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Abstract Mitigating misinformation on social media is an unresolved chal-
lenge, particularly because of the complexity of information dissemination. To
this end, Multivariate Hawkes Processes (MHP) have become a fundamental
tool because they model social network dynamics, which facilitates execution
and evaluation of mitigation policies. In this paper, we propose a novel light-
weight intervention-based misinformation mitigation framework using decen-
tralized Learning Automata (LA) to control the MHP. Each automaton is
associated with a single user and learns to what degree that user should be
involved in the mitigation strategy by interacting with a corresponding MHP,
and performing a joint random walk over the state space. We use three Twit-
ter datasets to evaluate our approach, one of them being a new COVID-19
dataset provided in this paper. Our approach shows fast convergence and in-
creased valid information exposure. These results persisted independently of
network structure, including networks with central nodes, where the latter
could be the root of misinformation. Further, the LA obtained these results
in a decentralized manner, facilitating distributed deployment in real-life sce-
narios.
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1 Introduction

The spread of misinformation on social media can have critical consequences
during a crisis. Whether the crisis is a disaster, political struggle, terrorist
attack, natural hazard, or a pandemic, misleading information such as rumors
and false alarm can impede or endanger a successful outcome, such as effective
response to a natural hazard. According to a recent study (Bradshaw and
Howard 2017), at least 50% of the world’s countries suffer from organized
political manipulation campaigns over social media. Other examples of the
damaging effect of misinformation circulated over social media includes the
Ebola outbreak in West Africa (Jin et al. 2014), which was believed to be
three times more worse than the previous Ebola outbreaks. Nowadays, with a
more connected world, the impact of misinformation1 is getting more severe,
even becoming a global threat. For instance, the propagated climate change
denying content. There is thus an increasing interest among researchers, and
society in general, in finding solutions for combating misinformation.

There are two main strategies for combating social media misinformation
(Sharma et al. 2019). Some research focus on classifying fake news, rumors,
or fake accounts such as social bots, cyborgs, and trolls. Usually, such an
approach is referred to as fake news, misinformation, or rumor identification.
To this end, several solutions have been proposed. For instance, opinion-based
or content-based solutions (Shu et al. 2017) can be used to classify fake news
based on textual content. Another approach is to mitigate actively, through
proactive intervention (Farajtabar et al. 2017), or after misinformation already
is spreading throughout the social network.

Large-scale manipulation carried out across social media during political
events is one of the greatest threats to social justice (Bradshaw and Howard
2017). So-called cyber armies like the Russian Trolls attack on the U.S.A 2016
presidential elections is a well-known example (Zannettou et al. 2019). To the
best of our knowledge, most of the attempts to automate the detection of
such malicious accounts are not real-time. Furthermore, these cyber armies
change their behavior over time, and each context would often require a new
model. That is, cyber armies acting in different societies and cultures will
have their own linguistic- and behavioral patterns (Shu et al. 2019). This
diversity makes it difficult to build all-encompassing linguistic models, leading
to sub-optimal performance. Too high false negative rate leads to undetected
misinformation attempts while too high false positive rates can be ethically
problematic because accounts or content may be falsely flagged as malicious.

1 The term misinformation is sometimes replaced with disinformation in some literature.
More conveniently, misinformation is the unintended spread of malicious content, while
disinformation is purposely spreading malicious content. For the rest of this paper, we will
use the term misinformation to refer to both phenomenons.
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Our work presented in this paper addresses the above challenges by miti-
gating misinformation attempts by countering misinformation with rectifying
information. That is, we seek to reducing the harmful effects of misinformation
through a targeted real-news campaign. We propose an approach to single out
candidate users for real-news, so as to maximize the remedying effect of inject-
ing real-news into the social network. A real news campaign can be viewed as
a counteraction to the misinformation process over the network. That means
selecting some users such that by sharing a suggested content through them,
a maximal influence would occur on all the other network users, as the latter
would became more exposed to valid information.

1.1 Hawkes Simulation

Since real-time intervention with social media platforms is not feasible for ex-
perimentation purposes, we simulate the process of information diffusion by
employing Hawkes Processes (Rizoiu et al. 2017; Laub et al. 2015), as applied
in (Farajtabar et al. 2017; Goindani and Neville 2019). Hawkes Processes are
point processes which can model the arrival or occurrence of events, indexed
by time or location. There is a range of application domains that fall into such
a model. For example, in finance, a Hawkes process can describe how a buy or
sell transaction on the stock market (an event) influences future stock prices
and transaction volume. Similarly, in geophysics, a Hawkes process can cap-
ture how an earthquake event influences the likelihood of another earthquake
event happening as an after effect. For social media, we consider content such
as tweets or Facebook posts as events, that have at least time-associated in-
dices. The introduction of new content may trigger a chain of new content, for
instance through retweeting, sharing, replying, and quoting.

For all of the above example processes, a Hawkes process is particularly
suitable because it is a self-exciting point process where the arrival of an event
is dependant on the history of all other relevant events. In this paper, we use
Hawkes processes to modeling each user, so that we can simulate different user
behaviors and social network dynamics, including the effect of mitigation.

Hawkes processes are random and non-linear, suitable for capturing the
unpredictable and intricate nature of social media dynamics. Optimizing mit-
igation effects thus becomes a challenging problem, involving spatio-temporal
reasoning. Furthermore, the randomness, uncertainty and incomplete informa-
tion on real-life social media aggravates the difficulty of finding a global or a
local minimum. We therefore Therefore, we propose a novel LA architecture
in this paper, designed to operate in stochastic and unknown environments.

1.2 Problem Statement

Let us consider a scenario where a certain amount of misinformation is circu-
lating in a social network. The misinformation is affecting different users to
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varying degree, depending on the mix of correct information and misinforma-
tion facing each user. We thus define the impact of misinformation for a single
user by degree of exposure, relative to correct information (Farajtabar et al.
2017). Similarly, the overall influence of misleading information on the whole
network could be measured by the average exposure on all users. Since social
media events are typical spatio-temporal, these measures should be quantified
and reconsidered over different time stages as well.

In order to mitigate the spread of false content, we can apply an intervention-
based strategy to increase the amount of valid information against malicious
content, or at least to obtain a balance between the impact of false and true
content on the network. The amount of either false and accurate information
could be viewed as a counts. Such count represents how much each type of
content was generated on the network by each user and at a specific time.

Let A be an adjacency matrix indicating an explicit influence. Let Aij = 1
if there is a directed edge or an influence indicating that user i follows user j or
quotes (with agreement) content from j, and Aij = 0 if not. For a realization
of r time steps {t0, t1, ... tr}, let F tr , and T tr be the impacts of false- and
true content exposure prior to and including time step tr, respectively. Hence,
the impact of both false and true content on user i till the time stage tr can
be calculated as per Equation 1, and Equation 2, respectively.

F tri =

tr∑
s=0

n∑
j=1

Aij · F tsj (1)

T tri =

tr∑
s=0

n∑
j=1

Aij · T tsj (2)

The outer summation
∑tr
s=0 accumulates the impact of information up to

and including time step tr. Furthermore, the impact of misinformation on
user i, should be measured through all possible chances of being exposed to
misinformation. That could be achieved by calculating the amount of malicious
content from n adjacent users where user i is exposed to their content due to a
direct following/ retweeting relationship. The overall average network impacts
of both false and true content prior to and including the time stage tr can
be obtained by Equation 3, and Equation 4, respectively, where |U | is the
cardinality of the network users set.

F tr =
1

|U |

|U |∑
i=1

F tri (3)

T tr =
1

|U |

|U |∑
i=1

T tri (4)

To achieve actual mitigation during the spread of misinformation, a rea-
sonable result would be by making T tr ≥ F tr . That requires some intervention
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to change the counts which result in T tr . To apply such interference, we need
to obtain the initial counts before modifying them. Therefore, a Hawkes pro-
cess can be engaged to model the quantity of the generated content by each
user at various simulation time stages.

1.2.1 Counting Generated Content

If we look at a point process on the non-negative real numbers line, where the
latter is representing the time, the point process is a random process whose
realizations r consist of the event times stages {t0, t1, ... tr} and they define
the time by when an event has occurred. A point process on a specific time
realization ts can be redefined with an equivalent counting process. A counting
process N ts is a random function defined on a given time stage ts ≥ 0, and
takes the integer values {1, 2, 3, ...} as the number of events of the point
process by the time stage ts. Hence, a random variable N ts counts the number
of events up to time ts as the one below.

