, . . . , d}, as the Stratonovich iterated integral

〈B(n)
st ,ei1 ⊗ · · · ⊗ ein〉 =

n∑
j=1

(−1)j−1

∫
Anj

j−1∏
l=1

K(s, rl)[K(t, rj)−K(s, rj)]

n∏
l=j+1

K(t, rl) ◦ dW i1
r1 · · · ◦ dW

in
rn

where

Anj := {(r1, . . . rn) ∈ [0, t]n : rj = min(r1, . . . , rn), r1 > · · · > rj−1 and rj+1 < · · · < rn}.

Then there exists a set ΩB with full measure such that

Bst := (1, Bt −Bs, B(2)
st , . . . B

(b1/Hc)
st )

satis�es (8) and (11) on ΩB. Moreover, for γ < H we have |B(n)
st | . |t− s|γn.
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Assume now that H is such that 1
H is not an integer. We can choose γ < H such that b 1

γ c = b 1
H c,

and from the above theorem we have, P -a.s., B ∈ C γ
g .

Let us remark that for H ∈ ( 1
4 ,

1
2 ) there exists a lift of B to a rough path building the iterated integral

from linear interpolation of B. For the method of the current paper to work we need smaller H, see
Section 4. When H ∈ (0, 1

4 ) the dyadic interpolation fails to give a converging sequence of rough paths,
see [8]. Nevertheless, the construction in [20] gives a geometric rough path so that we may approximate
B by a sequence of lifted smooth paths, in the rough path topology.

4 Fractional Brownian motion SDE's

For this section we shall study a SDE driven by an additive fractional Brownian motion, i.e.

φt(x) = x+

∫ t

0

b(r, φr(x))dr +Bt. (24)

Existence and uniqueness of a solution to this equation under low regularity on b was recently proved in
[2] as demonstrated in the next Proposition. For proofs the reader is referred to [2].

Proposition 4.1 (Theorem 4.1 and Corollary 4.8 in [2]). Assume H < 1
2(2d+1) . Let {bn}n≥0 ⊂

C∞c ([0, T ]× Rd;Rd) be a sequence of functions such that

sup
n≥0

(‖bn‖∞,1 ∨ ‖bn‖∞) <∞.

Denote by φn(t, x) the solution to (24) when b is replaced by bn. Then for �xed (t, x) ∈ [0, T ] × Rd
the sequence is φn(t, x) is relatively compact in the strong topology of L2(Ω).

Furthermore, if limn→∞ bn(t, x) = b(t, x) for almost all (t, x) ∈ [0, T ]×Rd for b ∈ L1(Rd;L∞([0, T ];Rd))∩
L∞([0, T ] × Rd;Rd) then φn(t, x) is converging for every (t, x) ∈ [0, T ] × Rd to the unique solution of
(24).

The proof of this Proposition relies on a compactness criterion from [4] based on Malliavin calculus.
Without going into too much detail there is compactness in L2(Ω) if we can bound the Malliavin derivative
of φn(t, x) by a constant depending only on ‖bn‖L1(Rd;L∞([0,T ];Rd)) ∨ ‖bn‖L∞([0,T ]×Rd;Rd).

Once one has strong convergence, one can use a somewhat standard trick, see e.g. [14] or [19], to

show that
∫ t

0
bn(r, φn(r, x))dr →

∫ t
0
b(r, φr(x))dr which gives that the limit solves (24).

Furthermore the following result shows how the fBm regularizes the �ow of (24).

Lemma 4.2 (Theorem 5.1 in [2]). Assume H < 1
(d−1+2k) and let p, k be integers, p ≥ 2, k ≥ 1. There

exists an increasing function C : [0,∞)→ [0,∞) only depending on H, d, p and k such that

sup
t∈[0,T ],x∈Rd

E
[∣∣∇kφn(t, x)

∣∣p] ≤ C(‖bn‖∞,1 ∨ ‖bn‖∞).

Using the two previous results together with weak compactness in L2(Ω;W k,p(U)) for an open and
bounded U ⊂ Rd we get the following result.

Theorem 4.3 (Theorem 5.2 in [2]). Assume H <
(

1
2(2d+1) ∧

1
2(d−1+2k)

)
and b ∈ L1(Rd;L∞([0, T ];Rd))∩

L∞([0, T ] × Rd;Rd). For every open and bounded U ⊂ Rd the solution to (24) is k-times weakly di�er-
entiable in the sense that

φt ∈ L2(Ω;W k,p(U))

for every p > 1. Moreover, φn(t) converges to φt in the weak topology of L2(Ω;W k,p(U)).

4.1 The one-dimensional case

In this section we include a proof of Proposition 4.1 when d = 1 and H < 1
6 . From [19] it is already

known that there exists a unique strong solution to this equation when b is of linear growth. From [19]
it also becomes clear why the proof is simpler when d = 1 - one can use comparison of SDE's to generate
the strong convergence as indicated in Section 4.1.3.

We shall restrict our attention to when b is bounded and integrable, but we are interested in how the
solution depends on the initial value x. More speci�cally we will show the following.
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Theorem 4.4. Assume b ∈ L1(Rd;L∞([0, T ];R)) ∩ L∞([0, T ] × R) . If H < 1
6 there exists a unique

strong solution to (24). Moreover the mapping (x 7→ φt(x)) is weakly di�erentiable in the sense that for
�xed t we have

φt(·) ∈ L2(Ω;W 1,p(U))

for all open and bounded U ⊂ R.

This theorem is proved in three steps. In the �rst step we establish an integration by parts formula
for the fractional Brownian motion. In the second step we assume that b is smooth and has compact
support. It is then well known that φt(·) is smooth, and we use the integration by parts formula to
bound ‖φt‖L2(Ω;W 1,p(U)) independently of b′. In the third step we approximate a general b by smooth
functions. We use comparison to generate strong convergence in L2(Ω) of the corresponding sequence
of solutions. From step one and two we can bound the sequence in L2(Ω;W 1,p(U)) and argue via weak
compactness to prove Theorem 4.4.

4.1.1 An integration by parts formula

The purpose of this section is to prove a integration by parts type formula involving a random variable
inspired by local time calculus. More speci�cally, we have∫ t

0

b′(s,Bs)ds = −
∫
R

Λb(t, y)dy P − a.s. (25)

where

Λb(t, y) = (2π)−1

∫
R

∫ t

0

b(s, y)iue−iu(Bs−y)dsdu. (26)

We start by de�ning Λb(t, z) as above, and prove that it is a well de�ned element of Lp(Ω) for every
p > 1.

Lemma 4.5. Assume b is bounded. Then Λb(t, y) exists and all moments are integrable provided H < 1
3 .

More precisely if m is an even integer

E[|Λb(t, y)|m] ≤ Cm‖b(·, y)‖m∞m!
√
m!

