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Abstract

This thesis addresses problems relating to tracking control of nonlinear systems in
the presence of quantization and time delays. Motivated by the importance in areas
such as networked control systems (NCSs) and digital systems, where the use of a
communication network in NCS introduces several constraints to the control system,
such as the occurrence of quantization and time delays. Quantization and time delays
are of both practical and theoretical importance, and the study of systems where
these issues arises is thus of great importance. If the system also has parameters
that vary or are uncertain, this will make the control problem more complicated.
Adaptive control is one tool to handle such system uncertainty.

In this thesis, adaptive backstepping control schemes are proposed to handle
uncertainties in the system, and to reduce the effects of quantization. Different
control problems are considered where quantization is introduced in the control loop,
either at the input, the state or both the input and the state. The quantization
introduces difficulties in the controller design and stability analysis due to the limited
information and nonlinear characteristics, such as discontinuous phenomena. In the
thesis, it is analytically shown how the choice of quantization level affects the tracking
performance, and how the stability of the closed-loop system equilibrium can be
achieved by choosing proper design parameters. In addition, a predictor feedback
control scheme is proposed to compensate for a time delay in the system, where
the inputs are quantized at the same time. Experiments on a 2-degrees of freedom
(DOF) helicopter system demonstrate the different developed control schemes.







Sammendrag

Denne avhandlingen tar for seg problemer knyttet til regulering av ulineære systemer
utsatt for kvantisering og tidsforsinkelser. Arbeidet er motivert av områder som
nettverksbaserte systemer (NCS) og digitale systemer, der bruken av et kommunikas-
jonsnettverk i NCS introduserer flere begrensninger for kontrollsystemet, for eksempel
forekomsten av kvantisering og tidsforsinkelser. Kvantisering og tidsforsinkelser har
både praktisk og teoretisk betydning, og studiet av systemer hvor disse problemstillin-
gene oppstår er derfor av stor betydning. Dersom systemet i tillegg har parametere
som varierer eller er usikre, vil dette gjøre reguleringsproblemet vanskeligere. Adaptiv
regulering er ett verktøy for å håndtere slike usikkerheter i systemet.

I avhandlingen er adaptive backstepping reguleringer foreslått for å håndtere
usikkerhet i systemer, og for å redusere effektene av kvantisering. Ulike problemer
er vurdert, der kvantisering introduseres i reguleringssløyfen, enten ved inngan-
gen, systemtilstanden eller både ved inngangen og systemtilstanden. Kvantisering
introduserer vanskeligheter i design av regulator og stabilitetsanalysen på grunn
av begrenset informasjon og ulineære egenskaper, for eksempel diskontinuerlige
fenomener. I avhandlingen er det analytisk vist hvordan valg av kvantiseringsnivå
påvirker reguleringsytelsen, og hvordan stabiliteten til likevektspunktet i den lukk-
ede sløyfen kan oppnås ved å velge riktige designparametere. I tillegg foreslås en
prediktorregulering for å kompensere for en tidsforsinkelse i systemet, som samtidig
er utsatt for kvantisert. Eksperimenter på et helikoptersystem med to frihetsgrader
demonstrerer de forskjellige regulatorene som er utviklet.
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Chapter 1

Introduction

This chapter introduces the motivation behind the work presented in this thesis,
gives a short introduction into control of systems with quantization and time delays,
and also a description of the main contributions of the thesis. Lastly, an outline of
the thesis is provided.

1.1 Motivation

Control of systems with quantization and time delays has received a lot of attention
in recent years due to its importance in areas such as networked and digital systems.
A networked control system (NCS) is a control system where the information between
sensors, actuators and controllers is shared through a digital communication network,
e.g. the Internet, an Ethernet or a Fieldbus [8–10]. The use of a communication
network can provide communication between system components that are physically
separated, and where the signals sent between the components, such as control inputs
and feedback signals, are shared as information packages over the network. The use
of NCS has several benefits, where e.g. the complexity of wiring can be reduced
since some of the wiring in the installation may be avoided, there is a large flexibility
since it will be easy to add new components to the system, maintenance is easy, and
cost can be reduced. This makes control over networks attractive to many industrial
companies, for instance to apply remote control systems or for factory automation.
The range of applications is numerous, as this can be used both in the air, on the
ground and in the water.

However, the use of NCS also has some disadvantages. For conventional control
systems, the data exchange between the system components are lossless, while the
use of a network introduces communication constraints to the control system. For
instance are the data transmitted as digital signals rather than continuous signals,
and the signals need to be sampled and quantized before sent through the network.
The network also induces time delays, and some of the data packets might be missing
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Figure 1.1: Different issues induced by the network.

during transmission. As seen from a control perspective, the main difference between
conventional control theory and control over a network, is the occurrence of these
imperfections caused by the communication network. These issues can cause poor
performance or even destabilize the control system. Some main challenges caused by
including a communication network are highlighted in yellow in Figure 1.1 and may
include (but are not limited to):

• Network-induced delays. This can be computational delays in system
components because of limited processing speed or capacity of digital devices,
that are usually small and negligible, network access delays in networked
queues since data are sent through a network as packets with waiting time
before transmitted, or transmission delays in the communication network
[8]. Time delays are common in NCS, and there can be delays when signals
are sent from a sensor to a controller and from a controller to an actuator
through the network, and network characteristics as topology and routing
schemes will influence how large the delays are [11]. The delays may have
different characteristics such as random, constant or time-varying, depending
on application and communication network, and delays will usually degrade
performance of the system. For instance will a constant delay occur in NCSs
when the controller reads data periodically, and a time-varying delay will occur
if the controller and actuator are event-driven. When data loss occurs during
a transmission, the delay problem is even worse.

• Quantization. Since signals are coded via analog-to-digital converters before
sent through a communication network, a quantizer is introduced for the





 

Figure 1.2: The first remotely controlled robot in space, ROTEX. Reproduced with
courtesy to German Aerospace Center (DLR) 1.

discontinuous mapping from a continuous-time analog signal to a discrete-
time digital signal. This results in quantization errors that are nonlinear.
Quantization can also be useful since it can reduce loads on the network and
limit bandwidth requirements.

• Other issues such as sampling of signals, data packet dropouts, security and
limited bandwidth.

The use of computer networks for transmitting information is seen in for instance
telerobotics, where robots are remotely controlled and where there is a physical
separation between the human operator and the robot. The research in teleoperation
emerged with concern to safety and operations in challenging and hazardous envir-
onments. The use of a communication network allows remote control from anywhere.
On the local site, there is a human operator with connection to the system through
e.g. monitors, joysticks or keyboards. On the remote site there is the robot with
sensors, that can manipulate its environment [12]. The first remotely controlled
robot in space was the robot technology experiment (ROTEX), where the robot was
onboard a space shuttle and flew with the German Spacelab Mission D2 in 1993, see
Figure 1.2. It was demonstrated that the robot could be remotely controlled from
ground by local sensor feedback, where the human operator on ground received visual
feedback and sent feedforward control commands to the robot. For teleoperation
of a robot in space from ground, the main problem to handle is the time-delayed
transmission links that induce delays for the signal sent from ground to space and
vice versa. For the ROTEX, there was a round-trip delay of 5-7 sec.

Communication networks are also used in motor vehicles, where sensors and
actuators typically are locally distributed in the vehicle, and sensor data including
control signals are transmitted over the communication network [13].

The range of maritime activities are enormous, including different vehicles such
as autonomous underwater vehicles (AUVs), unmanned surface vehicles (USVs),

1https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3827/5969_read-8744/
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Figure 1.3: Communication and network for marine vessels [14].

manned vessels and so on, and infrastructure such as oil platforms, offshore wind
farms, and fish farms. In maritime scenarios, the use of satellite systems or other long-
range and low-bit rate communication systems is widespread. E.g., AUVs require
an underwater wireless communication system, for instance an acoustic modem for
communication. Figure 1.3 illustrates coordinated control and operation of networks
of underwater, aerial and surface vehicles. The use and complexity of such net-
works have been rapidly increasing over the last decade, where the use of unmanned
aerial vehicles (UAVs) and USVs also are used for extending communication links [14].

These are some examples related to control over networks, which motivate
research into problems where quantization and time delays are in the control loop.
Quantization and time delays are not only seen in NCSs. For instance is quantization
also used in signal processing, digital control and simulation, and time delays are
ubiquitous in practical systems. Some examples where delays are present are in traffic
flow, where there is a delay in the drivers reaction time in road traffic [15], in drilling
systems, where there is a delay in the flow-rate to manage bottom-hole pressure
[16], and in 3D-printing [17]. Both quantization and time delays are of practical
importance, since the appearance of these issues may result in poor performance
or even cause instabilities for the system. They are also of theoretical importance,
because both issues introduce several mathematical challenges, where quantization is
nonlinear and with a discontinuous characteristic that causes discrete phenomena to
appear, and time delays are infinite-dimensional. This makes analysis of systems with
quantization and delays of great importance. Many systems also have parameters
that vary or are uncertain, and this will make the control problem more complicated.
The appearance of uncertainties, quantized signals and time delays in systems is the





 

main motivation for the research carried out in this project.

1.2 Control of Systems with Quantization

Quantized control has gained increasing interest during the past decades due to the
use of information technology in the development of modern engineering applications,
such as digital control systems and NCSs. A quantizer maps a continuous signal
into a set of discrete values and introduces nonlinear errors that need to be handled.
Quantization is not only inevitable owing to the widespread use of digital processors,
but also useful due to the advantage of reducing occupation rate of transmission
bandwidth in the communication of signals, see e.g. [18].

The quantized feedback stabilization problem for linear systems where the dy-
namics are precisely known, has been considered in [18–22]. In [18], it was shown
that a logarithmic quantizer is the coarsest one to stabilize a single input linear
system, where the number of control values is finite. This work was extended in [20]
to consider stabilization of multiple input linear systems.

Stabilization of nonlinear systems in presence of quantization has been investigated
in [23–27]. The main result in [18] was further extended to single input nonlinear
systems in [23], and for nonlinear uncertain systems in [24–26], where two different
adaptive approaches were used in [24, 25], while a robust approach was considered
in [26]. If there are uncertainties to the system, the quantization problem becomes
more challenging. Since exact system parameters often are unknown for real systems,
adaptive control is a useful approach to deal with such uncertainties, where an online
estimation of the parameters can be provided. The work in [25], where a backstepping-
based adaptive control scheme was presented, was further developed in [27] for the
same stabilization problem to consider a hysteresis quantizer, that compared to a
logarithmic quantizer has additional quantization levels to avoid chattering. Tracking
control in the presence of input quantization has been considered in [28–31] for
uncertain nonlinear systems, in [32] for a group of UAVs with unknown parameters,
and in [33] for under-actuated AUVs. The developed methods in [23–33] all focused
on the input quantization problem, while the controllers were designed by continuous
measurements of the state feedback.

Control of uncertain systems with state or output quantization has been studied
in [34–36] using robust or adaptive approaches. In [34], an adaptive controller was
developed for uncertain linear systems with quantized outputs. In [35], a robust
controller for a linear multiple-input multiple-output (MIMO) uncertain system was
designed with quantized output measurements. In [36], the stabilization problem
for uncertain nonlinear systems with quantized states was investigated, where an
adaptive backstepping-based control algorithm was designed.





       

Although research on quantized control has received much attention in recent
years, most work focuses on either input or output quantization. In practice, the
control signals sent to the actuators and the signals sent from sensors to the control
module need to be quantized before transmitted due to the use of digital processors
and considering the accuracy of sensors. Also, for remotely controlled systems, the
control signals and sensor measurements are shared via a common digital network
where the bandwidth might be limited and it is natural to suppose that both input
and output signals are quantized. Some work that considered both input and state
quantization are [37–42]. In [37], the quantization effects on remotely controlled
single-input single-output (SISO) linear systems were studied, where the stabilization
problem was transformed into a robust control problem. Sliding mode controllers were
developed in [38, 39] for trajectory tracking in the presence of both input and state
quantization, of AUVs in [38], and of mechanical systems in [39]. Neural-network
based adaptive tracking controllers in presence of quantization were designed in [40]
for uncertain nonholonomic mobile robots, and in [41] for uncertain MIMO nonlinear
systems. An adaptive backstepping-based control scheme was developed for a class
of uncertain nonlinear systems in [42].

The above references do not address problems which takes input quantization
or/and state quantization into account for attitude tracking of rigid body systems
with uncertainty. In this thesis, we present solutions to these kind of problems,
where backstepping is a design tool. Input quantization is first introduced in the
control loop, where the main challenge is that only the quantized inputs can be
applied to the system. The quantization directly affects the tracking performance
and also introduces extra terms to be handled in the stability analysis. The effects of
state quantization are then studied, where the main challenge is that the controller
can only use the quantized states. This introduces some difficulties, first in the
design of a controller since the quantized states are non-differentiable, and also
to analyze the resulting closed-loop control system, since several residual terms
appear that need to be dominated. By continuous measurements of the states, the
derivative of a virtual controller is used in the design of the controller, however
when the states are quantized this is not possible since the virtual controller then
is discontinuous. Several problems are also studied where both the inputs and the
states are quantized. Challenges related to both input and state quantization are
then assessed simultaneously.

1.3 Control of Systems with Time Delays

Time delays are a common phenomenon in practical applications, that impact both
the stability and the performance of systems. Some examples where delays appear





 

are NCS, traffic flow, automotive engines and chemical processes. For instance, in
NCS there can be delays when signals are sent from sensor to controller and from
controller to actuator through the network, and network characteristics such as
topology and routing schemes will influence how large the delays are [11]. Data loss
may also occur during transmission, increasing the problem of delays. Nilsson gives a
nice overview of different delays in NCS and how to model these in his thesis related
to real-time control systems with delays [43]. For remote controlled system over a
network, the size of the time delay will depend on both distance and velocity of
signals [44], and delays are also the main problem in teleoperation control [45]. Not
only are delays of practical importance, but also theoretically, because of its nature
of being infinite-dimensional, and thus introducing several mathematical challenges.

When the delay is too large to be ignored in the control loop, a natural decision is
to try to compensate for the delay. One of the first tools for handling delays was the
Smith predictor, introduced in 1959 to compensate for constant input delays in control
systems for linear stable systems [46]. Since then, several modifications of the Smith
predictor have been proposed to compensate for input delays, removing limitations
of the original version. This was extended to e.g. linear unstable plants in [47–49].
The finite spectrum assignment (FSA) technique was introduced in 1979 by Manitius
and Olbrot [47], removing the limitation of open-loop stability. In 1982, Artstein
[49] introduced a similar approach under the name reduction method, where the
stabilization problem for linear systems with delays was reduced to the stabilization
problem of a delay-free (reduced) problem [17]. In [50], the two approaches (FSA
and model reduction) are presented, and several other modifications of the Smith
predictor are presented in [51]. These control design approaches go under the name
of predictor feedback.

Several predictor based approaches have been proposed to compensate for input
delays for linear systems in [16, 48, 49, 52–55]. Krstić introduced the first predictor
feedback design for nonlinear systems in [56], where several others have followed since
[17, 57–66]. An infinite-dimensional backstepping transformation was introduced in
the control design in [67], which makes it possible to show stability using a Lyapunov
functional for the entire closed-loop system consisting of the ODE plant and the
infinite-dimensional subsystem of the input delay. In [62], a predictor feedback
control design for multi-input nonlinear systems with distinct delays for the input
channels was developed.

Controllers belonging to the class of predictor techniques may suffer for being
sensitive to parameter uncertainty and to delay mismatch, and if there is an error
between model and plant, this can cause instabilities [68, 69]. For a real control
system, uncertainties are unavoidable. In [16, 53, 55, 61, 65, 66], adaptive control
strategies were developed for estimating an unknown delay, and for compensating





       

the delay by predictor feedback. In [16, 53, 55] they also considered uncertain plant
parameters.

In [70], the attitude stabilization of a quadrotor with a known input delay was
considered, where a predictor feedback controller was developed to compensate for the
delay. Compared to the stabilization problem, the problem of tracking a time-varying
reference signal with time is more challenging. Unless knowing the reference signal
in advance, and by sending the reference signal to the controller the delayed-time
units ahead, it is not possible to track the desired signal perfectly in presence of a
delay. In [53], a predictor feedback controller was developed for trajectory tracking
where both input delay and parameters were unknown. In [63, 64], a high-DOF robot
manipulator for tracking a desired trajectory in a pick-and-place task was studied
compensating input delays in the system, and [65, 66] studied the same problem but
where the delay was unknown. The tracking control problem of nonlinear networked
and quantized control systems with delays was studied in [71], with focus on sufficient
conditions to guarantee the tracking performance, where a trade-off between the
maximally allowable transmission interval and the maximally allowable delay was
derived.

Only [71] in the above literature considers the problem of simultaneous issues
caused by time delays and quantization. However, the derived controller is not
predictor-based, and does not aim to compensate for the delay effect. In this thesis,
we study the effect of the simultaneous issues caused by input quantization and delay
for an attitude control problem, where the delay is compensated for by predictor
feedback. This constitutes the main challenge.

1.4 Thesis Contributions

The main contributions of the thesis are summarized as follows:

1. Development of an adaptive controller for a helicopter system with input
quantization and uncertainties. Transient and tracking performance of the
adaptive system are analyzed and it is further investigated how the inclusion of
input quantization affects the system performance. It follows that the stability
properties of the equilibrium are directly related to the choice of quantization
parameters. The developed controller is tested on a 2-DOF helicopter system.

2. Development of an adaptive backstepping based control scheme for rigid body
systems with state quantization and unknown parameters. A new approach to
stability analysis is proposed, where the effects of the state quantization are
shown to provide practical stabililty. The stability of the closed-loop system





 

and the transient performance of the tracking error are achieved with given
conditions. The developed controller is experimentally tested on a real system.

3. Development of adaptive controllers for rigid body systems where both the
inputs and the states/outputs are quantized to reduce the communication
burden. All closed-loop signals are ensured uniformly bounded. It is shown
that the tracking errors converge to a compact set, and the relation between
tracking errors and quantization parameters is given. The developed controllers
are tested on a real system.

4. Development of a predictor feedback controller for attitude tracking control of
a nonlinear system with delay and quantization in the inputs simultaneously.
It is investigated how the inclusion of both input quantization and time delays
affects the control design and the stability analysis. The developed controller
is tested on a real system.

This thesis is based on the papers listed below.

Paper A – Adaptive Backstepping Control of a 2-DOF Helicopter System
with Uniform Quantized Inputs [1]
In this paper, an adaptive backstepping control scheme for a 2-DOF helicopter
system with input quantization is proposed. The control objective is to track
reference signals for pitch and yaw angles in the presence of both input quant-
ization and uncertain system parameters. Only the quantized inputs can be
applied to the helicopter system, and the quantization introduces nonlinear
characteristics to be handled in the stability analysis. Based on the analysis, it
is shown that the designer can tune the design parameters in an explicit way
to obtain the required closed-loop behavior, and that tracking is achieved. The
tracking error signals converge towards a compact set that is directly related
to the values of the quantization parameters.

Paper B – Adaptive Backstepping Attitude Control of a Rigid Body with
State Quantization [2]
The research is focused on adaptive backstepping control of rigid bodies for at-
titude tracking, where the attitude is represented by quaternions. Furthermore,
some of the system parameters are uncertain, and the states are quantized
by a uniform quantizer. The quantizer satisfies a bounded condition, and
so the quantization error is bounded. Based on the stability analysis, it is
shown that by choosing gains and quantization parameters to satisfy some
given condition, we can ensure the boundedness of all the closed-loop signals.
Also tracking is achieved, where the tracking error is directly related to the





       

chosen quantization values. The proposed control scheme is illustrated with
experiments on a helicopter system.

Paper C – Adaptive Attitude Control of a Rigid Body with Input and
Output Quantization [3]
In this paper, an adaptive backstepping control scheme is developed for atti-
tude tracking using quaternions, where both the outputs and the inputs are
quantized. Challenges related to both input and output quantization are incor-
porated into the analysis, where by choosing gains and quantization parameters
to satisfy some given condition, the boundedness of all the closed-loop signals
can be ensured. It is analytically shown how the choice of quantization levels
affects the tracking performance, where higher quantization levels increase the
tracking error. Experiments on a helicopter system illustrate the proposed
scheme. It is shown that it is possible to reduce the communication burden
over the network by including quantization, where a suitable quantization level
must be chosen, depending on the performance requirements for the application.

Paper D – Adaptive Backstepping Control of a 2-DOF Helicopter System
in the Presence of Quantization [4]
In this paper, the attitude tracking control problem is investigated for a
2-DOF helicopter system, where the system parameters are uncertain. In
addition, both the inputs and the states are quantized by a uniform quantizer.
An adaptive controller is developed using the backstepping technique, where
tracking of a given reference signal is achieved, with bounded tracking errors
that are directly related to the values of the quantization parameters. Ex-
periments on a 2-DOF helicopter system illustrate the proposed control scheme.

Paper E – Attitude Control of a 2-DOF Helicopter System with Input
Quantization and Delay [5]
This paper investigates the effect of two simultaneous network-induced con-
straints for attitude tracking of a helicopter system. A predictor feedback
controller is developed to compensate a known, constant time delay in the
communication, where the inputs are quantized before transmitted over the
network. The same time delay is assumed induced for all input channels. The
input delay is compensated for by the predictor feedback control law, and
the effect of quantization is analytically shown to be related to the tracking
error, where a higher quantization level increases the error. Simulations and
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Figure 1.4: System with input quantization.

experiments are carried out to illustrate the proposed control scheme.

Paper F – Adaptive Quantized Control of Uncertain Nonlinear Rigid
Body Systems [6]
This paper focuses on the attitude tracking control problem for uncertain
nonlinear rigid body systems, where both the inputs and the states are quantized.
A class of quantizers that satisfies a sector bounded property is considered,
where the quantization error increases as a function of the input to the quantizer,
and is not bounded directly. An adaptive controller is designed, and the effect of
quantization is analyzed for the closed-loop stability. Inclusion of quantization
introduces several terms that need to be dominated, which is shown in the
analysis. The tracking errors are shown to converge towards a compact set
containing the origin, and the choice of quantization parameters directly affects
the size of this set. The problem of unwinding is also addressed, and is avoided
by the designed controller. Experiments on a helicopter system illustrates the
proposed control scheme, where a logarithmic quantizer is considered.

Here is an overview of how the work in each paper is related. Paper A is an
extension of the previous work in [72] related to adaptive backstepping control of
a 2-DOF helicopter that was based on the Master thesis [73]. A control structure
as shown in Figure 1.4 was considered, where the main contribution was including
quantization for the inputs and see how that affected control design and stability
analysis. The main challenge is that only the quantized inputs can be applied to the
helicopter system, and the quantization introduces extra terms to be handled in the
stability analysis.

In Paper B, a control structure as shown in Figure 1.5 was considered. Compared
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to Paper A, a general rigid body system was now investigated, where the states
were quantized instead of the inputs. The main contribution is to include state
quantization, where the attitude and angular velocity are quantized and sent to the
controller, to see how this affects the control design and stability analysis. At the
same time some of the system parameters are uncertain. The main challenge is that
the controller can only use the quantized states, which introduces some difficulties for
analyzing the resulting closed-loop control system, since then several residual terms
appear that need to be handled and also the quantized states are non-differentiable.

Papers C, D and F all have a control structure as shown in Figure 1.6. Paper C
extends the results in Paper B by including both input and output quantization for a
rigid body system. Paper D extends the results from Paper A by also including state
quantization for the helicopter system, and Paper F extends the result in Paper C to
consider a more general quantizer, where the quantization error is not bounded by a
constant but depends on the input to the quantizer. The main contribution for these
papers are the inclusion of both input and state quantization, where challenges related
to both input and state quantization are incorporated into the analysis. Having a
sector bounded quantizer as in Paper F, the analysis becomes more challenging.

Lastly, a control structure as given in Figure 1.7 was considered in Paper E. The
main contribution of this paper is dealing with the simultaneous issues caused by
quantization and delay, where the main challenge is how to compensate for the input
delay in the presence of quantization.

1.5 Outline

The rest of this thesis is divided into four main chapters, followed by the appended
papers containing the research. Since the main focus in this thesis relates to control
of system with quantization, a brief description of the different quantizers that have
been considered in this work are presented in Chapter 2. Next, Chapter 3 describes
two different models for the dynamics of rigid body systems that have been used,
and Chapter 4 presents the control designs, where adaptive backstepping control
is considered for systems where there is uncertainty to the system parameters, and
predictor feedback control is considered where there is a delay in the control structure.
Lastly, Chapter 5 gives some concluding remarks.





       





Chapter 2

Quantizers

Quantization is the process of mapping a continuous signal into a set of discrete
signals by approximating the amplitude of the input signal to the nearest level of a
predefined set of discrete signals. It is a memoryless nonlinearity, where the output of
the quantization is determined by its input at that instance of time [74]. Quantization
is often used in practical applications due to the use of digital processors, but it has
also been shown effective in reducing occupation rate of transmission bandwidth in
the communication of signals [18].

A device or function that converts a sampled signal into a quantized signal is
called a quantizer, e.g. an analog-to-digital converter. There are several different
quantizers, such as uniform, logarithmic and hysteresis quantizers, that all have
in common that they are piecewise functions, but have different properties. The
difference between the input signal to the quantizer and the quantized signal is the
quantization error. For the class of quantizers satisfying a sector bounded property,
this error can be expressed as

|Q(y) − y| = |d| ≤ δ|y| + ymin, (2.1)

where y is a signal that is quantized by a quantizer Q(·), d is the quantization
error, and where 0 ≤ δ < 1 and ymin > 0 are quantization parameters. If δ = 0,
the quantization error will only depend on ymin, and so the quantization error is
bounded by a constant. When 0 < δ < 1, the quantization error also depends on the
input to the quantizer. Most practical quantizers satisfy the property in (2.1) and
belong to the class of sector bounded quantizers. Three different quantizers have
been considered in this thesis, and will be further described.
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Figure 2.1: Map of the uniform quantizer Qu(y) for y > 0.

2.1 Uniform Quantizer

A uniform quantizer can be described as [75]

Qu(y) =

 yi sgn(y), yi − l
2 < |y| ≤ yi + l

2

0, |y| ≤ y0
, (2.2)

where y0 > 0 determines the size of the dead-zone for Qu(y), and y1 = y0 + l
2 , yi =

yi−1 + l with i = 2, 3, . . . , l is the length of the quantization interval and sgn(·) is
the sign function. The uniform quantization Qu(y) is in the set U = {0, ±yi}, and a
map of the uniform quantizer (2.2) for y > 0 is shown in Fig. 2.1. The quantization
error of a uniform quantizer satisfies (2.1) with δ = 0 and ymin = max{y0, l/2}, and
so the quantization error is bounded by a positive constant.

The uniform quantizer has equal quantization levels and is optimal for uniformly
distributed signals, and is the most commonly used quantizer for digital signal
processing. Some applications where the use of uniform quantization can be found, is
in marine vehicles control [76], wheeled mobile robot control [77], and aircraft wing
system control [78].
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Figure 2.2: Map of the logarithmic quantizer Qlog(y) for y > 0.

2.2 Logarithmic Quantizer

A logarithmic quantizer can be expressed as [75]

Qlog(y) =

yi sgn(y), yi

1+δ
< |y| ≤ yi

1−δ

0, |y| ≤ ymin

, (2.3)

where ymin = y0
1+δ

determines the size of the dead-zone for Qlog(y), 0 < δ < 1, y0 > 0,
yi = ρ(1−i)y0, with i = 1, 2, . . . , and parameter ρ = 1−δ

1+δ
. The parameter ρ can be

regarded as a measure of the quantization density, where smaller values of ρ implies
that the quantizer is coarser. The quantized signal Qlog(y) is in the set U = {0, ±yi}
and satisfies the property in (2.1) with 0 < δ < 1. A map of the logarithmic quantizer
(2.3) for y > 0 is shown in Fig. 2.2.

The logarithmic quantizer has unequal quantization levels, and is useful where the
signals are more concentrated near the equilibrium or have higher resolution around
the equilibrium, e.g. for speech signal compression, image processing, etc. For this
kind of quantizer, the quantization error depends on the input to the quantizer, and
can not be ensured bounded automatically.
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Figure 2.3: Map of the logarithmic-uniform quantizer Qlu(y) for y > 0.

2.3 Logarithmic-Uniform Quantizer

A logarithmic-uniform quantizer combines a uniform quantizer and a logarithmic
quantizer and is defined as [28, 79]

Qlu(y) =

 Qu(y), |y| > yth

Qlog(y) |y| ≤ yth
, (2.4)

where yth is a positive constant specified by designer denoting the threshold to switch
between the logarithmic and the uniform quantizer. The uniform quantizer, Qu(·),
is defined in (2.2) and the logarithmic quantizer, Qlog(·), is defined in (2.3). The
quantizer Qlu(y) takes advantage of a logarithmic quantizer having high resolution
close to the origin, switching to a uniform quantizer for higher values. The length of
the quantization interval for the uniform quantizer is defined based on the quantized
value of the threshold value, given as l = 2δQlog(yth)

(
1

1−δ

)
. Then the quantization

error satisfies (2.1) with δ = 0 and ymin = l
2 for any value of y. A map of the

logarithmic-uniform quantizer (2.4) for y > 0 is shown in Figure 2.3, whereQlog(yth) =
yi.





Chapter 3

Modelling

The first step in control design is to have a mathematical model of the system, where
this model is an approximate representation of the real system. Various methods
exist for deriving the equations of motion for rigid body systems, and two commonly
used methods are by a Newton-Euler formulation that is based on Newton’s law
and Euler’s rotation dynamics, or by formulating the Lagrangian of the system,
and derive the Lagrange’s equation of the system. For mechanical systems, the two
methods are equivalent, although derived in different ways [80].