N ts :=
∑
i≥t0

1{ts≥ei} (5)

Where ei represents an event occurred by time ti and 1{.} is an indicator
function that takes the value 1 when the condition is true, and takes the value
0 when it is false, making it a counting function with a jump of 1 within
each time stage it counts for, while starting from the initial time stage t0 and
finishing by the time stage ts.

The most straightforward class of point processes is the Poisson process.
In Poisson processes, the random variables which represent the counts have an
inter-arrival time, the rate of such arrivals per a time unit (stage) is denoted
as λ, which refers to the intensity of the process. The latter is describing how
likely and dense these counts or events to occur in a time sequence. However,
in a Poisson process, the inter-arrival times are independent, in other words,
the arrival of historical events do not influence the arrival of future events.

A well known self-exciting process was introduced by Hawkes (Hawkes
1971), the proposed model was based on a counting process where the inten-
sity λ depends on all previously occurred events. In a Hawkes process, the
arrival of an event shifts the conditional intensity function to an increase.
Such a process determines its conditional intensity output based on two fun-
damental quantities, base intensity µ, and historical events arrival prior to a
certain point in time Hts . With an analogy to Twitter and the problem of
misinformation, the counts are the number of tweets, either true or dishonest
ones. The base intensities can be viewed as the exogenous motivational factors
which influenced a user to react, while the historical events can be viewed
as the network endogenous factors, for instance, how the sub-network of user
followees are acting on the network. In order to mimic Twitter dynamics as
an environment for our mitigation method, we consider Multivariate Hawkes
Processes (MHP) by defining U-dimensional point processes N ts

U , where U is



6 Ahmed Abouzeid et al.

the network users set, which emphasizes the self-excitation between events
on social media (Zhou et al. 2013). N ts can be interpreted as F ts or T ts as
described in Equations 1, 2, while |U | is the number of individual users a sin-
gle Hawkes process is associated with, and ts is the specific time realization
or stage. The best way to describe a Hawkes process, is by its conditional
intensity function as per Equation 6.

λi(ts|Hts) = µi +
∑
t
s
′<ts

g(ts − ts′ ) (6)

Where g is some kernel function over the history associated with user i
from the time stage ts′ prior to time ts. g is concerned with the history of
some influence Ai.. We used an exponential decay kernel function g = Ai.e

−wt

as practiced in (Farajtabar et al. 2017), where w is the decay factor which
represents the rate for how the influence is reduced over time. For all U ,
the base intensity vector µ, and the influence matrix A can be estimated
using maximum likelihood as presented in (Ozaki 1979). To simulate Twitter
dynamics for our mitigation task, we can rewrite Equation 6 as the one below.

λi(ts|Hts) = µi +

∫ ts

0

g(ts − ts′ )dN(ts′ ) (7)

Where N(ts′ ) is the integration variable and the count of the historical gen-
erated content that influences user i and determined by the Hawkes process. In
turn, the conditional intensity λi(ts|Hts), tells how likely user i would act and
generate content herself, by the time ts. Since N(ts′ ) is interpreted as F (ts′ )
and T (ts′ ) and can be calculated from Equations 1, 2, it is important to high-
light that the influence matrix A is considered explicit influence (following/
retweeting) when measuring content impacts on users after the simulation. On
the other hand, A is considered implicit or hidden temporal influence when
calculating the conditional intensity function, since the latter is a result of
the estimated Hawkes parameters before the simulation, and indicating the
independence from the network explicit structure. That is, we estimate the
simulation parameters to obtain reasonable and inferred simulated network
dynamics from the hidden temporal influence, then, we measure content im-
pacts based on the explicit relationships on the simulated network dynamics.

1.2.2 Limited Budget Mitigation

To observe the process of the intervention-based mitigation, we followed a so-
cial network reshaping approach as employed in previous work (Farajtabar
et al. 2017; Goindani and Neville 2019; Valera et al. 2015). To achieve such a
resolution on the network, we are interested in the base intensity µ, since it
defines any external motivation on the users. Hence, we are interested in ad-
justing the value of the base intensity by increasing it. However, there are two
main challenges in this method, not all users would respond to an exogenous
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motivation, and not all of them are capable of boosting the activity of the net-
work. Besides, some users would be spreading misinformation on purpose and
they will not respond to an opposite campaign. Moreover, the time spent for
incentivizing users is limited due to the crisis time criticality. Therefore, the
modification of µ is bounded by a small amount of incentivization that should
be allocated wisely among users to reach the optimum mitigation results.

Let us denote C as the optimization constraint, which represents the lim-
ited budget of incentivization. The optimization objective is to minimize the
difference between misinformation and valid information impacts on the net-
work by incentivizing the true content simulation-base intensities of users with
respect to C. We define the optimization problem as a stochastic knapsack
problem (Ross and Tsang 1989), where the selection of some users at a spe-
cific time stage is aimed in order to maximize the mitigation performance. The
stochastic knapsack solution is bounded by the maximum allowed amount the
knapsack can afford, in our case, this is referred to as C.

The purpose of the knapsack optimization is to fill a knapsack with ma-
terials amounts X = {xi, ..., xn} such that they maximize some value F(X)
but, at the same time, staying within the limited capacity of the knapsack
(
∑n
i=1 xi = C). With an analogy to our problem, we can define the below

minimization objective and constraint functions.

min F(X) =

|U |∑
i=1

F(xi),where F(xi) =
1

|U |

|U |∑
i=1

F tri −
1

|U |

|U |∑
i=1

T tri , (8)

subject to

|U |∑
i=1

xi = C,where xi > 0 : ∀ui ∈ U (9)

Where xi is the incentivization amount for the user i and both F tri and T tri
are random variables generated from a Hawkes count process N(tr) prior to
realization r at time. Where F tri is calculated through the simulation Equation
7, and T tri is calculated through the simulation Equation 10, with replacing
N by F and T in both equations, respectively. Therefore, the optimization
problem is stochastic with regard to the objective function. Hence, and by
finding the optimum incentivization amount x, the intervention can be applied
by employing another Hawkes process for each user as the one below.

λi(ts|Hts) = xi + µi +

∫ ts

0

g(ts − ts′ )dN(ts′ ) (10)

Where N(ts′ ) represents the count of true information events in the Hawkes
model prior to the specified time stage ts, giving that ts′ < ts, and ts ≤ tr
when r realizations (time stages) are the time intervals of the whole process.
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1.3 Paper Contribution and Limitation

It is essential to highlight that our approach is different from traditional ap-
proaches for finding graph centrality measures or most influential users on
a social network (Rios et al. 2019; Fang et al. 2014). That is because our
method would be under-performing if applied to a network where most influ-
ential users are spreading fake news. On the other hand, our purpose is to learn
normal users who can be effective at a specific moment and independently from
the graph structure and network centrality measures. Such independence is a
crucial advantage of our approach, since it allows for further exploration and
analysis of the temporal hidden influence structure on social networks. Besides,
the timing driven feature is fundamental to crisis mitigation applications.

This paper introduces an adaptative learning method to achieve stochas-
tic optimization over a social network. The optimization task is constrained
and stochastic regarding its objective function. We applied our experiments
on Twitter data, and evaluated our model on two publicly available real-world
datasets that were used in previous work. Namely, Twitter15 and Twitter16
datasets (Liu et al. 2015; Ma et al. 2016; Ma et al. 2017). Moreover, we intro-
duce a new Twitter dataset for the COVID-19 pandemic. The latter represents
a different situation that would demonstrate the flexibility of our solution. Re-
sults showed that with our light-weight computation method, we were able to
find at least a local minimum that serves the required mitigation aims.

In our solution, we used a learning automaton (LA) (Thathachar and Sas-
try 2002) as an adaptative learning technique. An LA is a stochastic model, op-
erating in the framework of reinforcement learning. The LA has been found to
be a robust method for solving many complex and real-world problems where
randomness is a primary characteristic of the problem. We built a network
of LA, while each is assigned to a user on the social network. The individual
LA should learn if the associated user is a good candidate for the mitigation
campaign or not. Additionally, each LA determines an amount from a limited
budget. The amount reflects how much we can spend from a limited budget.
The latter can be viewed as an optimization constraint and the capacity of
how likely we would depend on each of the suggested candidate(s), who would
be part of an intervention process.