Γ(m(1− 3H) + 1)
.

Proof. Since we assume m is an even integer, we may write

E[|Λb(t, y)|m = (2π)−mE|
∫
R

∫ t

0

b(s, y)iu exp{−iu(Bs − y)}dsdu|m

= (2π)−mm!

∫
∆m(0,t)

∫
Rm

b⊗m(s, y)

m∏
j=1

iujE[exp{−iuj(Bsj − y)}]duds

≤ (2π)−mm!

∫
∆m(0,t)

∫
Rm
|b⊗m(s, y)|

m∏
j=1

|uj | exp{−1

2
V ar(

m∑
j=1

ujBsj )}]duds

where for notational convenience we have used Bs0 = y and vm+1 = 0, ds = ds1 . . . dsm, du = du1 . . . dum
and b⊗m(s, y) :=

∏m
j=1 b(sj , y). Using (23) the above is bounded by

Cmm!
√
m!‖b(·, y)‖m∞

∫
∆(m)(0,t)

m∏
j=1

|sj − sj−1|−3Hds ≤ Cmm!
√
m!‖b(·, y)‖m∞

Γ((1− 3H)m+ 1)
.

From (26) we see that supp Λb(t, ·) ⊂
⋃
s≤t supp b(s, ·). In particular, if the latter set is bounded,

Λb(t, ·) is integrable P -a.s.
It remains to show that Λb satis�es the integration by parts formula (25). Notice that one has

to be careful interchanging the order of integration in (26). Indeed, if b = 1, one should think of∫
R iue

−iu(Bs−y)du = −∂yδBs(y) where δBs(y) is the Donsker-Delta of Bs, which is not a random variable
in the usual sense (one could introduce the Donsker-Delta as a generalized random variable in the sense
of White Noise theory, but we shall avoid this).
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To circumvent this di�culty we de�ne an approximating sequence

ΛbK(t, y) := (2π)−1

∫ K

−K

∫ t

0

b(s, y)iue−iu·(Bs−y)dsdu.

It is immediate that

|ΛbK(t, y)| ≤ CK
∫ t

0

|b(s, y)|ds,

for an appropriate constant, so that ΛbK(t, ·) is integrable if
∫
R
∫ t

0
|b(s, y)|dsdy <∞. One can show that

ΛbK(t, y) → Λb(t, y) in, say, L2(Ω) for all t and y. To see this the reader is invited to modify the above
proof to see that

E[|ΛbK(t, y)− Λb(t, y)|2] ≤ C‖b(·, y)‖2∞
∫

∆2(0,t)

∫
R2

1{|u1|>K}1{|u2|>K}|u1||u2|e−
1
2V ar(u1Bs1+u2Bs2 )duds

which converges to zero as K → ∞. In the above C is a constant that is independent of K. Now we
have ∫

R
ΛbK(t, y)dy = (2π)−1/2

∫ K

−K

∫ t

0

(F−1b)(s, u)iue−iu·Xsdsdu

=

∫ t

0

(2π)−1/2

∫ K

−K
(F−1b)(s, u)iue−iu·Xsduds.

Provided b(s, ·) ∈ S(R) we have

lim
K→∞

(2π)−1/2

∫ K

−K
(F−1b)(s, u)iue−iuXsdu = (2π)−1/2

∫
R
(F−1b)(s, u)iue−iuXsdu

= F(iu(F−1b)(s, u))(Xs) = −b′(s,Xs)

thus proving (25).
We summarize these considerations.

Lemma 4.6. Let b : [0, T ]× R→ R be such that b(s, ·) is smooth for every s and
⋃
s≤T supp b(s, ·) is a

bounded set. Then (25) holds on a set of measure 1.

We can however extend (25) to bounded and di�erentiable b.

Lemma 4.7. Assume b ∈ L∞([0, T ];C1
b (R)). Then (25) holds for b and we have P -a.s.

supp Λb(t, ·) ⊂ [−B∗t , B∗t ]

where B∗t := sup0≤s≤t |Bs|.

Proof. Assume �rst that b satis�es the assumptions of Lemma 4.6, and let φ ∈ C1
c (R). From (26) we

have Λφb(t, y) = φ(y)Λb(t, y). Consequently, using (25)∫
R
φ(y)Λb(t, y)dy =

∫
R

Λφb(t, y)dy = −
∫ t

0

(φ(Bs)b(s,Bs))
′ds

= −
∫ t

0

φ′(Bs)b(s,Bs)ds−
∫ t

0

φ(Bs)b
′(s,Bs)ds,

so that for all φ ∈ C1
c (R) such that suppφ∩ [−B∗t , B∗t ] = ∅, we have

∫
R φ(y)Λb(t, y)dy = 0. In particular,

Λb(t, ·) has compact support independent of b P -a.s.
From linearity of b 7→ Λb and Lemma 4.5 we may approximate a general b by smooth, compactly

supported functions. The result follows by elementary calculations.

Using Λφb(t, y) = φ(y)Λb(t, y) as in the above proof we get that if b is time homogeneous, Λb(t, y) =
b(y)∂yL

B(t, y) where LB(t, y) denotes the local time of the fractional Brownian motion (which is well
known to be di�erentiable when H < 1

3 , see [11]).
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Proposition 4.8. There exists a constant C > 0 such that for all even integers m

E

[(∫
R
|Λb(t, y)|dy

)m]
≤
Cm‖b‖m∞,1mm/2

√
(2m)!√

Γ(m(1− 3H) + 1)
.

Proof. We write

E

[(∫
R
|Λb(t, y)|dy

)m]
=

∫
Rm

E[

m∏
j=1

|Λb(t, yj)|]dy1 . . . dym ≤
∫
Rm

m∏
j=1

E[|Λb(t, yj)|m]1/mdy1 . . . dym

≤ Cmm!
√
m!

Γ((1− 3H)m+ 1)

∫
Rm

m∏
j=1

‖b(·, yj)‖∞dy1 . . . dym =
Cmm!

√
m!

Γ((1− 3H)m+ 1)
‖b‖m1,∞

for an appropriate constant C, where we have used Lemma 4.5.

4.1.2 Derivative free estimates

In this section we assume that b ∈ L∞([0, T ];C1
c (R)) and denote by φ·(x) the solution to (24). It is well

known that φt(·) continuously di�erentiable, and we have

∂xφt(x) = 1 +

∫ t

0

b′(r, φr(x))∂xφr(x)dr (27)

= exp

{∫ t

0

b′(r, φr(x))dr

}
. (28)

We are ready to prove our main estimate on SDE's.

Theorem 4.9. There exists an increasing continuous function C : [0,∞) → [0,∞) such that for all
b ∈ L∞([0, T ];C1

b (R))

sup
t∈[0,T ],x∈R

E
[
(∂xφt(x))

2
]
≤ C(‖b‖∞ ∧ ‖b‖∞,1),

where φ·(x) is the unique solution of (24) driven by b.