The minimum number of coordinates required to describe the motion of a system
having n degrees of freedom, is n. A rigid body with six degrees of freedom, would
need a minimum of six coordinates to describe the position (three coordinates)
and the orientation (three coordinates), with time derivative corresponding to the
translational and rotational motion. In this thesis, we are only concerned with the
orientation, also called the attitude, and the rotational motion of a rigid body. When
analyzing the motion of a rigid body, it is convenient to define two or more coordinate
frames, since the motion of the system is seen relative to another frame, often a
fixed/inertial frame. A rigid body system that has been considered throughout the
project is the 2-DOF helicopter system from Quanser, shown in Figure 3.1. This
is a two-rotor laboratory equipment for flight control-based experiments. With
a horizontally positioned main thruster and a vertically positioned tail thruster,
which resembles a helicopter with two propellers driven by two DC motors. The
helicopter is a MIMO system with 2-DOF, and can rotate around two axes. The
body-fixed reference frame b is shown in Figure 3.1a, and an inertial frame i is
considered to coincide with the body-fixed frame for the orientation shown in the
figure. Experiments have been conducted on the helicopter to demonstrate the
different control designs.

The following notations are used further in Chapter 3 and 4. Vectors are denoted
by small bold letters and matrices with capitalized bold letters. The symbol ωc

b,a

denotes angular velocity of frame a relative to frame b, expressed in frame c; Rb
a is
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(a) Body fixed coordinate frame.
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(b) Generalized coordinates, where q1 is equal the pitch angle and
q2 is equal the yaw angle.

Figure 3.1: Quanser Aero helicopter system.





 

the rotation matrix from frame a to frame b; the cross product operator × between
two vectors a and b is written as S(a)b where S is skew-symmetric; λmax(·) and
λmin(·) denotes the maximum and minimum eigenvalue of the matrix (·); the partial
derivative ∂

∂a
u(a, b) is expressed as ua(a, b).

3.1 Equations of Motion based on Newton-Euler
Formulation

The attitude of a rigid body can be represented by e.g. Euler angles in [1, 38],
(modified) Rodrigues parameters, rotation matrices in [81, 82] or quaternions in
[83–85], where each representation has different properties. Any three-parameter
representations have some kind of singularity, where e.g. Euler angles (roll-pitch-yaw)
have kinematic singularities since it is not possible to describe the angular velocity for
all angles, and with the potential problem of gimbal lock. Practical applications are
often represented by unit quaternions, since this is a nonsingular parameterization.

The orientation of a rigid body in frame b, relative to an inertial frame i, is
here described by a unit quaternion, q = [η, ε1, ε2, ε3]⊤ = [η, ε⊤]⊤ ∈ S3 = {x ∈ R4 :
x⊤x = 1}, that is a complex number, where η = cos(υ/2) ∈ R is the real part and
ε = k sin(υ/2) ∈ R3 is the imaginary part, where υ is the Euler angle and k is the
Euler axis, and S3 is the non-Euclidean three-sphere. Considering a fully actuated
rigid body, the equations of motion for the attitude dynamics are defined as

q̇ = T (q)ω, (3.1)

Jω̇ = −S(ω)(Jω) + τd + Bu, (3.2)

where the angular velocity ωb
i,b = ω ∈ R3, the inertia matrix J ∈ R3×3 is positive

definite and invertible, the vector τd ∈ R3 is the total disturbance torque, the control
allocation matrix B ∈ R3×3, the control input u ∈ R3, and where

T (q) = 1
2

 −ε⊤

ηI + S(ε)

 ∈ R4×3, (3.3)

and the matrix S(·) is the skew-symmetric matrix given by

S(ε) =


0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

 . (3.4)





       

The orientation between two frames can be described by a rotation matrix given as

R(q) = I + 2ηS(ε) + 2S2(ε), (3.5)

and the rotation matrix R ∈ SO(3) that is a special orthogonal group of order 3,
and has the property

SO(3) = {R ∈ R3×3 : R⊤R = I, det(R) = 1}. (3.6)

The time derivative of a rotation matrix can be expressed as [80]

Ṙa
b = Ra

b S(ωb
a,b) = S(ωa

a,b)Ra
b . (3.7)

In Papers B, C and F, the equations of motion are derived by this method.

3.2 Equations of Motion based on the Lagrangian
Approach

Another method for deriving the equations of motion is by following the Lagrangian
approach [12, 86], where the Lagrangian L for a rigid body system is given by

L = T − V, (3.8)

where T is the total kinetic energy of the system and V is the total potential energy
of the system, and thus the Lagrangian mechanics describe the system dynamics in
terms of energy. Then the Lagrange equations for an n-DOF system can be stated as

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj

= Qj, j = 1, . . . , n, (3.9)

for each generalized coordinate qj , and where Qj is the generalized force corresponding
to the generalized coordinate qj . This formula is valid in any reference frame (inertial
or body frame) as long as generalized coordinates are used [87].

For the 2-DOF helicopter system, the generalized coordinates in the inertial frame
are q1, that is equal to the pitch angle θ, and q2, that is equal to the yaw angle
ψ, and where Qj represent the external forces and damping corresponding to these
angles. The generalized coordinates are shown in Figure 3.1b. The total kinetic and
potential energy is

T = 1
2Ipq̇1

2 + 1
2Iy q̇2

2 + 1
2mr

2(sin2 q1q̇2
2 + q̇1

2), (3.10)





 

V = mgr(1 − cos q1), (3.11)

where the potential energy is the energy due to gravity, and where Ip and Iy are the
moments of inertia of q1 and q2 respectively, m is the mass of the helicopter, r is the
distance between the center of mass and the origin of the body-fixed frame, and g is
the gravitational acceleration. The generalized forces are

Q1 = KppVp +KpyVy −DV pq̇1, (3.12)

Q2 = KyyVy +KypVp −DV y q̇2, (3.13)

where Vp and Vy are the voltages applied to the main and tail motors, the constants
Kpp and Kyy are the torque thrust gains from the main and the tail motors, Kpy is the
cross-torque thrust gain acting on pitch from the tail motor, Kyp is the cross-torque
thrust gain acting on yaw from the main motor, and DV p and DV y are damping
constants.

Then the equations of motion can be derived by taking the partial derivative of
(3.10) and (3.11) as described in (3.9), expressed in matrix form as

M (q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) = τ , (3.14)

where

M(q) =
Ip +mr2 0

0 Iy +mr2 sin2 q1

 , (3.15)

C(q, q̇) =
 0 −mr2 sin q1 cos q1q̇2

mr2 sin q1 cos q1q̇2 mr2 sin q1 cos q1q̇1

 , (3.16)

g(q) =
[
mgr sin q1 0

]⊤
, q =

[
q1 q2

]⊤
, (3.17)

D =
DV p 0

0 DV y

 , (3.18)

where q ∈ R2 are the generalized coordinates, M (q) ∈ R2×2 is a symmetric positive
definite inertia matrix, C(q, q̇) ∈ R2×2 is a matrix of Coriolis and centrifugal terms,
D ∈ R2×2 is a positive definite matrix of damping terms, g(q) ∈ R2 is a vector of
gravitational loading, and τ ∈ R2 are the generalized external forces associated with
q, that is

τ =
Kpp Kpy

Kyp Kyy

Vp

Vy

 . (3.19)

Defining x = [q⊤, q̇⊤]⊤ = [x⊤
1 ,x

⊤
2 ]⊤ ∈ R4, the system can be written in state





       

space form as

ẋ = f(x, τ ), (3.20)

where

ẋ1 =x2, (3.21)

ẋ2 =M (x1)−1 (τ − C(x)x2 − Dx2 − g(x1)) . (3.22)

The dynamics of mechanical systems such as rigid robot manipulators [66, 88],
cranes [89], marine vessels [87] and aerial vehicles [4, 90] are often derived based on
the Euler-Lagrange equations, and in Papers A, D and E, the model is derived by
this method.





Chapter 4

Control Design

The main requirement for all control systems is stability. One of the concepts used in
control theory is Lyapunov stability, where stability of equilibrium points is studied.
To determine stability of equilibrium points, a Lyapunov function is used, that often
is taken as the total energy of the system. By examining the derivative of this
function along the trajectories of the system, one can determine the stability of the
equilibrium point. This is thoroughly described in the book Nonlinear Systems by
Khalil [74].

A dynamic system to be controlled often has some form of uncertainty to it, and
adaptive control has proven to be a well suited tool to control uncertain systems.
Adaptive control has been the subject of research since the 1950’s, with several
related books and papers, so it has a long and rich history. This is a control design
method where the controller is continuously changing to maintain the performance
of the dynamic system when the system has parameters that vary (for instance mass
of an aircraft, that is changing during flight because of fuel consumption) or has
parameters that are uncertain. Some of the adaptive control methods proposed are
model reference adaptive control (MRAC), adaptive pole placement control, and
adaptive backstepping, see e.g. [91, 92]. The main controller design procedure used
in this thesis for systems with uncertainties is based on adaptive backstepping, that
is a recursive Lyapunov-based design method.

Backstepping is a nonlinear control design method developed in the 1990’s, that
has become an effective control design tool for control problems related to nonlinear
systems. For the class of strict feedback systems, this is a recursive design, stepping
back towards the control input. By viewing the nonlinear system as a cascade of
subsystems, where the input to the first subsystem comes from the output of the
second subsystem and so on, the idea is to use the output of a subsystem as a
control variable for the previous subsystem. Then an ideal input for a subsystem
can be designed as virtual control laws for the intermediate control. At each step, a
control Lyapunov function is chosen, and an intermediate control is designed. This





       

procedure continuous until the actual control input appears and is designed. For a
known nonlinear system (assuming there are no uncertainties), backstepping can
transform the system into a linear system in a set of new coordinates, just as feedback
linearization. However, one of the advantage of backstepping, is that it can avoid
cancellation of nonlinearities that can be useful in the closed loop [92].

An adaptive backstepping controller is designed with a combination of a control
law together with an estimate of the unknown parameters that is adjusted when
the system is operating, and with the design of virtual control for the intermediate
control based on backstepping. The control law is continuously adapted to the new
parameter estimated, hence it is an adaptive control law. The uncertainties are
considered as unknown constants. The concept of adaptive backstepping control is
introduced in Section 4.1 for an uncertain mechanical system.

When there are input delays in a system, the development of predictor-based
control laws are often considered, where the delay is compensated, and the system
behaves as if there is no delay after a finite time. Predictor feedback design is
introduced in Section 4.2 for both linear and nonlinear systems.

4.1 Adaptive Backstepping Control

To introduce the adaptive backstepping control design procedure, lets consider a
second order mechanical system

ẋ1 = x2, (4.1)

ẋ2 = u + Φ(x1,x2)⊤θ, (4.2)

where x1 ∈ Rn,x2 ∈ Rn are the system states, u ∈ Rn is the control input vector,
Φ ∈ Rm×n are known smooth nonlinear functions of the system states and θ ∈ Rm

is a vector of unknown constants. The control objective is to design a control law for
u to force x1 to track a reference signal xr(t), by combining an estimator for the
uncertain parameters that are adjusted during operation. The reference signal and
the first and second order derivatives are assumed to be piecewise continuous and
bounded. By the backstepping procedure [92], a controller is designed recursively
by considering some of the system states as virtual controls, for the intermediate
control.

Step 1. First, an error variable is introduced as

z1 = x1 − xr. (4.3)





  

This is the tracking error that we want to drive towards zero. The derivative of (4.3)
is

ż1 = x2 − ẋr, (4.4)

and in the first step, a virtual controller α is to be determined. Viewing (x2 − ẋr)
as a control variable, we introduce the change of coordinates

z2 = x2 − ẋr − α, (4.5)

as the difference between the virtual controller and the control variable, and so Eq.
(4.4) can be described by

ż1 = z2 + α, (4.6)

in terms of the new variable. Consider a control Lyapunov function

V1 = 1
2z⊤

1 z1, (4.7)

where the derivative of V1 along the solutions of the error system is

V̇1 = z⊤
1 (z2 + α). (4.8)

The virtual controller is then designed as a stabilizing function for the system, e.g. by
choosing α = −c1z1, where c1 is a positive constant. If z2 = 0, then V̇1 = −c1z

⊤
1 z1

and z1 will converge towards zero asymptotically.

Step 2. Taking the derivative of z2 in (4.5) yields

ż2 = u + Φ⊤θ − ẍr − α̇

= u + Φ⊤θ − ẍr − ∂α

∂x1
x2 − ∂α

∂xr

ẋr. (4.9)

In this step, the control input appears, that we want to design such that the error
system z = [z⊤

1 , z
⊤
2 ]⊤ converges towards zero. Since θ is unknown, a certainty

equivalence principle will be used when designing the control input, in which θ is
replaced by an estimate θ̂. A control Lyapunov function is chosen for the system
including the parameter estimation error as

V2 = V1 + 1
2z⊤

2 z2 + 1
2 θ̃⊤Γ−1θ̃, (4.10)

where θ̃ = θ − θ̂ is the estimation error, and Γ ∈ Rm×m is a positive definite matrix.





       

The derivative of (4.10) along the solution of the error system gives

V̇2 = −c1z
⊤
1 z1 + z⊤

2

(
z1 + u + Φ⊤θ − ẍr − ∂α

∂x1
x2 − ∂α

∂xr

ẋr

)
− θ̃⊤Γ−1 ˙̂

θ. (4.11)

We want to design u and a parameter update law for the estimate to guarantee that
the derivative of V2 is nonpositive. Choosing

u = −z1 − c2z2 − Φ⊤θ̂ + ẍr + ∂α

∂x1
x2 + ∂α

∂xr

ẋr, (4.12)

where c2 is a positive constant, and by including (4.12) in (4.11) we get

V̇2 = −c1z
⊤
1 z1 − c2z

⊤
2 z2 − θ̃⊤Γ−1( ˙̂

θ − ΓΦz2). (4.13)

We then choose the update law

˙̂
θ = ΓΦz2, (4.14)

resulting in

V̇2 = −c1z
⊤
1 z1 − c2z

⊤
2 z2 ≤ 0. (4.15)

Then, by (4.10) and (4.15), we conclude that V2, z and θ̃ are bounded. Since
the reference signal (and first and second order derivative) is bounded, it follows
that all signals in the closed-loop system are bounded. Then, an argument using
LaSalle-Yoshizawa theorem [92, Theorem 2.1] proves that z → 0 as t → ∞, and
tracking is achieved.

Adaptive backstepping achieves the goal of tracking (and stabilization), and this
is a direct consequence of the recursive design procedure where a Lyapunov function
is constructed for the entire system including the estimated parameters.

If the inputs are quantized before applied to the uncertain mechanical system,
we have

ẋ1 = x2, (4.16)

ẋ2 = Q(u) + Φ(x1,x2)⊤θ, (4.17)

where Q(·) is a quantizer, e.g. one of the quantizers introduced in Chapter 2. The
change of coordinates (4.3) and (4.5) and Step 1 will be the same as when the inputs
are continuous, but in Step 2, the quantized inputs appear. If the control input u

and the update law for the estimate θ̂ are designed as without quantization, we can





  

analyze how quantization affects the stability. This will depend on what kind of
quantizer is considered. This problem is addressed in Paper A, where a uniform
quantizer is considered for the inputs.

If the states are quantized before sent to the controller, the states x1,x2 are no
longer available for the control design. The mechanical system is still represented by
(4.1)–(4.2). We then need to redefine the error variables z1, z2, the virtual controller
α, and the nonlinear functions Φ, such that the control law u and parameter update
law ˙̂

θ are designed by using only the quantized values of the states, since these are
available, i.e. u = f(Q(x1), Q(x2)) and ˙̂

θ = g(Q(x1), Q(x2)). Since the quantized
states then are used in the design of the virtual controller α, the derivative of the
virtual controller is discontinuous and can not be used in the design of the controller,
contrary to when the states are not quantized in (4.12). This problem is addressed
in Paper B, where the effects of state quantization are analyzed by considering a
uniform quantizer for the states.

When both the inputs and the states are quantized, the controller and the up-
date law are designed by the quantized states, i.e u = f(Q(x1), Q(x2)) and
˙̂
θ = g(Q(x1), Q(x2)), before the input is quantized so that the system receives
Q(u) and is described by (4.16)–(4.17). The analysis becomes more involved, since
both the effects of input and state quantization need to be considered. This problem
is addressed in Papers C and D for uniform quantizers, while a more general quantizer
is considered in Paper F, making the analysis more difficult.

4.2 Predictor Feedback Design

If a delay in the control loop affects the performance because of its size, a natural
decision is to try to compensate the delay. By making a prediction of the future
state, the same performance as a delay free system can ideally be achieved after a
finite time. For remote controlled mechanical systems, a long, slowly time-varying
communication delay, that is often considered constant, is likely to appear [66].

4.2.1 Predictor Feedback Design for Linear Systems with
Input Delay

We will here introduce the basic idea of predictor feedback design, starting by
considering a linear system with long input delay given as [17, 50, 57]

ẋ(t) = Ax(t) + Bu(t−D), (4.18)





       

where x ∈ Rn, (A,B) is a controllable pair, t ≥ 0, D > 0 is the constant delay that
is arbitrarily long, and u(t−D) ∈ R is the delayed input signal. For the delay-free
system, i.e. when D = 0, a stabilizing control law for (4.18) is given by

u(t) = Kx(t), (4.19)

where K is chosen such that the matrix (A+BK) is Hurwitz. For the system (4.18)
with delay, we then have a desire to have the control input such that u(t−D) = Kx(t),
which alternatively is written as u(t) = Kx(t+D). The main idea behind predictor
feedback is to make a prediction of the future value of the state

p(t) = x(t+D), (4.20)

and then replace x(t) in the nominal design (4.19), by the predicted value p(t), such
that the delayed input u(t − D) = Kx(t), as wanted. By performing a change of
variables t = θ +D in (4.18), we have

dx(θ +D)
dθ

= Ax(θ +D) + Bu(θ), ∀t−D ≤ θ ≤ t, (4.21)

and by defining the signal

p(θ) = x(θ +D), ∀t−D ≤ θ ≤ t, (4.22)

and then solving the ODE for p(θ) with respect to θ, with the initial condition
p(t−D) = x(t), i.e the initial condition is given as the current state, we get

p(θ) = eA(θ−t+D)x(t) +
∫ θ

t−D
eA(θ−σ)Bu(σ)dσ, ∀t−D ≤ θ ≤ t, (4.23)

and so the predictor signal is defined as

p(t) = x(t+D) = eADx(t) +
∫ t

t−D
eA(t−θ)Bu(θ)dθ, ∀t ≥ 0, (4.24)

which is implementable, involving the history of u(θ) for all t − D ≤ θ ≤ t. Then
the feedback law is

u(t) = Kp(t) = K
(
eADx(t) +

∫ t

t−D
eA(t−θ)Bu(θ)dθ

)
, ∀t ≥ 0, (4.25)

which is infinite-dimensional, since it contains the distributed delay term involving
past controls, i.e. the integral term

∫ t
t−D e

A(t−θ)Bu(θ)dθ. This results in a delay-





  

compensated closed-loop system

ẋ(t) = (A + BK) x(t), ∀t ≥ D, (4.26)

after the control reaches the system at t = D. For t ∈ [0, D], the system state is
given as

x(t) = eAtx(0) +
∫ t

0
eA(t−θ)Bu(θ −D)dθ, ∀t ∈ [0, D]. (4.27)

The controller (4.25) is the same as was derived by Artstein [49] under the reduction
method. By taking the derivative of the predictor state p(t) in (4.24), we get

ṗ(t) = Ap(t) + Bu(t), ∀t ≥ 0, (4.28)

which reduces into a delay-free system, with the resulting feedback law as given in
(4.25).

To analyze the stability of the closed-loop system consisting of the plant (4.18)
and the control law (4.25), an infinite-dimensional backstepping transformation is
introduced for the actuator state. The reason for including this transformation, is to
be able to construct a Lyapunov functional for the entire system in new coordinates,
which is less complicated than in the original coordinates. The transformation can
be described with a PDE notation, or represented in standard delay notation [17].
We describe the transformation with a standard delay notation for the linear system.

The transformation for the actuator state is given as

w(θ) = u(θ) − Kp(θ), ∀t−D ≤ θ ≤ t, (4.29)

and maps the closed-loop system consisting of the plant (4.18) and the control law
(4.25) into the target system

ẋ(t) = (A + BK)x(t) + Bw(t−D), (4.30)

w(t) = 0, ∀t ≥ 0. (4.31)

This can be shown from the fact that u(t) = Kp(t) and p(t−D) = x(t). For this
choice of target system, w(t−D) becomes zero in finite time, and then the system
behaves as if there was no delay in the system.

Then a Lyapunov functional for the target system can be chosen as

V (t) = x(t)⊤F x(t) + b
∫ t

t−D
eθ+D−tw(θ)2dθ, (4.32)





       

where the matrix F = F ⊤ > 0, and has the property

(A + BK)⊤F + F (A + BK) = −Q, (4.33)

where the matrix Q = Q⊤ > 0. Taking the time derivative of (4.32) along solutions
of the target system (4.30)–(4.31) we get

V̇ (t) = −x(t)⊤Qx(t) + 2x(t)⊤F Bw(t−D) − bw(t−D)2 − b
∫ t

t−D
eθ+D−tw(θ)2dθ

≤ −1
2λmin(Q)∥x(t)∥2 +

(
2∥F B∥2

λmin(Q) − b

)
w(t−D)2 − b

∫ t

t−D
eθ+D−tw(θ)2dθ

≤ −1
2λmin(Q)∥x(t)∥2 − b

∫ t

t−D
eθ+D−tw(θ)2dθ

≤ − min
{
λmin(Q)

2λmax(F ) , 1
}
V (t) (4.34)

where Young’s inequality is used, and by choosing b ≥ 2∥F B∥2

λmin(Q) . From (4.32) and
(4.34) stability in the (x, w) variables can be established, where the origin of the
target system (4.30)–(4.31) is exponentially stable. To ensure the stability of the
closed-loop system (4.18), (4.25), we need to show that the transformation (4.29) is
invertible. The inverse backstepping transformation is given as

u(θ) = w(θ) + Kπ(θ), ∀t−D ≤ θ ≤ t, (4.35)

where

π(θ) = e(A+BK)(θ−t+D)x(t) +
∫ θ

t−D
e(A+BK)(θ−s)Bw(s)ds, ∀t−D ≤ θ ≤ t. (4.36)

Then stability of the target systems equilibrium point implies stability of the equilib-
rium point for the closed-loop system (4.18), (4.25).

4.2.2 Predictor Feedback Design for Nonlinear Systems with
Input Delay

We here present a nonlinear version of the predictor feedback design. For nonlinear
systems, the problem of a finite escape phenomenon must also be considered. If the
input delay is large, the control signal may not reach the system before its states
escape to infinity. The class of forward complete systems do not exhibit finite escape,
where for every initial condition and every bounded input signal the corresponding
solution is defined for all times. Most mechanical and electromechanical systems
satisfy the property of forward completeness [58], and this property is assumed
ensured in the following example. The design of the predictor feedback follows the





  

procedure in [17].

Considering a nonlinear system with constant long input delay,

ż = h (z(t), τ(t−D)) , (4.37)

where z ∈ Rn is the state, t ≥ t0 ≥ 0, τ ∈ R is the input to the system, and D > 0.
The design is based on a nominal control law for the delay free system, i.e. when
D = 0, and so we assume there exists a function κ for the delay-free system

τ(t) = κ(t, z(t)), (4.38)

that ensures stability of the system in closed-loop. Then a control law for the system
(4.37) is

τ(t) = κ(t+D,p(t)), (4.39)

where

p(t) = z(t) +
∫ t+D

t
h (z(s), τ(s−D)) ds, (4.40)

that is a prediction of the future state p(t) = z(t+D), where by a change of time
we have

p(t) = z(t) +
∫ t

t−D
h (z(a+D), τ(a)) da

= z(t) +
∫ t

t−D
h (p(a), τ(a)) da, (4.41)

that is implementable by current values of the state z(t) and past values of the
input τ(a) and predicted values p(a) for all t−D ≤ a ≤ t, and is given implicitly.
Then, the control law (4.39) will compensate the delay, where the delayed input is
τ(t−D) = κ(t,p(t−D)) = κ(t, z(t)). Initial condition for the predictor is given as

p(θ) = z(t0) +
∫ θ

t0−D
h(p(s), τ(s))ds, ∀θ ∈ [t0 −D, t0], (4.42)

where t0 is the initial time.

The system (4.37) can equivalently be modeled by a cascade of ODE-PDE [62]

ż(t) = h(z(t), u(0, t)), (4.43)

ut(x, t) = ux(x, t), ∀x ∈ [0, D], (4.44)

u(D, t) = τ(t), (4.45)
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Figure 4.1: Illustration of the transport PDE.

where the actuator state is modeled by a transport PDE and where the solution
to (4.44)–(4.45) is given by u(x, t) = τ(t + x − D) for all x ∈ [0, D]. This can be
considered as a boundary control problem, since the PDE is driven by the input τ(t)
at its boundary. An illustration of this is shown in Figure 4.1 for a delay D = 0.3,
where the red line shows the input τ(t = 0), that reached the system after D-time
units, and with initial values for the input u(x, t0) = 0 for all x ∈ [0, D].

To analyze the stability of the closed-loop system consisting of the plant (4.37)
and the control law (4.39), an infinite-dimensional backstepping transformation is
introduced for the actuator state. We describe the transformation with a PDE
notation this time.

The transformation for the actuator state is given as

w(x, t) = u(x, t) − κ(t+ x,p1(x, t)), (4.46)

where the predictor state in (4.42) equivalently can be represented with a PDE
notation given as

p1(x, t) = z(t) +
∫ x

0
h (p1(y, t), u(y, t)) dy, ∀x ∈ [0, D], (4.47)

and where p1(D, t) = p(t). The control law (4.39) is given as

τ(t) = κ(t+D,p1(D, t)), (4.48)





  

and together with the transformation (4.46), this transforms the system (4.43)–(4.45)
into the target system

ż(t) = h(z(t), κ(t, z(t)) + w(0, t)), (4.49)

wt(x, t) = wx(x, t), ∀x ∈ [0, D], (4.50)

w(D, t) = 0. (4.51)

For this choice of target system, w(x, t) becomes zero in finite time (after D time
units), and the system behaves as if there was no delay in the system. Then, a
Lyapunov functional for the target system can e.g. be selected as

V (t) = 1
2z(t)⊤z(t) + k

2

∫ D

0
exw(x, t)2dx, (4.52)

where k is a positive constant. Taking a time derivative of (4.52) along solutions of
the target system (4.49)–(4.51) we have

V̇ (t) = z(t)⊤h(z(t), κ(t, z(t)) + z(t)⊤w(0, t) + k
∫ D

0
exw(x, t)wt(x, t)dx. (4.53)

We here assume exponential stability of the origin for the delay-free system such
that the term z(t)⊤h(z(t), κ(t, z(t)) ≤ −az(t)⊤z(t), for some a > 0, by the choice
of control law for the delay-free system. Then by using Young’s inequality and
integration by parts, one obtains

V̇ (t) ≤ −az(t)⊤z(t) + z(t)⊤w(0, t) + k
∫ D

0
exw(x, t)wx(x, t)dx

≤ −a

2z(t)⊤z(t) + 1
2aw(0, t)2 − k

2w(0, t)2 − k

2

∫ D

0
exw(x, t)2dx

≤ −a

2z(t)⊤z(t) +
(

1
2a − k

2

)
w(0, t)2 − k

2

∫ D

0
exw(x, t)2dx

≤ − min {a, 1}V (t), (4.54)

by choosing k ≥ 1
a
. This shows the stability of the target system equilibrium point.

To ensure the stability of the closed-loop system (4.37), (4.39), we need to show that
the transformation (4.46) is invertible. The inverse backstepping transformation is
given as

u(x, t) = w(x, t) + κ(t+ x,π1(x, t)), (4.55)

where

π1(x, t) = z(t) +
∫ x

0
h (π1(y, t), κ(t+ y,π1(y, t)) + w(y, t)) dy, ∀x ∈ [0, D]. (4.56)





       

A nonlinear system in presence of both input delay and quantization can be described
as

ż = h (z(t), Q(τ(t−D))) , (4.57)

or equivalently by a cascade of ODE-PDE

ż(t) = h(z(t), u(0, t)), (4.58)

ut(x, t) = ux(x, t), ∀x ∈ [0, D] (4.59)

u(D, t) = Q(τ(t)), (4.60)

where Q(·) is a quantizer. If the control input τ(t) is designed as without quantization
given in (4.39) and (4.41), we can analyze how quantization affects the stability. This
problem is addressed in Paper E for a nonlinear MIMO system, where the inputs are
quantized by a uniform quantizer.





Chapter 5

Conclusions and Future Work

5.1 Conclusions

The work presented in this thesis focuses on the attitude tracking control problem
for rigid body systems, where quantization, uncertainty and delay are present in
the control loop. The work is motivated by the increased interest for wireless
communication, remote controlled systems and other NCS, where the control loops
are closed through a communication network. Since signals are required to be
quantized before transmitted over the network, the network induces delays, and the
network bandwidth might be limited, we need to consider these imperfections in the
control loop. Furthermore, uncertainties often appear in systems. For instance, the
delays might be uncertain, or system parameters are unknown, and so we also need
to develop control schemes that can handle such uncertainties that are present.