Our LA-based method differs from previous misinformation mitigation
with reinforcement learning approaches (Farajtabar et al. 2017; Goindani and
Neville 2019). The latter had a three dimension state per a user at a time,
where user amounts of true and false events were observed with number of
”like” responses received. Then, the task was to learn a mitigation policy over
the constructed state space. On the other hand, we redefine the task as a nat-
ural optimization problem, and we reconsider the problem of state space from
being multidimensional to a single dimension, considering an overall network
objective function with one single variable instead of calculating a multidi-
mensional function across all users. Therefore, our objective function is only
calculating one single value per a user, that drastically reduced the solution
state space required for convergence, since the number of users on the network
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becomes the size of the state space. That means linear state space increase
instead of exponential in case of scaling up the solution. We present our em-
pirical results that show how that led to a faster and more reliable resolution
without a notable loss in accuracy, where differences between users exposures
to fake and true news have no skewed distribution.

We propose a novel exercise of the Learning Automata (LA) in the domain
of social media misinformation mitigation. To the best of our knowledge, LA-
based approaches were not employed in that area, and this paper is the first to
conduct an LA study on online misinformation mitigation tasks. We approach
that by evaluating three primary learning schemes for the LA. Moreover, and
compare to similar mitigation approaches (Farajtabar et al. 2017; Goindani
and Neville 2019). However, as a limitation in our work, we do not consider
the political bias of users, compared to what has been done in (Goindani and
Neville 2019), in addition, we focus on non-skewed data points distribution
scenarios where an average value could be the performance measure. Hence,
political bias and skewed data scenarios are left for future improvements.

We evaluate our method and our implementation of the Hawkes processes-
based simulation on two baselines datasets (Twitter15, Twitter16 ) after ap-
plying some post-processing on the original data. Furthermore, we introduce
a new dataset (Twitter-COVID19 ) which was collected and annotated by us,
and represents a different definition from the traditional fake news cases. The
new dataset demonstrates the applicability and flexibility of our approach in
different situations, such as the infodemic of COVID-19. In such a scenario, a
mitigation task would be targeting the reduction of some propagated content
effects, for instance, the irrational statements about an already-found cure or
any incorrect crisis relief content that might motivate people to be less careful.
Our experiments show promising results on all the evaluated datasets.

1.4 Paper Organization

This paper is organized as follows. Section 2 introduces a literature review,
where some of the previous adaptation of Hawkes processes are mentioned.
Furthermore, other intervention-based mitigation approaches are briefly ex-
plained. The applied method and datasets are explained in section 3, a statis-
tical comparison between the datasets is demonstrated as well. Section 4 shows
our empirical results and performance metrics. A discussion with comparable
results to other mitigation methods is demonstrated in section 5. Eventually,
we conclude the paper and highlight possible future work in section 6.

2 Related Work

The definition of fake news or misinformation has evolved through time, not
only due to the increased complexity of such social problem but also because of
how recent technological efforts have progressed. For a long time, the spread of
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fake news on social media has been considered as the intentional dissemination
of false information in news articles (Allcott and Gentzkow 2017). However,
other research work started to give an attention to the broader scope of the
problem (Sharma et al. 2019; Shu et al. 2017). For instance, rumor detection
(Zhang et al. 2015), malicious accounts classification (Zannettou et al. 2019;
Shao et al. 2018), and the causal aspects of misinformation (Abouzeid et al.
2019). However, and to the best of our knowledge, it has been an obstacle
to effectively solve the problem in real-time or without data selection-bias
concerns. Moreover, ethical questions are being asked (Wasike 2013) since
fake news detection solutions are judgemental by nature. Therefore, the need
for safer and online strategies that would lead to more generic and authentic
resolutions are critically desirable.

As a motivation for more online resolutions to social media misinformation,
intervention-based mitigation strategies have been practiced in the literature.
Reshaping users activities by applying an interference strategy was introduced
in (Farajtabar et al. 2014). In addition, dynamic programming was employed
to optimally distribute incentivization resources among users in different time
stages (Farajtabar et al. 2016). In such previous work, objective functions were
designed using expected values of exposure counts of the user content, gener-
ated from a Hawkes process. The latter has been applied as a simulation for the
social media information diffusion in many recent applications as well (Zadeh
and Sharda 2014; Kobayashi and Lambiotte 2016). Multivariate Hawkes Pro-
cesses (MHP) have proven efficiency and robustness in social media analysis
and more specifically in the domain of misinformation.

Since recent advances in misinformation mitigation approaches have achieved
an online and interactive (simulation-based) resolutions (Farajtabar et al.
2017; Goindani and Neville 2019), future work would focus on improving and
wider applications rather than a narrow definition of misinformation or lim-
ited datasets that were examined in previous work (Liu et al. 2015; Ma et al.
2016; Ma et al. 2017). For example, the conducted intervention-based miti-
gation could be used for polarization, hate speech, and infodemics mitigation
resolutions. The latter is one of our interests at this study.

The use of reinforcement learning for misinformation mitigation on social
media has revealed a promising future for how such a problem could be tack-
led. However, to model a large state space as practiced in (Farajtabar et al.
2017) and to evaluate an optimum policy through that, is still a big concern,
especially for a mitigation task that needs to be achieved timelessly. Moreover,
user incentivization should be applied according to the problem context, which
causes a loss of generality in some cases. For example, in a political scenario, a
mitigation objective function would consider the political bias of users (Goin-
dani and Neville 2019) before preference them as suitable candidates, since
users with an ideological bias would not respond to the incentivization (All-
cott and Gentzkow 2017). The conducted study in this paper aims to provide
a light-weight computation framework that could be applied to different mit-
igation contexts without a total re-engineering effort. However, we consider
this paper as the first step for our proposed system structure by evaluating a
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network of learning automata (LA) where a light-weight LA is the core of our
framework. Therefore, the political bias of users is not investigated so far.

An LA is an adaptative learning method which can be viewed as a stochas-
tic model operating in the framework of reinforcement learning. An LA has
been found to be a robust method for solving many complex and real-world
problems where randomness is a primary characteristic of the problem. Previ-
ous applications of LA have been introduced for social network analysis prob-
lems. For instance, a stochastic learning-based weak estimator for learning and
tracking a user’s time-varying interest was practiced for social media-based
recommendation systems (Oommen et al. 2012). An LA-based framework was
also employed for online service selection in a stochastic environment where
the latter has unfair service reviews (Yazidi et al. 2012). A stochastic con-
straint optimization problem such as the one approached in this paper could
be defined as a stochastic knapsack problem, where LA has been tasked for
by employing the LA Knapsack Game (LAKG) (Granmo et al. 2007).

LAKG is a game between n finite automata that interact with a scheduler
and a stochastic environment. The stochastic environment consists of a set
of stochastic material unit volume value functions. If an amount of a certain
material is suggested to the environment and favored, the associated value
function takes the value 1 with probability p and the value 0 with probability
1 − p. Besides, the environment provides a signal φ, which indicates whether
the knapsack is full or not, which also tells if the optimization constraint was
reached or not. On the other hand, the scheduler takes material amounts as its
input. The purpose of the scheduler is to perform the access to the stochastic
environment, sequentially. Besides, it makes sure that the unit volume value
functions are accessed with frequencies proportional to all materials amounts.
Such a problem description is similar to an incentivization across n users,
where the incentivization budget is limited. Therefore, we consider a learning
scheme similar to (Granmo et al. 2007). However, in that knapsack problem,
n materials can be evaluated through the whole problem space. Still, on a
large social network, it would be impossible to assess a value function across
the entire problem space. Therefore, we adapted a different structure to face
such an obstacle. Moreover, due to our problem specification, we distinguished
between the learned and the evaluated material amount for the value function.