Proof. Set θt :=
(
K−1
H

(∫ ·
0
b(r, φr(x))dr

))
(t) and consider the Doléans-Dade exponential

Z := exp

{∫ T

0

θsdWs −
1

2

∫ T

0

θ2
sds

}
.

De�ne the measure P̃ by

dP̃ := ZdP.

Then P̃ is a probability measure and under P̃ the solution {φt(x)}t is a fractional Brownian motion
starting in x. From (28) we get

E[(∂xφt(x))2] = E

[
exp

{
2

∫ t

0

b′(r, φr(x))dr

}]
= Ẽ

[
exp

{
2

∫ t

0

b′(r, φr(x))dr

}
Z−1

]
≤
(
Ẽ

[
exp

{
4

∫ t

0

b′(r, φr(x))dr

}])1/2 (
Ẽ[Z−2]

)1/2

.

Now we write

Ẽ

[
exp

{
4

∫ t

0

b′(r, φr(x))dr

}]
= E

[
exp

{
4

∫ t

0

b′(r, x+Br)dr

}]
= E

[
exp

(
{4
∫
R

Λb(t, y)dy

}]
=
∑
m≥0

4mE
[(∫

R Λb(t, y)dy
)m]

m!
≤
∑
m≥0

(4‖b‖1,∞)mCm(2m!)1/4
√

(2m)!

m!
√

Γ((1− 3H)2m+ 1)

=: C̃(‖b‖∞,1)

which converges by Stirling's formula.
From Theorem 3.1 we know that we can bound Ẽ[Z−2] by a function depending on ‖b‖∞. The result

follows.
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4.1.3 Singular SDE's

For this section we shall consider a bounded and measurable b : [0, T ] × R → R and the corresponding
SDE (24). As indicated above we shall use an approximation bn of b and comparison to generate strong
convergence in L2(Ω). The technique is somewhat classical, and we refer to [19] for a proof, but let us
brie�y explain the idea:

Let b be bounded and measurable and de�ne for n ∈ N

bn(t, x) := n

∫
R
ρ(n(x− y))b(t, y)dy

where ρ is a non-negative smooth function with compact support in R such that
∫
R ρ(y)dy = 1. We let

b̃n,k :=

k∧
j=n

bj , n ≤ k, and Bn =

∞∧
j=n

bj ,

so that b̃n,k is Lipschitz. Denote by φ̃n,k(t, x) the unique solution to (24) when we replace b by b̃n,k.
Then one can use comparison to show that

lim
k→∞

φ̃n,k(t, x) = φn(t, x), in L2(Ω)

where φn(t, x) solves (24) when we replace b by Bn. Furthermore,

lim
n→∞

φn(t, x) = φt(x), in L2(Ω)

where φt(x) is a solution to (24). For details see [19].
We are ready to prove the main result of the section.

Proof of 4.4. Let U ⊂ R be open and bounded. We know from the discussion above that φn(t, x)→ φt(x)
in L2(Ω). From Theorem 4.9 plus elementary bounds we see that φn(t, ·) is bounded in L2(Ω;W 1,2(U)).
Consequently we may extract a subsequence {φnk(t, ·)}k≥1 converging to an element ft in the weak
topology of L2(Ω;W 1,2(U)). Let A ∈ F and η ∈ C∞(U). Using strong convergence coupled with weak
convergence we get

E[1A

∫
U

φt(x)η′(x)dx] = lim
k→∞

E[1A

∫
U

φnk(t, x)η′(x)dx] = − lim
k→∞

E[1A

∫
U

∂xφnk(t, x)η(x)dx]

= −E[1A

∫
U

∂xft(x)η(x)dx].

Consequently we have
∫
U
φt(x)η′(x)dx = −

∫
U
∂xft(x)η(x)dx on some Ωη ∈ F such that P (Ωη) = 1. Let

now Ω∗ be the intersection of a countable, dense in W 1,2(U), set of η such that the above integration
by parts formula holds. It is clear that P (Ω∗) = 1 and that φt is weakly di�erentiable on this set. The
result follows.

Remark 4.10. For �xed t0 > 0, consider the equation

ψt0t (y) = y −
∫ t

0

b(t0 − r, ψt0r (y))dr − (Bt0 −Bt0−t).

Since the fractional Brownian motion has stationary increments the above equation is on the same form
as (24) and we may apply the same machinery to obtain a sequence ψt0,nt of corresponding smooth �ows
that converges in the weak topology of L2(Ω;W 1,p(U)) and ψt0,nt (x) converges in the strong topology of
L2(Ω) to the solution of the above equation.

We have ψt0t0 = φ−1
t0 , so that φt0 is invertible with a Sobolev-di�erentiable inverse.

Let now f ∈ C1
b (R). For every n ∈ N we have

∂xf(ψt,nt (x)) = f ′(ψt,nt (x))∂xψ
t,n
t (x)

which is bounded in any Lp(U) for p > 1, U open and bounded. Consequently, there is a weakly converging
subsequence which by uniqueness must converge weakly in Lp(U) and we have

∂xf(ψtt(x)) = f ′(ψtt(x))∂xψ
t
t(x), for almost all x ∈ R.

since ψt,nt (x)→ ψtt(x) strongly in L2(Ω). When b is time-homogenuous we have the following represen-
tation

φ−1
t (y) = y −

∫ t

0

b(φ−1
r (y))dr −Bt.
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4.2 Local time of the �ow

We now return to the general case of d ≥ 1.
In this section we develop a local time theory for the solutions φt(x) of (24). Assuming we have

a solution to φt(x), the results here will rely only on Girsanov's theorem 3.1 meaning we only use
boundedness of b. Let now Q : [0, T ] × Rd → R be given and de�ne q = DαQ for some multiindex,
α = (α(1), . . . α(d)). The main objective of this section is to prove that there exists a random �eld

Λ
φ(x),Q
α on [0, T ]× Rd such that∫ t

0

q(s, φs(x))ds = (−1)|α|
∫
Rd

Λφ(x),Q
α (t, y)dy,

and that the right hand side above can be bounded in terms of Q. Motivated by the previous subsection,
we de�ne

Λφ(x),Q
α (t, y) = (2π)−d

∫
Rd

∫ t

0

(iu)αQ(s, y) exp{−iu · (φs(x)− y)}dsdu.

We denote by ΛQα (t, y) the random �eld obtained by choosing B instead of φ(x) in the above de�nition.
Note that from Girsanov's theorem we have

E[f(Λφ(x),Q
α (t, y))] = E[f(ΛQα (t, y))ξT ]

for any f such that the above expressions exists and ξT was de�ned in Theorem 3.1 and we have
E[|ξT |2] ≤ C(‖b‖∞). We get a similar result as Lemma 4.5.