We have considered both a helicopter system with 2-DOF, and a more general
rigid body system where the attitude is represented by quaternions. Adaptive
control schemes have been developed by using the backstepping technique, to handle
uncertainties in the system. Quantization has been introduced in the control loop,
either at the input (Paper A), the state (Paper B) or both input and state (Papers C,
D and F). Compared to the tracking control problem of an uncertain nonlinear system,
the introduction of quantization in the control loop changes the stability condition
of the equilibria, since we can not guarantee asymptotic stability anymore. Instead,
the error state is ensured ultimately bounded by a positive constant, that depends
on the quantization parameters and controller gains. Also tracking is achieved, with
a bounded error that is directly related to the quantization parameters. For the
general rigid body system with state or both input and state quantization (Papers
B, C and F), the controller gains and quantization parameters must be chosen to
satisfy some given conditions to ensure the stability property of the equilibrium.

We have also focused our attention to a class of sector bounded quantizers,





       

which introduces quantization errors that are linearly dependent on the inputs to
the quantizers. This problem was addressed in Paper F. Compared to Paper C
where a bounded type of quantizer was considered, the controller is first designed to
take advantage of a skew-symmetric property to guarantee the stability. Then, the
relations between the quantized signals and the continuous signals are established
as functions of the error states, and based on this the stability of the closed-loop
equilibrium can be achieved by proper choices of design parameters.

In the last part of the project, the attention has been paid to time delays. A
predictor feedback controller was developed to handle arbitrarily large input delays
for a nonlinear system, where the inputs also were quantized before transmitted
to the helicopter system (Paper E). The delay was then compensated for by the
predictor feedback, and tracking achieved with a bounded error proportional to the
choice of quantization parameters.

By including quantization in the control loop, the communication burden over
a network can be reduced, with the expense of reducing the tracking performance.
Then some suitable quantization parameters should be chosen to guarantee the
performance requirement for the application. The relationship between quantization
level and performance is analytically derived in Papers A–F.

5.2 Future Work

All papers except Paper E include uncertainties to the system, and adaptive controllers
were developed for this reason. The problem of compensating delays for nonlinear
systems with uncertainties are nontrivial, and is an interesting problem to investigate
further. Some attention has been paid to this problem, however without any results
yet, and has thus not been presented in this thesis. When the predictor feedback
controller was tested on the real helicopter system, it was noted that by increasing
the delay, the tracking errors increased. One of the reasons for this increase is
probably because the model is not perfect. The error might be reduced if one can
take uncertainty in the model into account. This is considered as a possible future
direction.

Most of the work that considers some of the network-induced imperfections
only considers one at the time. The problem of addressing more than one of the
imperfections in the control loop is also a future path for research. For instance
the problem of having an uncertain delay while at the same time the signals are
quantized.
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Abstract

This paper proposes a new adaptive controller for a 2-Degree of Freedom (DOF)
helicopter system in the presence of input quantization. The inputs are quantized
by uniform quantizers. A nonlinear mathematical model is derived for the 2-DOF
helicopter system based on Euler-Lagrange equations, where the system parameters
and the control coefficients are uncertain. A new adaptive control algorithm is
developed by using backstepping technique to track the pitch and yaw position
references independently. Only quantized input signals are used in the system
which reduces communication rate and cost. It is shown that not only the ultimate
stability is guaranteed by the proposed controller, but also the designers can tune
the design parameters in an explicit way to obtain the required closed loop behavior.
Experiments are carried out on the Quanser helicopter system to validate the
effectiveness, robustness and control capability of the proposed scheme.

A.1 Introduction

The development and interest of distributed and networked control systems (NCSs)
have increased recent years, where a control system involves a communication net-
work [1–3]. There are several advantages of networked systems such as reduced
wiring and easier maintenance, and with numerous applications e.g. as smart grids
and unmanned aerial vehicles. Communication networks also give rise to some
disadvantages such as networked-induced delays, packet dropouts and quantization.
In a communication network the channel capacity may be limited, restricting number
of bits that can be transmitted over the network, and digital rather than continuous
signals are used when transmitting data. Quantization is often used for the discon-
tinuous mapping from a continuous space to a finite set. It is nonlinear, since several





       

different input signals can give the same output and is an irreversible process. This
introduces nonlinear errors in the control loop.

Due to its importance, quantized control has received a lot of attention, and it is
of interest to see how it will affect the stability of a system. In [4–6] control of linear
and nonlinear systems were looked at where either the input, output or the state were
quantized. Quantized feedback control was considered in [7] for linear single-input-
single-output (SISO) and multiple-input-multiple-output (MIMO) systems, where
optimal control and robust control were used for performance purposes. Quantized
control for stability of a nonlinear system with uncertainties was considered in [8]
using a robust approach, and adaptive approaches have been studied in [9–13]. Here
the backstepping technique was used in the control design, and different quantizers
were considered including uniform, logarithmic and hysteresis and where either the
inputs or the states were quantized. Adaptive control was also considered in [14] for
nonlinear MIMO systems with input quantization.

The backstepping technique was proposed in the 1990’s, and is a nonlinear
controller design method where the control input is designed to compensate for
the effects of plant nonlinearity [15]. It has been widely used to design adaptive
controllers for uncertain systems, where the controller has a dynamic feedback for
estimating the parameters in form of an adaptive update law. This technique has
several advantages over the conventional approaches such as providing a promising
way to improve the transient performance of adaptive systems by tuning design
parameters.

In this paper, a 2-degree-of-freedom (DOF) helicopter system is considered, where
the inputs are quantized. It is a nonlinear MIMO system, with challenges in controller
design due to its nonlinear behavior, its coupling, and with uncertainties both in the
model and the parameters, and with disturbance from the quantized inputs. We
consider the adaptive backstepping controller for this system as in [16], where a
theoretical proof of stability was given with the use of constructed Lyapunov functions,
and where tracking was achieved and also boundedness of all signals in the closed
loop system. It was also shown that the tracking error performance can be improved
by adjusting the design parameters. This paper extends the results to include
quantization of the inputs using a uniform quantization and prove boundedness of
the closed loop signals.

The following notations are used. Vectors are denoted by small bold letters and
matrices with capitalized bold letters. When the context is sufficient explicit, we
may omit to write arguments of a function, vector or matrix.

The paper is organized as follows. In Section A.2 the system model, the quantized
feedback system and the uniform quantizer are presented. Section A.3 presents the
adaptive control design based on backstepping technique with stability and perform-





         
 

Figure A.1: Free body diagram and kinetic diagram of the Aero body

ance results, Section A.4 presents the experimental results before the conclusion is
given in Section A.5.

A.2 Problem Statement

A.2.1 System Model

The helicopter system is visualized in Figure A.1 showing both a free body diagram
(FBD) and a kinetic diagram (KD). The main motor is producing two forces, one
main force, FMz, in the zb-direction that will give a positive pitch angle, and also a
force, FMy, in the yb-direction, meaning this will give a yaw angle. This last force is
due to the aerodynamic forces. The tail motor is also producing two forces, FT z and
FT y. This motor is basically here to counteract the yaw from the main motor and
thus control the yaw while the main motor is controlling the pitch. These forces are
functions of the two system inputs, u1 and u2, that are the voltages applied to the
main and tail motors. Viscous damping, proportional to the velocity of the Aero
body, is also present.

This is a MIMO system with 2 DOF, where each input will change both the pitch
and yaw angle. The helicopter model is considered as a rigid body and the equations
of motion are derived using Euler-Lagrange equations as given in [16], where the
system parameters and control coefficients are uncertain.

The state variables are defined as

x = [ϑ(t), ψ(t), ϑ̇(t), ψ̇(t)]⊤, (A.1)

where ϑ and ψ are pitch and yaw angles, and ϑ̇ and ψ̇ are angular velocities of pitch





       

and yaw angles. The control variables are defined as

u = [u1(t,x), u2(t,x)]⊤, (A.2)

and are the inputs that will be quantized. The nonlinear state space model is
expressed as

ẋ =


x3

x4

ϕ⊤
1 θ1

ϕ⊤
2 θ2

+


0
0

β1,1u1 + β1,2u2

−β2,1u1 + β2,2u2

 , (A.3)

where ϕ1 and ϕ2 are known nonlinear functions defined as

ϕ1 =


−x3

− sin x1

x2
4 cosx1 sin x1

 , ϕ2 =
 −x4

−x2x4 cosx1 sin x1

 , (A.4)

vectors θ1 and θ2 are unknown constant vectors defined as

θ1 = 1
Ip +ml2cm


DV p

mglcm

ml2cm

 , θ2 = 1
Iy

 DV y

2ml2cm

 , (A.5)

and βi,j, i, j ∈ {1, 2}, are unknown constants defined as

β1,1 = Kpp

Ip +ml2cm

, β1,2 = Kpy

Ip +ml2cm

, (A.6)

β2,1 =Kyp

Iy

, β2,2 =Kyy

Iy

. (A.7)

The constants Kpp and Kyy are torque thrust gains from main and tail motors, Kpy

is cross-torque thrust gain acting on pitch from tail motor, Kyp is cross-torque thrust
gain acting on yaw from main motor, lcm is the distance between the center of mass
and the origin of the body-fixed frame, Ip and Iy are the moments of inertia of the
pitch and yaw respectively, g is the gravity acceleration, m is the total mass of the
Aero body, and DVy and DVp are the damping constants for the rotation along the
yaw axis and pitch axis separately.

The control objective is to design a control law for u1 and u2 to force the out-
puts x1 and x2 to track the reference signals xr1(t) and xr2(t) for pitch and yaw
respectively when the inputs are quantized. To achieve the objective, the following





         
 

Figure A.2: System with quantized inputs

assumptions are imposed.

Assumption 1. The reference signals xr1 and xr2 and first and second order deriv-
atives are known, piecewise continuous and bounded.

Assumption 2. All unknown parameters θ1, θ2, βi,j, i, j ∈ {1, 2} are positive
constants and within known bounds.

A.2.2 Quantized System

In this paper, we consider a quantized feedback system as shown in Figure A.2. The
inputs u1 and u2 in system (A.3) take the quantized values, that are quantized at
the encoder side.

A.2.3 Uniform Quantizer

The control inputs u1 and u2 are quantized using a uniform quantizer which has
intervals of fixed lengths and is defined as follows:

q(uk) =

uk,i sgn(uk), uk,i − lk
2 ≤ |uk| < uk,i + lk

2

0, |uk| < uk,0 + lk
2

(A.8)

where k = 1, 2, uk,0 > −lk/2 is a constant, lk > 0 is the length of the quantization
intervals, i = 1, 2, ..., and uk,i+1 = uk,i + lk. The uniform quantization q(uk) ∈
Uk = {0,±uk,i}, and a map of the quantization for uk > 0 is shown in Figure A.3.
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Figure A.3: Map of the uniform quantization, for uk > 0

The smaller the quantization intervals are, the closer the signal is to its continuous
counterpart.





         
 

A.3 Adaptive Control Design

In this section, we will design adaptive feedback control laws for the helicopter
model using backstepping technique. First considering the case when the inputs are
continuous and then with quantized inputs.

A.3.1 Continuous Inputs

We begin by introducing the change of coordinates

z1 = x1 − xr1, (A.9)

z2 = x2 − xr2, (A.10)

z3 = x3 − α1 − ẋr1, (A.11)

z4 = x4 − α2 − ẋr2. (A.12)

where α1 and α2 are the virtual controllers. The design follows the backstepping
procedure in [15].
• Step 1: The virtual controllers are chosen as

α1 = −c1z1, (A.13)

α2 = −c2z2, (A.14)

where c1 and c2 are positive constants. A control Lyapunov function is chosen as

V1(z, t) = 1
2z

2
1 + 1

2z
2
2 . (A.15)

The derivative of V1 along the solutions of the system is

V̇1 = z1ż1 + z2ż2

= z1(z3 + α1) + z2(z4 + α2)

= −c1z
2
1 + z1z3 − c2z

2
2 + z2z4. (A.16)

If z3 and z4 are zero, then V̇1 is negative and z1 and z2 will converge exponentially
towards zero.
• Step 2: The derivative of z3 and z4 are expressed as

ż3 = β1,1u1 + β1,2u2 + ϕ⊤
1 θ1 + c1(x3 − ẋr1) − ẍr1, (A.17)

ż4 = −β2,1u1 + β2,2u2 + ϕ⊤
2 θ2 + c2(x4 − ẋr2) − ẍr2. (A.18)





       

The control inputs u1 and u2 will now be designed so that z1, z2, z3 and z4 all
converge towards zero.
The adaptive control law is designed as follows:

u =
u1

u2

 = B̂−1ū = R̂ū, (A.19)

where

ū =
ū1

ū2

 , B̂ =
β̂1

β̂2

 , (A.20)

ū1 = − z1 − ϕ⊤
1 θ̂1 − c3z3 − c1(x3 − ẋr1) + ẍr1, (A.21)

ū2 = − z2 − ϕ⊤
2 θ̂2 − c4z4 − c2 (x4 − ẋr2) + ẍr2, (A.22)

β̂1 =
[
β̂1,1 β̂1,2

]
, β̂2 =

[
−β̂2,1 β̂2,2

]
, (A.23)

c3 and c4 are positive constants, θ̂1, θ̂2, β̂i,j are the estimates of θ1, θ2, βi,j and R̂ is
the inverse of the matrix B̂.
The parameter updating laws are chosen as

˙̂
θ1 = Proj{Γ1ϕ1z3}, (A.24)
˙̂
θ2 = Proj{Γ2ϕ2z4}, (A.25)
˙̂
β

⊤

1 = Proj{Γ3uz3}, (A.26)
˙̂
β

⊤

2 = Proj{Γ4uz4}, (A.27)

where Γk, k ∈ {1, 2, 3, 4}, are positive definite adaptation gain matrices and Proj{·} is
the projection operator given in [15] which ensures that the estimates and estimation
errors are nonzero and within known bounds. Let θ̃i = θi − θ̂i and β̃i = βi − β̂i,
i = 1, 2, be the parameter estimation errors.
The projection operator ˙̂

θ = Proj{τ} has the following property

−θ̃⊤Γ−1Proj{τ} ≤ −θ̃⊤Γ−1τ . (A.28)

By using (A.19), we have

Bu = BR̂ū = ū + B̃R̂ū = ū + B̃u, (A.29)

where B̃ = B − B̂. The determinant of B matrix will always be positive with the
known signs of the parameters and from Assumption 2, where det(B) = β1,1β2,2 +
β2,1β1,2, and from this and also with the projection operator, the matrix R̂ does not





         
 

have any singularities and is defined for all estimated parameters, given that the
initial values are chosen positive. Now the terms β1,1u1 + β1,2u2 and −β2,1u1 + β2,2u2

in (A.17) and (A.18) can be expressed as

β1u = ū1 + β̃1u, (A.30)

β2u = ū2 + β̃2u. (A.31)

We define the final Lyapunov function as

V2(z, β̃, θ̃, t) =V1 + 1
2z

2
3 + 1

2z
2
4 + 1

2 θ̃⊤
1 Γ−1

1 θ̃1 + 1
2 θ̃⊤

2 Γ−1
2 θ̃2 + 1

2 β̃1Γ−1
3 β̃⊤

1

+ 1
2 β̃2Γ−1

4 β̃⊤
2 . (A.32)

The derivative of (A.32) along with (A.17) to (A.31) gives

V̇2 = − c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4 + ϕ⊤

1 θ̃1z3 + ϕ⊤
2 θ̃2z4 − θ̃⊤

1 Γ−1
1

˙̂
θ1

− θ̃⊤
2 Γ−1

2
˙̂
θ2 + β̃1uz3 + β̃2uz4 − β̃1Γ−1

3
˙̂
β

⊤

1 − β̃2Γ−1
4

˙̂
β

⊤

2

= − c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4

− θ̃⊤
1 Γ−1

1

(
˙̂
θ1 − Γ1ϕ1z3

)
− β̃1Γ−1

3

(
˙̂
β

⊤

1 − Γ3uz3

)

− θ̃⊤
2 Γ−1

2

(
˙̂
θ2 − Γ2ϕ2z4

)
− β̃2Γ−1

4

(
˙̂
β

⊤

2 − Γ4uz4

)
. (A.33)

The property of the projection operator in (A.28) and the update laws (A.24)-(A.27)
eliminate the last four terms in equation (A.33). Then

V̇2 ≤ −c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4 . (A.34)

We then have the following stability and performance results based on the control
scheme.

Theorem 1. Considering the closed-loop adaptive system consisting of the plant
(A.3), the adaptive controller (A.19), the virtual control laws (A.13) and (A.14), the
parameter updating laws (A.24)-(A.27) and Assumptions 1 and 2. All signals in the
closed loop system are ensured to be uniformly bounded. Furthermore, asymptotic
tracking is achieved, i.e.

lim
t→∞

= [xi(t) − xri(t)] = 0, i = 1, 2. (A.35)

Proof: The stability properties of the equilibrium follow from (A.32) and (A.34). By





       

applying the LaSalle-Yoshizawa theorem, V2 is uniformly bounded. This implies that
z1, z2, z3, z4 are bounded and are asymptotically stable and z1, z2, z3, z4 → 0 as
t → ∞ and also θ̂1, θ̂2, β̂1 and β̂2 are bounded. Since z1 = x1 −xr1 and z2 = x2 −xr2,
tracking of the reference signals is also achieved, and x1 and x2 are also bounded
since z1 and z2 are bounded and since xr1 and xr2 are bounded by definition, cf.
Assumption 1. The virtual controls α1 and α2 are also bounded from (A.13) and
(A.14) and then x3 and x4 are also bounded. From (A.19) it follows that the control
inputs also are bounded.

Remark 1. Theorem 1 implies that the error signals will converge to zero. For a
real system like the helicopter model, there are disturbances due to e.g. noise from
sensors and unmodeled dynamics that are not included in this model, and so the
helicopter will have a practical stabilization with the adaptive controller, where the
solution is ultimately bounded by a constant µ0, that is ∥z∥ ≤ µ0, ∀t ≥ T , for some
T > 0 [17].

A.3.2 Quantized Inputs

Considering the nonlinear state space model with quantized inputs expressed as

ẋ =


x3

x4

ϕ⊤
1 θ1

ϕ⊤
2 θ2

+


0
0

β1,1q(u1) + β1,2q(u2)
−β2,1q(u1) + β2,2q(u2)

 , (A.36)

where the control inputs u1 and u2 are quantized by the uniform quantizer defined
in (A.8). The change of coordinates and step 1 will be the same as when the inputs
are continuous and the virtual control laws are designed as in (A.13) and (A.14). In
step 2 the control inputs appear, and the derivative of z3 and z4 are expressed as

ż3 =β1,1q(u1) + β1,2q(u2) + ϕ⊤
1 θ1 + c1(x3 − ẋr1) − ẍr1, (A.37)

ż4 = − β2,1q(u1) + β2,2q(u2) + ϕ⊤
2 θ2 + c2(x4 − ẋr2) − ẍr2. (A.38)

The quantizer inputs are decomposed into two parts

q(uk) =uk(t) + dk(t), (A.39)

where dk is the quantization error and bounded by a constant, |dk| ≤ δk, where

δk = max{uk,0 + lk/2, lk/2}. (A.40)





         
 

Thus the equations (A.37) and (A.38) are expressed as

ż3 =β1,1(u1 + d1) + β1,2(u2 + d2) + ϕ⊤
1 θ1 + c1(x3 − ẋr1) − ẍr1, (A.41)

ż4 = − β2,1(u1 + d1) + β2,2(u2 + d2) + ϕ⊤
2 θ2 + c2(x4 − ẋr2) − ẍr2, (A.42)

where due to quantization, two extra terms are included in each equation. The
inputs are designed in the controller (A.19) together with (A.21)-(A.23) and with the
parameter updating laws (A.24)-(A.27). The final Lyapunov function V2 is defined
as in (A.32), the same as without quantization. Then the derivative of V2 gives

V̇2 = − c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4 + β1dz3 + β2dz4 − θ̃⊤

1 Γ−1
1

(
˙̂
θ1 − Γ1ϕ1z3

)
− β̃1Γ−1

3

(
˙̂
β

⊤

1 − Γ3uz3

)
− θ̃⊤

2 Γ−1
2

(
˙̂
θ2 − Γ2ϕ2z4

)
− β̃2Γ−1

4

(
˙̂
β

⊤

2 − Γ4uz4

)
,

(A.43)

where d = [d1 d2]⊤, and where the property of the projection operator in (A.28)
and the update laws (A.24)-(A.27) eliminate the last four terms in equation (A.43).
Then

V̇2 ≤ − c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4 + β1dz3 + β2dz4

≤ − c0∥z∥2 +
√

(|β1|δ)2 + (|β2|δ)2∥z∥

≤ − (1 − λ)c0∥z∥2 − λc0∥z∥2 +
√

(|β1|δ)2 + (|β2|δ)2∥z∥

≤ − (1 − λ)c0∥z∥2, ∀∥z∥ ≥

√
(|β1|δ)2 + (|β2|δ)2

λc0
, (A.44)

where c0 = min{c1, c2, c3, c4}, the constant δ = [δ1 δ2]⊤ is the maximum quantization
errors as defined in (A.40) and 0 < λ < 1. We then have the following stability and
performance results based on the control scheme.

Theorem 2. Considering the closed-loop adaptive system consisting of the plant
(A.36), the adaptive controller (A.19), the virtual control laws (A.13) and (A.14), the
parameter updating laws (A.24)-(A.27), the uniform quantizer (A.8) and Assumptions
1 and 2. All signals in the closed loop system are ensured to be uniformly bounded.
The tracking error signals will converge to a compact set, i.e.

∥z∥ ≤ µ =

√
(|β1|δ)2 + (|β2|δ)2

λc0
, (A.45)

where µ is a positive constant. The tracking errors zi(t) = xi(t) − xri(t), i ∈ {1, 2},
are ultimately bounded by ∥zi∥ ≤ µ, and tracking is achieved.





       

Proof: The stability properties of the equilibrium follows from (A.32) and (A.44).
The quantization error is bounded by definition (A.40). By applying the LaSalle-
Yoshizawa theorem, V2 is bounded. This implies that z1, z2, z3, z4, θ̂1, θ̂2, β̂1 and
β̂2 are bounded. Furthermore, z1, z2, z3 and z4, will converge to a compact set
containing the equilibrium as t → ∞. Since z1 = x1 − xr1 and z2 = x2 − xr2, the
states x1 and x2 are also bounded since z1 and z2 are bounded and since xr1 and xr2

are bounded by definition, cf. Assumption 1. Tracking of the reference signals is
achieved, with a bounded tracking error. The virtual controls α1 and α2 are also
bounded from (A.13) and (A.14) and then x3 and x4 are also bounded. From (A.19)
it follows that the control inputs also are bounded.

Remark 2. The tracking errors are adjustable by tuning the design parameters
ci, i ∈ {1, 2, 3, 4}.

Remark 3. The smaller quantization intervals lk, the smaller the compact set for the
error variables ∥z∥ will be, and if lk decreases to zero and there is no quantization,
the error will also be zero and the result will be similar to Theorem 1, without
quantization.

Remark 4. The bound for the error system will also include the bound from Remark
1 for the helicopter model, only shifting the bound to ∥z∥ ≤ µ0 + µ, ∀t ≥ T , for
some T > 0.

A.4 Experimental Results

The Quanser Aero helicopter system shown in Figure A.4 is a two-rotor laboratory
equipment for flight control-based experiments. The setup is a horizontal position
of the main thruster and a vertical position of the tail thruster, which resembles a
helicopter with two propellers driven by two DC motors. The proposed controller
was simulated using MATLAB/Simulink and tested on the Quanser Aero helicopter
system. The initial states were set as x(0) = 0 and the design parameters were set
as c1 = c2 = 6, c3 = c4 = 3, Γ1 = I3, Γ2 = I2 and Γ3 = Γ4 = 0.01I2. The same
quantization intervals were used for the two inputs, since the two motors on the
helicopter model are equal and where the range of the inputs are similar and in the
range of [−24, 24]. The interval was chosen l1 = l2 = 1, and is a quantization level
chosen high to show the effect of the quantization, since there are other disturbances
that will affect the results as e.g. noise from sensors. The constant uk,0 was chosen
equal zero for both inputs, and so the upper bound for the quantization errors
were δ1 = δ2 = lk/2 = 1/2. The initial values for the parameters were chosen as





         
 

Figure A.4: Quanser Aero, helicopter model

β̂1(0) = [0.0506 0.0506], β̂2(0) = [−0.0645 0.0810], θ̂1(0) = [0.322 1.8436 0.0007]⊤

and θ̂2(0) = [0.4374 0.0014]⊤ based on estimates for the values in [18].
The objective in this test was to track a sinusoidal signal, where a sine wave

with amplitude of 40 degrees and frequency of 0.05 Hz was applied to pitch, while
there should be no rotation about yaw, and see how the system was affected by
quantization of inputs.

A.4.1 Results without Quantization

The results from simulation and testing on the helicopter with continuous inputs are
shown in Figures A.5-A.6, where red plots are from simulation and blue plots are
from the real system. While the simulations in Figure A.5 show that the tracking
errors converge to zero, we see that for the helicopter, the tracking errors converge
to bounded errors close to zero. This is due to the unknown disturbances affecting
the system as in Remark 1. Tracking of the reference signal is achieved, for both
pitch and yaw angle. The inputs are also plotted in Figure A.5.

In Figure A.6, the norm of z is plotted. The simulation shows that ∥z∥ → 0 as
t → ∞, while this is not the case for the real system. From the plot for the helicopter
system, we define µ0 = max∥z∥.

A.4.2 Results with Quantization

Now the inputs were quantized, with results plotted in Figures A.7-A.9. From
Figure A.7, we can see that the desired trajectory for a sine wave in pitch can be
followed using the proposed adaptive controller both in simulation and testing on
the helicopter system. From the simulation, there is an error for both angles due
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Figure A.5: Results without quantization. 1) Pitch angle. 2) Yaw angle. 3) Pitch
angle error. 4-5) Inputs.
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Figure A.6: Norm of z without quantization.

to quantization compared to simulation without quantization in Figure A.5. In
Figure A.8, the norm of the error state z from the simulation is plotted and also
the bound µ from Theorem 2, computed with λ = 0.999, and assuming β1 = β̂1(0)
and β2 = β̂2(0). In the transient period, the norm enters the bound, but leaves it
for a short period, and this is possible due to the LaSalle-Yoshizawa theorem. After
this it remains within the bound µ. Looking at the plotted norm for the helicopter
in Figure A.9, where µ0 is the bound found without quantization due to unknown
disturbances and µ0 + µ also includes the bound for quantization, we see that ∥z∥ is
within the bound for the whole time period.

A.4.3 Comparing Results

To compare the results with and without quantization, the total tracking error, ztrack,
and the total voltage used, utotal, was measured, where

ztrack =
2∑

i=1

∫ t

0
zi(τ)2dτ, (A.46)

utotal =
2∑

i=1

∫ t

0
ui(τ)2dτ, (A.47)

with t = 50 s. There is a trade-off between the error and voltage consumption since
the more accurate the controller is, the more voltage is needed to hold the trajectory
closer to the reference.

In Table A.1, the results are compared for different quantization intervals. The
tracking error is higher when the inputs are quantized, while the total voltage use
is lower for most of the tests with quantization. The higher error is due to the
quantization error, as expected from Theorems 1 and 2.
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Figure A.7: Results with quantization. 1) Pitch angle. 2) Yaw angle. 3) Pitch angle
error. 4-5) Inputs.
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Figure A.8: Simulation of norm of z with quantization and the bound µ.
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Figure A.9: Norm of z with quantization from the helicopter, with bounds.

Table A.1: Comparison of error and voltage use with and without quantization

Quantization
Measurement lk = 0 lk = 0.1 lk = 0.5 lk = 1 lk = 1.5
ztrack 0.0110 0.0116 0.0114 0.0116 0.0121
utotal 6429 6444 6365 6367 6328





       

A.5 Conclusion

In this paper, an adaptive backstepping control scheme is considered for a MIMO
nonlinear helicopter model with input quantization. The system parameters are not
required to be fully known for the controller design. A theoretical proof of stability
is given with the use of constructed Lyapunov functions, where boundedness of all
signals in the closed loop system are achieved and also tracking of a given reference
signal. The tracking error signals will converge to a compact set. Experiments and
simulations validates the proof, where tracking is achieved and the total tracking
error signals are some higher when the inputs are quantized compared to when inputs
are not quantized.
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Abstract

In this paper, the attitude tracking control problem of a rigid body is investigated
where the states are quantized. An adaptive backstepping based control scheme is
developed and a new approach to stability analysis is developed by constructing
a new compensation scheme for the effects of the vector state quantization. It is
shown that all closed-loop signals are ensured uniformly bounded and the tracking
errors converge to a compact set containing the origin. Experiments on a 2 degrees-
of-freedom helicopter system illustrate the proposed control scheme.

B.1 Introduction

The interest for quantized control has attracted considerable attention in recent years
due to its theoretical and practical importance in practical engineering, where signals
are required to be quantized and transmitted via a common communication network.
An important aspect is to use quantization schemes that yield sufficient precision,
but reduce the communication burden over the network.

A great number of representative results have been reported on analysis and
control of feedback systems with input quantization, as can be observed in [1–7].
The feedback control problem of systems with state quantization has been studied
in [8–11], where the system dynamics in these works are precisely known. As we
know, system uncertainties and non-linearity inevitably exist in physical systems.
Only a few work using an adaptive approach have been reported to solve the state
quantization problem for uncertain linear systems in [12] and uncertain nonlinear
systems in [13].

Quantized control of rigid bodies is a potential problem. For example, the remote





       

control of a group of UAVs or robots, where the signals are transmitted over a
shared network with limited communication information. Attitude stabilization with
input quantization was investigated in [14] using a fixed-time sliding mode control.
Trajectory tracking control for autonomous underwater vehicles with the effect of
quantization was investigated in [15] using a sliding mode controller, where the
considered systems are completely known. In [16], adaptive tracking control was
proposed for underactuated autonomous underwater vehicles with input quantization.
Uncertainties and non-linearities always exist in many practical systems. Thus it is
more reasonable to consider controller design for uncertain nonlinear systems.