3 Methodology

3.1 Learning Automata

A Learning Automaton (LA) is a model of intelligent computation where learn-
ing is accomplished by exploring and its consequences, in an iterative and re-
inforcement manner. The objective is to decide the optimal action to select
between all the possible actions. An LA learns by interacting with an envi-
ronment. The environment sends a regular feedback for when the LA explores
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a particular action. The LA estimates its preferred action selection in future
explorations with regard to the environment recent response.

Social media platforms and mainly in an emergency setting, are considered
as random mediums where uncertainty and outliers exist. Such uncertainty
and randomness motivated this paper to practice an LA-based optimization
framework as a network of LA, while each LA is assigned to a user on the
social network to learn about its authenticity probability of being part of a
misinformation mitigation strategy. Figure. 1 shows how an individual LA
works by interacting with an environment. Each LA task is to learn about the
best action between two possible moves. That is, each LA has two possible
moves (α0, α1) over an associated random walk line, representing moving in
the direction of assigning less incentivization and the direction of assigning
more incentivization from a mitigation budget C, respectively. For a given
LAi and its chosen action α1 and incentivization amount xi at an epoch i, the
environment sends the feedback V i

i according to Equation 11.

V i
i =

{
1, if F i(xi) < F i(xj)

0, otherwise
, where i 6= j (11)

Fig. 1: LA interaction process.

Where F i(xi),F i(xj) are some investigated objective functions at epoch i
for LAi and LAj at the epoch iterations i and j, respectively. An objective
function calculation is done as per our mitigation objective function definition
in Equation 8. However, with adapting such calculation in our framework, and
for a faster computation, we practically reduce the size of the network by ran-
domly sampling over a subset of users U−, while |U−| is selected according to
the minimum subset size which does not sacrifice the accuracy of the results,
since larger subsets might improve the process of user evaluation but will slow
the computation. For that, we conducted a grid search to estimate the best
value of |U−|. A detailed grid search result and the final selected hyper param-
eters values are demonstrated in section 4, with respect to the convergence rate
and the mitigation performance metric. Considering a network sample |U−|
instead of the whole network size |U |, an objective function at a given epoch
i can be redefined as the one below.
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F i(xi) =
1

|U−|

|U−|∑
i=1

F i
i −

1

|U−|

|U−|∑
i=1

T i
i (12)

For each an epoch i inside a specific time stage ts, all LA are sequentially
visited one time. Therefore, the function F i(xj) is also calculated and com-
pared with F i(xi), to evaluate how two mitigation functions are different in
terms of a minimum value, since the target is to minimize the overall network
difference (F ts − T ts) while learning the optimum subset of users U∗(ts).

The environment feedback V is stochastic since the mitigation sub-functions
are a result of a stochastic process, namely, a multivariate Hawkes process
(MHP). Therefore, the challenge of our stochastic optimization framework is
to learn how to minimize F(X) under the constraint C as discussed in Equa-
tions 8 and 9. During the learning process, the value X is determined by a
learning rate η, as a constant per all users, time stages, and epochs. For in-
stance, while i 6= j, xi = xj = η, since evaluating different users should be
fairly applied by assigning the same incentivization amount. The hyper param-
eter η can be estimated through our grid search as well. On the other hand,
and per each user, the determined X for the mitigation will be the final con-
verged state of each LA, since that indicates an amount determined through
the LA interaction with the environment. Hence, the final converged network
incentivization values is a random vector which represents the converged states
of the individual LA over a random walk line for each. Section 4 gives more
details about how different the learning rate η could be on each dataset and
what are the factors that dictates its values.

We designed the network with a uniform learning scheme for the individual
LA. Furthermore, we followed a simple random walk as in (Granmo et al.
2007) to represent the LA state transitions. However, our individual LA are
different in the way they interact with the environment and in their structure
as well. In our case, the environment is partially observed, we refer to that
by network sample size |U−|. We have evaluated three main learning schemes
for our framework, we refer to them as random walk reward-penalty in action
RWRP , random walk reward in action RWRI , and random walk penalty in
action RWPI . Figure. 2 demonstrates the components of our framework.

As one of the components in our framework, a shuffler, which is trig-
gered every an epoch after all LA are visited, to ensure the comparison pair
F i(xi),F i(xj) will be different each time. The sampler component selects a
subset of the overall network with size |U−|, determined by a hyper-parameter
in our configuration. The scheduler component maintains sequential and equal
visits to each LA to guarantee equal potential state transitions and actions
probabilities update behaviour. The memory component at each computation
time step inside an epoch, helps the sampled partial environment to send its
feedback according to the evaluation of the functions F i(xi),F i(xj).

For our optimization framework to work efficiently, each LA should have
two updating rules, the first is the LA action probability update rule, the sec-
ond is the state transition mechanism, which eventually decides the amount
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Fig. 2: Mitigation framework structure.

of incentivization that will be assigned for each user. Therefore, the incen-
tivization amounts are considered shifts (left/ right) in a line where a random
walk is exercised. The line represents the LA state space. The shifts are prob-
abilistic and subject to the LA action probabilities and the signal φ. The
latter tells the LA if the budget constraint C has been met or not yet. Each
LA state space has its own boundaries from 0 to C, indicating a minimum
and a maximum allowed state values, respectively. Hence, the actions (moves)
probabilities are updated according to the environment feedback V at each
individual LA visit (epoch). Equation 13 describes the action probability up-
dating rule. The higher the probability of moving to the right (αi1), the more
likely the user i is a good candidate for the mitigation.

P i(ai1) =
W i
i1

Z i
i1

, and P i
i(ai0) = 1− P i

i(ai1), where W i
i1 =

i∑
e=1,e≤i

V ei (13)

Where W i
i1

and Z i
i1

are counters for how many times the action ai1 was
rewarded and selected starting from first epoch e and till the current epoch
i, respectively. The RWRP learning scheme is in action when LAi moves are
either rewarded or penalized. Hence, the actions probabilities are updated all
the times when LAi interacts with the environment. Algorithm A.1 gives the
complete details of how RWRP works and how the state transition is applied.

Differently, the RWRI learning scheme is in action when LAi moves are
only rewarded. Hence, the actions probabilities are updated only when V i

i = 1,
according to the recent interaction feedback of LAi with the environment.
Algorithm A.2 demonstrates how RWRI works and its state transition.
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The RWPI learning scheme works similar to RWRI except the former is in
action when LAi moves are only penalized. Which causes the actions probabil-
ities to be updated only when V i

i = 0. Algorithm A.3 gives the complete details
of the state transition and how RWPI works. For any LA, since our purpose
is to evaluate for the incentivization, the action α1 is always performed for all
our learning schemes, and P(α0) is only updated as per Equation 13.

3.1.1 Random Walk Learning

As a result of learning the incentivization amounts per users, by the end of
all computation steps of I epochs on each time realization ts of the Hawkes
process, each LA suggests if its associated user would be part of a proposed
subset U∗(ts) of mitigation candidate(s). Where ∀ui ∈ U : ui ∈ U∗(ts), xi =
Si(ts), if P(αi1) > P(αi0) by the end of the computation, and Si(ts) is the final
converged LA state value of user i at the time realization ts. Therefore, Si(ts)
will be the final decided assigned value to the variable xi for the intervention
process as demonstrated in Equation 10.

In the core of our proposed framework, there is a decentralized LA learning
model, which learns such final incentivization amount for a user. The learn-
ing model learns by performing stochastic moves (actions) over a state space
(possible incentivization amounts). The stochastic moves P(αi1),P(αi0) are
determined as per Equation 13, which is dependant on the environment feed-
back which is measured according to Equations 11, 12. Despite how the ran-
dom walk moves probabilities are being updated through the different learning
schemes (RWRP , RWRI , RWPI), at a specific MHP time stage, and an epoch
i, the user i associated LA model learns by conducting random walk moves as
the below formal description.

Stsi (i + 1) := Stsi (i) +
C

M
, if P(αi1) > P(αi0) and 0 ≤ Stsi (i) < C

and ¬φ

Stsi (i + 1) := Stsi (i)− C

M
, if P(αi1) < P(αi0) and 0 < Stsi (i) ≤ C

Stsi (i + 1) := Stsi (i), otherwise,

where φ =


true, if C

M +
∑|U |
i=1 S

ts
i (i) > C

false, otherwise.