Lemma 4.11. Assume Q is bounded and H < 1
d+2|α| . We have the following moments estimates on ΛQα

E[|ΛQα (t, y)|m] ≤
Cmm!

∏d
k=1

√
(mα(k))!

Γ(m(1−H(d+ 2|α|)) + 1
(29)

where C = C(α,H) does not depend on m or Q.

Proof. The proof follows the same lines as in the proof of Lemma 4.5. Begin by writing

E
[
|ΛQα (t, y)|m

]
=

m!

(2π)dm

∫
(Rd)m

∫
∆(m)(0,t)

m∏
j=1

(iuj)
αQ(sj , y) exp{−1

2
V ar(uj · (Bsj − y)}dsdu

≤ m!

(2π)dm

∫
(Rd)m

∫
∆(m)(0,t)

m∏
j=1

d∏
k=1

|u(k)
j |

α(k)

|Q(sj , y)| exp{−
d∑
k=1

1

2
V ar(

m∑
j=1

u
(k)
j B(1)

sj )}dsdu

≤ m!‖Q(·, y)‖m∞
(2π)dm

∫
∆(m)(0,t)

d∏
k=1

∫
Rm

m∏
j=1

|u(k)
j |

α(k)

exp{−1

2
V ar(

m∑
j=1

u
(k)
j B(1)

sj )}dsdu(k)
1 . . . du(k)

m

where we have used the independence of the components of B in the second line. Using (23), the above
is bounded by

Cmm!‖Q(·, y)‖m∞
d∏
k=1

√
(mα(k))!

∫
∆(m)(0,t)

d∏
k=1

|sj − sj−1|−H(1+2α(k))ds

≤
Cmm!

∏d
k=1

√
(mα(k))!‖Q(·, y)‖m∞

Γ(m(1−H(d+ 2|α|)) + 1

provided H < 1
d+2|α| .

Using Theorem 3.1 we get

Corollary 4.12. Let Q, H and α be as in the previous lemma. There exists a constant C = C(‖b‖∞, H, d, α)
such that

E[|Λφ(x),Q
α (t, y)|m] ≤

Cm
√

(2m)!
∏d
k=1

√
(2mα(k))!‖Q(·, y)‖m∞√

Γ(2m(1−H(d+ 2|α|)) + 1
.
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If we assume integrability of Q in the spatial variable we see that we can de�ne the stochastic process∫
Rd Λ

φ(x),Q
α (t, z)dz.

Lemma 4.13. If we assume Q ∈ L1(Rd;L∞([0, T ])), |α| ≤ 1 and H < 1
d+2 we have

E[exp{
∫
Rd
|Λφ(x),Q
α (t, z)|dz}] ≤ C(‖Q‖∞,1 ∧ ‖b‖∞)

where C is an increasing function.

Proof. Begin by writing

E

[(∫
Rd
|Λφ(x),Q
α (t, z)|dz

)m]
=

∫
(Rd)m

E

 m∏
j=1

|Λφ(x),Q
α (t, zj)|

 dz1 . . . dzm

≤
∫

(Rd)m

m∏
j=1

E
[
|Λφ(x),Q
α (t, zj)|m

]1/m
dz1 . . . dzm

≤
Cm
√

(2m)!
∏d
k=1

√
(2mα(k))!√

Γ(2m(1−H(d+ 2|α|)) + 1

∫
(Rd)m

m∏
j=1

‖Q(·, zj)‖∞dz1 . . . dzm

≤
Cm
√

(2m)!
√

(2m)!√
Γ(2m(1−H(d+ 2)) + 1

‖Q‖m∞,1

where C is as in Corollary 4.12. We get

E[exp{
∫
Rd
|Λφ(x),Q
α (t, z)|dz}] =

∑
m≥0

(m!)−1E

[(∫
Rd
|Λφ(x),Q
α (t, z)|dz

)m]
∑
m≥0

Cm
√

(2m)!
√

(2m)!√
Γ(2m(1−H(d+ 2)) + 1)m!

‖Q‖m∞,1

which converges as long as H < 1
d+2 by Stirling's formula.

We now proceed to prove stability of the vector �eld Λ
φ(x),Q
α in both Q and φ in the following way.

Remark 4.14. We shall need stability of the mapping (φ(x), Q) 7→
∫
Rd Λφ(x),Q(t, z)dz, but we only need

continuity in each variable separately. If φε· (x) converges to φ·(x) in, say, Lebesgue measure over [0, T ]
and Q is smooth, we immediately get

lim
ε→0

∫
Rd

Λφ
ε(x),Q(t, z)dz = lim

ε→0
(−1)|α|

∫ t

0

q(s, φεs(x))ds = (−1)|α|
∫ t

0

q(s, φs(x))ds =

∫
Rd

Λφ(x),Q(t, z)dz

by dominated convergence.
Stability in Q as a mapping L1(Rd;L∞([0, T ];Rd))→ Lm(Ω) follows from the linearity of the mapping

Q→
∫
Rd Λφ(x),Q(t, z)dz as well as the bounds from Lemma 4.13.

4.3 Convergence in Hölder spaces

With the notation of Proposition 2.13 we shall need a result to ensure convergence of ν(f(φn· )) is uniform
on a set of full measure.

Proposition 4.15. Let γ ∈ (0, H), f ∈ C1
b (Rd;Rd) and ν be a �nite signed measure on Rd. Then there

exists a set Ωγ,ν of full measure such that on this set we have

lim
n→∞

ν(f(φn· ) = ν(f(φ·))

in Cγ([0, T ];Rd).
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Proof. We begin by showing that ν(f(φnt ))→ ν(f(φt)) in L
2(Ω) for every t. To see this, consider

E[|ν(f(φnt ))− ν(f(φt))|2] = E[|ν(f(φnt )− f(φt))|2]

≤ |ν|(Rd)‖∇f‖∞
∫
Rd
E[|φnt (x)− φt(x)|2]dν(x)→ 0

as n→∞ by dominated convergence, which proves the �rst claim.
Next we �nd a set universal in t for which we have pointwise in ω convergence. For the rest of the

proof we will abuse notation and write φ(ω), φn(ω) etc, thus supressing the dependence on x. Denote by

{qj}∞j=1 an enumeration of [0, T ]∩Q. We may extract a subsequence {ν(f(φ
n(k,1)
q1 ))}k≥1 ⊂ {ν(f(φnq1))}n≥1

such that
lim
k→∞

ν(f(φn(k,1)
q1 (ω))) = ν(f(φq1(ω)))

for ω ∈ Ω1 with full measure. Furthermore, we de�ne inductively a subsequence {ν(f(φ
n(k,j+1)
qj+1 ))}k≥1 ⊂

{ν(f(φ
n(k,j)
qj+1 ))}k≥1 such that

lim
k→∞

ν(f(φn(k,j+1)
qj+1

(ω))) = ν(f(φqj+1(ω)))

for ω ∈ Ωj+1 with full measure. Let Ω0 = ∩∞j=1Ωj , so that we have

lim
j→∞

ν(f(φn(j,j)
q (ω))) = ν(f(φq(ω)))

for all ω ∈ Ω0 and q rational.
Now, we construct a set where {ν(f(φn· ))}n≥1 is relatively compact in C([0, T ];Rd). Let ε > 0 be

such that γ < H − ε and choose a subset ΩH−ε with full measure such φ· satis�es (3) and for every
ω ∈ ΩH−ε we have

(t 7→ Bt(ω)) ∈ CH−ε([0, T ];Rd).
Note that ν(f(φ·)) is continuous on this set.