Adaptive backstepping technique was proposed in the 1990’s in [17] to deal with
plant non-linearity and parameter uncertainties. Several results have been reported
on adaptive backstepping control with input quantization, e.g in [6, 7, 18, 19] for
uncertain nonlinear systems, in [20] for a 2-DOF helicopter system, in [16] for tracking
control for under-actuated autonomous underwater vehicles and in [21] for formation
tracking control for a group of UAVs. However, adaptive backstepping control results
to address uncertain systems with state quantization are very limited. One major
difficulty to deal with the state quantization is that the backstepping technique
requires differentiating virtual controls and in turn the states by applying chain rule.
If the states are quantized, they become discontinuous and therefore it is difficult to
analyze the resulting control system with the current backstepping based approaches.
This problem was solved in [13] where the states were quantized by a static bounded
quantizer.

This paper is concerned with the attitude tracking control of uncertain nonlinear
rigid body systems with state quantization. A new backstepping based adaptive
controller and a new approach to stability analysis are proposed. Compared to [13]
for single-input-single-output (SISO) systems, this paper considers multiple-input-
multiple-output (MIMO) uncertain systems with state quantization. A uniform
quantization is included when tested on a 2 degrees-of-freedom (DOF) helicopter
system from Quanser, with challenges in controller design due to the nonlinear
behavior, the cross coupling effect between inputs and outputs, and with uncertainties
both in the model and the parameters. It is analytically shown how the choice of
quantization level affects the tracking performance, where a higher quantization level
increases the tracking error. The experiments on the helicopter system illustrate the
proposed scheme.





          


B.2 Dynamical Model and Problem Formulation

B.2.1 Notations

The symbol ωc
b,a denotes angular velocity of frame a relative to frame b, expressed in

frame c; Rb
a is the rotation matrix from frame a to frame b; the cross product operator

× between two vectors a and b is written as S(a)b where S is skew-symmetric;
λmax(·) and λmin(·) denotes the maximum and minimum eigenvalue of the matrix
(·), and ∥·∥ denotes the L2-norm and induced L2-norm for vectors and matrices,
respectively.

B.2.2 Attitude Dynamics

The orientation of a rigid body in frame b, relative to an inertial frame i, can be
described by a unit quaternion, q = [η, ε1, ε2, ε3]⊤ = [η, ε⊤]⊤ ∈ S3 = {x ∈ R4 :
x⊤x = 1} that is a complex number, where η = cos(υ/2) ∈ R is the real part and
ε = k sin(υ/2) ∈ R3 is the imaginary part, where υ is the Euler angle and k is the
Euler axis, and S3 is the non-Euclidean three-sphere. We consider a fully actuated
rigid body with equations of motion for the attitude dynamics defined as

q̇ = T (q)ω, (B.1)

Jω̇ = Ψ(q,ω) + Φ(ω)θ + Bu, (B.2)

with ωb
i,b = ω ∈ R3, and where

T (q) = 1
2

 −ε⊤

ηI + S(ε)

 ∈ R4×3, (B.3)

J = diag(Jx, Jy, Jz) ∈ R3×3 is the inertia matrix about the origin o, and is positive
definite,

Ψ = −S(ω)(Jω) − g(q) ∈ R3, (B.4)

Φ = diag(−ω) ∈ R3×3, (B.5)

are known nonlinear functions of q and ω, the vector θ ∈ R3 is unknown and
constant, the control allocation matrix B ∈ R3×3 and the control input u ∈ R3. The
matrix I denotes the identity matrix and S(·) is the skew-symmetric matrix given
by

S(ε) =


0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

 . (B.6)
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Figure B.1: Control system with state quantization over a network.

The moment caused by the gravitational force is

g(q) = −S(rb
g)Rb

if
i
g ∈ R3, (B.7)

where rb
g = [xg yg zg]⊤ is the distance from the origin to the center of mass, f i

g =
[0 0 −mg]⊤, m is the mass of the rigid body, and g is the gravity acceleration. If
rb

g = 0 =⇒ g(q) = 0 and the rotation is about center of mass.
The orientation between two frames can be described by a rotation matrix given

as

R(q) = I + 2ηS(ε) + 2S2(ε), (B.8)

where R ∈ SO(3) that is a special orthogonal group of order 3, and has the property

SO(3) = {R ∈ R3×3 : R⊤R = I, det(R) = 1}. (B.9)

The time derivative of a rotation matrix can be expressed as

Ṙa
b = Ra

b S(ωb
a,b) = S(ωa

a,b)Ra
b . (B.10)

Attitude and angular velocities are assumed to be measurable after quantization,
and for the control allocation matrix it is assumed that det(B) ̸= 0, i.e. the matrix
is invertible.

B.2.3 Problem Statement

We consider a control system as shown in Fig. B.1, where the states ε,ω are quantized
at the encoder side to be sent over a network. The network is assumed noiseless,
so that the quantized state signal is recovered and sent to the controller. Only the





          


quantized states εQ,ωQ are measured, and the quantized value of η is calculated as

ηQ = ±
√

1 − εQ⊤εQ, (B.11)

to ensure that the property of unit quaternion, qQ⊤qQ = 1, is fulfilled, where the
quantized attitude is given by qQ = [ηQ, εQ⊤]⊤.

Remark 1. The quantized value, ηQ, can be calculated based on the value of εQ and
knowledge of the sign of η(t0) and the assumption of sign continuity of η(t) based
on derivative. We can do the calculation after the network communication, saving
bandwidth by sending less data over the network.

Remark 2. If we are close to, or at η = 0, we might end up with εQ⊤εQ > 1, and a
scaling is needed to ensure we have a unit quaternion.

Let qi,d = qd, ωi
i,d = ωd be the desired attitude and angular velocity. The

control objective is to design a control law for u(t) by utilizing only quantized states
qQ(t),ωQ(t) to ensure that qQ(t) → qd(t) and ωQ(t) → ωQ

i,d(t) as t → ∞, where the
kinematic equation

q̇d = T (qd)ωd
i,d = 1

2

 −ε⊤
d

ηdI − S(εd)

ωd, (B.12)

is satisfied, and where all the signals in the closed-loop system are uniformly bounded.
To achieve the objective, the following assumptions are imposed.

Assumption 1. The functions qd(t), ωd(t) and ω̇d(t) are known, piecewise con-
tinuous and bounded, where ∥ωd(t)∥ < kωd

and ∥ω̇d(t)∥ < kω̇d
∀t ≥ t0 where

kωd
, kω̇d

> 0.

Assumption 2. The unknown parameter vector θ is bounded by ∥θ∥ ≤ kθ, where kθ

is a positive constant. Also θ ∈ Cθ, where Cθ is a known compact convex set.

B.2.4 Quantizer

The quantizer considered in this paper has the following property

|xQ − x| ≤ δx, (B.13)

where x is a scalar signal and δx > 0 denotes the quantization bound. A uniform
quantizer is considered, which has intervals of fixed length and is defined as

xQ = xi sgn(x), xi − l

2 ≤ |x| < xi + l

2 , (B.14)





       

where i = 0, 1, 2, ..., x0 = 0, xi+1 = xi + l, l > 0 is the length of the quantization
intervals and where sgn(·) is the signum function. Here xQ = x + d, where d is
the quantization error and is bounded by (B.13), where δx = l/2. The uniform
quantization xQ ∈ U = {±xi}.

B.3 Controller Design and Stability Analysis

In this section we will design adaptive feedback control laws for the rigid body using
backstepping technique. We begin with a change of coordinates to the error variables,
and first find the error variables when the states are not quantized. The tracking
error e, is given by the quaternion product

e = q̄i,d ⊗ qi,b =
η̃
ε̃

=
 ηdη + ε⊤

d ε

ηdε − ηεd − S(εd)ε

∈ S3, (B.15)

where q̄ = [η − ε⊤]⊤ is the inverse rotation given by the complex conjugate. If
qi,b = qi,d then e = [±1 0⊤]⊤. Because there exists two different equilibria using
quaternion coordinates, global stability can not be achieved, even though e and −e

represents the same physical attitude [22]. We include one further assumption as
follows:

Assumption 3. sgn(η̃(t0)) = sgn(η̃(t)) ∀t ≥ t0.

Remark 3. Assumption 3 is imposed to avoid the problem when the attitude error
is close to E

∆= {e ∈ S3 : η̃ = 0}, where the solution is not robust when a
disturbance/quantization is introduced.

The relative error kinematics is

ė = T (e)ωe, (B.16)

where T (·) is defined in (B.3), and the angular velocity error

ωe = ω − Rb
iωd. (B.17)

Since we have two equilibrium points, we introduce the change of coordinates

z1± =
1 ∓ η̃

ε̃

 , z2 = ωe − α, (B.18)

ż1± = 1
2

 ±ε̃⊤

(η̃I + S(ε̃))

ωe
∆= 1

2G(e)⊤ωe, (B.19)





          


where z1+ is the equilibrium point when η̃(t0) ≥ 0 and z1− is the equilibrium point
when η̃(t0) < 0, the matrix G⊤ ∈ R4×3, and where α is a virtual controller chosen as

α = −C1Gz1 ∈ R3, (B.20)

where C1 ∈ R3×3 is a positive definite matrix.

Remark 4. Without the change of coordinates to z1± one might end up with an
unwanted or less optimal rotation of the rigid body.

By multiplication, it can be shown that Gz1 = ±ε̃, and then from (B.20) we
have

α̇ = ∓1
2C1

[
η̃I + S(ε̃)

]
ωe. (B.21)

The angular velocity error and angular velocity are bounded

∥ωe∥ ≤ ∥z2 + α∥ ≤ ∥z2∥ + λmax(C1)∥G∥∥z1∥ ≤ [1 + λmax(C1)]∥z∥
∆= da∥z∥, (B.22)

∥ω∥ ≤ ∥ωe + Rb
iωd∥ ≤ da∥z∥ + ∥Rb

i∥∥ωd∥

≤ da∥z∥ + kωd
, (B.23)

where z = [z⊤
1 , z

⊤
2 ]⊤. When the states are quantized, the quantization error of the

quaternion can be expressed as

dq = q̄i,b ⊗ qi,Q =
dη

dε

=
 ηηQ + ε⊤εQ

ηεQ − ηQε − S(ε)εQ

 , (B.24)

where dε is the quantization error and bounded by ∥dε∥ ≤ kε∥δε∥ from (B.13) and
where kε > 1 is a positive constant, and dη is bounded from the unity property of
unit quaternion. If qQ = q and there is no quantization error, dq = [1 0 0 0]⊤. The
tracking error with the quantized value of the unit quaternion eQ, is given by

eQ = q̄i,d ⊗ qi,Q =
η̃Q

ε̃Q

=
 ηdη

Q+ε⊤
d εQ

ηdεQ−ηQεd−S(εd)εQ

, (B.25)

and can also be described by

eQ = qd,b ⊗ qb,Q = e ⊗ dq =
 η̃dη − ε̃⊤dε

dηε̃ + η̃dε + S(ε̃)dε


=
 η̃Q

ε̃ + (dη − 1)ε̃+η̃dε + S(ε̃)dε

 ∆=
 η̃Q

ε̃ + dε̃

 , (B.26)





       

where the value of dε̃ depends on the quantization error given in (B.24). If there is
no quantization error, dε̃ = 0. The quantization of the angular velocities ω can be
expressed as

ωQ = ω + dω, (B.27)

where dω is the quantization error and bounded by ∥dω∥ ≤ ∥δω∥ from (B.13). We
choose the adaptive controller

u(t) = B−1
[

− GQzQ
1 − C2z

Q
2 − ΦQθ̂ − ΨQ − J

(
S(ωQ)RQ

i ωd − RQ
i ω̇d − ᾱQ

)]
,

(B.28)
˙̂
θ = Proj{ΓΦQzQ

2 }, (B.29)

where θ̂ is the estimated value of θ, the vector θ̃ = θ − θ̂, the matrices C2, Γ ∈ R3×3

are positive definite, and where Proj{·} is the projection operator given in [17], and

zQ
1± =

1 ∓ η̃Q

ε̃Q

 , (B.30)

zQ
2 = ωQ

e − αQ, (B.31)

G(eQ)⊤ =
 ±ε̃Q⊤

η̃QI + S(ε̃Q)

 , (B.32)

αQ = − C1G
QzQ

1 = ∓C1ε̃
Q, (B.33)

ΨQ = − S(ωQ)(JωQ) − g(qQ), (B.34)

ΦQ = diag(−ωQ), (B.35)

g(qQ) = − S(rb
g)RQ

i f i
g, (B.36)

ᾱQ ∆= ∓1
2C1

[
η̃QI + S(ε̃Q)

]
ωQ

e , (B.37)

ωQ
e = ωQ − RQ

i ωd, (B.38)

RQ
i = RQ

b Rb
i . (B.39)

Remark 5. The projection operator Proj{·} in (B.29) ensures that the estimates
and estimation errors are nonzero and within known bounds, that is ∥θ̂∥ ≤ kθ and
∥θ̃∥ ≤ kθ, and has the property −θ̃⊤Γ−1Proj(τ ) ≤ −θ̃⊤Γ−1τ , which are helpful to
guarantee the closed-loop stability.

Remark 6. Only the quantized states can be used in the designed controller. Since
the quantized states are used in the design of the virtual controller αQ in (B.33), the
derivative of the virtual controller is discontinuous and can not be used in the design
of the controller, as it is for the case when the states are not quantized. Instead we





          


choose a function (B.37), that is designed as if the states are not quantized in (B.21),
where ∂α/∂ε̃ is used [13].

We show the stability of the positive equilibrium point, i.e. zQ
1 = zQ

1+. To ensure
that all signals are bounded, we first establish some prelimenary results as stated in
the following lemma.

Lemma 1. The effects of state quantization are bounded by the following inequalities:

(i) ωQ
e = ω + dω − RQ

b Rb
iωd ≤ ωe +

(
2kε

[
S(δε)+S2(δε)

]
Rb

iωd + δω

)
∆= ωe + δωe , (B.40)

(ii) zQ
2 ≤ ωe + δωe + C1ε̃

Q ≤ ωe + δωe − α + C1dε̃≤ z2 + (δωe + C1kεδε)
∆= z2 + δz2 , (B.41)

(iii) ∥Gz1 − GQzQ
1 ∥=∥ε̃ − ε̃Q∥ ≤ ∥kεδε∥, (B.42)

(iv) ∥RQ
i − Rb

i∥ ≤ ∥−2dηS(dε)+2S2(dε)⊤∥∥Rb
i∥≤ 2

[
kε∥δε∥ + k2

ε∥δε∥2
]

∆= dR, (B.43)

(v) ∥Ψ−ΨQ∥≤∥−S(ω)(Jω)+S(ω+dω)(J(ω+dω))+S(rb
g)Rb

if
i
g −S(rb

g)RQ
i f i

g∥

≤
[
λmax(J)

(
∥δω∥2 + 2kωd

∥δω∥
)

+ ∥rb
g∥dRmg

]
+
[
2λmax(J)∥δω∥da

]
∥z∥

∆= dΨ1+dΨ2∥z∥, (B.44)

(vi) ∥S(ω)Rb
i − S(ωQ)RQ

i ∥ ≤ ∥−S(ω)[−2dηS(dε) + 2S2(dε)⊤]Rb
i − S(dω)RQ

i ∥

≤ ∥ω∥dR + ∥δω∥≤ (kωd
dR + ∥δω∥)+(dadR)∥z∥

∆= dS1 + dS2∥z∥, (B.45)

(vii) ∥ᾱQ − α̇∥ = ∥1
2C1

[
[η̃I + S(ε̃)]ωe − [η̃QI + S(ε̃Q)]ωQ

e

]
∥

≤ 1
2λmax(C1)

(
2∥ωe∥ + ∥δωe∥

)
≤ λmax(C1)(

1
2∥δωe∥ + da∥z∥)

∆= dᾱ1 + dᾱ2∥z∥. (B.46)

Proof: The property of (B.40) follows from (B.38), with the use of (B.8), (B.24),
(B.27) and (B.39). The property of (B.41) follows from (B.31), with the use of (B.40),
(B.33), (B.26), (B.18) and (B.20). The definition in (B.26) is used for inequality
(B.42). The property of (B.43) follows by using (B.39) and (B.24), together with
the property of (B.8). Using (B.4), (B.7), (B.13), (B.23), (B.27), (B.34), (B.36) and
(B.43) the bound in (B.44) is ensured. The property of (B.45) follows by using (B.23),
(B.24), (B.27), (B.43), (B.39) together with the properties of (B.8) and (B.13). The
property of (B.46) follows by using (B.21), (B.22), (B.37), (B.40) and the property
of unit quaternion.





       

We state our main results based on the control scheme in the following theorem.

Theorem 1. Considering the closed-loop adaptive system consisting of the plant
(B.1)-(B.2) with state quantization satisfying the bounded property (B.13), the ad-
aptive controller (B.28), the update law (B.29) and Assumptions 1-3. If the gain
matrices C1 and C2 and quantization parameters δε and δω are chosen to satisfy

c0

2 − dV1 ≥ k > 0, (B.47)

where c0 is the minimum eigenvalue of C0 = min{G⊤C1G,C2}, k is a positive
constant, and dV1 is defined as

dV1 = dΨ2 + dS2λmax(J)kωd
+ dᾱ2λmax(J), (B.48)

all signals in the closed loop system are ensured to be uniformly bounded. The error
signals will converge to a compact set, i.e.

∥z(t)∥ ≤
√
a

k
, (B.49)

where

a = dθ1 + 1
2c0

d2
V2 , (B.50)

dθ1 = kθ∥δω∥∥δz2∥ + kθ∥δz2∥kωd
, (B.51)

dV2 = λmax(C2)∥δz2∥ + ∥kεδε∥ + dΨ1 + dS1λmax(J)kωd
+ dRλmax(J)kω̇d

+ dᾱ1λmax(J) + dθ2 , (B.52)

dθ2 = kθ∥δω∥ + kθda∥δz2∥, (B.53)

and is ultimately bounded. Tracking of a given reference signal is achieved, with a
bounded error.

Proof: Considering the Lyapunov function

V (z, θ̃, t) = z⊤
1 z1 + 1

2z⊤
2 Jz2 + 1

2 θ̃⊤Γ−1θ̃, (B.54)

then by following the controller design in (B.28)-(B.29), the derivative of (B.54) is
given as

V̇ = z⊤
1 G⊤z2 − z⊤

1 G⊤C1Gz1 + z⊤
2

[
Φθ + Ψ + Bu + J

(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

)]
− θ̃⊤Γ−1 ˙̂

θ

= − z⊤
1 G⊤C1Gz1 − z⊤

2 C2z
Q
2 + z⊤

2 (Gz1 − GQzQ
1 ) + z⊤

2 (Ψ − ΨQ)





          


+ z⊤
2 J(S(ω)Rb

i − S(ωQ)RQ
i )ωd + z⊤

2 J
(
RQ

i − Rb
i

)
ω̇d + z⊤

2 J(ᾱQ − α̇)

+
[
z⊤

2 (Φθ − ΦQθ̂) − θ̃⊤ΦQzQ
2

]
. (B.55)

By using (B.5), (B.35), (B.29), (B.27), (B.41), (B.23) and Assumption 2 the last
terms in (B.55) satisfy the inequality

z⊤
2 (Φθ−ΦQθ̂)−θ̃⊤ΦQzQ

2 = θ⊤Φz2 − θ⊤ΦQz2 + θ̃⊤ΦQz2 − θ̃⊤ΦQzQ
2

≤∥θ∥∥Φ − ΦQ∥∥z2∥ + ∥θ̃∥∥ΦQ∥∥z2 − zQ
2 ∥

≤kθ∥diag(−ω)−diag(−ω−dω)∥∥z∥+kθ(∥ω∥+∥δω∥)∥δz2∥

≤dθ1 + dθ2∥z∥. (B.56)

By using Young’s inequality, the properties in Lemma 1, (B.56) and Assumption 1,
the derivative of V in (B.55) can be obtained as

V̇ ≤ − z⊤
1 G⊤C1Gz1 − z⊤

2 C2z2 + λmax(C2)∥δz2∥∥z∥ +∥kεδε∥∥z∥ +dΨ1∥z∥

+dΨ2∥z∥2+dS1λmax(J)kωd
∥z∥ + dS2λmax(J)kωd

∥z∥2 + dRλmax(J)kω̇d
∥z∥

+dᾱ1λmax(J)∥z∥ + dᾱ2λmax(J)∥z∥2+dθ1 +dθ2∥z∥

≤ − c0∥z∥2 + dθ1 + dV2∥z∥ + dV1∥z∥2

≤ − (c0

2 − dV1)∥z∥2 + dθ1 + 1
2c0

d2
V2

≤ − k∥z∥2 + a < 0, ∀∥z∥ >
√
a/k. (B.57)

From (B.54) and (B.57) and by applying the LaSalle-Yoshizawa theorem, it
follows that z1, z2 and θ̃ are bounded and satisfy (B.49) under condition (B.47).
From (B.28) and Lemma 1 it follows that the control input u, where only quantized
states are measured, also is bounded. Thus, all signals in the closed loop system
are bounded. Tracking of the desired reference signal is achieved, with a bounded
tracking error given in (B.49). The value of a depends on the quantization parameters,
and higher values of the quantization intervals will increase a, and if there is no
quantization then a = 0.

B.4 Experimental Results

The proposed controller was simulated using MATLAB/Simulink and tested on the
Quanser Aero helicopter system, shown in Fig. B.2. This is a two-rotor laboratory
equipment for flight control-based experiments. The setup has a horizontal position
of the main thruster and a vertical position of the tail thruster, which resembles a
helicopter with two propellers driven by two DC motors. This is a MIMO system
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Figure B.2: Quanser Aero helicopter system with body coordinate frame.

Table B.1: Helicopter Parameters.

Symbol Value Units
J diag(0.0218, 0.0217, 0.0218) kgm2

m 1.075 kg
g 9.81 m/s2

rg
b [0 0 − 0.0038]⊤ m

B

1 0 0
0 0.0011 0.0011
0 −0.0014 0.00176

 Nm/V

with 2 DOF, and the helicopter can rotate around two axes where each input affects
both rotational directions. The body fixed coordinate frame is visualized in Fig.
B.2, and the inertial frame is coinciding with the body frame when q = [±1 0 0 0]⊤.
The mathematical model is described by (B.1) and (B.2), and the parameters
used for simulation and experiments are shown in Table B.1. The initial states
and estimated parameters were chosen as q(t0) = [1 0 0 0]⊤, ω(t0) = [0 0 0]⊤

and θ̂(t0) = [0 0.0070 0.0095]⊤ and the design parameters were set to C1 = 0.3I,
C2 = 0.15I and Γ = 0.02I. The objective was to track a sinusoidal signal where
rd = 0, pd = 40π/180 sin(0.1πt), yd = 100π/180 sin(0.05πt), given in Euler angles,
and converted to a quaternion, and see how the system was affected by quantization
of the states and validate the findings in Theorem 1. The quantization level for all
measured states were chosen as l = 2/2R, where R is number of bits transmitted in
the communication. The system was first tested with continuous states, then with
different values for R.

The results from the test with quantized states, where R = 7 are shown in Figs.
B.3-B.5, showing the states qQ, ωQ, the error in attitude and in angular velocity
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Figure B.3: The attitude qQ and the angular velocity ωQ from experiment.

ε̃Q, ωQ
e , and the input u(qQ,ωQ), respectively. The desired states are shown with

a dotted line and measured values from tests on the helicopter model are shown
with a solid line. Since we only have 2 motors on the helicopter model, the control
allocation matrix B, was chosen so that the input u1 = 0, and is not included in the
plot of the input in Fig. B.5.

The total tracking error ztrack was measured, where

ztrack =
∫ tf

t0
ε̃(τ)Q,⊤ε̃(τ)Qdτ, (B.58)

with t0 = 0 and tf = 50 s. The tracking errors for different values of R are shown
in Table B.2. For values R ≥ 9, the system does not show a big difference in
performance compared to when using continuous signals. A lower value for R is also
possible, and will require less data transmission, but with the cost of higher tracking
error and also with more chattering for the input.
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Figure B.5: The input u(qQ,ωQ) from experiment.

Table B.2: Tracking error for different quantization levels, l = 2/2R, from test on
helicopter model.

ztrack ωQ

εQ

R 7 8 9 cont.
7 0.0072 0.0075 0.0074 -
8 0.0043 0.0043 0.0044 -
9 0.0042 0.0039 0.0035 -

cont - - - 0.0035





          


B.5 Conclusion

In this paper, an adaptive backstepping control scheme is developed for attitude
tracking using quaternions where the states are quantized. The quantizer considered
satisfies a bounded condition and so the quantization error is bounded. With the use
of constructed Lyapunov functions, all signals in the closed loop system are shown
to be uniformly bounded and also tracking of a given reference signal is achieved.
Experiments support the proof. As illustrated in the experiment, it is possible to
reduce the communication burden over the network by including quantization and
still have a good performance, where a suitable quantization level must be chosen.
Actuators may reach their saturation level at some point, and this is a problem that
can be further looked into.
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Abstract

In this article, the adaptive attitude-tracking problem of a rigid body is investig-
ated, where the input and output are transmitted via a network. To reduce the
communication burden in a network, a quantizer is introduced in both uplink and
downlink communication channels. An adaptive backstepping-based control scheme
is developed for a class of multiple-input and multiple-output (MIMO) rigid body
systems. The proposed control algorithm can overcome the difficulty to proceed
with the recursive design of virtual controls with quantized output vector and a
new approach to stability analysis is developed by constructing a new compensation
scheme for the effects of the vector output quantization and input quantization.
It is shown that all closed-loop signals are ensured uniformly bounded and the
tracking errors converge to a compact set containing the origin. Experiments on a
2 degrees-of-freedom helicopter system illustrate the effectiveness of the proposed
control scheme.

Nomenclature

d(·) Quantization error related to (·).

e Tracking error, quaternion.

f i
g Gravitational force, expressed in i frame.

g Gravitational acceleration.

g(q) Moment caused by the gravitational force.

G Error kinematics matrix.





       

I Identity matrix.

J Inertia matrix about the origin o, decomposed in the b frame.

k(·) Positive constant related to (·).

k Euler axis.

l Length of quantization interval.

m Mass of the rigid body.

q Attitude.

qa,b Unit quaternion q in b frame relative to a frame.

rb
g Distance from the origin to the center of mass, decomposed in the b frame.

Rb
a Rotation matrix from frame a to frame b.

R Number of bits.

S(a)b Cross product operator × between two vectors a and b, where S is skew-
symmetric.

T ,Ψ,Φ Known nonlinear functions of q and ω.

u Control input.

V Lyapunov function candidate.

τd External disturbance.

δ(·) Maximum bounded value for d(·).

ε Imaginary parts of a unit quaternion.

η Real part of a unit quaternion.

θ Unknown constant vector.

λmax(·) Maximum eigenvalue of the matrix (·).

λmin(·) Minimum eigenvalue of the matrix (·).

υ Euler angle.

ω Angular velocity.

ωc
b,a Angular velocity of frame a relative to frame b, expressed in frame c.





           


Rn Set of real numbers, dimension n.

S3 The non-Euclidean three-sphere.

(·)Q Quantized signal of (·).

∥·∥ The L2-norm and induced L2-norm for vectors and matrices, respectively.

Vectors are denoted by small bold letters and matrices with capitalized bold letters.

C.1 Introduction

Attitude control of rigid bodies has been widely addressed in the literature, see e.g.
[1–9], and with applications in marine systems in [10], unmanned aerial vehicles
(UAVs) in [11], helicopters in [12], underwater vehicles in [13], and other robotic
systems. Rigid body systems are utilized in numerous important applications such as
transportation [14], inspection [15], search and rescue [16] and remote sensing [17]. In
[6], a robust adaptive controller is proposed for the attitude tracking problem of rigid
bodies in the presence of uncertain parameters and where the attitude is represented
by rotation matrices. In [7], an adaptive attitude tracking controller is developed
for rigid body systems in the presence of unknown inertia and gyro-bias. In [8], an
adaptive controller is proposed for a leader-following attitude consensus problem
for multiple rigid body systems subject to jointly connected switching networks in
the presence of uncertain parameters. In [9], an adaptive backstepping controller is
proposed for the trajectory tracking of a rigid body with unknown mass and inertia
based on dual-quaternions. Chen et al. [11] proposed a robust nonlinear controller
for quadrotor UAVs, which combines the sliding-mode control technique and the
backstepping control technique. In [12], adaptive backstepping control is proposed
for pitch and yaw control of a 2 degrees-of-freedom (DOF) helicopter system. Yan
and Yu [13] investigated the sliding mode tracking control of underwater vehicles.

Quantized control has attracted considerable attention in recent years, due to its
theoretical and practical importance in practical engineering, where digital processors
are widespread used and signals are required to be quantized and transmitted via a
common network to reduce the communication burden. However, most of the works
on quantized feedback control are concerned with either input quantization [18–25]
or state quantization [26, 27].

In practice, it is common that both the inputs and the states of rigid bodies
are quantized due to actuator and sensor limitations. Control of rigid bodies with
quantized signals is a potential problem and has received attention with a demand
on stability and reliability. For example, the remote control of a group of vehicles or
robots, where the signals are transmitted over a shared network using quantization





       

techniques. Attitude stabilization with input quantization is investigated in [28]
using a fixed-time sliding mode control. Trajectory tracking control for autonomous
underwater vehicles with the effect of quantization is investigated in [13] using a
sliding mode controller, where the considered systems are completely known. In [29],
adaptive tracking control is proposed for underactuated autonomous underwater
vehicles with input quantization.