Where M is the constant memory depth of each LA state space bounded
by C, therefore C

M describes the shift value resulted by the random walk. Since
all users should be evaluated through their own random walk model, the above
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description is applied on all LA, sequentially through the scheduler component
as indicated in Figure. 2. Moreover, Figure. 3 gives a toy example of how a
joint random walk learning process from two sequential LA moves constructs
the network converged incentivization vector S∗. Where the horizontal line
indicates user i state space, and the vertical line indicates user j state space,
given that the latter ended up being allocated all the incentivization budget
(C = 2) after two epochs (i = 2) and 4 time steps. The example then can be
generalized for as many number of users (LA). Eventually, it is important to
highlight that at each time stage of the MHP, the individual LA moves prob-
abilities P(αi1),P(αi0) are reset, to ensure learning new temporal influential
users over different time stages, if exist.

Fig. 3: Toy Example of two LA-based joint random walk.

3.1.2 Rate of Convergence

For an individual LAi, its convergence is defined according to the optimum
incentivization value (random walk converged point) S∗i . Hence, the whole LA
network optimum random vector S∗ is considered the optimization minimizer
vector. Therefore, the rate of convergence or the asymptotic error of the LA
network can be defined as per Equation 14, where i represents the current
epoch (LA visit).

error :=
||Si+1 − S∗||
||Si − S∗||

(14)
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The above definition is then used for evaluating the network hyper pa-
rameters. Additionally, from our observation, at least for one of the applied
LA learning schemes, we obtained a Q-superlinear rate of convergence for all
datasets, where the network asymptotic error approached 0. A detailed expla-
nation for the network rate of convergence using different hyper parameters
values is given in section 4.

3.2 Datasets

3.2.1 Twitter15

The Twitter15 dataset has initially been collected and created to debunk ru-
mors on Twitter (Liu et al. 2015). The original dataset had both a political
and a more general context. Two rumor tracking websites (snopes.com and
emergent.info) were used to verify the trustworthiness of the content before
categorizing the data into true, false, and unverified rumors. The results con-
sisted of 94 true and 446 fake stories. Accordingly, all relevant and matched
tweets were collected and labeled. After downloading and post-processing the
original Twitter15 dataset, we obtained 27,547 users, which contributed to
21,279 of true events (tweets/ retweets), and 6,268 of false ones. However, for
our experiments and due to the current limitation in our computation power,
we scaled down the size of the network to only 1,039 users, and 1,188 events,
considering scaling that up in future experiments. Our scaled network also fo-
cused only on the American political context. Therefore, the final network was
a result of extracting main tweets with relevant keywords and hashtags from
the standard dataset. Hence, we only extracted main tweets that contain the
keywords and hashtags as demonstrated in Table. 1. The final network had
approximately 94.02% of misinformation.

For all datasets, we define the term uinfluencer as the user with the high-
est node degree on the network, with regard to the number of edges which
represent retweeting from her. In Twitter15 dataset, the top misinformation
influencer node motivated 301 users to spread false content. Also, 13 users
were motivated to spread true news by retweeting valid content, since the top
influencer user had generated some trustworthy content as well, that opens a
judgemental question if such a user is spreading misinformation on purpose or
not, and how much spread is enough to measure that in our study. We believe,
such question is irrelevant to this study, however, we will involve these numbers
when looking at the results and U∗(ts), since we aim to have an independence
from the network high centrality node(s) when it is necessary.

3.2.2 Twitter16

The Twitter16 dataset was collected initially for a recurrent neural network
for rumor detection in social media (Ma et al. 2016). The data was evaluated
by the online rumor debunking service (snopes.com), where 778 events were
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Table 1: Filtered Twitter15/16 datasets tweets.

Hashtag/ Keyword (Twitter15) Number of main tweets (Twitter16) Number of main tweets

hillary 16 21

trump 27 37

obama 44 30

america 4 3

americans 12 7

american 19 3

democrat 5 5

republican 1 1

clinton 16 27

white house 2 39

investigated during March-December 2015, and 64% of the data samples were
actual rumors. Similar to Twitter15, the context of the events are broader
than only political struggles. Hence, and after our post-processing, we ended
up with 45, 566 incidents and 44, 114 users, which contributed to 38, 686 non-
rumors, and 6, 880 rumors. However, and after scaling down and focusing only
on political struggle related events, our final dataset version was 1, 206 users
and 1, 362 cases, from which there were around 45.59% considered as misin-
formation. Table. 1 shows the hashtags and keywords used for filtering the
main tweets from the standard dataset.

The top misinformation influencer node incentivized 230 users to spread
malicious content. However, the same user has also incentivized 52 users for
retweeting correct information, which means she might not be spreading false
content on purpose. Like in Twitter15 dataset, that insight is useful when
evaluating the performance of our method, since the latter should not be
driven by such top nodes, especially when they are circulating fake content
on purpose. Therefore, some relevant statistical measures would be useful to
set a boundary for how we could accept the learned U∗(ts), in cases when
uinfluencer ∈ U∗(ts).

3.2.3 Twitter-COVID19

Our new proposed dataset Twitter-COVID19 was collected during the 28th of
March 2020 for the COVID-19 infodemic on Twitter, the dataset had 1, 164
users and 1, 180 events, from which there were around 92.03%, manually la-
beled as misinformation. The dataset focused on the circulated irrational con-
tent about some found cures like ”silver liquids” and the ”anti-malaria” med-
ication. The latter was reported as a cause of severe harmful side effects for
people who tried it without consulting a health expert 2. To show the flexi-
bility of our approach, the mitigation resolution can be seen as applicable in
any case where there are two opposite campaigns, and the task is to mitigate

2 https://www.theguardian.com/world/2020/mar/24/coronavirus-cure-kills-man-after-
trump-touts-chloroquine-phosphate
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one in favor of the other. In our case, we consider a reduction of the effect
of believing these false crisis reliefs, since there was no approved cure yet, by
the time of collecting the dataset. That can be viewed as an exercise for risk
reduction during an infodemic.

In Twitter-Covid19 scenario, the top misinformation influencer node moti-
vated 766 users to spread irrational content. The influencer node had no effect
on spreading any other type of contents during the time window of collecting
the data. Therefore, that is considered a perfect example to evaluate how our
method would avoid such user before suggesting U∗(ts). Table. 2 demonstrates
some statistical differences between the three datasets.

Table 2: Datasets statistics.

Dataset Twitter15 Twitter16 Twitter-COVID19

Num of users 1, 039 1, 206 1, 164

Number of events 1, 188 1, 362 1, 180

Misinformation 94.02% 45.59% 92.03%

Network density .001943 .001778 .001687

Misinformation by uinfluencer 28.87% 19.07% 65.81%

4 Empirical Results

4.1 Twitter15

Our first experiment was the Twitter15 dataset, which had around 94.02%
of misinformation. This is considered an important example for evaluating
our algorithms on such high percentage. For the Hawkes processes, we set the
decay factors w = .75 and w = 1 as in (Goindani and Neville 2019) for false
and true events, respectively. Besides, we set an hourly interval between time
stages (∆ = 1 hour). From the dataset events timestamps, we used the first 10
hours for learning the Hawkes parameters µ and A, before simulating the next
30 hours. Therefore, we used the next 30 hours from the real data for testing,
by comparing with events arrivals which were generated from the simulation.
We obtained a relatively good simulation behaviour. Figure. 4 indicates the
average absolute difference error (Farajtabar et al. 2017) as the performance
metric used for the simulation on both true and false events from Twitter15
and Twitter16 datasets. Equation 15 demonstrates how the average absolute
difference error was calculated.

Ets+∆ =
1

|U |

|U |∑
i=1

|[NHi (ts +∆)−NHi (ts)]− [NRi (ts +∆)−NRi (ts)]| (15)
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Fig. 4: MHP simulation vs real data on scale of 1 less or more tweet per user
difference on a time stage.

Where |U | is the number of users and NH, NR represent the counts of
the arrived events from Hawkes simulation and real data, respectively. The
calculation is made between the time stages ts + ∆ and ts. It is important
to highlight that we consider improving the simulation process in future, so
that we could maintain a more stable error over time. However, we believe an
error up to 1 is still a good indicator since for 1, 000 users, that means, on
average, there is only 1 event arrival difference per user and prior to a certain
time stage. Additionally, we define a random count range for more convenient
simulation results, the count range N t

E± interprets E as a possible discount in
the number of generated events. For instance, if N t = 50 from the simulation,
we might be more confident to say N t

E± = [(1 − E) · 50, 50]. In case of E > 1,
it should be normalized between 0 and 1.