From (3) we see

|ν(f(φnt (ω)))− ν(f(φns (ω)))| ≤ |ν (f(φnt (ω))− f(φns (ω))) |
≤ |ν|(Rd)‖∇f‖∞ (‖bn‖∞|t− s|+ |Bst(ω)|)
≤ |ν|(Rd)‖∇f‖∞

(
‖bn‖∞|t− s|+ ‖B(ω)‖H−ε|t− s|H−ε

)
so that the uniform boundedness of bn implies that {ν(f(φn· (ω)))}n≥1 is equicontinuous. Moreover,
the sequence is bounded in C([0, T ];Rd) and from Arzela-Ascoli's theorem there exists a converging

subsequence {ν(f(φ
j(k,ω)
· (ω)))}k≥1 ⊂ {ν(f(φ

n(j,j)
· (ω)))}j≥1. For ω ∈ Ω0∩ΩH−ε - which has full measure

- we see that the limit coincides with ν(f(φ·(ω))). Applying the above reasoning to any subsequence
of {ν(f(φn· (ω)))}n≥1 we get a further subsequence that converges to ν(f(φ·(ω))) in C([0, T ];Rd). Since
C([0, T ];Rd) is a Banach space this implies that the full sequence converges. By interpolation of Hölder
spaces we see that the claim is true if we let Ωγ,ν := Ω0 ∩ ΩH−ε.

5 Continuity Equation

In this section we study the measure valued rough linear continuity equation

∂tµt + div(bµt) + div(µtdXt) = 0 (30)

with given initial condition µ0. The notion of solution is as follows.

De�nition 5.1. Let µ0 be a �nite signed measure on Rd. A measure valued function µ : [0, T ]→M(Rd)
is called a measure solution to (30) if

µt +

∫ t

0

div(b(r, ·)µr)dr +

∫ t

0

div(µrdXr) = µ0

holds weakly inM(Rd) meaning for every η ∈ C∞c (Rd) we have µ·(∇η) ∈ Dpγ
X and

µt(η) = µ0(η) +

∫ t

0

µr(b(r, ·)∇η)dr +

∫ t

0

µr(∇η)dXr.
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If we know that there exists a solution to

φt(x) = x+

∫ t

0

b(r, φr(x))dr +Xt,

then for any test function η ∈ C∞c (Rd) we have from Lemma 2.12

η(φt(x)) = η(x) +

∫ t

0

∇η(φr(x))b(r, φr(x))dr +

∫ t

0

∇η(φr(x))dXr.

We integrate the equation w.r.t. µ0 to see that µt := (φt)]µ0 solves (30) if we can use integration by
parts for the rough path integral, namely∫

Rd

∫ t

0

∇η(φr(x))dXrdµ0(x) =

∫ t

0

µ0(∇η(φr))dXr.

Suppose now that b ∈ C1
b ([0, T ] × Rd;Rd) and X ∈ C γ

g . Let X
ε ∈ C1([0, T ];Rd) be such that Xε → X

in C γ . Using Section 2 we get∫ t

0

µ0(∇η(φr))dXr = lim
ε→0

∫ t

0

µ0(∇η(φεr))Ẋ
ε
rdr = lim

ε→0

∫
Rd

∫ t

0

∇η(φεr(x))Ẋε
rdrdµ0(x)

=

∫
Rd

∫ t

0

∇η(φr(x))dXrdµ0(x).

We summarize the above in a lemma.

Lemma 5.2. Suppose b ∈ C1
b ([0, T ]×Rd;Rd) and X ∈ C γ

g . Then there exists a solution to (30) and the
solution is given by µt := (φt)]µ0.

Given the previous sections the reader will not be surprised that we can extend this to when the drift
is discontinuous provided we choose the rough path to be the lift of a fractional Brownian motion with
low Hurst index.

Lemma 5.3. Assume H < 1
2(2d+1) , b ∈ L∞([0, T ] × Rd;Rd) ∩ L1(Rd;L∞([0, T ];Rd)) and µ0 a �nite

signed measure on Rd. There exists a subset Ω∗ ⊂ Ω with full measure such that for every ω ∈ Ω∗ we
have

� The fractional Brownian motion lifts to a geometric rough path B(ω) ∈ C γ
g , γ < H.

� There exists a solution µ·(ω) to

µt(ω) +

∫ t

0

div(b(r, ·)µr(ω))dr +

∫ t

0

div(µr(ω)dBr(ω)) = µ0.

Proof. Denote by ΩB the set of ω ∈ Ω such that B(ω) lifts to a rough path, B(ω) ∈ C γ
g .

Let η ∈ C∞c (Rd). Consider the approximation from Section 4, i.e. we have Ωγ,η,µ0
such that

limn→∞ µ0(∇η(φn· (ω))) = µ0(∇η(φ·(ω))) in Cγ([0, T ];Rd). From Propositions 2.13 and 4.15 we get
that ∫ ·

0

µ0(∇η(φnr (ω)))dBr(ω)→
∫ ·

0

µ0(∇η(φr(ω)))dBr(ω)

on Ωγ,η,µ0
∩ ΩB.

For every n we have that µnt := (φnt )]µ0 satis�es

µnt (η) = µ0(η) +

∫ t

0

µnr (bn(r, ·)∇η)dr +

∫ t

0

µnr (∇η)dBr

on ΩB. Denote by Ωη,µ0 the set of ω ∈ Ω such that µnt (η) → µt(η), so that we must have that all the
above terms converges on Ωη,µ0 ∩ Ωγ,η,µ0 ∩ ΩB, to

µt(η) = µ0(η) +

∫ t

0

µr(b(r, ·)∇η)dr +

∫ t

0

µr(∇η)dBr.