Uncertainties and non-linearities always exist in many practical systems. Research
on adaptive control of rigid bodies with either input quantization or state quantization
using backstepping technique has received attention, see for examples, [29–31]. In
[30], an adaptive backstepping control scheme with quantized inputs is presented
for a 2 DOF helicopter system, considering a uniform quantizer. In [29], adaptive
backstepping is investigated for tracking control for under-actuated autonomous
underwater vehicles with input quantization. An adaptive backstepping controller is
proposed for formation tracking control for a group of UAVs with quantized inputs
in [31]. Actually, the above cited attitude control approaches do not consider the
problem which takes both the input quantization and state quantization into account.

In this article, we aim to solve the attitude tracking of uncertain nonlinear rigid
body systems with both input and output quantization. The system is modeled
as a nonlinear multiple-input-multiple-output (MIMO) system, with challenges in
controller design due to its nonlinear behavior, its cross coupling effect between
inputs and outputs, and with uncertainties both in the model and the parameters.
A uniform quantization is used for signals in order to reduce the communication
burden. A new backstepping based adaptive controller and a new approach to
stability analysis are proposed. The full state vector is considered in the stability,
that is often forgotten for quaternion based attitude control, where the scalar part
of the quaternion is left out. The proposed method is tested on a 2 DOF helicopter
system from Quanser. It is analytically shown how the choice of quantization level
affects the tracking performance, where a higher quantization level increases the
tracking error. The experiments on the helicopter system illustrate the proposed
scheme.

With aforementioned features, the main contributions of this paper are summar-
ized as follows.

• As far as we are concerned, this is the first work which solves the adaptive
control problem for rigid body systems with unknown parameters and with both
input and output quantization, where a bounded type of quantizer is considered,
meanwhile guaranteeing that the attitude error and velocity error will converge
to a compact set. Compared with [24] where only input quantization is
considered, and [27] where only state quantization is considered, this research
studies both input and output quantization problem. The main challenge is that





           


the designed controller and virtual controls can only utilize quantized states and
both the effects of input and output quantization introduce numerous residual
terms that need to be dominated. Additionally, the quantization causes discrete
phenomenons which complicates the controller design and stability analysis.
To overcome this difficulty, differentiable virtual controls are firstly designed
by assuming that the system has no quantization. Their partial derivatives
multiplied by the quantized signals are then utilized to complete the design of
virtual controls for the case with quantized input and output.

• Compared to backstepping control of single-input-single-output (SISO) systems
with either input or state quantization in [23–25, 27, 32], this paper considers
MIMO uncertain systems with both input and output quantization. The
challenge is that the control problem becomes more complicated for MIMO
systems due to the coupling among various inputs and outputs. It becomes
even more difficult to deal with when there exist uncertain parameters in the
coupling matrix and both inputs and outputs are quantized. To overcome the
difficulty, a new backstepping based adaptive controller and a new approach
to stability analysis are proposed, where the effects of both output and input
quantization are compensated for.

C.2 Rigid Body Dynamical Model and Problem
Formulation

C.2.1 Attitude Dynamics

The attitude of a rigid body can be represented by e.g. Euler angles in [13, 30],
(modified) Rodrigues parameters, rotation matrices in [3, 6] or quaternions in [4,
7, 9], where each representation has different properties. Any three-parameter
representations have some kind of singularity, where e.g. Euler angles (roll-pitch-yaw)
have kinematic singularities since it is not possible to describe the angular velocity for
all angles, and with the potential problem of gimbal lock. Practical applications are
often represented by unit quaternions, since this has a nonsingular parameterization.
With a desire of a singularity-free representation of the attitude, which is important
for agile systems, unit quaternions are used in this paper.

We describe the orientation of a rigid body in the body frame b, relative to
an inertial frame i, by a unit quaternion, q = [η, ε1, ε2, ε3]⊤ = [η, ε⊤]⊤ ∈ S3 =
{x ∈ R4 : x⊤x = 1}, that is a complex number, where η = cos(υ/2) ∈ R and
ε = k sin(υ/2) ∈ R3. Considering a fully actuated rigid body, the equations of





       

motion for the attitude dynamics are defined as

q̇ = T (q)ω, (C.1)

Jω̇ = Ψ(q,ω) + Φ(ω)θ + Bu, (C.2)

where the angular velocity ωb
i,b = ω ∈ R3, the inertia matrix J = diag(Jx, Jy, Jz) ∈

R3×3 and is positive definite, the unknown constant vector θ ∈ R3, the control
allocation matrix B ∈ R3×3, the control input u ∈ R3, and where

T (q) = 1
2

 −ε⊤

ηI + S(ε)

 ∈ R4×3, (C.3)

Ψ(q,ω) = −S(ω)(Jω) − g(q) ∈ R3, (C.4)

Φ(ω) = diag(−ω) ∈ R3×3, (C.5)

g(q) = −S(rb
g)Rb

if
i
g, (C.6)

where f i
g = [0 0 −mg]⊤, and the matrix S(·) is the skew-symmetric matrix given by

S(ε) =


0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

 . (C.7)

If rb
g = 0 =⇒ g(q) = 0 and the rotation is about the center of mass. In applica-

tions, such as underwater vehicle dynamics, the equations of motion is described by
a rotation about a point o, that is not the center of mass [33].
The orientation between two frames can be described by a rotation matrix given as

R(q) = I + 2ηS(ε) + 2S2(ε), (C.8)

and the rotation matrix R ∈ SO(3) that is a special orthogonal group of order 3,
and has the property

SO(3) = {R ∈ R3×3 : R⊤R = I, det(R) = 1}. (C.9)

The derivative of a rotation matrix can be expressed as [33]

Ṙa
b = Ra

b S(ωb
a,b) = S(ωa

a,b)Ra
b . (C.10)

Attitude and angular velocities are assumed to be measurable after quantization,
and for the control allocation matrix it is assumed that det(B) ̸= 0, i.e. the matrix
is invertible.
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Figure C.1: Control system with quantization over a network.

C.2.2 Problem Statement

We consider a control system as shown in Fig. C.1, where the outputs ε,ω and input
u are quantized at the encoder side to be sent over the network. It is noted that
q = [η, ε⊤]⊤. To reduce the communication burden, we have limited the feedback
part of the quaternion to only contain ε, as η can be reconstructed due to the unity
of the quaternion. The network is assumed noiseless, so that the quantized output
signals εQ,ωQ are recovered and sent to the controller, and the quantized input
signal uQ(t) is recovered and sent to the plant.

Only the quantized output εQ,ωQ are measured, and the quantized value of η is
calculated as

ηQ = ±
√

1 − (εQ)⊤εQ, (C.11)

to ensure that the property of unit quaternion, (qQ)⊤qQ = 1, is fulfilled, where the
quantized attitude is given by qQ = [ηQ, (εQ)⊤]⊤.

Remark 1. If the state variable η is quantized and sent over the network, we can not
ensure that qQ is a unit quaternion, and a correction/scaling will be needed to ensure
this. Since ηQ can be calculated based on the value of εQ and knowledge of the sign
of η(t0) and the assumption of sign continuity of η(t) based on derivative, we can do
the calculation after the network communication. This will also save bandwidth by
sending less data over the network.

Remark 2. If we are close to, or at η = 0, we might end up with (εQ)⊤εQ > 1, and
a scaling is needed to ensure we have a unit quaternion.

Let qi,d = qd, ωi
i,d = ωd, be the desired attitude and angular velocity. The

control objective is to design a control law for u(t) = u(qQ,ωQ) by utilizing only
quantized outputs qQ(t) and ωQ(t) to ensure that qQ(t) → qd(t) and ωQ(t) → ωQ

i,d(t)





       

as t → ∞, where the kinematic equation

q̇d = T (qd)ωd
i,d = 1

2

 −ε⊤
d

ηdI − S(εd)

ωd, (C.12)

is satisfied, and where all the signals in the closed-loop system are uniformly bounded.
To achieve the objective, the following assumptions are imposed.

Assumption 1. The desired attitude qd(t), the desired angular velocity ωd(t) and
the desired angular acceleration ω̇d(t) are known, piecewise continuous and bounded
functions, that is, there exist kωd

, kω̇d
> 0 such that ∥ωd(t)∥ < kωd

and ∥ω̇d(t)∥ <
kω̇d

∀t ≥ t0.

Assumption 2. The unknown parameter vector θ is bounded by ∥θ∥ ≤ kθ, where kθ

is a positive constant. Also θ ∈ Cθ, where Cθ is a known compact convex set.

C.2.3 Quantizer

The quantizer considered in this paper has the following property

|yQ − y| ≤ δy, (C.13)

where y is a scalar signal and δy > 0 denotes the quantization bound. A uniform
quantizer is chosen, which has intervals of fixed length and is defined as follows:

yQ =

 yi sgn(y), yi − l
2 < |y| ≤ yi + l

2

0, |y| ≤ y0
, (C.14)

where y0 > 0, y1 = y0 + l
2 , yi+1 = yi + l, l > 0 is the length of the quantization

interval, sgn(y) is the sign function. The uniform quantization yQ ∈ U = {0,±yi},
and a map of the quantization for yi > 0 is shown in Fig. C.2. Clearly, the property
in (C.13) is satisfied with δy = max{y0,

l
2}.

When a vector is quantized, we have

yQ =
[
yQ

1 yQ
2 · · · yQ

n

]⊤
, (C.15)

and so each vector element is bounded by (C.13), and we have ∥yQ − y∥ = ∥dy∥ ≤
∥δy∥ ∆= δy.

Other bounded quantizers such as hysteresis-uniform quantizer and logarithmic-
uniform quantizer as presented in [27] can also be considered.

Remark 3. Communication in a network only has to occur when the quantization
levels change. Thus, a higher value for length of the quantization intervals requires
less data transmission.
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Figure C.2: Map of the uniform quantizer for y > 0.

C.3 Controller Design

In this section we will design adaptive feedback control laws for the rigid body using
backstepping technique.

C.3.1 Without Quantization

We first consider the case that the output and input are not quantized. For our
model, two steps are included, where the control signal is designed in the last step.
We begin with a change of coordinates to the error variables. The tracking error e is
defined by the quaternion product

e = q̄i,d ⊗ qi,b =
η̃
ε̃

=
 ηdη + ε⊤

d ε

ηdε − ηεd − S(εd)ε

 ∈ S3, (C.16)

where q̄ = [η − ε⊤]⊤ is the inverse rotation given by the complex conjugate. If
qi,b = qi,d then e = [±1 0⊤

3 ]⊤, where 0⊤
3 is the zero vector of dimension three. Because

there exist two different equilibria using quaternion coordinates, global stability can
not be achieved, even though e and −e represent the same physical attitude [2]. We
include one further assumption as follows.

Assumption 3. We assume that sgn(η̃(t0)) = sgn(η̃(t)) ∀t ≥ t0.

Remark 4. Assumption 3 is imposed to avoid the problem when the attitude error
is close to E = {e ∈ S3 : η̃ = 0}.





       

The relative error kinematics is

ė = T (e)ωe, (C.17)

where T (·) is defined in (C.3) and the angular velocity error is

ωe = ω − Rb
iωd. (C.18)

Following the backstepping design procedure, the change of coordinates are introduced
as

z1± =
1 ∓ η̃

ε̃

 , z2 = ωe − α, (C.19)

where z1+ is the equilibrium point when η̃(t0) ≥ 0 and z1− is the equilibrium point
when η̃(t0) < 0 and where α is a virtual controller designed in step 1 as

α = −C1Gz1±, (C.20)

where C1 ∈ R3×3 is a positive definite matrix and

G(e)⊤ ∆=
 ±ε̃⊤

η̃I + S(ε̃)

 ∈ R4×3,

ż1± = 1
2G⊤ωe = −1

2G⊤C1Gz1± + 1
2G⊤z2. (C.21)

For ease of notation we denote z1 = z1± further in the paper. In step 2, the final
controller u(t) and parameter update law ˙̂

θ are designed as

u = B−1
[

− Gz1 − C2z2 − Φθ̂ − Ψ − J
(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

)]
, (C.22)

˙̂
θ = ΓΦz2, (C.23)

where C2 ∈ R3×3 and Γ ∈ R3×3 are positive definite matrices. We choose a Lyapunov
function candidate as

V (z1, z2, θ̃, t) = z⊤
1 z1 + 1

2z⊤
2 Jz2 + 1

2 θ̃⊤Γ−1θ̃, (C.24)

where θ̂ is the estimated value of θ, and the unknown parameter error is θ̃ = θ − θ̂.
The derivative of V can be computed as

V̇ = z⊤
1 G⊤z2 − z⊤

1 G⊤C1Gz1 + z⊤
2

[
Φθ + Ψ + Bu + J

(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

)]
− θ̃⊤Γ−1 ˙̂

θ





           


= − z⊤
1 G⊤C1Gz1 − z⊤

2 C2z2. (C.25)

By applying the LaSalle-Yoshizawa theorem [34], it follows that all signals are
uniformly bounded and asymptotic tracking is achieved as (z1(t), z2(t)) → (0,0) as
t → ∞. The angular velocity error and the angular velocity are bounded by

∥ωe∥ ≤ ∥z2∥ + λmax(C1)∥G∥∥z1∥ ≤
[
1 + λmax(C1)

]
∥z∥

∆= kωe∥z∥, (C.26)

∥ω∥ ≤ ∥ωe + Rb
iωd∥ ≤ kωe∥z∥ + ∥Rb

i∥∥ωd∥

≤ kωe∥z∥ + kωd
, (C.27)

where z = [z⊤
1 , z

⊤
2 ]⊤.

C.3.2 Quantized Input and Output

When the outputs ε and ω and input u are quantized with the property (C.13), we
have

|εk
Q − εk| ≤ δεk

, k = 1, 2, 3, (C.28)

|ωk
Q − ωk| ≤ δωk

, k = 1, 2, 3, (C.29)

|uQ
k − uk| ≤ δuk

, k = 1, 2, 3. (C.30)

The quantization error of the quaternion can be expressed as

dq = q̄i,b ⊗ qi,Q =
dη

dε

 =
 ηηQ + ε⊤εQ

ηεQ − ηQε − S(ε)εQ

 , (C.31)

where dε is the quantization error and bounded by ∥dε∥ ≤ kε∥δε∥ from (C.28) and
where kε > 1 is a positive constant, and dη is bounded from the unity property of
unit quaternion. If qQ = q and there is no quantization error, then dq = [1 0 0 0]⊤.
The tracking error with the quantized value of the unit quaternion, eQ, is given by

eQ =
η̃Q

ε̃Q

 =
 ηdη

Q + ε⊤
d εQ

ηdεQ − ηQεd − S(εd)εQ

 , (C.32)

and can also be described by

eQ = qd,b ⊗ qb,Q = e ⊗ dq =
 η̃dη − ε̃⊤dε

dηε̃ + η̃dε + S(ε̃)dε


=
 η̃Q

ε̃ + (dη − 1)ε̃ + η̃dε + S(ε̃)dε

 ∆=
 η̃Q

ε̃ + dε̃

 , (C.33)





       

where the value of dε̃ depends on the quantization error that is bounded by (C.28).
If there is no quantization error, dε̃ = 0.
The quantized angular velocity ωQ is expressed as

ωQ = ω + dω, (C.34)

where dω is the quantization error and is bounded by ∥dω∥ ≤ ∥[δω1 δω2 δω3 ]⊤∥ =
∥δω∥ ∆= δω from (C.29).
To propose a suitable control scheme, the quantized input uQ(t) is decomposed into
two parts

uQ(t) =u(t) + du(t), (C.35)

where du is the quantization error of the input, which is bounded by ∥du∥ ≤
∥[δu1 δu2 δu3]⊤∥ = ∥δu∥ ∆= δu, from (C.30).
The adaptive controller is designed as

uQ(t) = Q(u), (C.36)

u(t) =B−1
[
− GQzQ

1 −C2z
Q
2 −ΦQθ̂−ΨQ−J

(
S(ωQ)RQ

i ωd−RQ
i ω̇d−ᾱQ

)]
, (C.37)

˙̂
θ = Proj{ΓΦQzQ

2 }, (C.38)

where Proj{·} is the projection operator given in [34], and

zQ
1 =

1 ∓ η̃Q

ε̃Q

 , (C.39)

zQ
2 = ωQ

e − αQ, (C.40)

G(eQ)⊤ =
 ±(ε̃Q)⊤

η̃QI + S(ε̃Q)

 , (C.41)

αQ = −C1G
QzQ

1 = ∓C1ε̃
Q, (C.42)

ΨQ = − S(ωQ)(JωQ) − g(qQ), (C.43)

ΦQ = diag(−ωQ), (C.44)

g(qQ) = − S(rb
g)RQ

i f i
g, (C.45)

ᾱQ ∆= ∓1
2C1

[
η̃QI + S(ε̃Q)

]
ωQ

e , (C.46)

ωQ
e = ωQ − RQ

i ωd, (C.47)

RQ
i = RQ

b Rb
i , (C.48)





           


where RQ
b is the rotation due to the quantization error. It is noted that the following

manipulation is used in (C.42).

GQzQ
1 =±ε̃Q−η̃Qε̃Q+ε̃Qη̃Q+(S(ε̃)Q)⊤ε̃Q =±ε̃Q. (C.49)

Remark 5. The projection operator Proj{·} in (C.38) ensures that the estimates
and estimation errors are nonzero and within known bounds, that is ∥θ̂∥ ≤ kθ and
∥θ̃∥ ≤ kθ, and has the property −θ̃⊤Γ−1Proj(τ ) ≤ −θ̃⊤Γ−1τ , which are helpful to
guarantee the closed-loop stability.

Remark 6. Only the quantized output can be used in the designed controller. Since
the quantized output is used in the design of the virtual controller αQ in (C.42), the
derivative of the virtual controller is discontinuous and can not be used in the design
of the controller. Instead, a function ᾱQ is used in (C.46), which is designed as if
the output is not quantized.

C.4 Stability Analysis

To analyze the closed-loop system stability, we first establish some preliminary results
as stated in the following lemma.

Lemma 1. The effects of output quantization are bounded by the following inequalit-
ies:

(i) ωQ
e ≤ ωe + δωe , (C.50)

(ii) zQ
2 ≤ z2 + δz2 , (C.51)

(iii) ∥Gz1 − GQzQ
1 ∥ ≤ δz1 , (C.52)

(iv) ∥RQ
i − Rb

i∥ ≤ δR, (C.53)

(v) ∥Ψ−ΨQ∥ ≤ δΨ1 + δΨ2∥z∥, (C.54)

(vi) ∥S(ω)Rb
i −S(ωQ)RQ

i ∥≤ δS1 + δS2∥z∥, (C.55)

(vii) ∥ᾱQ−α̇∥ ≤ δᾱ1 + δᾱ2∥z∥, (C.56)

(viii) ∥Φ − ΦQ∥ ≤ δω. (C.57)

Proof: With the use of (C.8), (C.31), (C.34), (C.47), and (C.48), we have

ωQ
e = ω + dω − RQ

b Rb
iωd

≤ ωe +
([

2dηS(dε) − 2S2(dε)⊤
]
Rb

iωd + δω

)
≤ ωe +

(
2kε

[
S(δε) + S2(δε)

]
Rb

iωd + δω

)
∆= ωe + δωe . (C.58)





       

Using (C.28), (C.40), (C.42), and (C.50), we have

zQ
2 ≤ ωe + δωe±C1ε̃

Q

≤ ωe + δωe − α±C1dε̃

≤ z2 + (δωe + C1kεδε) ∆= z2 + δz2 . (C.59)

From the definition in (C.33) and the fact that Gz1 = ±ε̃ and GQzQ
1 = ±ε̃Q, it is

shown that

∥Gz1 − GQzQ
1 ∥ = ∥±ε̃ − (±ε̃Q)∥ ≤ ∥dε̃∥ ≤ ∥kεδε∥

∆= δz1 . (C.60)

By using (C.31) and (C.48) and the property of (C.8) and (C.9), we have

∥RQ
i − Rb

i∥ = ∥RQ
b Rb

i − Rb
i∥ = ∥(RQ

b − I)Rb
i∥

≤ ∥−2dηS(dε) + 2S2(dε)⊤∥∥Rb
i∥

≤ 2
[
kε∥δε∥ + k2

ε∥δε∥2
]

∆= δR. (C.61)

Using (C.4), (C.13), (C.31), (C.34), (C.43), (C.45), and (C.48), together with the
property of (C.8) and Assumption 1, we have

∥Ψ − ΨQ∥ ≤ ∥−S(ω)(Jω)+S(ω+dω)(J(ω+dω))+S(rb
g)Rb

if
i
g −S(rb

g)RQ
i f i

g∥

≤
[
λmax(J)

(
2kωd

∥δω∥ + ∥δω∥2
)

+ ∥rb
g∥δRmg

]
+
[
2λmax(J)∥δω∥kωe

]
∥z∥

∆= δΨ1 + δΨ2∥z∥. (C.62)

By using (C.8), (C.27), (C.31), (C.34), (C.48) and (C.61), we have

∥S(ω)Rb
i −S(ωQ)RQ

i ∥ ≤ ∥−S(ω)[−2dηS(dε)+2S2(dε)⊤]Rb
i −S(dω)RQ

i ∥

≤ ∥ω∥δR+∥δω∥

≤ (kωd
δR+δω) + (kωeδR)∥z∥ ∆= δS1 + δS2∥z∥. (C.63)

By using (C.20), (C.26) (C.42), (C.46), and (C.50), we have

∥ᾱQ − α̇∥ = ∥1
2C1

[
∓[η̃QI + S(ε̃Q)]ωQ

e − [∓[η̃I + S(ε̃)]]ωe

]
∥

≤ 1
2λmax(C1)

(
2∥ωe∥ + ∥δωe∥

)
≤ λmax(C1)(

1
2∥δωe∥ + kωe∥z∥) ∆= δᾱ1 + δᾱ2∥z∥. (C.64)

From (C.5), (C.34) and (C.44), we have

∥Φ − ΦQ∥ ≤ ∥diag(−ω) − diag(−ω − dω)∥ ≤ ∥δω∥ = δω. (C.65)





           


We state our main results in the following theorem.

Theorem 1. Considering the closed-loop adaptive system consisting of the plant
(C.1)-(C.2) with output and input quantization satisfying the bounded properties
(C.28)-(C.30), the adaptive controller (C.36)-(C.37), the update law (C.38) and
Assumptions 1-3. If the gain matrices C1 and C2 and quantization parameters δε,
δω and δu are chosen to satisfy

c0

2 − δV1 ≥ k > 0, (C.66)

where c0 is the minimum eigenvalue of C0 = min{G⊤C1G,C2}, k is a positive
constant, and δV1 is defined as

δV1 = δΨ2 + δS2λmax(J)kωd
+ δᾱ2λmax(J), (C.67)

then, all signals in the closed loop system are ensured to be uniformly bounded. The
error signals will converge to a compact set, i.e.,

∥z(t)∥ ≤
√
δQ

k
, (C.68)

where

δQ = δθ1 + 1
2c0

δ2
V2 , (C.69)

δθ1 = kθδω∥δz2∥ + kθ∥δz2∥kωd
, (C.70)

δV2 = λmax(C2)∥δz2∥ + δz1 + δΨ1 + δS1λmax(J)kωd
+ δRλmax(J)kω̇d

+ δᾱ1λmax(J)

+ δθ2 + δBu, (C.71)

δθ2 = kθδω + kθkωe∥δz2∥. (C.72)

Proof: Consider the Lyapunov function candidate

V (z, θ̃, t) = z⊤
1 z1 + 1

2z⊤
2 Jz2 + 1

2 θ̃⊤Γ−1θ̃. (C.73)

Following (C.36)-(C.38), the derivative of (C.73) is given as

V̇ = z⊤
1 G⊤z2−z⊤

1 G⊤C1Gz1+z⊤
2

[
Φθ + Ψ + BuQ +J

(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

)]
− θ̃⊤Γ−1 ˙̂

θ

≤ − z⊤
1 G⊤C1Gz1 − z⊤

2 C2z
Q
2 + z⊤

2 (Gz1 − GQzQ
1 ) + z⊤

2 (Ψ − ΨQ)

+ z⊤
2 J(S(ω)Rb

i − S(ωQ)RQ
i )ωd + z⊤

2 J
(
RQ

i − Rb
i

)
ω̇d + z⊤

2 J(ᾱQ − α̇)

+ z⊤
2 Bdu +

[
z⊤

2 (Φθ − ΦQθ̂) − θ̃⊤ΦQzQ
2

]
. (C.74)





       

Using (C.30), the term containing the quantization error from the input in (C.74)
satisfies

z⊤
2 Bdu ≤∥z2∥∥B∥δu ≤ δu∥B∥∥z∥ ∆= δBu∥z∥. (C.75)

By using (C.5), (C.34), (C.38), (C.44), (C.51), (C.27) and Assumption 2, the last
terms in (C.74) satisfy the inequality

z⊤
2 (Φθ − ΦQθ̂) − θ̃⊤ΦQzQ

2 = θ⊤Φz2 − θ⊤ΦQz2 + θ̃⊤ΦQz2 − θ̃⊤ΦQzQ
2

≤ ∥θ∥∥Φ − ΦQ∥∥z2∥ + ∥θ̃∥∥ΦQ∥∥z2 − zQ
2 ∥

≤ kθδω∥z∥+kθ(∥ω∥+∥δω∥)∥δz2∥

≤ (kθδω∥δz2∥+kθ∥δz2∥kωd
)+(kθδω+kθkωe∥δz2∥)∥z∥

∆= δθ1 + δθ2∥z∥. (C.76)

By using Young’s inequality, the properties in Lemma 1, (C.75), (C.76) and Assump-
tion 1, (C.74) becomes

V̇ ≤ −z⊤
1 G⊤C1Gz1−z⊤

2 C2z2 + λmax(C2)∥δz2∥∥z∥ + δz1∥z∥ + δΨ1∥z∥ + δΨ2∥z∥2

+ δS1λmax(J)kωd
∥z∥ + δS2λmax(J)kωd

∥z∥2+δRλmax(J)kω̇d
∥z∥+δBu∥z∥

+δᾱ1λmax(J)∥z∥ + δᾱ2λmax(J)∥z∥2+δθ1 +δθ2∥z∥

≤ − c0∥z∥2 + δθ1 + δV2∥z∥ + δV1∥z∥2

≤ − (c0

2 − δV1)∥z∥2 + δθ1 + 1
2c0

δ2
V2

≤ − k∥z∥2 + δQ < 0, ∀∥z∥ >
√
δQ/k. (C.77)

From (C.73) and (C.77) and by applying the LaSalle-Yoshizawa theorem, it follows
that z1, z2 and θ̃ are bounded and satisfy (C.68) under condition (C.66). From
(C.37) and Lemma 1, it follows that the control input u, where only the quantized
output is measured, also is bounded. Thus, all signals in the closed loop system
are bounded. Tracking of the desired reference signal is achieved, with a bounded
tracking error given in (C.68).

Remark 7. The value of δQ depends on the quantization parameters, and higher
values of the quantization intervals will increase δQ. If there is no quantization,
δQ = 0. In principle, the quantization level can be chosen arbitrarily as long as the
inequality (C.66) is satisfied, where δV1 depends on the quantization parameters δω

and δε, and c0 depends on the control design parameters. Therefore, (C.66) provides
some insights on how to choose these quantization parameters.

Next, we consider the case where external disturbances τd, assumed unknown





           


but bounded by ∥τd∥ ≤ kτd
, are present to the system, and the attitude dynamics

are described by

Jω̇ = Ψ(q,ω) + Φ(ω)θ + Bu + τd. (C.78)

Corollary 1. Let Assumptions 1-3 hold. Consider the closed-loop adaptive system
consisting of the plant (C.1), (C.78) with output and input quantization satisfying
the bounded properties (C.28)-(C.30), the adaptive controller (C.36)-(C.37) and
the update law (C.38). Choosing the gain matrices C1 and C2 and quantization
parameters δε, δω and δu to satisfy (C.66), all signals in the closed loop system are
ensured to be uniformly bounded. The error signals will converge to a compact set,
i.e.,

∥z(t)∥ ≤
√
δQdist

k
, (C.79)

where

δQdist = δθ1 + 1
2c0

(δV2 + kτd
)2. (C.80)

The proof follows along the same lines as the proof of Theorem 1.

Remark 8. The proposed control method considered in this paper needs information
of all system states, which is reasonable for rigid body systems where the attitude and
the angular velocity are measured by sensors. If some states are not available, an
observer will be needed. Another limitation is that only a bounded type of quantizer
is considered in this paper, where the quantization error is bounded. The proposed
method can be extended to compensate for unbounded quantization error caused by
the logarithmic or hysteresis quantizers.

C.5 Experimental Results

The proposed controller was tested on the Quanser Aero helicopter system, shown
in Fig. C.3. This is a two-rotor laboratory equipment for flight control-based
experiments. The setup has a horizontal position of the main thruster and a vertical
position of the tail thruster, which resembles a helicopter with two propellers driven
by two DC motors. This is a MIMO system with 2 DOF, and the helicopter can
rotate around two axes where each input affects both rotational directions. The body
fixed coordinate frame is visualized in Fig. C.3, and the inertial frame is coinciding
with the body frame when q = [±1 0 0 0]⊤. The mathematical model is described
by (C.1) and (C.2), and the parameters used for simulation and experiments are
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Figure C.3: Quanser Aero helicopter system with body coordinate frame.

Table C.1: Helicopter Parameters.

Symbol Value Units
J diag(0.0218, 0.0217, 0.0218) kgm2

m 1.075 kg
g 9.81 m/s2

rg
b [0 0 − 0.0038]⊤ m

B

1 0 0
0 0.0011 0.0011
0 −0.0014 0.00176

 Nm/V

shown in Table C.1. The initial states and estimated parameters were chosen as
q(t0) = [1 0 0 0]⊤, ω(t0) = [0 0 0]⊤ and θ̂(t0) = [0 0.0070 0.0095]⊤, where t0 defines
the start of experiment, and the design parameters were set to C1 = 0.3I, C2 = 0.15I

and Γ = 0.02I.