For Twitter15 dataset, Figure. 5 shows the optimization performance of
the three suggested learning schemes with three other considerable perfor-
mance baselines. The three baselines represent three different measures we
sought to outperform, these are misinformation before mitigation, uniform
distribution of incentivization budget, and random allocation of incentiviza-
tion budget. Our optimization framework outperformed the three baselines
with the three learning schemes with a budget C = .05. The latter is consid-
ered a limited budget according to its overall effect on the MHP. Moreover, we
observed approximately similar performance between RWPI and RWRP on
longer epochs, but RWRP was the one with a remarkable early convergence.
Eventually, Figure. 6 shows the performance for difference minimization be-
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Fig. 5: Twitter15 mitigation performance on 1’st time stage, C = .05.

tween misinformation and true events after learning U∗ for the first three time
stages (next three hours).

4.2 Twitter16

The simulation driven from the Twitter16 dataset can be evaluated as in
Equation 15. And as indicated in Figure. 4, the false events simulation seemed
to be slightly enhanced compared to Twitter15.

Our version of the Twitter16 dataset is considered as an interesting case,
since it is a situation where misinformation is around 45.59% over the network,
that is considered too low, relatively to both Twitter15 and Twitter-COVID19
datasets. However, it seemed that such scenario was more challenging. That is
because when an extreme level of misinformation exists, it becomes straight
forward to distinguish between nodes with temporal negative influence. On
the other hand, when there is a balance between both campaigns in the net-
work, it is more vague to distinguish between the authenticity of nodes, since
all nodes might be contributing to both misinformation and true information
diffusion. Moreover, it becomes interesting to see how our method was inde-
pendent from the network central node(s) in such cases. The latter perspective
is fundamental, as it would indicate how flexible and intelligent our method
is. For instance, sometimes in a scenario like Twitter15 and Twitter16, a top
influencer node might be spreading false content, but still, it is circulating true
content.
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Fig. 6: Twitter15 mitigation performance on first three time stages, C = .05.

For the Hawkes processes, we set the decay factors w = .6 and w = 1 as
in (Goindani and Neville 2019) for false and true events, respectively. Besides,
we set an hourly interval between time stages (∆ = 1 hour). We used the same
duration as in Twitter15 for both learning Hawkes parameters and testing.

With a budget C = .05, Figure. 7 indicates how our optimization frame-
work with the learning scheme RWRP performed well with more stability,
compared to other learning schemes in addition to another two baselines.
However, the uniform distribution method performed approximately the same.
Moreover, Figure. 8 shows how the random distribution outperformed all other
methods for the next two time stages. We consider this as an interesting exam-
ple of how RWRP continued to be more robust compared to other LA-based
learning schemes, but it failed to compete with both uniform and random
strategies. However, a slight improve in the difference between RWRP and
the uniform and random distribution strategies can be noticed in Figure. 9,
after repeating the experiment with only 25% of the original budget, where
C = .0125. Therefore, our LA-based method showed more robustness when a
more strict budget was used.

4.3 Twitter-COVID19

As in Twitter15 and Twitter16, the Hawkes simulation performance for Twitter-
COVID19 was measured according to Equation 15. However, we observed
more density in the events arrivals timestamps. Therefore, we set ∆ = 10 min-
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Fig. 7: Twitter16 mitigation performance on 1’st time stage, C = .05.

Fig. 8: Twitter16 mitigation performance on first three time stages, C = .05.



24 Ahmed Abouzeid et al.

Fig. 9: Twitter16 mitigation performance on first three time stages, C = .0125.

utes for a more convenient simulation. Figure. 10 explains the Hawkes process
performance on both irrational content and valid content, respectively.

The Twitter-COVID19 dataset is also an interesting case for this study,
since it has only one user who was spreading the undesired content and at the
same time such user had the highest node centrality degree. That is, in such
special situation, we would like to evaluate how our method was independent
from the graph structure.

For the simulation, we set the decay factors w = .7 and w = 1 for the
irrational and rational content, respectively, while estimating such values fol-
lowing the same technique as in (Goindani and Neville 2019). With a budget
of C = .05, Figure. 11 shows how most of the LA-based methods outperformed
the three baselines. However, it became obvious that RWRP is the most reli-
able learning scheme for our optimization framework, since it converged earlier
with better results in most of our experiments.

4.4 Grid-search results

Our method is dependant on three hyper parameters, the learning rate η, the
random walk line (LA states) memory depth M , and the sample size |U−|.
Therefore, we conducted a grid search to determine their best values. We eval-
uated the grid search results with respect to how different values of these
parameters decreased the asymptotic error for convergence, and increased the
risk reduction metric K. The latter is discussed in details in section 5. Figure.
12 shows how we obtained a Q-superlinear convergence on the three datasets
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Fig. 10: MHP simulation vs real data on scale of 1 less or more tweet per user
difference on a time stage.

Fig. 11: Twitter-COVID19 mitigation performance on 1’st time stage, C = .05.
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Fig. 12: Convergence plot for the three datasets for T = t0, C = .05.

from the final estimated hyper parameters and the first MHP time stage and
with budget C = .05. Tables 3, 4, 5 gives a detailed explanation for the per-
formance of different grid search hyper parameters values over all datasets
for the first time stage and with budget C = .05. The selection criteria was
mainly how much an acceptable risk reduction was achieved with the least
possible epochs I. Nevertheless, we considered values which had less effect on
the computation speed, since even one epoch might be slower than another
while using different values for |U−|, and η. That is because the number of
calculations inside one epoch will increase when the network size increases.
On the other hand, the learning rate parameter controls the density of the
MHP generated events, since higher values of incentivization would lead to
more generated counts, which would also increase the number of calculation
steps. That is, we approached as much higher K and lower I, while using as
much lower values for |U−|, and η.
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Table 3: Twitter15 grid-search hyper parameters for T = t0, C = .05.

I K |U−| η M

≈ 5 ≈ [125%, 131%] 5 .0001 50

≈ 2 ≈ [125%, 131%] 5 .0001 100

≈ 38 ≈ [106%, 114%] 25 .0001 50

≈ 47 ≈ [119%, 128%] 25 .0001 100

> 60 ≈ [100%, 103%] 50 .0001 50

> 60 ≈ [119%, 128%] 50 .0001 100

≈ 25 ≈ [73%, 79%] 5 .00001 50

≈ 19 ≈ [119%, 128%] 5 .00001 100

≈ 11 ≈ [119%, 128%] 25 .00001 50

≈ 13 ≈ [119%, 128%] 25 .00001 100

≈ 18 ≈ [125%, 135%] 50 .00001 50

≈ 34 ≈ [118%, 125%] 50 .00001 100

N.A [0%, 0%] 5 .000001 50

N.A [0%, 0%] 5 .000001 100

≈ 12 ≈ [120%, 129%] 25 .000001 50

≈ 13 ≈ [120%, 129%] 25 .000001 100

≈ 48 ≈ [73%, 79%] 50 .000001 50

≈ 25 ≈ [126%, 135%] 50 .000001 100

Table 4: Twitter16 grid-search hyper parameters for T = t0, C = .05.

I K |U−| η M

≈ 4 ≈ [227%, 241%] 5 .0001 50

≈ 5 ≈ [235%, 253%] 5 .0001 100

≈ 30 ≈ [235%, 253%] 25 .0001 50

≈ 30 ≈ [119%, 128%] 25 .0001 100

> 60 ≈ [190%, 209%] 50 .0001 50

> 60 ≈ [184%, 200%] 50 .0001 100

≈ 10 ≈ [219%, 235%] 5 .00001 50

≈ 19 ≈ [250%, 276%] 5 .00001 100

≈ 12 ≈ [168%, 183%] 25 .00001 50

≈ 12 ≈ [242%, 265%] 25 .00001 100

≈ 50 ≈ [506%, 550%] 50 .00001 50

≈ 57 ≈ [242%, 265%] 50 .00001 100

≈ 24 ≈ [243%, 266%] 5 .000001 50

> 60 ≈ [242%, 265%] 5 .000001 100

≈ 24 ≈ [242%, 265%] 25 .000001 50

≈ 13 ≈ [239%, 260%] 25 .000001 100

≈ 48 ≈ [138%, 150%] 50 .000001 50

≈ 18 ≈ [199%, 210%] 50 .000001 100
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Table 5: Twitter-Covid19 grid-search hyper parameters for T = t0, C = .05.