Let now
Ω∗ := ΩB ∩

⋂
k≥1

Ωηk,µ0
∩ Ωγ,ηk,µ0

where {ηk}k≥1 ⊂ C∞c (Rd) is dense in C∞c (Rd) equipped with the ususal test function topology. Then
Ω∗ is the desired set.
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6 Transport Equation

In this section we want to study (5). Morally, the solution to this equation should be given by

u(t, x) = u0(φ−1
t (x)) exp{−

∫ t

0

c(s, φr(y))dr|y=φ−1
t (x)}.

When c is a distribution this expression does not make sense, but using Section 4.12 we can however
de�ne the solution to be

u(t, x) = u0(φ−1
t (x)) exp{(−1)|α|+1

∫
Rd

Λφ(y),C
α (t, z)dz|y=φ−1

t (x)}.

where c = DαC, i.e. the distributional derivative of a function C.
A question that arise in this setting is in what way does this function de�ned above satisfy (5). To

answer this we should look for a spatially weak formulation of the equation, namely for every η ∈ C∞c (Rd)
the function should satisfy

〈u(t), η〉+

∫ t

0

〈b(r)∇u(r), η〉+

∫ t

0

〈u(r)c(r), η〉+

∫ t

0

〈∇u(r), η〉dBr = 〈u0, η〉.

In order to make sense of the stochastic integral term we need to guarantee that 〈∇u(r), η〉 is a path
controlled by B as described in Section 2. Using integration by parts we get

〈∇u(r), η〉 = −
∫
Rd
u0(φ−1

r (x)) exp{(−1)|α|+1

∫
Rd

Λφ(y),C
α (r, z)dz|y=φ−1

r (x)}∇η(x)dx

= −
∫
Rd
u0(y) exp{(−1)|α|+1

∫
Rd

Λφ(y),C
α (r, z)dz}∇η(φr(y))|∇φr(y)|dy

where we have used the change of variables φr(y) = x. It is clear from Section 2.2 that ∇η(φ·(y)) can
be regarded as a controlled path. However, the terms∫

Rd
Λφ(y),C
α (·, z)dz and |∇φ·(y)| = exp{−

d∑
j=1

∫
Rd

Λφ(y),bj
ej (·, z)dz}

are not expected to be more than 1−H(2+d) regular in time (at least at the current level of knowledge)
so we can not invoke Lemma 2.1 and it is not clear how to de�ne the product as a controlled path. In
fact this seems to require that also e.g. |∇φ·(y)| is controlled by B and we do not yet know how do this
construction.

In its full generality we still cannot show that u de�ned as above solves the equation, but we provide
some examples (d = 1, div b bounded, c = div b and time-homogenuous drift) where we can.

First, let us study the equation when the coe�cients and the noise are regular.

6.1 Regular Case

Assume for a moment that the drift b ∈ L∞([0, T ];C1
b (Rd)) and we want to study the rough linear

transport equation
∂tu+ b∇u+ cu+∇udXt = 0 (31)

with given initial condition u|t=0 = u0. If we assume that X is the geometric lift of a smooth path
X ∈ C1, we may read (32) in a classical way:

∂tu(t, x) + b(t, x) · ∇u(t, x) + c(t, x)u(t, x) +∇u(t, x) · Ẋt = 0 (32)

with initial condition u(0, x) = u0(x). To solve this equation, let us de�ne

u(t, x) := u0(φ−1
t (x)) exp

{
−
∫ t

0

c(r, φr(y))dr|y=φ−1
t (x)

}
where φt(x) is the solution to (16). Immediately, u(t, φt(x)) = u0(x) exp{−

∫ t
0
c(r, φr(x))dr} and so

−c(t, φt(x))u0(x) exp

{
−
∫ t

0

c(r, φr(x))dr

}
=

d

dt
u(t, φt(x))

= ∂tu(t, φt(x)) +∇u(t, φt(x)) · φ̇t(x)

= ∂tu(t, φt(x)) +∇u(t, φt(x)) · b(t, φt(x)) +∇u(t, φt(x)) · Ẋt.
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Making a change of variables we see that u(t, x) is indeed a solution of (32).
Integrating the above w.r.t. t and approximating a rough path X by smooth paths and taking the

limit, it is reasonable that we should get

u(t, x) +

∫ t

0

b(r, x) · ∇u(r, x)dr +

∫ t

0

c(r, x)u(r, x)dr +

∫ t

0

∇u(r, x)dXr = u0(x)

provided the solution is such that ∇u(·, x) is controlled by X. Unfortunately, to guarantee that ∇u(t, x)
is a controlled path we need higher order di�erentiability of the solution than the regularization of the
fractional noise can provide. To circumvent this we use a spatially weak notion of solution.

De�nition 6.1. Let u0, c : [0, T ]×Rd → R and b : [0, T ]×Rd → Rd be given locally integrable functions.
Let u : [0, T ]×Rd → R be such that for all t ∈ [0, T ] we have u(t, ·) ∈W 1,2(U) for all open and bounded
U ⊂ Rd. We call u a weak controlled solution to (31) if for all η ∈ C∞c (Rd) the path

∫
Rd ∇u(·, x)η(x)dx

is controlled by X and the following equality holds∫
Rd
u(t, x)η(x)dx+

∫ t

0

∫
Rd
∇u(r, x) · b(r, x)η(x)dxdr +

∫ t

0

∫
Rd
u(r, x)c(r, x)η(x)dxdr (33)

+

∫ t

0

∫
Rd
∇u(s, x)η(x)dxdXr =

∫
Rd
u0(x)η(x)dx.

Existence of such a solution when the drift is nice is relatively straightforward. The proof is a
consequence of the discussion in Section 2.3 together with the above computations.

Lemma 6.2. Assume b, c ∈ L∞([0, T ];C1
b (Rd)), and X ∈ C γ

g . Then there exists a weak solution to (31).

Proof. Consider a smooth approximation Xε of X and let

uε(t, x) := u0(φε,−1
t (x)) exp

{
−
∫ t

0

c(r, φεr(y))dr|y=φε,−1
t (x)

}
so that uε satis�es∫

Rd
uε(t, x)η(x)dx+

∫ t

0

∫
Rd
∇uε(r, x) · b(r, x)η(x)dxdr +

∫ t

0

∫
Rd
c(r, x)uε(r, x)η(x)dxdr

+

∫ t

0

∫
Rd
∇uε(r, x)η(x)dxẊε

rdr =

∫
Rd
u0(x)η(x)dx.