The objective was to track a sinusoidal signal where rd = 0, pd = 40π/180 sin(0.1πt),
yd = 100π/180 sin(0.05πt), given in Euler angles, that was converted to a quaternion,
and also to track the angular velocities as given in (C.12), and see how the system
was affected by quantization of the output and the input. The inputs have limits
of ± 24 V. The length of the quantization interval for the outputs were chosen as
lεk

= lωk
= 2/(2R − 1), k = 1, 2, 3, and for the inputs luk

= 48/(2R − 1), k = 1, 2, 3,
where R is number of bits transmitted in the communication. The system was tested
with different values for R. The performance of the proposed control system was
also tested subject to an external disturbance, where we set a fan to blow wind at
the helicopter system.
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Figure C.4: Error in attitude ε̃, from experiment, without quantization.

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-0.2

-0.1

0

0.1

0.2

Figure C.5: Angular velocity error ωe, from experiment, without quantization.

C.5.1 Results

The results from test without quantization are shown in Figs. C.4–C.6, showing the
error in attitude ε̃, the error in angular velocity ωe, and the input u, respectively.
From Figs. C.4 and C.5, tracking of the desired reference signals are achieved and
the tracking errors are bounded. The value of ε̃(·) is within [−0.02 + 0.02], that
corresponds to an error of about ±0.04 rad or ±2.3 deg in Euler angles. The input
signal in Fig. C.6 is also bounded.

The system was then tested with quantized output and input. We tested with
different values for R, and plots for quantization levels chosen as R = 8 for the output,
and R = 6 for the input, are shown in Figs. C.7–C.11, showing the outputs qQ and
ωQ, the error in attitude ε̃Q, the error in angular velocity ωQ

e and the input uQ,
respectively. The desired states are shown with a dotted line, and measured values
from tests on the helicopter model are shown with a solid line. The results show that
tracking is achieved and that all signals are uniformly bounded, in accordance with
the findings of Theorem 1.

Next, an external disturbance was added to the system in form of wind, where
the input and outputs were quantized. Figs. C.12–C.14 show the attitude error ε̃Q,
the angular velocity error ωQ

e and the input uQ, respectively. As can be seen from
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Figure C.6: Inputs u2 and u3 from experiment, without quantization.
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Figure C.7: Attitude qQ from experiment with quantization.
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Figure C.8: Angular velocity ωQ from experiment with quantization.
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Figure C.9: Error in attitude ε̃Q from experiment with quantization.
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Figure C.10: Angular velocity error ωQ
e from experiment with quantization.
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Figure C.11: Inputs uQ
2 and uQ

3 from experiment with quantization.
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Figure C.12: Error in attitude ε̃Q from experiment with external disturbance.
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Figure C.13: Angular velocity error ωQ
e from experiment with external disturbance.

the plots, the errors in attitude and angular velocity are kept close to zero during
tracking of the reference signals in presence of an external disturbance.
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Figure C.14: Inputs uQ
2 and uQ

3 from experiment with external disturbance.





           


Table C.2: Tracking error for different quantization levels

ztrack ×10−4 Output εQ, ωQ with ls = 2/(2R − 1)

Input
uQ

with
lu = 48/(2R − 1)

R 8 9 10 cont.
6 49 51 38 38
7 43 40 37 40
8 45 40 39 45
9 45 40 40 43
10 47 40 39 38

cont 43 35 34 35

Table C.3: Total energy use for different quantization levels

utotal Output εQ, ωQ with ls = 2/(2R − 1)

Input
uQ

with
lu = 48/(2R − 1)

R 8 9 10 cont.
6 8042 8168 7884 7945
7 7881 7935 7897 8023
8 8095 7895 7898 8017
9 8055 7857 7959 8034
10 8121 7970 7892 7899

cont 8147 7854 7767 7980

C.5.2 Comparing Results

To compare the results with and without quantization, the total tracking error, ztrack,
and the total use of energy, utotal, were measured, where

ztrack =
∫ tf

t0
(ε̃Q)⊤ε̃Qdτ, utotal =

∫ tf

t0
(uQ)⊤uQdτ, (C.81)

where t0 and tf define start and end of experiment, respectively. The experiments
were run for 50 s. The tracking error and total use of energy for different values of
R are shown in Tables C.2 and C.3.

From Table C.2, it is observed that for higher quantization levels, the tracking
error increases. This is according to the findings of Theorem 1. For high values of R,
i.e. for small quantization intervals, the system does not show a big difference in
performance compared to when using continuous signals. A lower value for R is also
possible, and will require less data transmission, but with the cost of higher tracking
error, and also with more chattering for the input. The system is more affected by
quantization of the output than of the input in terms of tracking error. Table C.4
compares the tracking error and total use of energy when an external disturbance
was added. The quantization levels were chosen as R = 8 for the output, and R = 6
for the input. From this experiment, the tracking error increased when a disturbance
was introduced, in accordance with the findings of Corollary 1, and also the total use
of energy increased. By choosing a small quantization interval, the communication





       

Table C.4: Tracking error and total use of energy with and without external disturb-
ance

No disturbance External disturbance
ztrack ×10−4 utotal ztrack ×10−4 utotal

Continuous signals 35 7980 97 9241
Quantized signals 49 8042 119 9699

burden over a network can be reduced, and still achieve a good performance.

C.6 Conclusion

In this article, an adaptive backstepping control scheme is developed for attitude
tracking using quaternions where the output and the input are quantized. The
quantizer considered satisfies a bounded condition and so the quantization error is
bounded. The full state is considered in the stability analysis, and with the use
of constructed Lyapunov functions, all signals in the closed loop system are shown
to be uniformly bounded and also tracking of a given reference signal is achieved.
Experiments on a 2-DOF helicopter system supports the proof, where a uniform
quantizer is tested for the system. As illustrated in the experiment, it is possible
to reduce the communication burden over the network by including quantization,
where a suitable quantization level must be chosen, depending on the performance
requirement for the application.
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Abstract

This paper studies the attitude tracking control for an uncertain 2-degrees of freedom
helicopter system where the inputs and the states are quantized. An adaptive
backstepping based control scheme is proposed to handle the effect of quantization
for tracking of reference angles for pitch and yaw. All closed-loop signals are ensured
uniformly bounded and the tracking errors will converge to a compact set containing
the origin. Experiments on the helicopter system illustrate the proposed control
scheme.

D.1 Introduction

The interest for wireless communication, remote controlled systems and other network
control systems (NCSs) where the control loops are closed through a communication
network has increased recent years. The network bandwidth might be limited and
signals are required to be quantized before transmitted over the network. Then it
is important to choose a quantization scheme that can reduce the communication
burden over the network, and at the same time ensure sufficient precision for the
system. Quantization introduces nonlinear errors in the control loop that may lead
to degradation of system performance or even unstable control systems.

Various results have been reported for quantized feedback control systems with
input quantization, see e.g [1–4], where only the information from controller to the
plant is quantized, while the controller is designed by continuous measures of the
state feedback. The feedback control problem of systems with state quantization
has been studied in [5–8], where the system dynamics in these works are precisely
known.

Uncertainties often appears in systems, and adaptive control is a control method





       

that can be used to handle such uncertainties. Adaptive control schemes were
developed in [2, 9, 10] for uncertain systems with input quantization. Adaptive
backstepping technique was proposed in the 1990’s in [11] to deal with plant non-
linearity and parameter uncertainties. The backstepping technique has several
advantages over the conventional approaches such as providing a promising way to
improve the transient performance of adaptive systems by tuning design parameters.
Several results have been reported for adaptive backstepping control for systems
with input quantization, e.g. in [12, 13] for uncertain nonlinear systems, in [14]
for a 2-degrees of freedom (DOF) helicopter system, in [4] for tracking control for
under-actuated autonomous underwater vehicles and in [15] for formation tracking
control for a group of UAVs. Adaptive backstepping-based stabilization of uncertain
systems with state quantization are very limited, since the backstepping technique
requires differentiating the quantized states that are discontinuous. This problem
was solved in [16] where the states were quantized by a static bounded quantizer for
uncertain nonlinear systems. The solution in [16] to handle the discontinuous states
was considered in [17] for attitude control of a rigid body.

Both inputs and states are in practice quantized due to actuator and sensor
limitations, but there are only a few results handling both input and state quantization.
In [18], trajectory tracking control for autonomous underwater vehicles with the effect
of quantization was investigated using a sliding mode controller. In [19], adaptive
attitude control for a rigid body with input and output quantization was studied.
In [20], adaptive tracking control for nonholonomic mobile robots with input and
state quantization was considered. In [21], an adaptive neural network controller was
developed for a 2-DOF helicopter system with saturated input and quantized input
and state.

In this paper we extend the results from [22] and [14], where the adaptive
backstepping control of a 2-DOF helicopter was considered in [22] and with input
quantization in [14], to now deal with both input and state quantization for the same
helicopter system. The helicopter is a nonlinear multiple-input and multiple-output
(MIMO) system, with challenges in controller design due to its nonlinear behavior,
its cross coupling effect between inputs and outputs, and with uncertainties both in
the model and the parameters. Based on Lyapunov stability theory, the stability of
the helicopter system is analyzed, were the tracking errors are shown to converge to
an ultimate bound. Experiments on the helicopter system illustrate the proposed
control scheme.

The main contributions in this paper are summarized as follows.

• Compared to [14] where the problem of input quantization was considered, this
paper studies the problem where both the inputs and the states are quantized.
The main challenge is that the designed controller and virtual control can only





          
 

utilize quantized states, and this problem is being addressed.

• The attitude, i.e. orientation, of a MIMO 2-DOF helicopter system is to be
controlled, where the system has challenges due to uncertain parameters, there
is a coupling between the inputs and the outputs that makes control more
complicated, and quantization of both the inputs and the states introduce
errors that need to be handled in the control design and in the stability analysis.
We propose an adaptive control algorithm using the backstepping technique to
deal with these problems.

The paper is organized as follows. In Section D.2, the system model, problem
statement and the considered quantizer are presented. Section D.3 presents the
adaptive control design based on backstepping technique. In Section D.4 a stability
analysis is given, Section D.5 presents the results from experiment before a conclusion
is given in Section D.6.

D.2 Dynamical Model and Problem Formulation

D.2.1 Notations

Vectors are denoted by small bold letters and matrices with capitalized bold letters.
λmax(·) and λmin(·) denotes the maximum and minimum eigenvalue of the matrix
(·), and ∥·∥ denotes the L2-norm and induced L2-norm for vectors and matrices,
respectively.

D.2.2 System Model

The considered helicopter system is visualized in Fig. D.1 showing the body fixed
coordinate frame. This is a two-rotor laboratory equipment for flight control-based
experiments. The setup is a horizontal position of the main thruster and a vertical po-
sition of the tail thruster, which resembles a helicopter with two propellers driven by
two DC motors. The main motor is producing a force in the zb-direction that will give
a positive pitch angle, and at the same time the rotation of the propeller generates a
torque about the motor shaft causing a motion in the yb-direction, meaning this will
give a yaw angle. The tail motor is producing a force in the yb direction and at the
same time a torque changing the pitch angle. Thus, this is a MIMO system with 2
DOF, where each input will change both the pitch and the yaw angle. The helicopter
model is considered as a rigid body and the equations of motion are derived using
Euler-Lagrange equations as given in [22], where the system parameters are uncertain.
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Figure D.1: Quanser Aero helicopter system with body coordinate frame

The state variables are defined as

x1 = [ϑ(t) ψ(t)]⊤ ∈ R2, x2 = [ϑ̇(t), ψ̇(t)]⊤ ∈ R2, (D.1)

where ϑ and ψ are pitch and yaw angles, and ϑ̇ and ψ̇ are angular velocities of pitch
and yaw. The nonlinear state space model is expressed as

ẋ =
 x2

Φ⊤
1 θ1 + Φ⊤

2 θ2 + Kuq

 ∈ R4, (D.2)

where

Φ1 =


−x2,1 0

− sin x1,1 0
x2

2,2 cosx1,1 sin x1,1 0

 ∈ R3×2, (D.3)

Φ2 =
0 −x2,2

0 −x1,2x2,2 cosx1,1 sin x1,1

 ∈ R2×2, (D.4)

are known nonlinear functions,

θ1 = 1
Ip


dp

mgr

mr2

 ∈ R3, θ2 = 1
Iy

 dy

2mr2

 ∈ R2, (D.5)
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Figure D.2: Control system with input and state quantization over a network.

are unknown constant vectors,

K =
 k1

Ip

k2
Ip

−k3
Iy

k4
Iy

 ∈ R2×2, (D.6)

is the control allocation matrix. The constants k1 and k4 are torque thrust gains
from the main and the tail motors, k2 is a cross-torque thrust gain acting on pitch
from the tail motor, k3 is a cross-torque thrust gain acting on yaw from the main
motor, r is the distance between the center of mass and the origin of the body-fixed
frame, Ip and Iy are the moments of inertia of pitch and yaw respectively, g is the
gravity acceleration, m is the total mass of the Aero body, and dy and dp are damping
constants.

D.2.3 Problem Statement

We consider a control system as shown in Fig. D.2, where the state vector x and
the input vector u are quantized at the encoder side to be sent over a network. The
network is assumed noiseless, so that the quantized state signal xq is recovered and
sent to the controller and the quantized input signal uq is recovered and sent to the
plant.
The quantizers for the state and control input are modeled as follows.

xq = Q1(x), (D.7)

uq = Q2(u), (D.8)





       

where the control input u can only use the quantized state as follows:

u = [u1(t,xq), u2(t,xq)]⊤ ∈ R2. (D.9)

Given reference signal xr(t), the control objective is to design a control law for
u = u(t,xq) by utilizing only quantized state xq(t), to force the state x1(t) to track
the reference signal xr(t) when the inputs are quantized, and to ensure that all the
signals in the closed-loop system are uniformly bounded. To achieve the objective,
the following assumptions are imposed.

Assumption 1. The reference signal xr and first and second order derivatives are
known, piecewise continuous and bounded. Then there exists kxr , kẋr , kẍr > 0 such
that ∥xr∥ < kxr , ∥ẋr∥ < kẋr and ∥ẍr∥ < kẍr ,∀t ≥ t0.

Assumption 2. The unknown parameter vectors θ1 and θ2 are bounded by ∥θ1∥ ≤
kθ1, ∥θ2∥ ≤ kθ2 where kθ1 , kθ2 are positive constants. Also θ1 ∈ Cθ1, θ2 ∈ Cθ2 where
Cθ1 and Cθ2 are known compact convex sets.

Assumption 3. The functions Φ1 and Φ2 satisfy locally Lipschitz conditions such
that

∥Φ1(t,y1) − Φ1(t,y2)∥ ≤ LΦ1∥y1 − y2∥, (D.10)

∥Φ2(t,y1) − Φ2(t,y2)∥ ≤ LΦ2∥y1 − y2∥, (D.11)

where LΦ1 and LΦ2 are constants and y1,y2 are real vectors.

D.2.4 Quantizer

In this paper, a uniform quantizer is considered for both state quantization Q1(x)
and input quantization Q2(u), which has intervals of fixed length and is defined as
follows:

yq = Q(y) =

 yi sgn(y), yi − l
2 < |y| ≤ yi + l

2

0, |y| ≤ y0
, (D.12)

where y0 > 0, y1 = y0 + l
2 , yi+1 = yi + l, l > 0 is the length of the quantization interval,

sgn(y) is the sign function. The uniform quantization yq ∈ U = {0,±yi}, and a map
of the quantization for yi > 0 is shown in Fig. D.3. The quantizer considered in this
paper has the following property

|yq − y| = |dy| ≤ δy, (D.13)
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Figure D.3: Map of the uniform quantizer for y > 0.

where y is a scalar signal, d is the quantization error and δy > 0 denotes the
quantization bound. Clearly, the property in (D.13) is satisfied with δy = max{y0,

l
2}.

When a vector is quantized, we have

yq =
[
yq

1 yq
2 · · · yq

n

]⊤
, (D.14)

and so each vector element is bounded by (D.13), and we have ∥yq − y∥ = ∥dy∥ ≤
∥δy∥ ∆= δy.

D.3 Adaptive Control Design

In this section we will design adaptive feedback control laws for the helicopter system
using backstepping technique. For this model, two steps are included, where the
control signal is designed in the last step. We first introduce the change of coordinates

z1 = x1 − xr, (D.15)

z2 = x2 − α − ẋr, (D.16)

where α is a virtual controller designed in the first step and chosen as

α = −C1z1, (D.17)





       

where C1 ∈ R2×2 is a positive definite matrix. The derivative of (D.15) and (D.16)
are given as

ż1 = x2 − ẋr = z2 + α, (D.18)

ż2 = Φ⊤
1 θ1 + Φ⊤

2 θ2 + Kuq − α̇ − ẍr. (D.19)

To propose a suitable control scheme, the quantized input uq(t) is decomposed into
two parts

uq(t) =u(t) + du(t), (D.20)

where du is the quantization error of the input, which is bounded by ∥du∥ ≤
∥[δu1 δu2 ]⊤∥ = ∥δu∥ ∆= δu, from (D.13).
The adaptive controller is designed as

u(t) = K−1
[

− zq
1 − C2z

q
2 − Φ1(xq)⊤θ̂1 − Φ2(xq)⊤θ̂2 + ᾱq + ẍr

]
, (D.21)

˙̂
θ1 = Proj{Γ1Φ1(xq)zq

2}, (D.22)
˙̂
θ2 = Proj{Γ2Φ2(xq)zq

2}, (D.23)

where C2,Γ2 ∈ R2×2 and Γ1 ∈ R3×3 are positive definite gain matrices, θ̂ is the
estimated value of θ, the vector θ̃ = θ − θ̂, and where Proj{·} is the projection
operator given in [11] and where

zq
1 = xq

1 − xr, (D.24)

zq
2 = xq

2 − αq − ẋr, (D.25)

αq = −C1z
q
1, (D.26)

Φ1(xq) =


−xq

2,1 0
− sin xq

1,1 0
(xq

2,2)2 cosxq
1,1 sin xq

1,1 0

 (D.27)

Φ2(xq) =
0 −xq

2,2

0 −xq
1,2x

q
2,2 cosxq

1,1 sin xq
1,1

 (D.28)

ᾱq ∆= −C1(xq
2 − ẋr). (D.29)

Remark 1. The projection operator Proj{·} in (D.22) and (D.23) ensures that
the estimates and estimation errors are nonzero and within known bounds, that is
∥θ̂∥ ≤ kθ and ∥θ̃∥ ≤ kθ, and has the property −θ̃⊤Γ−1Proj(τ ) ≤ −θ̃⊤Γ−1τ , which
are helpful to guarantee the closed-loop stability.

Remark 2. Only the quantized state can be used in the designed controller. Since





          
 

the quantized state is used in the design of the virtual controller αq in (D.26), the
derivative of the virtual controller is discontinuous and can not be used in the design
of the controller. Instead, a function ᾱq is used in (D.29), which is designed as if
the state is not quantized.

D.4 Stability Analysis

To analyze the closed-loop system stability, we first establish some preliminary results
as stated in the following lemmas.

Lemma 1. The effects of state quantization are bounded by the following inequalities:

∥zq
1 − z1∥ = ∥(xq

1 − xr) − (x1 − xr)∥ ≤ δx1 , (D.30)

∥αq − α∥ = ∥−C1z
q
1 + C1z1∥ ≤ λmax(C1)δx1

∆= δα (D.31)

∥zq
2 − z2∥ = ∥(xq

2 − x2) + (α − αq)∥ ≤ δx2 + δα
∆= δz2 (D.32)

∥Φ1(xq) − Φ1(x)∥ ≤ LΦ1∥xq − x∥ = LΦ1δx
∆= δΦ1 (D.33)

∥Φ2(xq) − Φ2(x)∥ ≤ LΦ2∥xq − x∥ = LΦ2δx
∆= δΦ2 (D.34)

∥ᾱq − α̇∥ = ∥−C1(xq
2 − ẋr) + C1(x2 − ẋr)∥ ≤ λmax(C1)δx2

∆= δᾱ, (D.35)

where δ(·) are positive constants.

Proof: Using the property (D.13) of the quantizer, we have

∥xq
1 − x1∥ = ∥dx1∥ ≤ ∥[δx1,1 δx1,2 ]⊤∥ = ∥δx1∥ ∆= δx1 , (D.36)

∥xq
2 − x2∥ = ∥dx2∥ ≤ ∥[δx2,1 δx2,2 ]⊤∥ = ∥δx2∥ ∆= δx2 , (D.37)

∥xq − x∥ = ∥[δx1 δx2 ]⊤∥ = ∥δx∥ ∆= δx. (D.38)

Then from (D.15)-(D.18), (D.24)-(D.26), Assumption 3 and (D.36)-(D.38) the in-
equalities (D.30)-(D.35) holds.

Lemma 2. The state x satisfies the following inequality:

∥x∥ ≤ kx1 + kx2∥z∥, (D.39)

where z = [z⊤
1 z⊤

2 ]⊤.

Proof: From the definitions in (D.15)-(D.17) and Assumption 1 we have

∥x1∥ ≤ ∥z1 + xr∥ ≤ kxr + ∥z1∥ ≤ kxr + ∥z∥, (D.40)

∥α∥ ≤ λmax(C1)∥z1∥, (D.41)

∥x2∥ ≤ ∥z2 + α + ẋr∥ ≤ ∥z2∥ + λmax(C1)∥z1∥ + kẋr





       

≤ kẋr + [1 + λmax(C1)]∥z∥. (D.42)

Then

∥x∥ = ∥[x⊤
1 x⊤

2 ]⊤∥ =
√

(∥x1∥)2 + (∥x2∥)2

≤ (kxr + kẋr) + (2 + λmax(C1))∥z∥
∆= kx1 + kx2∥z∥. (D.43)

The main results are now stated in the following theorem.

Theorem 1. Consider the closed-loop adaptive system consisting of the plant (D.2)
with input and state quantization satisfying the bounded property (D.13), the adaptive
controller (D.21), the parameter updating laws (D.22)-(D.23) and Assumptions 1-3.
All signals in the closed-loop system are ensured to be uniformly bounded and the
error signals will converge to a compact set, i.e.

∥z(t)∥ ≤
√

2a
c0
, (D.44)

where c0 is the minimum eigenvalue of C0 = min{C1,C2}, and where

a = δV1 + 1
2c0

d2
V2 , (D.45)

δV1 = δθ11 + δθ21 , (D.46)

δV2 = δz2 + δx1 + δᾱ + ∥K∥δu + δθ12 + δθ22 , (D.47)

and is ultimately bounded. Tracking of a given reference signal is achieved, with a
bounded error.

Proof: We choose a Lyapunov function candidate as

V =1
2z⊤

1 z1 + 1
2z⊤

2 z2 + 1
2 θ̃⊤

1 Γ−1
1 θ̃1 + 1

2 θ̃⊤
2 Γ−1

2 θ̃2. (D.48)

Following the controller design in (D.21)-(D.23), the derivative of (D.48) is

V̇ = −z⊤
1 C1z1 + z⊤

1 z2 −θ̃⊤
1 Γ−1

1
˙̂
θ1 −θ̃⊤

2 Γ−1
2

˙̂
θ2 + z⊤

2 [Φ⊤
1 θ1 + Φ⊤

2 θ2 + Kuq − α̇ −ẍr]

= − z⊤
1 C1z1 − z⊤

2 C2z
q
2 + z⊤

2 (z1 − zq
1) + z⊤

2 (ᾱq − α̇) + z⊤
2 Kdu

+
[
z⊤

2

(
Φ1(x)⊤θ1 − Φ1(xq)⊤θ̂1

)
− θ̃⊤

1 Φ1(xq)zq
2

]
+
[
z⊤

2

(
Φ2(x)⊤θ2 − Φ2(xq)⊤θ̂2

)
− θ̃⊤

2 Φ2(xq)zq
2

]
. (D.49)

By using (D.10), (D.33), (D.38) and (D.43) and Assumption 2, The following in-





          
 

equality is satisfied for the terms in (D.49) containing θ1 and θ̂1:

z⊤
2 (Φ1(x)⊤θ1 − Φ1(xq)⊤θ̂1) − θ̃⊤

1 Φ1(xq)zq
2

= θ⊤
1 Φ1(x)z2 − θ⊤

1 Φ1(xq)z2 + θ̃⊤
1 Φ1(xq)z2 − θ̃⊤

1 Φ1(xq)zq
2

≤ ∥θ1∥∥Φ1(x) − Φ1(xq)∥∥z2∥ + ∥θ̃1∥∥Φ1(xq)∥∥z2 − zQ
2 ∥

≤ kθ1δΦ1∥z∥ + kθ1LΦ1∥xq∥δz2

≤ kθ1δΦ1∥z∥ + kθ1δz2LΦ1(kx1 + kx2∥z∥ + δx)

= [kθ1δz2LΦ1(kx1 + δx)] + [kθ1δΦ1 + kθ1δz2LΦ1kx2 ]∥z∥
∆= δθ11 + δθ12∥z∥. (D.50)

In a similar way, by using (D.11), (D.34), (D.38) and (D.43) and Assumptions 2, the
following inequality is satisfied for the terms in (D.49) containing θ2 and θ̂2:

z⊤
2 (Φ2(x)⊤θ2 − Φ2(xq)⊤θ̂2) − θ̃⊤

2 Φ2(xq)zq
2

= [kθ2δz2LΦ2(kx1 + δx)] + [kθ2δΦ2 + kθ2δz2LΦ2kx2 ]∥z∥
∆= δθ21 + δθ22∥z∥. (D.51)

Using the properties (D.30), (D.32) and (D.35) in Lemma 1 together with (D.50)
and (D.51) and Young’s inequality, we have

V̇ ≤ − z⊤
1 C1z1 − z⊤

2 C2z2 + ∥z2∥δz2 + ∥z2∥δx1 + ∥z2∥δᾱ + ∥z2∥∥K∥δu + δθ11

+ δθ12∥z∥ + δθ21 + δθ22∥z∥

≤ − c0∥z∥2 + δV1 + δV2∥z∥

≤ − c0

2 ∥z∥2 + δV1 + 1
2c0

δ2
V2

= − c0

2 ∥z∥2 + a. (D.52)

From (D.48) and (D.52) it is shown that V̇ < 0 ∀∥z∥ >
√

2a
c0

, thus z(t) is ultimately
bounded and satisfies (D.44). The boundedness of z and (D.30) and (D.32) ensure
the boundedness of the quantized error states zq

1 and zq
2. Then αq in (D.31) is

also bounded. Since x is bounded in (D.43), then from (D.38) also xq is bounded.
From the projection operator, θ̂1 and θ̂2 are ensured bounded. Then, together with
Assumptions 1-3, u in (D.21) is also bounded, and so all the closed-loop signals
are uniformly bounded. Tracking is achieved, where the tracking error is ultimately
bounded by (D.44).





       

Table D.1: Helicopter Parameters and initial values.

Symbol Value
x(t0) [0 0 0 0]⊤
θ̂1(t0) [0.3218 1.8423 0.0007]⊤
θ̂2(t0) [0.4374 0.0014]⊤

K

[
0.0506 0.0506

−0.0645 0.0810

]

D.5 Experimental Results

The proposed controller was simulated using MATLAB/Simulink and tested on the
Quanser Aero helicopter system. The mathematical model is described by (D.2),
and the initial states and parameters used for simulation and experiments are shown
in Table D.1.

The objective was to track a reference signal chosen as xr(t) = [40π/180 sin(0.1πt)
100π/180 sin(0.05πt)]⊤ when both the inputs and the states were quantized, and to
ensure that all the signals in the closed-loop system were uniformly bounded. The
inputs have limits of ±24 V. The quantization levels were chosen as lu = 0.3 for both
inputs, and ls = 0.02 for all the states. The gain matrices were set to C1 = 6I3,
C2 = 3I2, Γ1 = I3 and Γ2 = I2.

The trajectories of the quantized states xq = [ϑq(t), ψq(t), ϑ̇q(t), ψ̇q(t)]⊤ are shown
in Fig. D.4, where the desired states are shown with a dotted line and measured
values from test on the helicopter system are shown with a solid line. The error in
states xq

1 − xr and xq
2 − ẋr are shown in Fig. D.5, and Fig. D.6 shows the quantized

input uq. The results here illustrate the theoretical findings in Theorem 1, where
tracking is achieved and all signals are shown to be uniformly bounded.
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Figure D.4: Trajectories of the quantized states xq from experiment.
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D.6 Conclusion

In this paper, an adaptive backstepping control scheme for an uncertain nonlinear
MIMO helicopter system with both input and state quantization was developed. The
quantizer considered satisfies a bounded condition and so the quantization error is
bounded. For the closed loop system, all signals are shown to be uniformly bounded
where the error signals will converge to a compact set containing the origin. Tracking
of a given reference signal is achieved, with a bounded error. Experiments on the
helicopter system support the proof.
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Abstract

In this paper the attitude tracking control problem of a 2 degrees-of-freedom helicopter
system with network induced constraints is studied. A predictor feedback control
law is developed to compensate a known delay in the communication, where the
inputs are quantized before transmitted over the network. Stability of the closed-loop
system is established, where tracking is achieved with bounded tracking errors due
to the network issues. The developed predictor-based controller is experimentally
tested on the helicopter system, where we demonstrate that tracking is achieved in
presence of both input delay and quantization.