I K |U−| η M

≈ 21 ≈ [330%, 340%] 5 .001 50

≈ 29 ≈ [329%, 339%] 5 .001 100

≈ 10 ≈ [330%, 340%] 25 .001 50

≈ 17 ≈ [327%, 338%] 25 .001 100

≈ 15 ≈ [331%, 342%] 50 .001 50

≈ 19 ≈ [300%, 310%] 50 .001 100

N.A [0%, 0%] 5 .0001 50

N.A [0%, 0%] 5 .0001 100

N.A [0%, 0%] 25 .0001 50

N.A [0%, 0%] 25 .0001 100

N.A [0%, 0%] 50 .0001 50

N.A [0%, 0%] 50 .0001 100

N.A [0%, 0%] 5 .00001 50

N.A [0%, 0%] 5 .00001 100

N.A [0%, 0%] 25 .00001 50

N.A [0%, 0%] 25 .00001 100

N.A [0%, 0%] 50 .00001 50

N.A [0%, 0%] 50 .00001 100

The learning rate value had also some other effects on the results, for
example, Twitter-Covid19 dataset needed a higher value of η to make its users
start to respond. That can be seen in Table. 5, where K = 0 in most of the
experiments. Eventually, the memory depth parameter M was also essential
to the computation, since it controls how fast the knapsack became full, which
in turn, could affect the required number of epochs I.

5 Discussion

As discussed in section 4, the random count range N t
E± defines an estimate

range for the random variable N t, considering the random output and the
average absolute difference error E that affects the mitigation metrics such
as the difference between valid and invalid information. Therefore, the risk
reduction percentage K can be calculated with regard to Equations 3, 4 as
per the one below. Where E is the sum of errors for misinformation and true
events simulated counts, Table. 6 shows the summed error for the datasets.

Kts =

[
(1− E) ·

(√
[(F1 − T1)− (F2 − T2)]2

(F1 − T1)

)
·
(

1

2

)
,

(√
[(F1 − T1)− (F2 − T2)]2

(F1 − T1)

)
·
(

1

2

)]ts
(16)

, where F1 − T1 6= 0

Where at a specific time stage ts, F1−T1 represents the difference between
false and true content before mitigation, and F2 − T2 is the difference after
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Table 6: Datasets simulation accumulated error E .

t0 t1 t2

Twitter15 .076 .076 .140

Twitter16 .083 .083 .163

Twitter-COVID19 .028 .028 .037

mitigation. Then, Kts indicates the estimates where such uncertain output
would be, by measuring the distance between the two points (F1−T1) , (F2−T2)
and creating a range between the weighted and the original calculation results.
The estimated range values are divided by 2 in order to consider the output
(F2−T2 = 0) as only a 50% reduction, since there is still a 50% chance of being
exposed to misinformation on the network. For cases when (F1 − T1 = 0), we
omit it as the denominator, and we omit the division by 2 as well.

We have investigated how each learning scheme performed on the three
datasets from the perspective of independence from network centrality mea-
sures. For instance, when T = t0, we obtained P(uinfluencer ∈ U∗ = 1),
P(uinfluencer ∈ U∗ = .93), and P(uinfluencer ∈ U∗ = .71) for Twitter15 for
the three learning schemes RWRP , RWRI , and RWPI , respectively. On the
other hand, for Twitter16, we got P(uinfluencer ∈ U∗ = .50), P(uinfluencer ∈
U∗ = 1), and P(uinfluencer ∈ U∗ = .57) for the three learning schemes RWRP ,
RWRI , and RWPI , when T = t0, respectively. While in Twitter-Covid19,
we obtained P(uinfluencer ∈ U∗ = .19), P(uinfluencer ∈ U∗ = .20), and
P(uinfluencer ∈ U∗ = .19) for the three learning schemes RWRP , RWRI ,
and RWPI , when T = t0, respectively. Since, the latter dataset is the case
where the top influencer user had contributed only to misinformation, while
other datasets had top influencers who contributed to true content, we would
consider our method showing independence from graph structure when the
top influencer user is not showing any potentials for circulating valid content.

5.1 Evaluation

As mentioned earlier, we have adopted our own post-processed version of the
Twitter15 and Twitter16 datasets. Further, it was unfeasible to apply all pre-
vious baseline mitigation methods on the same data samples we used. How-
ever, on the different datasets versions, Table. 7 demonstrates by how far
our LA-based method outperformed random and uniform budget distribution
methods, with an analogy to previous reinforcement learning-based mitigation
methods (MHP-U (Goindani and Neville 2019), V-MHP (Farajtabar et al.
2017), EXP (Farajtabar et al. 2017)). We refer to our method as LA-MHP,
and the evaluation metric is the ratio between the correlation maximization
Y ts at a given time stage for each baseline and either random or uniform max-
imized correlation, when applied on the associated dataset version. Where the
exposure amounts of both fake and true content are considered the correlation
variable and constant, respectively (Y ts = T tsF ts). For instance, the ratio that
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indicates how LA-MHP performed against random distribution with regard to
correlation maximization is calculated as LA−MHPY

RNDY
, where Y is calculated

twice for both LA-MHP and RND over their MHP generated amount T . The
results given in Table. 7 proves how the LA-MHP model is competing with all
baselines.

Table 7: Relative performance against random and uniform methods.

Model Tw15-RND Tw15-UNIF Tw16-RND Tw16-UNIF

LA-MHP 2.37 2.11 2.35 1.71

MHP-U 2.06 1.93 3.20 1.80

V-MHP 1.54 1.87 2.80 1.50

EXP 1.33 1.21 2.04 1.12

6 Conclusion

The emergence of the Multivariate Hawkes Processes (MHP) and their appli-
cation on social media, have boosted the capabilities of social media analysis
domain. Hence, MHP-based models became crucial to understand information
diffusion and users actions prediction on social networks. Moreover, social me-
dia intervention-based approaches are highly depending on MHP to evaluate
and improve the developed methods. MHP can be applied to mimic the users
future behaviour on social networks after learning from some past actions on
the network. Furthermore, MHP analyze the behaviour of users with regard
to different factors. First, MHP can model an exogenous factor that causes a
user to act. Then, the model takes into consideration the endogenous factors
such as the network users historical behaviour. Therefore, the MHP construct
powerful social media dynamics simulation models, where studying internal
and external network motivations became possible and reliable.

Compared to deep reinforcement learning approaches, which were adapted
in similar previous work, the explanation given in this study showed how our
LA-based method is more reliable for a proactive misinformation mitigation
strategy, since an LA is easier to understand and implement. Besides, our
demonstrated method converged faster while using a notable smaller sample
size, compared to the number of samples needed in similar previous work.
Furthermore, and to the best of our knowledge, we were the first to apply LA
for misinformation on social media.