Consider now
∫
R∇u

ε(r, x)η(x)dx as above. Using integration by parts we get∫
Rd
∇uε(r, x)η(x)dx = −

∫
Rd
u0(φε,−1

r (x)) exp

{
−
∫ r

0

c(r, φεs(y))ds|y=φε,−1
r (x)

}
∇η(x)dx

= −
∫
Rd
u0(y) exp

{
−
∫ r

0

c(s, φεs(y))ds

}
|∇φεr(y)|η(φεr(y))dy

where we have used a change of variable y = φε,−1
r (x) in the last equality. From Liouville's formula we

get |∇φεr(y)| = exp
{∫ r

0
div b(s, φεs(y))ds

}
From Section 2.2, if we can show that exp{

∫ r
0

div b(s, φεs(y))−c(s, φεs(y))ds}η(φεr(y)) converges in Dpγ
X

to exp{
∫ r

0
div b(s, φs(y))− c(s, φs(y))ds}η(φr(y)), then it follows immediately that∫ t

0

∫
Rd
∇uε(r, x)η(x)dxẊε

rdr →
∫ t

0

∫
Rd
∇u(r, x)η(x)dxdXr.

Towards this goal, we notice that from Lemma 2.1 it is enough to prove that
∫ ·

0
div b(s, φεs(y)) −

c(s, φεs(y))ds converges in Cβ to
∫ ·

0
div b(s, φs(y))− c(s, φs(y))ds. From Hölder's inequality we get∣∣∣∣∫ t

r

div b(s, φεs(y))− c(s, φεs(y))− div b(s, φs(y)) + c(s, φs(y))ds

∣∣∣∣
≤ |t− r|β‖ div b(φε(y))− c(φε(y))− div b(φ(y)) + c(φ(y))‖L1/β([0,T ]).

The result follows by dominated convergence and continuity (of c and div b) as long as we choose β =
pγ < 1.

Convergence of the remaining terms follows by similar considerations.
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6.2 Singular case

Motivated by the previous section we de�ne our solution via the �ow transformation.

De�nition 6.3. Let b : [0, T ] × Rd → Rd be a given function and c : [0, T ] → D′(Rd) be a distribution
such that there exists functions Cj : [0, T ] × Rd → Rd for j = 1, . . . , J and multiindices α1, . . . , αJ
satisfying c(t) =

∑J
j=1D

αjCj(t) where Dαj denotes spatial di�erentiation in the weak sense. We call
the function

u(t, x) = u0(φ−1
t (x)) exp


J∑
j=1

(−1)|αj |+1

∫
Rd

Λφ(y),Cj
αj (t, z)dz|y=φ−1

t (x)

 .

a local time solution of (31) with initial condition u0 provided all the terms exists as in Section 4.2

We go on to prove existence of such a solution for almost all sample paths of the fBm.

Theorem 6.4. Assume we have

� b ∈ L∞([0, T ]× Rd;Rd) ∩ L1(Rd;L∞([0, T ];Rd))

� There exists smooth functions Ckj such that
∫
Rd supt∈[0,T ] |Cj(t, y)−Ckj (t, y)|dy → 0 as k →∞ for

all j,

� u0 is continuous,

� |αj | ≤ 1

� B is a fBm with Hurst parameter H < 1
d+2 .

Then there exists a set of full measure, Ω0 such that for every ω ∈ Ω0 there exists a local time solution
of (31).

Proof. The proof is done by approximation of b and then c as in the above assumptions. For notational
simplicity we assume J = 1. Let Ωγ,δx be as in Proposition 4.15 where δx is the Dirac centered at x, so
that we have u0(φn(t, x, ω)−1)→ u0(φ(t, x, ω)−1). For a �xed k we have

lim
n→∞

(−1)|α|
∫
Rd

ΛC
k,φn(x)

α (t, y)dy = lim
n→∞

∫ t

0

ck(s, φn(s, x))ds

=

∫ t

0

ck(s, φs(x))ds = (−1)|α|
∫
Rd

ΛC
k,φ(x)

α (t, y)dy

on a set Ωk of full measure. Finally, we notice that

E

[(∫
Rd

ΛC
k,φ(x)

α (t, y)dy −
∫
Rd

ΛC,φ(x)
α (t, y)dy

)m]
= E

[(∫
Rd

ΛC
k−C,φ(x)

α (t, y)dy

)m]
≤ Cm

∫
Rd
‖Ck(·, y)− C(·, y)‖∞dy → 0

by assumption, and thus there exists a subsequence and a set of full measure, Ω̃ such that we have

limk→∞
∫
Rd Λ

Ck,φ(x)
α (t, y)dy =

∫
Rd Λ

C,φ(x)
α (t, y)dy on Ω̃. The result follows when we choose Ω0 = Ωγ,δx ∩

Ω̃ ∩ ∩k≥1Ωk.

Example 6.5 (The continuity equation revisited). Let c = div b =
∑d
j=1

∂bj
∂xj

where b is as before. We

get from Theorem 6.4 that the solution to∫
Rd
u(t, x)η(x)dx+

∫ t

0

∫
Rd
∇u(r, x)b(r, x)η(x)dxdr +

∫ t

0

∫
Rd

div b(r, x)u(r, x)η(x)dxdr

+

∫ t

0

∫
Rd
∇u(s, x)η(x)dxdBr =

∫
Rd
u0(x)η(x)dx.
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is given by (actually by de�nition of the solution)

u(t, x) = u0(φ−1
t (x)) exp


d∑
j=1

∫
Rd

Λφ(y),bj
ej (t, z)dz|y=φ−1

t (x)

 .

Rewriting the above equation∫
Rd
u(t, x)η(x)dx+

∫ t

0

∫
Rd

div(u(r, x)b(r, x))η(x)dxdr

+

∫ t

0

∫
Rd
∇u(s, x)η(x)dxdBr =

∫
Rd
u0(x)η(x)dx

this should give us the same solution as the continuity equation if dµ0

dx = u0(x), i.e. u0 is the Radon-
Nikodym of the measure µ0 w.r.t. Lebesgue measure.

To see that this is indeed the case we consider again the approximation from Section 4. The solution
of the continuity equation µnt = (φn(t, ·))]µ0 so that for any η ∈ C∞c (Rd) we have

µnt (η) =

∫
Rd
η(φn(t, y))u0(y)dy =

∫
Rd
η(x)u0(φ−1

n (t, x)) exp

{
−
∫ t

0

div(bn(r, φn(r, y)))dr|y=φ−1
n (t,x)

}
dx

where we have used the change of variable y = φ−1
n (t, x). As in the proof of Theorem 6.4 we can let

n→∞ and �nd a set of full measure for which

µt(η) =

∫
Rd
η(x)u0(φ−1

t (x)) exp


d∑
j=1

∫
Rd

Λφ(y),bj
ej (t, z)dz|y=φ−1

t (x)

 dx =

∫
Rd
η(φt(y))u0(y)dy

since |∇φt(y)| = exp
{∑d

j=1

∫
Rd Λ

φ(y),bj
ej (t, z)dz

}
. The latter expression is obviously a controlled path.

We conclude that our de�nitions 6.1 and 6.3 coincides in this case, justifying de�nition 6.3 as more than
just a limit object, but something that actually satis�es the equation in a reasonable sense.