E.1 Introduction

Air vehicles such as unmanned aerial vehicles (UAVs) and helicopters provide great
accessibility and have a wide range of applications such as transport, search and
rescue, inspection, monitoring and photography. Unmanned aircraft are controlled by
a human operator from ground or fully autonomously by electronic systems, where
remote controlled systems are sensitive to time delays and also the sampling and
quantization of signals before transmitted in the communication network affect the
performance of such systems.

For an attitude tracking control problem where signals are sent through a network,
both quantization and delay have impact on the tracking performance. Quantization
naturally exists in networked control systems (NCSs), where a quantizer can be





       

considered as a devise that converts a continuous signal into a piecewise constant
signal, which leads to quantization errors that are nonlinear. These errors can
not be ignored when the resolution in the network is low, since it will affect the
performance and stability of the system. Quantization can also be considered as
useful, from the advantage of reducing occupation rate of transmission bandwidth in
the communication channel [1]. Tracking control of systems with input quantization
has been investigated in e.g. [2–5] for uncertain nonlinear systems, in [6] for a group
of unmanned aerial vehicles with unknown parameters, in [7] for under-actuated
autonomous underwater vehicles (AUVs) and in [8] for a 2 degrees-of-freedom (DOF)
helicoper system.

One of the first tools for handling delays was the Smith predictor used for
compensating a pure time-delay for open-loop stable plants. A modified Smith
predictor compensates for both the predicted effect of the control input and of the
future evolution of the system state, and also works for unstable plants [9]. Several
predictor based approaches have been proposed to compensate input delays for
linear systems in [10–12] and nonlinear systems in [13–19] where a backstepping
transformation was introduced in the control design in [13], which makes it possible
to show stability of the closed-loop system using a Lyapunov functional. In [20] the
attitude stabilization of a quadrotor with a known input delay was considered where
a predictor feedback controller was developed to compensate the delay. Compared
to stabilization to a desired attitude, the problem of tracking a changing reference
signal with time is more difficult. Unless knowing the reference signal in advance,
and by sending the reference signal the delayed-time units ahead to the controller, it
is not possible to track the desired signal perfectly in presence of a delay. In [21], the
tracking control problem of nonlinear networked and quantized control systems was
studied. In [22] a predictor feedback controller was developed for trajectory tracking
where both input delay and parameters were unknown.

In this paper we are focusing on the problem of tracking a given reference attitude
for a nonlinear multiple-input multiple-output (MIMO) helicopter system with 2
DOF, when there is a known constant time-delay of D-time units for the inputs and
at the same time, the inputs are quantized before transmitted over the network. The
main contributions in this paper are dealing with the simultaneous issues caused
by quantization and delay, where the effect of the delay is compensated for by the
design of a predictor feedback controller, and where the effect of quantization is
analytically shown to be related to the tracking error. A higher quantization level
increases the tracking error. Simulations and experiments are carried out to illustrate
the proposed control scheme.

The paper is organized as follows. In Section E.2, the dynamical model of the
helicopter system, the control problem and the considered quantizer are presented.
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Figure E.1: Control system with input quantization and delay over a network.

Section E.3 provides the predictor-feedback control design, in Section E.4 a proof of
stability on the basis of a Lyapunov functional is given and in Section E.5 experimental
results of the proposed method implemented on the helicopter system are presented
and Section E.6 sums up the paper in a conclusion.

E.2 Dynamical Model and Problem Statement

E.2.1 Notations

Vectors are denoted by small bold letters and matrices with capitalized bold letters.
λmax(·) and λmin(·) denote the maximum and minimum eigenvalue of the matrix
(·), and ∥·∥ denotes the L2-norm and induced L2-norm for vectors and matrices,
respectively. For vector functions, the norm ∥u(t)∥2 =

√∫D
0 u(x, t)⊤u(x, t)dx denotes

the spatial L2 norm.

E.2.2 Problem Statement

We are considering a control problem as shown in Fig. E.1, where the input vector
u is quantized before transmitted in the communication network and there is a
time-delay D in the network. The system is assumed noiseless, so that the quantized
signals are recovered after transmission, and so the system receives the quantized
delayed input uQ(t−D).

The control objective is to develop a predictor based control law to compensate
for a constant known input delay for a multi input nonlinear helicopter system to
track a given reference attitude signal. From the derived error dynamics, we will
design a controller so that stability of the origin of the error system is maintained in
the presence of both quantization and delay of the input.
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Figure E.2: Map of the uniform quantizer for u > 0.

E.2.3 Quantizer

In this paper we consider a uniform quantizer for the inputs, where the quantizer for
each input signal is modeled as

Q(u) = uQ =

 ui sgn(u), ui − l
2 < |u| ≤ ui + l

2

0, |u| ≤ u0
, (E.1)

where Q(·) is a quantizer, u0 > 0, u1 = u0 + l
2 , ui+1 = ui + l, l > 0 is the length

of the quantization interval, sgn(u) is the sign function. The uniform quantization
uQ ∈ U = {0,±ui}, and a map of the quantization for ui > 0 is shown in Fig. E.2.

The following property holds for the uniform quantizer

|uQ − u| ≤ δ, (E.2)

where δ > 0 denotes the quantization bound. Clearly, the property in (E.2) is
satisfied with δ = max{u0,

l
2}. When a vector is quantized, we have

uQ =
[
uQ

1 uQ
2 · · · uQ

n

]⊤
, (E.3)
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Figure E.3: Quanser Aero helicopter system.

and so each vector element is bounded by (E.2), and we have

∥uQ − u∥ = ∥d∥ ≤ ∥δ∥ ∆= δu, (E.4)

where d is the quantization error.

E.2.4 Mathematical Model

The helicopter system shown in Fig. E.3 is a two-rotor laboratory equipment for
flight control-based experiments. With a horizontal position of the main thruster and
a vertical position of the tail thruster, this resembles a helicopter with two propellers
driven by two DC motors. The helicopter is a MIMO system with 2 DOF, and can
rotate around two axes. This is considered as a rigid body and a mathematical model
is derived using Euler-Lagrange equations and expressed as:

M (q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) = uQ(t−D), (E.5)

where

M(q) =
Ip +mr2 0

0 Iy +mr2 sin2 q1

 , (E.6)

C(q, q̇) =
 0 −mr2 sin q1 cos q1q̇2

mr2 sin q1 cos q1q̇2 mr2 sin q1 cos q1q̇1

 , (E.7)

g(q) =
[
mgr sin q1 0

]⊤
, q =

[
q1 q2

]⊤
, (E.8)





       

and where q, q̇, q̈ ∈ R2 are angles, angular velocities and accelerations, M(q),
C(q, q̇),D ∈ R2×2 are the inertia, Coriolis and damping matrices, respectively,
where D is a constant matrix, g(q) ∈ R2 is a vector of gravitational loading, r is
the distance between the center of mass and the origin of the body-fixed frame, Ip

and Iy are the moments of inertia of q1 and q2 respectively, g is the gravitational
acceleration, and m is the total mass of the Aero body.

Defining x = [q⊤, q̇⊤]⊤ = [x⊤
1 ,x

⊤
2 ] ∈ R4, and u ∈ R2, the system can be written

in state space form as

ẋ(t) = f(x(t),uQ(t−D)). (E.9)

For tracking of a reference signal xr(t), the error states are defined as

z1 = xr − x1, (E.10)

z2 = ż1 + Az1, (E.11)

where A is a constant positive definite matrix, and the error dynamics is given as

ż(t) = f(z(t),uQ(t−D)) =
 z2 − Az1

Az2 + h − M−1uQ(t−D)

 , (E.12)

h = ẍr − A⊤Az1 + M−1 [(C + D)(ẋr + Az1 − z2) + g] . (E.13)

The change of coordinates (E.10)–(E.11) are chosen by following the backstepping
design procedure [23], where a similar design is given in e.g. [24]. To achieve the
control objective, the following assumption regarding the reference signal is imposed:

Assumption 1. The desired angles, angular velocities and accelerations, xr(t), ẋr(t), ẍr(t) ∈
R2, are known, continuous and bounded for all t ≥ t0 ≥ 0.

E.3 Predictor-Feedback Control Design

To compensate for the input delay, we derive a predictor-feedback controller for the
system. A nominal controller for the error system (E.12) without quantization and
delay D = 0, can be formulated as

u(t) = κ (z(t),xr(t)) = M (h + (A + B)z2 + z1), (E.14)

where B is a positive definite matrix, and makes the origin exponentially stable in
the absence of delay and quantization. System (E.12) can be equivalently modeled





          


by a cascade of ODE-PDE [17]

ż(t) = f(z(t),u(0, t)), (E.15)

ut(x, t) = ux(x, t), (E.16)

u(D, t) = uQ(t), (E.17)

where the actuator state is modeled by a transport PDE and where the solution to
(E.16)–(E.17) is given by u(x, t) = uQ(t+ x−D) for all x ∈ [0, D].

The predictor feedback controller is defined as [14]

uQ(t) = Q (κ[p(D, t),xr(t+D)]) , (E.18)

where the predictor state is given as

p(x, t) = z(t) +
∫ x

0
f(p(y, t),u(y, t))dy,∀x ∈ [0, D], (E.19)

where, assuming perfect model f , p(x, t) = z(t + x) ∀x ∈ [0, D], and so p(D, t) =
z(t+D) is the D-time units ahead predictor of z(t). Then the delayed input

u(0, t) = uQ(t−D) = Q (κ[t,p(0, t)]) = κ(t, z(t)) + d(t), (E.20)

where d(t) is the quantization error which satisfies (E.4).

E.4 Stability Analysis

To analyze the closed-loop stability, we first establish some preliminary results as
stated in the following Lemma.

Lemma 1. The open loop system ż = f(z,ω) is forward complete.

Proof. Consider the nonnegative-valued, radially unbounded, smooth Lyapunov
function and its derivative [18]

V1(z) = 1
2z⊤z, (E.21)

V̇1 = z⊤
1 (z2 − Az1) + z⊤

2 (Az2 + h − M−1ω)

≤ c1V1 + 1
2ω⊤ω + c2(x⊤

r xr + ẋ⊤
r ẋr + ẍ⊤

r ẍr)

≤ c1V1 + c3, ∀z ∈ R4,ω ∈ R2, (E.22)

where c(·) are positive constants, Assumption 1 is used, and where ω is a bounded
input. Then, the system ż is forward complete and solutions exist globally.





       

A definition of forward completeness is given in e.g.[14]. Since the system is
forward complete, the problem of a finite escape phenomenon is avoided, and ensures
that for every initial condition and every bounded input signal, the corresponding
solution is defined for all t ≥ 0.

Following [17], we define the direct and inverse backstepping transformation

w(x, t) = u(x, t) −Q (κ[x+ t,p(x, t)]) , (E.23)

u(x, t) = w(x, t) +Q (κ[x+ t,π(x, t)]) , (E.24)

where for all x ∈ [0, D],

π(x, t) =z(t) +
∫ x

0
f(π(y, t), Q (κ[t+ y,π(y, t)]) + w(y, t))dy, (E.25)

where π(x, t) are used to generate the target predictor state π(D, t).

By [17, Lemma 1], the transformation (E.23) maps the closed loop system
consisting of the error system (E.15)–(E.17) and the control law (E.18)–(E.19) into
the target system

ż(t) = f(z(t),w(0, t) + κ(t, z(t)) + d(t))

=
 z2(t) − Az1(t)
−z1(t) − Bz2(t) − M−1w(0, t)− M−1d(t)

 , (E.26)

wx(x, t) = wt(x, t), ∀x ∈ [0, D], (E.27)

w(D, t) = 0. (E.28)

By [17, Lemma 2], (E.24) is the inverse of (E.23). We now state our main result in
the following theorem.

Theorem 1. Consider the closed-loop system consisting of the error dynamics
of the helicopter system (E.15)–(E.17), the control law (E.18)–(E.19) with input
quantization satisfying the bounded property (E.4), and the reference signal xr(t)
satisfying Assumption 1. If the gain matrices A and B are chosen to satisfy the
inequality

min{2λmin(A), 2λmin(B) − 2, 1} > c4 > 0, (E.29)

where c4 is a positive constant, then for all initial conditions z(t0) ∈ R4, u(x, t0) ∈
R2 ∀x ∈ [0, D] and for all t ≥ t0 ≥ 0, the following holds:

∥z(t)∥ + ∥w(t)∥2 ≤ c6 (∥z(t0)∥ + ∥w(t0)∥2) e− c4
2 (t−t0) + c5δu, (E.30)





          


where

c5 =
√

2k
c4

> 0, c6 =
√

2keD > 0, (E.31)

where k = max{1, λmax(M−1)2}.

Proof. Due to forward completeness of (E.15) (Lemma 1), the predictor state (E.19)
is well defined and therefore w(x, t) in (E.23) is well defined. It follows that the
target system (E.26)–(E.28) is well defined and that we can select the Lyapunov
function candidate

V2(t) = 1
2z(t)⊤z(t) + k

2

∫ D

0
exw(x, t)⊤w(x, t)dx, (E.32)

that satisfies

1
2E(t) ≤ V2(t) ≤ 1

2ke
DE(t), (E.33)

where

E(t) = z(t)⊤z(t) +
∫ D

0
w(x, t)⊤w(x, t)dx. (E.34)

The derivative of (E.32) is

V̇2 =−z⊤
1 Az1−z⊤

2 Bz2−z⊤
2 M−1w(0, t)−z⊤

2 M−1d(t)+k
∫ D

0
exw(x, t)⊤wt(x, t)dx

≤ − z⊤
1 Az1 − z⊤

2 Bz2 + z⊤
2 z2 − k

2w(0, t)⊤w(0, t) − k

2

∫ D

0
exw(x, t)⊤w(x, t)dx

+ k

2
(
w(0, t)⊤w(0, t) + δ2

u

)
, (E.35)

where Young’s inequality and integration by parts are used. By choosing matrices A

and B such that (E.29) holds, we have

V̇2 ≤ −c4V2 + k

2δ
2
u. (E.36)

From (E.36) and by using the comparison lemma [25, Lemma 3.4], then for all
t ≥ t0 ≥ 0,

V2(t) ≤ V2(t0)e−c4(t−t0) + k

2c4
δ2

u(1 − e−c4(t−t0))

≤ V2(t0)e−c4(t−t0) + k

2c4
δ2

u. (E.37)





       

Table E.1: Helicopter Parameters.

Symbol Value Units
Ip, Iy 0.0217 kgm2

m 1.075 kg
g 9.81 m/s2

r 0.0038 m
D [0.007 0;0 0.0095] kgm2/s

From (E.37) and (E.33) we have

E(t) ≤ k

c4
δ2

u + keDE(t0)e−c4(t−t0), (E.38)

and by using the inequality (∥z(t)∥ + ∥w(t)∥2)2 ≤ 2E(t) we get estimate (E.30).
This shows that the target system is uniformly ultimately bounded with an ultimate
bound that is directly related to the value of the quantization parameter.

Remark 1. From (E.30), tracking is achieved with a bounded error proportional to
the quantization.

E.5 Simulation and Experimental Results

In this section, the attitude tracking control problem is considered for the Quanser
Aero helicopter system, where both simulation using MATLAB/Simulink and ex-
periments on the helicopter system have been carried out. The initial values were
set to x(t0) = 0, where t0 defines the start of experiment. The parameters used for
simulation and experiment are shown in Table E.1, and the design parameters were
chosen as A = 3I and B = 1.6I and satisfies the inequality (E.29). The objective
in the experiment was to track a given sinusoidal signal for the attitude xr(t) in
presence of both quantization and delay of the inputs.

To illustrate the performance of the proposed predictor-based controller, we
first tested without the predictor and without quantization when there was a delay
for the input, and so the system received the delayed inputs u(t − D), where the
input vector is defined in (E.14). By increasing the delay, the system had more
oscillation, and when D = 0.1s, the oscillations increased during the experiment and
was stopped after about 4s. Figs. E.4–E.5 show the tracking of angle q1(t) and the
inputs u(t−D), respectively, from this experiment. This shows that the closed-loop
system becomes unstable without the predictor for delays greater or equal to 0.1s.

The proposed control law was then tested for different delays and quantization
parameters. The initial condition of the actuator state was set to u(x, t0) = 0 ∀ x ∈
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Figure E.4: Tracking of angle q1(t), with delay, without predictor.
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Figure E.6: Tracking of angle q1(t) from simulation and experiment with delay
D = 0.2s and quantization.

[0, D], and so the system received zero input until t = t0 + D. The results from
simulation and experiment, where the quantization parameters were set to l =
0.01, u0 = l/2 and with a time delay D = 0.2s, are shown in Figs. E.6–E.11, showing
tracking of the angles q(t), the tracking errors z(t) and the inputs uQ(t − D),
respectively, where the red plots are from simulation and the blue plots are from
experiment.

From Figs. E.6–E.9 we can see that the desired trajectory can be followed both
in simulation and when tested on the helicopter, illustrating our main results in
Theorem 1. From the simulation, there are only small tracking errors that are due
to the quantization. From the experiment, the tracking errors are higher relative to
the simulations due to several other disturbances to the system such as unmodeled
dynamics and sensor noise that affects the performance, and the helicopter have a
practical stabilization with this controller.

To compare results for different delays and quantization parameters, the total
tracking error was defined as

ztrack =
∫ tf

t0
z⊤

1 z1dτ, (E.39)

where t0 and tf define start and end of experiment, respectively, and the experiments
were run for 50 s where results are provided in Table E.2. From the results we see
that by increasing the delay, the total tracking error also increases for the helicopter
system, for mainly two reasons. First, since the system receives no input until D
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Figure E.7: Tracking of angle q2(t) from simulation and experiment with delay
D = 0.2s and quantization.
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Figure E.8: Tracking error z11(t) from simulation and experiment with delay D = 0.2s
and quantization.

Table E.2: Total tracking error from experiment with and without delay and quant-
ization. System receives input uQ(t−D).

Experiment
ztrack ×10−4

Quantization
No q. l = 0.010 l = 0.012 l = 0.014

Delay

D = 0 3222 3271 3305 3490
D = 0.1 4866 5278 5741 5689
D = 0.2 7274 8692 8518 9114
D = 0.3 13748 11788 13868 14038
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Figure E.9: Tracking error z12(t) from simulation and experiment with delay D = 0.2s
and quantization.
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Figure E.11: Input uQ
2 (t−D) from simulation and experiment with delay D = 0.2s

and quantization.

seconds after the start of experiment, the total tracking error increases during an
initial time period, since the reference signal is changing while the helicopter remains
stationary. Then, the system receives control input by the predictor based controller
and starts tracking the desired signal. So increasing D, increases the time before
control kicks in, and ztrack increases initially. Secondly, because the model is not
perfect and from other effects such as measurement errors, the tracking error increases
by an increase in the delay. From a perfect model without quantization, the total
tracking error will not increase after an initial time period since then z1 becomes
zero. The effect of quantization is also shown, where by increasing the quantization,
the measurement of the total tracking error increases. This is also affected by other
disturbances.

E.6 Conclusion

In this paper, the attitude tracking control problem of a nonlinear system with
networked induced delay and quantization for the inputs has been considered. A
predictor-feedback controller is proposed to compensate for the input delay. Based
on a Lyapunov approach, stability of the closed loop system is ensured and tracking
of a desired reference signal is achieved with a bounded tracking error that is directly
related to the quantization parameter. Simulations and experiments illustrate the
proof.
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Abstract

This paper investigates the attitude tracking control problem for uncertain nonlinear
rigid body systems, where both inputs and states are quantized. It is common
in networked control systems that sensor and control signals are quantized before
they are transmitted via a communication network. An adaptive backstepping
control algorithm is developed for a class of uncertain multiple-input multiple-output
(MIMO) systems where a class of sector bounded quantizers is considered. It is
shown that all the closed-loop signals are ensured uniformly bounded and tracking is
achieved. Further, the tracking errors are shown to converge towards a compact set
containing the origin and the set can be made small by the choice of the quantization
parameters and control parameters. For illustration of the proposed control scheme,
experiments were conducted on a 2 degrees-of-freedom (DOF) helicopter system.

F.1 Introduction

Quantized control has gained increasing interest during the past decades due to the
use of information technology in the development of modern engineering applications,
such as digital control systems and networked control systems. A quantizer maps a
continuous signal into a set of discrete values and introduces nonlinear errors that
need to be handled. Quantization is not only inevitable owing to the widespread use
of digital processors, but also useful due to the advantage of reducing occupation
rate of transmission bandwidth in the communication of signals, see e.g. [1].

The quantized feedback stabilization problem for linear systems where the dy-
namics are precisely known, has been considered in [1–4]. In [1], it was shown that
a logarithmic quantizer is the coarsest one to stabilize a single input linear system,
where the number of control values is finite. This work was extended in [3] to consider
stabilizaton of multiple input linear systems.





       

Stabilization of nonlinear systems in presence of quantization has been investigated
in [5–9]. The main results in [1] was further extended to single input nonlinear systems
in [5], and for nonlinear uncertain systems in [6–8], where two different adaptive
approaches were used in [6, 7], while a robust approach was considered in [8]. If
there are uncertainties to the system, the quantization problem would become more
challenging. Since exact system parameters are often unknown for real systems,
adaptive control is a useful approach to deal with such uncertainties, where an online
estimation of the parameters can be provided. The work in [7], where a backstepping-
based adaptive control scheme was presented, was further developed in [9] for the
same stabilization problem to consider a hysteresis quantizer, that compared to a
logarithmic quantizer has additional quantization levels to avoid chattering. Tracking
control in the presence of input quantization has been considered in [10–13] for
uncertain nonlinear systems, in [14] for a group of unmanned aerial vehicles with
unknown parameters, in [15] for under-actuated autonomous underwater vehicles
(AUVs), in [16] for a 2-DOF helicoper system. The developed methods in [5–16] all
focused on the input quantization problem, while the controllers were designed by
continuous measures of the state feedback.

Control of uncertain systems with state or output quantization has been studied
in [17–20] using robust or adaptive approaches. In [17], an adaptive controller was
developed for uncertain linear systems with quantized outputs. In [18], a robust
controller for a linear MIMO uncertain system was designed with quantized output
measurements. In [19], the stabilization problem for uncertain nonlinear systems
with quantized states was investigated, and in [20], the attitude tracking control
problem of rigid bodies with quantized states was considered, where in [19, 20]
adaptive backstepping-based control algorithms were designed.

Although research on quantized control has received much attention recent years,
most work focus on either input or output quantization. In practice, the control signal
sent to the actuator(s) and the signals sent from sensors to the control module need to
be quantized before transmitted due to the use of digital processors and considering
the accuracy of sensors. Also, for remotely controlled systems, the control signals and
sensor measurements are shared via a common digital network where the bandwidth
might be limited and it is natural to suppose that both input and output signals are
quantized. Some work that considered both input and state quantization are [21–27].
In [21], the quantization effects on remotely controlled single-input single-output
(SISO) linear systems were studied, where the stabilization problem was transformed
into a robust control problem. Sliding mode controllers were developed in [22, 23]
for trajectory tracking in the presence of both input and state quantization, of
AUVs in [22], and of mechanical systems in [23]. Neural-network based adaptive





         

tracking controllers in presence of quantization were designed in [24] for uncertain
nonholonomic mobile robots, and in [25] for uncertain MIMO nonlinear systems.
Adaptive backstepping based control schemes were developed in [26, 27], where the
attitude tracking control problem for uncertain rigid bodies was investigated in [26],
and a class of uncertain nonlinear systems was considered in [27].

This paper investigates the attitude tracking control problem for a class of
uncertain rigid body systems with quantization for both inputs and states. The system
is modeled as a nonlinear MIMO system, with challenges in controller design due to
its nonlinear behavior and uncertain parameters. A quantizer is used for the signals
in order to reduce the communication burden, and a new adaptive backstepping
based control scheme is developed to achieve tracking of a given reference signal,
where the tracking error is shown to converge towards a residual. The proposed
control scheme is implemented by experiments on a 2-degrees-of-freedom helicopter
system. The main contributions of this paper are as follows.

• The attitude tracking control problem of uncertain nonlinear rigid body systems
is investigated where both inputs and states are quantized. As far as we are
concerned, this is the first paper that solves this problem with uncertain para-
meters and where both inputs and states are quantized by a class of quantizers,
that satisfies the sector bounded property. A new adaptive backstepping-based
controller is developed and a new approach to stability analysis is proposed.
By choosing proper design parameters, all signals in the closed-loop system are
ensured bounded and tracking is achieved.

• Note that some techniques are presented in [26] to handle the uniform quant-
ization, where the quantization error is bounded by a constant. By contrast,
a more general quantizer is considered in this paper. Since the quantization
errors depend on the inputs of quantizers, they cannot be ensured bounded
automatically. Several difficulties are introduced both in the control design
and stability analysis for MIMO uncertain systems due to the fact that the
quantization errors are not bounded by constants. Instead the quantization
error is linearly dependent on the input to the quantizer, and is the main
challenge to be handled. Other challenges:

– Only the quantized states can be used to construct the control input and
the virtual controller.

– Since the virtual controllers are discontinuous after quantization, the
derivative can not be computed as is normally done in the standard
backstepping procedure. To overcome the difficulty, differentiable virtual
controls are designed by assuming that the system has no quantization.





       

Their partial derivatives multiplied by the quantized signals are then
utilized to complete the design of virtual controls.

– The effects of both input and state quantization introduces several residual
terms that need to be dominated.

• By well establishing the relations between the input signals and error states
and functions of continuous signals and quantized signals, the stability of the
closed-loop system equilibrium can be achieved by choosing proper design
parameters.

F.2 Mathematical Model and Problem Statement

F.2.1 Notations

Vectors are denoted by small bold letters and matrices with capitalized bold letters.
The symbol ωc

b,a denotes angular velocity of frame a relative to frame b, expressed in
frame c; Rb

a is the rotation matrix from frame a to frame b; the cross product operator
× between two vectors a and b is written as S(a)b where S is skew-symmetric;
λmax(·) and λmin(·) denotes the maximum and minimum eigenvalue of the matrix
(·), and ∥·∥ denotes the L2-norm and induced L2-norm for vectors and matrices,
respectively.

F.2.2 Problem Statement

For systems where data transmission are transferred through a common communica-
tion network, quantization errors are introduced due to the limited communication
rate of the network. For low resolution, these errors can not be ignored, and must be
considered in the analysis and controller design since it will affect the performance
and stability of the system.

We consider a control system as shown in Fig. F.1, where the inputs u(t) and
the states ε(t),ω(t) are quantized at the encoder side to be sent over a network.
The network is assumed noiseless, so that the quantized signals uQ(t), εQ(t),ωQ(t)
are recovered after transmission. The control problem is to design a control law by
utilizing only quantized measurement of the states, so that tracking of a desired
attitude is achieved.

F.2.3 Rigid Body Model

The orientation of a rigid body in frame b, relative to an inertial frame i, can be
described by a unit quaternion [28–30], q = [η, ε1, ε2, ε3]⊤ = [η, ε⊤]⊤ ∈ S3 = {x ∈
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Figure F.1: Control system with input and state quantization over a network.

R4 : x⊤x = 1} that is a complex number, where η = cos(υ/2) ∈ R is the real part
and ε = k sin(υ/2) ∈ R3 is the imaginary part, where υ is the Euler angle and k

is the Euler axis, and S3 is the non-Euclidean three-sphere. The kinematic and
dynamic equations for the rigid body are defined as

q̇ = T (q)ω, (F.1)

Jω̇ = −S(ω)(Jω) + Φ(ε,ω)⊤θ + uQ, (F.2)

where the angular velocity ωb
i,b = ω ∈ R3, the inertia matrix J ∈ R3×3 is positive

definite and invertible, the vector θ ∈ Rn is unknown and constant, the matrix
Φ ∈ Rn×3 are known nonlinear functions, and where we have

T (q) = 1
2

 −ε⊤

ηI + S(ε)

 ∈ R4×3. (F.3)

The matrix I denotes the identity matrix and S(·) is the skew-symmetric matrix
given by

S(ε) =


0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

 . (F.4)

The orientation between two frames can be described by a rotation matrix given as

R(q) = I + 2ηS(ε) + 2S2(ε), (F.5)

where R ∈ SO(3) that is a special orthogonal group of order three, and has the
property

SO(3) = {R ∈ R3×3 : R⊤R = I, det(R) = 1}. (F.6)





       

The mapping R : S3 → SO(3) is everywhere a local diffeomorphism, but globally
two-to-one, where R(q) = R(−q) [31]. The time derivative of a rotation matrix can
be expressed as [30]

Ṙa
b = Ra

b S
(
ωb

a,b

)
= S

(
ωa

a,b

)
Ra

b . (F.7)

Attitude and angular velocities are assumed to be measurable.

F.2.4 Quantizer

In this paper, we consider a class of quantizers satisfying the following inequality [32]

|yQ − y| = |d| ≤ δ|y| + ymin, (F.8)

where d is the quantization error, and 0 ≤ δ < 1 and ymin > 0 are quantization
parameters. If δ = 0, the quantization error will only depend on ymin, and so the
quantization error is bounded by a constant. When 0 < δ < 1, the quantization error
also depends on the input to the quantizer and is a sector bounded quantizer.

The quantized signals are modeled as

Q (u(t)) = uQ(t), (F.9)

Q(ε(t)) = εQ(t), Q(ω(t)) = ωQ(t), (F.10)

where Q(·) is a quantizer, u(t) ∈ R3 are the control inputs, uQ(t) = [uQ
1 uQ

2 uQ
3 ]⊤

are the quantized inputs, ε ∈ R3 and ω ∈ R3 are the measured states, and εQ(t) =
[εQ

1 εQ
2 εQ

3 ]⊤ and ωQ(t) = [ωQ
1 ωQ

2 ωQ
3 ]⊤ are the quantized states, where each vector

element satisfies (F.8) and so

∥uQ − u∥ = ∥du∥ ≤ ∥δu∥ ∥u∥ + ∥umin∥ ∆= δu∥u∥ + umin, (F.11)

∥ωQ − ω∥ = ∥dω∥ ≤ ∥δω∥ ∥ω∥ + ∥ωmin∥ ∆= δω∥ω∥ + ωmin, (F.12)

∥εQ − ε∥ = ∥dε∥ ≤ ∥δε∥ ∥ε∥+∥εmin∥≤∥δε∥+∥εmin∥ ∆= δε, (F.13)

where in (F.13), the unity property of the unit quaternion is used.