Future work would investigate how politically biased users might not re-
spond to a mitigation campaign, which will waste the incentivization budget.
Furthermore, different objective functions should be investigated, for instance,
in certain scenarios, we should consider fair mitigation for the influenced users,
instead of calculating the average of differences between fake and true content,
since an average for skewed individual differences distribution would not be
enough to achieve optimum mitigation results.
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A Algorithms

Algorithm 1 RWRP

Input: x = η, C, M , |U−|, U , I, r
Output: A proposed subset of mitigation users U∗(ts) per each time stage ts

1: s← 0
2: while ts ≤ tr do
3: i← 0
4: i← 0
5: Zi1 ← 0 : ∀ui ∈ U
6: Wi1 ← 0 : ∀ui ∈ U
7: Sts

i ← 0 : ∀ui ∈ U
8: P(αi1 )← .5
9: P(αi0 )← .5

10: while i ≤ I do
11: U ← Shuffler(U)
12: while i ≤ |U | do
13: LAui ← Scheduler(U, i) {see section 3.1}
14: U− ← Sampler(|U−|, U) {see section 3.1}
15: Zi1 ← Zi1 + 1
16: if i > 1 then
17: j ← i− 1

18: F(xi) = ( 1
|U−|

∑|U−|
i=1 F i

i −
1
|U−|

∑|U−|
i=1 T i

i )i {current iteration i for LAi}

19: F(xj) = ( 1
|U−|

∑|U−|
i=1 F i

i −
1
|U−|

∑|U−|
i=1 T i

i )j {previous iteration j for LAj}
20: Vi ← F(xi) < F(xj)
21: if Vi = 1 then
22: Wi1 ←Wi1 + 1
23: end if
24: Pi(αi1 )← Wi1

Zi1

25: Pi(αi0 )← 1− Pi(αi1 )

26: if Pi(αi1 ) > Pi(αi0 ) and 0 ≤ Sts
i (i) < C and ¬φ then

27: Sts
i (i + 1)← Sts

i (i) + C
M

28: else if Pi(αi1 ) < Pi(αi0 ) and 0 < Sts
i (i) ≤ C then

29: Sts
i (i + 1)← Sts

i (i)− C
M

30: else
31: Sts

i (i + 1)← Sts
i (i)

32: end if
33: end if
34: i← i+ 1
35: φ← Evaluate(φ) {see section 3.1.1}
36: end while
37: i← i + 1
38: end while
39: U∗(ts)← {∀ui ∈ U : Pi(αi1 ) > Pi(αi0 ), Sts

i > 0}
40: s← s+ 1
41: end while
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Algorithm 2 RWRI

Input: x = η, C, M , |U−|, U , I, r
Output: A proposed subset of mitigation users U∗(ts) per each time stage ts

1: s← 0
2: while ts ≤ tr do
3: i← 0
4: i← 0
5: Zi1 ← 0 : ∀ui ∈ U
6: Wi1 ← 0 : ∀ui ∈ U
7: Sts

i ← 0 : ∀ui ∈ U
8: P(αi1 )← .5
9: P(αi0 )← .5

10: while i ≤ I do
11: U ← Shuffler(U) {see section 3.1}
12: while i ≤ |U | do
13: U− ← Sampler(|U−|, U) {see section 3.1}
14: Zi1 ← Zi1 + 1
15: if i > 1 then
16: j ← i− 1

17: F(xi) = ( 1
|U−|

∑|U−|
i=1 F i

i −
1
|U−|

∑|U−|
i=1 T i

i )i {current iteration i for LAi}

18: F(xj) = ( 1
|U−|

∑|U−|
i=1 F i

i −
1
|U−|

∑|U−|
i=1 T i

i )j {previous iteration j for LAj}
19: Vi ← F(xi) < F(xj)
20: if Vi = 1 then
21: Wi1 ←Wi1 + 1

22: Pi(αi1 )← Wi1
Zi1

23: Pi(αi0 )← 1− Pi(αi1 )
24: end if
25: if Pi(αi1 ) > Pi(αi0 ) and 0 ≤ St

i (i) < C and ¬φ then

26: Sts
i (i + 1)← Sts

i (i) + C
M

27: else if Pi(αi1 ) < Pi(αi0 ) and 0 < Sts
i (i) ≤ C then

28: Sts
i (i + 1)← Sts

i (i)− C
M

29: else
30: Sts

i (i + 1)← Sts
i (i)

31: end if
32: end if
33: i← i+ 1
34: φ← Evaluate(φ) {see section 3.1.1}
35: end while
36: i← i + 1
37: end while
38: U∗(ts)← {∀ui ∈ U : Pi(αi1 ) > Pi(αi0 ), Sts

i > 0}
39: s← s+ 1
40: end while
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Algorithm 3 RWPI

Input: x = η, C, M , |U−|, U , I, r
Output: A proposed subset of mitigation users U∗(ts) per each time stage ts

1: s← 0
2: while ts ≤ tr do
3: i← 0
4: i← 0
5: Zi1 ← 0 : ∀ui ∈ U
6: Wi1 ← 0 : ∀ui ∈ U
7: Sts

i ← 0 : ∀ui ∈ U
8: P(αi1 )← .5
9: P(αi0 )← .5

10: while i ≤ I do
11: U ← Shuffler(U) {see section 3.1}
12: while i ≤ |U | do
13: U− ← Sampler(|U−|, U) {see section 3.1}
14: Zi1 ← Zi1 + 1
15: if i > 1 then
16: j ← i− 1

17: F(xi) = ( 1
|U−|

∑|U−|
i=1 F i

i −
1
|U−|

∑|U−|
i=1 T i

i )i {current iteration i for LAi}

18: F(xj) = ( 1
|U−|

∑|U−|
i=1 F i

i −
1
|U−|

∑|U−|
i=1 T i

i )j {previous iteration j for LAj}
19: Vi ← F(xi) < F(xj)
20: if Vi = 0 then

21: Pi(αi1 )← Wi1
Zi1

22: Pi(αi0 )← 1− Pi(αi1 )
23: end if
24: if Pi(αi1 ) > Pi(αi0 ) and 0 ≤ Sts

i (i) < C and ¬φ then

25: Sts
i (i + 1)← Sts

i (i) + C
M

26: else if Pi(αi1 ) < Pi(αi0 ) and 0 < Sts
i (i) ≤ C then

27: Sts
i (i + 1)← Sts

i (i)− C
M

28: else
29: Sts

i (i + 1)← Sts
i (i)

30: end if
31: end if
32: i← i+ 1
33: φ← Evaluate(φ) {see section 3.1.1}
34: end while
35: i← i + 1
36: end while
37: U∗(ts)← {∀ui ∈ U : Pi(αi1 ) > Pi(αi0 ), Sts

i > 0}
38: s← s+ 1
39: end while
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Loránd University (ELTE), Hungary, Budapest. Since then, he is conducting academic re-
search in Artificial Intelligence and theoretical problems like causal reasoning, learning in
random environments, simulation models for temporal events, and stochastic optimization.

Prof. Ole-Christoffer Granmo is the Founding Director of Centre for Artificial Intel-
ligence Research (CAIR), University of Agder (UiA), Norway. He obtained his master’s
degree in 1999 and the Ph.D. degree in 2004, both from the University of Oslo, Norway.
Dr. Granmo has authored in excess of 140 refereed papers within machine learning, en-
compassing learning automata, bandit algorithms, Tsetlin machines, Bayesian reasoning,
reinforcement learning, and computational linguistics. He has further coordinated 7+ re-
search projects and graduated 55+ master- and 6 Ph.D. students. Dr. Granmo is also a
co-founder of the Norwegian Artificial Intelligence Consortium (NORA). Apart from his
academic endeavours, he co-founded the company Anzyz Technologies AS.



36 Ahmed Abouzeid et al.

Morten Goodwin received the B.Sc. and M.Sc. degrees from the University of Agder
(UiA), Norway, in 2003 and 2005, respectively, and the Ph.D. degree from Aalborg Uni-
versity Department of Computer Science, Denmark, in 2011, on applying machine learning
algorithms on eGovernment indicators which are difficult to measure automatically. He is a
Professor with the Department of ICT, the University of Agder, deputy director for Centre
for Artificial Intelligence Research (CAIR), a public speaker, popular science author, and
an active researcher. His main research interests include machine learning, including swarm
intelligence, deep learning, and adaptive learning in medicine, games, and chatbots. He has
more than 100 peer reviews of scientific publications. He has supervised more than 110
student projects, including Master and Ph.D. theses within these topics, and more than 90
popular science public speaking events, mostly in Artificial Intelligence.

Christian Webersik is professor of development studies at the Department of Global De-
velopment and Planning at the University of Agder (UiA), and Deputy Director of Centre
for Integrated Emergency Management (CIEM). Before joining UiA, he was a Japan Society
for the Promotion of Science – United Nations University (JSPS-UNU) Postdoctoral Fellow
at United Nations University’s Institute of Advanced Studies (UNU-IAS). He was also a
Fellow at the Earth Institute at Columbia University hosted by the Center for International
Earth Science Information Network (CIESIN). He is holding a D.Phil. in politics and in-
ternational relations from Oxford University. His research interests are disasters, climate
change impacts, migration, peace, and security studies.