6.3 Local time solutions that are weak controlled solutions

In this section we look at examples of b and c for which we can show that the local time solutions in
De�nition 6.3 are also solutions in the sense of De�nition 6.1.

We recall that we have to make sense of

〈u(t), η〉 = −
∫
Rd
u0(y)η(φt(y))|∇φt(y)| exp


J∑
j=1

(−1)|αj |+1

∫
Rd

Λφ(y),Cj
αj (t, z)dz

 dy

as a controlled rough path.
When c is a bounded function, the exponential term does not pose any problems: writing

J∑
j=1

(−1)|αj |+1

∫
Rd

Λφ(y),Cj
αj (t, z)dz =

∫ t

0

c(r, φr(y))dr

shows that this term Lipschitz in t, and so using Lemma 2.1 it is clear that this term can always be
considered a controlled path. For this reason, we shall for the rest of this section assume for simplicity
that c = 0. The extension to bounded c is straightforward.

6.3.1 One spatial dimension

Consider the approximation φn(t, x) from section 4.1.3, i.e. we have φn(t, x) → φt(x) in L2(Ω) and
φn(t, ·)→ φt weakly in L2(Ω;W 1,2(U)) (for simplicity we omit the subsequence).

Theorem 6.6. Assume b ∈ L∞([0, T ]× R) ∩ L1(Rd;L∞([0, T ])), u0 ∈ C1(R) such that u′0 ∈ L1(R) and
H < 1

6 . There exists a subset with full measure Ω∗ ⊂ Ω, such that there exists a weak controlled solution
to (31) w.r.t. every B·(ω) for ω ∈ Ω∗.
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Proof. De�ne u(t, x) := u0(φ−1
t (x)) and �x Ωγ as in Proposition 4.15. We begin by showing that∫

R u(·, x, ω)η′(x)dx is controlled by B·(ω) for every ω ∈ Ωγ . It is enough to show∫
R
u(·, x, ω)η′(x)dx = −

∫
R
u′0(y)η(φ·(y, ω))dy.

To this end, note that for every n we have∫
R
un(t, x, ω)η′(x)dx = −

∫
R
∇un(t, x, ω)η(x)dx = −

∫
R

u′0(φ−1
n (t, x, ω))∇φ−1

n (t, x, ω)η(x)dx

= −
∫
R
u′0(y)η(φn(t, y, ω))dy.

where we have used the change of variables y = φ−1
n (t, x, ω). Letting n → ∞ we get η(φn(t, x, ω)) →

η(φt(x, ω)) and un(t, x, ω) → u(t, x, ω) from Remark 4.10. The desired equality holds from dominated
convergence.

For every n we have∫
R
un(t, x, ω)η(x)dx+

∫ t

0

∫
R
∇un(r, x, ω)bn(r, x)η(x)dxdr−

∫ t

0

∫
R
un(t, x)η(φn(r, x, ω))dxdBr(ω)

=

∫
R
u0(x)η(x)dx

where Bst(ω) is the geometric lift of the fractional Brownian motion. We see that

lim
n→∞

∫
R
un(t, x, ω)η(x)dx =

∫
R
u(t, x, ω)η(x)dx

and

lim
n→∞

∫ t

0

∫
R
u′0(x)η(φn(r, x, ω))dxdBr(ω) =

∫ t

0

∫
R
u′0(x)η(φr(x, ω))dxdBr(ω).

where we have used Proposition 2.13 since u′0 ∈ L1(R). Consequently, we must have that∫ t

0

∫
R
∇un(r, x, ω)bn(r, x)η(x)dxdr

is converging. Now we get∫
R
∇un(r, x, ω)bn(r, x)η(x)dx =

∫
R
∇un(r, x, ω)(bn(r, x)− b(r, x))η(x)dx+

∫
R
∇un(r, x, ω)b(r, x)η(x)dx.

For the �rst term, from Remark 4.10 we see that∫
R
∇un(r, x, ω)b(r, x)η(x)dx→

∫
R
∇u(r, x, ω)b(r, x)η(x)dx,

for all r ∈ [0, T ].
For the second term we take the expectation

E[|
∫
R
∇un(r, x)(bn(r, x)− b(r, x))η(x)dx|] ≤

∫
R
E[|∇un(r, x)|]|bn(r, x)− b(r, x)||η(x)|dx

≤ sup
y∈supp η

(
E[|∇un(r, y)|2]

)1/2 ∫
R
|bn(r, x)− b(r, x)||η(x)|dx

→ 0.

which shows that there exists a subsequence∫ t

0

∫
R
∇unk(r, x)bnk(r, x)η(x)dxdr →

∫ t

0

∫
R
∇u(r, x)b(r, x)η(x)dxdr

as k →∞ on some set Ω1 which has full measure. The statement holds on Ω∗ = Ωγ ∩ Ω1.
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6.3.2 Divergence of b bounded

When the divergence of b is bounded, we can write

|∇φt(x)| = exp

{∫ t

0

div b(r, φr(x))dr

}
,

and so the mapping t 7→ |∇φt(x)| is of bounded variation. Using Lemma 2.1 we can show the following
result.

Theorem 6.7. Assume b : [0, T ]×Rd → Rd satis�es the assumptions of Proposition 4.1 and has bounded
divergence. Assume moreover that u0 : [0, T ]×Rd → R is a bounded function. Then, if u is a local time
solution it is also a weak controlled solution.

Proof. We need to show that u(t, x) = u0(φ−1
t (x)) is a weak controlled solution. Using Lemma 2.1 and

Lemma 2.6 it is clear that

〈u(t),∇η〉 =

∫
Rd
u0(y)∇η(φt(y)) exp

{∫ t

0

div b(r, φr(y))dr

}
dy

is controlled by B. The proof follows the same lines as the proof of 6.6, using Proposition 4.1 to obtain
strong L2(Ω) convergence of un(t, x) locally in x.

6.3.3 Time-homogenuous drift and smooth initial data

When b is time-homogenuous, we can write (see Remark 4.10)

φ−1
t (x) = x−

∫ t

0

b(φ−1
r (x))dr −Bt.

If now the initial condition is su�ciently regular, it is clear from Lemma 2.6 that u0(φ−1
· (x)) is controlled

by B.

Theorem 6.8. Assume b : [0, T ] × Rd → Rd satis�es the assumptions of Proposition 4.1 and assume
that u0 ∈ Ckb (Rd;R) for some k ≥ b 1

H c. Then, if u is a local time solution it is also a weak controlled
solution.

Proof. Since D
p(H−)
−B = D

p(H−)
B , it is clear that

〈u(t),∇η〉 =

∫
u0(φ−1

t (x))∇η(x)dx

is controlled by B. The proof follows the same lines as the proof of 6.6, using Proposition 4.1 to obtain
strong L2(Ω) convergence of un(t, x) locally in x.
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