Most practical quantizers satisfy the property in (F.8), such as a uniform-, a
logarithmic- and a logarithmic-uniform quantizer, and will be presented next.
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Figure F.2: Map of the uniform quantizer Qu(y) for y > 0.

F.2.4.1 Uniform Quantizer

A uniform quantizer has equal quantization levels and can be described as

Qu(y) =

 yi sgn(y), yi − l
2 < |y| ≤ yi + l

2

0, |y| ≤ y0
, (F.14)

where y0 > 0 and y1 = y0 + l
2 , yi = yi−1 + l with i = 2, 3, . . . , l is the length of

the quantization interval and sgn(·) is the sign function. The uniform quantization
Qu(y) is in the set U = {0, ±yi}. The quantization error is bounded by a positive
constant ymin = max{y0, l/2}, and satisfies (F.8) with δ = 0. A map of the uniform
quantizer (F.14) for y > 0 is shown in Fig. F.2. The uniform quantizer has equal
quantization levels and is optimal for uniformly distributed signals.

F.2.4.2 Logarithmic Quantizer

A logarithmic quantizer is defined as [33]

Qlog(y) =

yi sgn(y), yi

1+δ
< |y| ≤ yi

1−δ

0, |y| ≤ ymin

, (F.15)
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Figure F.3: Map of the logarithmic quantizer Qlog(y) for y > 0.

where ymin = y0
1+δ

determines the size of the dead-zone for Qlog(y), 0 < δ < 1, y0 > 0,
yi = ρ(1−i)y0, with i = 1, 2, . . . , and parameter ρ = 1−δ

1+δ
. The parameter ρ can be

regarded as a measure of the quantization density, where smaller values of ρ implies
that the quantizer is coarser. The quantized signal Qlog(y) is in the set U = {0, ±yi}
and satisfies the property in (F.8). A map of the logarithmic quantizer (F.15) for
y > 0 is shown in Fig. F.3. The logarithmic quantizer has unequal quantization
levels, and is useful where the signals are more concentrated near the equilibrium or
have higher resolution around the equilibrium, e.g. for speech signal compression,
image processing, etc. Several remarks about the logarithmic quantizer can be found
in [7, 34, 35].

F.2.4.3 Logarithmic-Uniform Quantizer

A logarithmic-uniform quantizer combines a uniform quantizer and a logarithmic
quantizer and is defined as

Qlu(y) =

 Qlog(yth) +Qu (y − yth) , |y| ≥ yth

Qlog(y) |y| < yth
, (F.16)

where yth is a positive constant specified by designer denoting the threshold to
switch between the logarithmic and uniform quantizer. The uniform quantizer, Qu,
is defined in (F.14) and the logarithmic quantizer, Qlog, is defined in (F.15). The
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quantizer Qlu(y) takes advantage of a logarithmic quantizer having high resolution
close to the origin, and switch to a uniform quantizer for higher values, and satisfies
(F.8) with δ = 0 and ymin ≥ l

2 . A map of the logarithmic-uniform quantizer (F.16)
for y > 0 is shown in Fig. F.4.

F.2.5 Control Objective

We want to track a given desired attitude qi,d = qd and a desired angular velocity
ωi

i,d = ωd where the kinematic equation

q̇d = T (qd)ωd
i,d = 1

2

 −ε⊤
d

ηdI − S(εd)

ωd, (F.17)

is satisfied. The tracking error e, is given by the quaternion product

e = q̄i,d ⊗ qi,b =
η̃
ε̃

=
 ηdη + ε⊤

d ε

ηdε − ηεd − S(εd)ε

 ∈ S3, (F.18)

where q̄ = [η − ε⊤]⊤ is the inverse rotation given by the complex conjugate. If
qi,b = qi,d, then e = [±1 0⊤

3 ]⊤ where 03 is the zero vector of dimension three. Since
there exist two equilibria using the quaternion representation, we conclude that
global stability cannot be achieved. Physically e and −e represent the same attitude,





       

only rotated ±2π about an axis relative to each other, but mathematically the two
equilibria are distinct.

The relative error kinematics is

ė = T (e)ωe, (F.19)

where T (·) is defined in (F.3), and the angular velocity error

ωe = ω − Rb
iωd. (F.20)

The control objective is to design a control law for u(t) = u(εQ,ωQ) by utilizing
only the quantized states εQ and ωQ to drive ε̃ and ωe towards zero and where
all the signals in the closed-loop system are uniformly bounded. To achieve the
objective, the following assumptions are imposed.

Assumption 1. The desired attitude, angular velocity and angular acceleration, qd(t),
ωd(t) and ω̇d(t) are known, piecewise continuous and bounded, where ∥ωd(t)∥ < kωd

and ∥ω̇d(t)∥ < kω̇d
∀t ≥ t0 where kωd

, kω̇d
> 0.

Assumption 2. The unknown parameter vector θ is bounded by ∥θ∥ ≤ kθ, where kθ

is a positive constant. Also θ ∈ Cθ, where Cθ is a known compact convex set.

Assumption 3. The function Φ satisfy a locally Lipschitz condition such that

∥Φ(x1,y1) − Φ(x2,y2)∥ ≤ L1∥x1 − x2∥ + L2∥y1 − y2∥, (F.21)

where L1 and L2 are positive constants, and x(·),y(·) ∈ R3 are real vectors.

Assumption 4. sgn(η̃(t0)) = sgn(η̃(t)) ∀t ≥ t0.

Remark 1. These assumptions are reasonable for most practical systems. Assump-
tion 1 ensures that the reference signal is bounded in t, and is a standard condition
for attitude tracking control problems, see e.g [36–38]. Since the vector θ has constant
vector elements, Assumption 2 holds, knowing the bounds for each vector element.
Assumption 3 is a fairly mild assumption to ensure the existence and uniqueness of
solutions for the system (F.2) and applies for a broad class of practical systems, where
similar assumptions are made in e.g [19, 27]. By Assumption 4, the equilibrium point
that initially are closest is chosen and kept throughout the tracking maneuver.

F.3 Controller Design

In this section we will design adaptive feedback control laws for the rigid body
using backstepping technique in [39]. Since the design of an adaptive controller with





         

quantized signals is based on the design with continuous measurement of the signals,
we start by the case of continuous signals before proceeding to the case of quantized
signals.

F.3.1 Continuous Signals

We here consider the case that the signals are not quantized. First, introducing a
change of coordinates

z1± =
1 ∓ η̃

ε̃

 , (F.22)

z2 = ωe − α, (F.23)

where z1± is an error vector, which shifts the equilibria to the origin [40], where
z1+ is for the positive equilibrium point when η̃(t0) ≥ 0, and z1− is for the negative
equilibrium point when η̃(t0) < 0, and where α is a virtual controller chosen as

α = −C1Gz1± ∈ R3, (F.24)

where C1 ∈ R3×3 is a positive definite matrix and

G(e)⊤ ∆=
 ±ε̃⊤

η̃I + S(ε̃)

 ∈ R4×3. (F.25)

Remark 2. By introducing the change of coordinates z1± we are avoiding that one
of the mathematical representations of a given attitude is left unstable. The initial
condition of η̃ given by Assumption 4 is also helpful in the control strategy, where we
choose a target equilibrium point before we start the maneuver. If we were considering
that only one of the equilibria was stable, the other would be unstable. Then, if we
initially were close to the unstable equilibrium point, we would need a large rotation
to reach the stable equilibrium point. We are thus avoiding the problem of unwinding
since we now are regulating towards the closest equilibrium point, i.e the equilibrium
point which requires the shortest rotation and thus minimizing the path length.

Remark 3. By choosing a target equilibrium point prior to the maneuver we will
minimize the path length, but not necessarily the input energy. If there is an initial
velocity in the opposite direction to the desired rotation it might be more efficient to
converge towards the equilibrium that is further away to save energy [40].

For ease of notation we now denote z1 = z1±. The derivative of (F.22)-(F.23),





       

inserting the dynamics from (F.2) is given as

ż1 =1
2G⊤ωe = −1

2G⊤C1Gz1 + 1
2G⊤z2, (F.26)

Jż2 = − S(ω)(Jω) + Φ⊤θ + uQ + J
(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

)
, (F.27)

where the derivative of (F.24) is

α̇ = ∓1
2C1 [η̃I + S(ε̃)] ωe, (F.28)

where we have used that Gz1 = ±ε̃. Since the inputs are not quantized, we have
uQ = u, and an adaptive controller and parameter update law can be designed as

u = − Gz1 − C2z2 − Φ⊤θ̂ + S(Rb
iωd)(Jω) + S(α)(Jω)

− J
(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

)
, (F.29)

˙̂
θ = ΓΦz2, (F.30)

where C2 ∈ R3×3,Γ ∈ Rn×n are positive definite matrices, and the vector θ̂ is the
estimated value of θ. A Lyapunov function candidate is chosen as

V (z1, z2, θ̃, t) = z⊤
1 z1 + 1

2z⊤
2 Jz2 + 1

2 θ̃⊤Γ−1θ̃, (F.31)

where θ̃ = θ − θ̂ is the unknown parameter error. By inserting (F.29)–(F.30) in the
derivative of (F.31) yields

V̇ = − z⊤
1 G⊤C1Gz1 + z⊤

1 G⊤z2 + z⊤
2

[
−S(ω)(Jω) + Φ⊤θ + u

+J
(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

)]
− θ̃⊤Γ−1 ˙̂

θ

= − z⊤
1 G⊤C1Gz1 − z⊤

2

[
S(ω − α − Rb

iωd)(Jω)
]

− z⊤
2 C2z2

= − z⊤
1 G⊤C1Gz1 − z⊤

2 C2z2, (F.32)

where we have used the fact that z⊤
2 S(z2) = 0. Then it follows that asymptotic

tracking is achieved and all signals in the closed-loop system are uniformly bounded.

F.3.2 Quantized Signals

Now we consider the case that both the inputs and the states are quantized, and
satisfy the sector bounded property in (F.8). Since only the quantized states εQ,ωQ

are measured, the quantized value of η is calculated as

ηQ = ±
√

1 − (εQ)⊤εQ, (F.33)





         

where the quantized attitude is given by qQ = [ηQ, (εQ)⊤]⊤.

Remark 4. The value of ηQ can be calculated based on the value of εQ and knowledge
of the sign of η(t0) and the assumption of sign continuity of η(t) based on derivative.
If we are close to, or at η = 0, we might end up with (εQ)⊤εQ > 1, and a scaling is
needed to ensure we have a unit quaternion.

The quantization error of the quaternion can be expressed as

dq = q̄i,b ⊗ qi,Q =
dη

dε̄

 =
 ηηQ + ε⊤εQ

ηεQ − ηQε − S(ε)εQ

 , (F.34)

where dε̄ is bounded by ∥dε̄∥ ≤ kεδε from (F.13) and where kε > 1 is a positive
constant, and dη is bounded from the unity property of unit quaternion. If qQ = q

and there is no quantization error, then dq = [1 0 0 0]⊤. The tracking error with the
quantized value of the unit quaternion is given by

eQ =
η̃Q

ε̃Q

 =
 ηdη

Q + ε⊤
d εQ

ηdεQ − ηQεd − S(εd)εQ

 , (F.35)

and can also be described by

eQ = qd,b ⊗ qb,Q = e ⊗ dq
∆=
 η̃Q

ε̃ + dε̃

 , (F.36)

where the value of dε̃ depends on the quantization error that is bounded by (F.13),
and if there is no quantization error, dε̃ = 0.
The adaptive controller and parameter update law are designed as

uQ(t) = u(t) + du(t), (F.37)

u = − GQzQ
1 − C2z

Q
2 − (ΦQ)⊤θ̂ + S(RQ

i ωd)(JωQ) + S(αQ)(JωQ)

− J
(
S(ωQ)RQ

i ωd − RQ
i ω̇d − ᾱQ

)
, (F.38)

˙̂
θ = Proj{ΓΦQzQ

2 }, (F.39)

where Proj{·} is the projection operator given in [39] and where

zQ
1 =

1 ∓ η̃Q

ε̃Q

 , (F.40)

zQ
2 = ωQ

e − αQ, (F.41)

G(eQ)⊤ =
 ±(ε̃Q)⊤

η̃QI + S(ε̃Q)

 , (F.42)





       

αQ = − C1G
QzQ

1 = ∓C1ε̃
Q, (F.43)

ΦQ = Φ(εQ,ωQ), (F.44)

ᾱQ ∆= ∓1
2C1

[
η̃QI + S(ε̃Q)

]
ωQ

e , (F.45)

ωQ
e = ωQ − RQ

i ωd, (F.46)

RQ
i = RQ

b Rb
i , (F.47)

where RQ
b is the rotation due to the quantization error. The projection operator is

ensuring that the estimates are nonzero and within known bounds, that is ∥θ̂∥ ≤ kθ.
A function ᾱQ is used in (F.45), which is designed as if the states were not quantized.
See e.g. [remark 7] in [19] for a note about this design.

F.4 Stability Analysis

To analyze the closed-loop stability, we first establish some preliminary results as
stated in the following Lemmas, and with proofs provided in Appendix A–Appendix
D, respectively. The results in this section are applicable for the quantizers satisfying
the sector bounded property in (F.8), including the uniform quantizer in Section
F.2.4.1, the logarithmic quantizer in Section F.2.4.2, and the logarithmic-uniform
quantizer in Section F.2.4.3.

Lemma 1. The virtual control law α, the output ω and angular velocity error ωe

are bounded by the following inequalities:

∥α∥ ≤ λmax(C1), (F.48)

∥ωe∥ ≤ λmax(C1) + ∥z∥, (F.49)

∥ω∥ ≤ kω + ∥z∥, (F.50)

where z = [z⊤
1 , z

⊤
2 ]⊤, and

kω
∆= λmax(C1) + kωd

. (F.51)

Lemma 2. The effects of state quantization are bounded by the following inequalities:

(i) ∥RQ
i − Rb

i∥ ≤ δεkR, (F.52)

(ii) ∥GQzQ
1 − Gz1∥ ≤ δεkε, (F.53)

(iii) ∥αQ − α∥ ≤ δεkα, (F.54)

(iv) ∥ωQ − ω∥ ≤ δωkω + ωmin + δω∥z∥, (F.55)

(v) ∥ωQ
e − ωe∥ ≤ δεkRkωd

+ δωkω + ωmin + δω∥z∥, (F.56)





         

(vi) ∥zQ
2 − z2∥ ≤ δεkz2 + δωkω + ωmin + δω∥z∥, (F.57)

(vii) ∥ᾱQ−α̇∥ ≤ δεkᾱ1 + δωkᾱ2 + ωminkᾱ3 + λmax(C1)2 + (λmax(C1) + δω)∥z∥,
(F.58)

(viii) ∥ΦQ − Φ∥ ≤ δεL1 + δωL2kω + ωminL2 + δωL2∥z∥, (F.59)

where

kR
∆= 2kε + 2k2

εδε, (F.60)

kα
∆= λmax(C1)kε, (F.61)

kz2
∆= kRkωd

+ kα, (F.62)

kᾱ1
∆= 1

2λmax(C1)kRkωd
, (F.63)

kᾱ2
∆= 1

2λmax(C1)kω, (F.64)

kᾱ3
∆= 1

2λmax(C1), (F.65)

are positive constants.

Lemma 3. The effect of input quantization is bounded by the following inequality:

∥uQ − u∥ ≤δu (δεku1 +δωku2 +ωminku3 +ku4)+umin + δu (δεku5 + δωku6 +ku7) ∥z∥,
(F.66)

where

ku1
∆=kε + λmax(C2)kz2 + kθL1 + λmax(J)kα (δωkω + ωmin + kω)

+ λmax(J)kᾱ1 , (F.67)

ku2
∆=λmax(C2)kω + L2kωkθ + λmax(J) (2kωd

kω + λmax(C1)kω + kᾱ2) , (F.68)

ku3
∆=λmax(C2) + L2kθ + λmax(J) (2kωd

+ λmax(C1) + kᾱ3) , (F.69)

ku4
∆=1 + kθ (1 + kω) + λmax(J) (2kωd

kω + λmax(C1)kω + kω̇d
)

+ 3
2λmax(J)λmax(C1)2, (F.70)

ku5
∆=λmax(J)kα, (F.71)

ku6
∆=λmax(C2) + L2kθ + λmax(J) (2kωd

+ δεkα + λmax(C1) + 1) , (F.72)

ku7
∆=λmax(C2) + kθ + λmax(J)

(
2kωd

+ 5
4λmax(C1)

)
, (F.73)

are positive constants.





       

Lemma 4. The following inequality holds:

1
2λmin(C1)z⊤

1 z1 ≤ z⊤
1 G⊤C1Gz1. (F.74)

By using the properties of Lemmas 1 and 2, we can show the following inequalities,

S(ω)(Jω) − S(RQ
i ωd)(JωQ) − S(αQ)(JωQ)

≤ S(ω)(Jω) − S(Rb
iωd)(Jω) − S(α)(Jω)

+ λmax(J)
[
(δεkRkωd

+ δεkα)∥ωQ∥ + (kωd
+ ∥α∥)∥dω∥

]
≤ S(z2)(Jω)+λmax(J) [(kωd

+λmax(C1))(δωkω + ωmin+δω∥z∥)

+(δεkRkωd
+ δεkα)(δωkω + ωmin + δω∥z∥ + kω + ∥z∥)]

∆= S(z2)(Jω)+δεkT1 +δωkωkT2 +ωminkT2 +(δεkT3 +δωkT2) ∥z∥, (F.75)

where

kT1
∆= λmax(J) (kRkωd

+ kα) (kω + δωkω + ωmin) , (F.76)

kT2
∆= λmax(J) (kωd

+ λmax(C1)) , (F.77)

kT3
∆= λmax(J) (kRkωd

+ kα) (1 + δω) , (F.78)

and

∥S(ω)Rb
i −S(ωQ)RQ

i ∥ ≤ ∥ω∥δεkR + ∥dω∥

≤ δεkωkR+δωkω + ωmin + (δεkR + δω) ∥z∥. (F.79)

We now state our main result in the following theorem.

Theorem 1. Consider the closed-loop adaptive system consisting of the plant (F.26)–
(F.27), the quantized inputs and states (F.9)–(F.10) satisfying (F.11)–(F.13), the
adaptive controller (F.37)–(F.38), the parameter update law (F.39) and Assumptions
1–4. If the gain matrices C1 and C2 and quantization parameters are chosen to
satisfy

c0

2 − δV2 ≥ k > 0, (F.80)

where c0 = min{1
2λmin(C1), λmin(C2)}, k is a positive constant, and

δV2 = δεkV1 +δωkV2 +δu (δεku5 +δωku6 +ku7)+λmax(J)λmax(C1), (F.81)





         

where

kV1
∆= kT3 + λmax(J)kRkωd

, (F.82)

kV2
∆= λmax(C2) + kT2 + λmax(J) (kωd

+ 1) + kΦ4 , (F.83)

then, all signals in the closed-loop system are ensured to be uniformly bounded. The
L2-norm of the error states is ultimately bounded by

∥z(t)∥ ≤
√
δQ

k
, (F.84)

where

δQ = 1
2c0

δ2
V1 + δV0 , (F.85)

δV0 =δεkΦ1 + δωkωkΦ2 + ωminkΦ2 , (F.86)

δV1 =δεkV3 + δωkV4 + ωminkV5 + δu (δεku1 + δωku2 + ωminku3 + ku4) + umin

+ λmax(J)λmax(C1)2, (F.87)

kV3
∆=λmax(C2)kz2 + kε + kT1 + λmax(J) (kωkRkωd

+ kRkω̇d
+ kᾱ1) + kΦ3 , (F.88)

kV4
∆=kω (λmax(C2) + kT2 + λmax(J)kωd

) + λmax(J)kᾱ2 + kΦ5 , (F.89)

kV5
∆=λmax(C2) + kT2 + λmax(J)kωd

+ λmax(J)kᾱ2 + kΦ4 . (F.90)

Tracking of a given reference signal is achieved, with a bounded error.

Proof: We choose a Lyapunov function candidate

V (z1, z2, θ̃, t) = z⊤
1 z1 + 1

2z⊤
2 Jz2 + 1

2 θ̃⊤Γ−1θ̃. (F.91)

By following the control design in (F.37)–(F.39), the derivative of (F.91) is given as

V̇ = − z⊤
1 G⊤C1Gz1 + z⊤

1 G⊤z2 + z⊤
2

[
− S(ω)(Jω) + Φ⊤θ + uQ

+ J
(
S(ω)Rb

iωd − Rb
i ω̇d − α̇

) ]
− θ̃⊤Γ−1 ˙̂

θ

≤ − z⊤
1 G⊤C1Gz1 − z⊤

2 C2z
Q
2 + z⊤

2

(
Gz1 − GQzQ

1

)
+ z⊤

2

[
−S(ω)(Jω) + S(RQ

i ωd)(JωQ) + S(αQ)(JωQ)
]

+ z⊤
2 J

[
S(ω)Rb

i − S(ωQ)RQ
i

]
ωd + z⊤

2 J
(
RQ

i − Rb
i

)
ω̇d + z⊤

2 J(ᾱQ − α̇)

+ z⊤
2 du +

[
z⊤

2 (Φ⊤θ − (ΦQ)⊤θ̂) − θ̃⊤ΦQzQ
2

]
. (F.92)

The last terms in (F.92) satisfy

z⊤
2 (Φ⊤θ − (ΦQ)⊤θ̂) − θ̃⊤ΦQzQ

2





       

= θ⊤Φz2 − θ⊤ΦQz2 + θ̃⊤ΦQz2 − θ̃⊤ΦQzQ
2

≤ ∥θ∥ ∥Φ − ΦQ∥ ∥z2∥ + ∥θ̃∥ ∥ΦQ∥ ∥z2 − zQ
2 ∥

≤ kθ∥Φ − ΦQ∥ ∥z∥+kθ(1 + ∥ω∥+∥Φ − ΦQ∥)∥z2 − zQ
2 ∥

≤ δεkΦ1 + δωkωkΦ2 + ωminkΦ2 + (δεkΦ3 + δωkΦ5 + ωminkΦ4) ∥z∥ + δωkΦ4∥z∥2, (F.93)

where the properties from Lemmas 1–2 are used, and where

kΦ1
∆= kθL1 (δεkz2 + δωkω + ωmin) + (kθ + kθkω) kz2 , (F.94)

kΦ2
∆= kθL2 (δεkz2 + δωkω + ωmin) + (kθ + kθkω) , (F.95)

kΦ3
∆= kθL1 (1 + δω) + kθkz2 , (F.96)

kΦ4
∆= kθ (1 + L2 + L2δω) , (F.97)

kΦ5
∆= kΦ2 + kωkΦ4 . (F.98)

By using the properties from Lemmas 1–4 together with (F.75), (F.79) and (F.93)
and using Young’s inequality, we have

V̇ ≤ − c0∥z∥2 + δV0 + δV1∥z∥ + δV2∥z∥2

≤ −
(
c0

2 − δV2

)
∥z∥2 + 1

2c0
δ2

V1 + δV0

≤ − k∥z∥2 + δQ < 0, ∀∥z∥ >
√
δQ/k. (F.99)

This shows that the ultimate bound for z(t) satisfies (F.84) under condition (F.80).
Since z is bounded, then by Lemma 2, zQ is bounded. Then the estimated parameter
vector θ̂ is ensured bounded by the projection operator (F.39). Since z is bounded,
then by Lemmas 1–3 and the property of unity of the unit quaternion, all signals in
the closed loop are ensured bounded.

Remark 5. The quantization parameters should be chosen to guarantee the stability
and control performances of the attitude tracking control system, and (F.80) give
some insight to this. Since both the control signals and the states are shown to
be bounded, the required number of quantization levels are finite and only a finite
number of quantization levels are required to stabilize the system. It can be observed
from (F.85)–(F.87) that the upper bound of the errors in the sense of (F.84) can be
decreased if the quantization parameters δ(·), ωmin and umin are decreased, while all
design parameters C(·) are kept unchanged. The choice of quantization parameters
will depend on the application and the available data-rate for the communication
network.

Remark 6. A logarithmic quantizer has a better resolution close to zero. Since we
are considering a tracking problem where the states are quantized and not the error





         

Figure F.5: Quanser Aero helicopter system connected with computer.

states, this would also imply that the error from quantization will be larger if the
reference signal is far from the origin. For tracking of a reference signal further away
from the equilibrium, one option is to use a logarithmic-uniform quantizer, described
in Sec. F.2.4.3, for the state signals. For the stability analysis, this only imply that
δω = 0, and the value of δε is smaller, which again implies that the error signals will
converge towards a smaller compact set.

Remark 7. Time-delays in the communication channels have significant effects
in networked control systems, where the presence of delays may result in a poor
performance and can also lead to instability, see e.g. [4, 34]. Extending present
results to handle both quantization and time-delay is nontrivial, and is an interesting
problem to investigate further.

F.5 Experimental Results

To illustrate the presented adaptive control scheme, we implemented the controller
on the Quanser Aero helicopter system, shown in Fig. F.5. This is a two-rotor
laboratory equipment for flight control-based experiments. With a horizontal position
of the main thruster and a vertical position of the tail thruster, this resembles a
helicopter with two propellers driven by two DC motors. The helicopter is a MIMO
system with 2 DOF, and can rotate around two axes where each input affects both
rotational directions. The dynamic equation for the helicopter model is defined as

Jω̇ = −S(ω)(Jω) + Φ(ε,ω)⊤θ + uQ − g(q) + τg, (F.100)





       

Table F.1: Helicopter Parameters.

Symbol Value Units
J diag(0.0218, 0.0217, 0.0218) kgm2

m 1.075 kg
g 9.81 m/s2

rg
b [0 0 − 0.0038]⊤ m

where g(q) = −S(rb
g)Rb

if
i
g ∈ R3, rb

g = [xg yg zg]⊤ is the distance from the origin to
the center of mass, f i

g = [0 0 − mg]⊤, m is the mass of the rigid body, and g is
the gravitational acceleration. The torque g(q) is caused by the gravitational force,
because the rotation of the helicopter is not about the center of mass. We assume that
this torque can be compensated for directly by measurements of q, where τg = g(q),
and is not sent over the network. The mathematical model is then described by (F.1)–
(F.2), and the system receives the driving toques τ = uQ+τg. The parameters used for
simulation and experiments are shown in Table F.1, where Φ = diag(−ω), the initial
states and estimated parameters were chosen as q(t0) = [1 0 0 0]⊤, ω(t0) = [0 0 0]⊤

and θ̂(t0) = [0 0.0070 0.0095]⊤, where t0 defines the start of experiment, and
the design parameters were set to C1 = 0.3I, C2 = 0.15I and Γ = 0.02I. The
quantization parameters were chosen as δεi

= δωi
= 0.02, ε0i

= ω0i
= 0.005 i = 1, 2, 3

for the states, and δui
= 0.05, u0i

= 0.0055 i = 1, 2, 3 for the inputs. For the
chosen values, Eq. (F.80) holds. The term Φ(ω)⊤θ in the dynamical model of the
practical setup relates to viscous damping in the system. The true values of the
damping coefficients θ are not known, and the update law (F.39) for the estimated
values does not provide convergence towards the true values. The objective in the
experiment was to track a given sinusoidal signal for the attitude, where rd = 0,
pd = 20π/180 sin(0.1πt+π/2), yd = 20π/180 sin(0.05πt+π/2), given in Euler angles,
that was converted to a quaternion, and also to track the angular velocities as
given in (F.17), while the inputs sent to the helicopter and the measured states
sent to the controller were quantized. The initial value for the desired attitude was
qd(t0) = [0.9698, −0.0302, 0.1710, 0.1710]⊤ and so initially we have a tracking error
eQ(t0) = [0.9698, 0.0302,−0.1710,−0, 1710]⊤, see Eq. (F.35). Since sgn(η̃Q(t0)) ≥ 0,
we choose the positive equilibrium point (F.40) for our maneuver.

Figs. F.6–F.10 show the attitude εQ, the angular velocity ωQ, the error in attitude
ε̃Q, the error in angular velocity ωQ

e , and the inputs uQ, respectively. The dotted
lines show the desired reference signals, while measured values from experiments on
the helicopter system are shown with a solid line. The same experiment was also
conducted with continuous measurements of the inputs and the states with results
given in Figs. F.11–F.13 showing the error in attitude ε̃, the error in angular velocity
ωe, and the inputs u, respectively.
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Figure F.6: Attitude εQ from experiment with quantization.
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Figure F.7: Angular velocity ωQ from experiment with quantization.
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Figure F.8: Tracking error ε̃Q from experiment with quantization.
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Figure F.9: Angular velocity error ωQ
e from experiment with quantization.

0 10 20 30 40 50

-0.05

0

0.05

Figure F.10: Inputs uQ from experiment with quantization.
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Figure F.11: Tracking error ε̃ from experiment without quantization.
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Figure F.12: Angular velocity error ωe from experiment without quantization.
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Figure F.13: Inputs u from experiment without quantization.





       

Table F.2: Tracking error with and without quantization.

ztrack ×10−4 State
Continuous Quantized

Input Continuous 311 315
Quantized 318 320

For both cases, the inputs and the states are shown to be bounded, and tracking
is achieved with a bounded tracking error. The total tracking error was defined as

ztrack =
∫ tf

t0
(ε̃Q)⊤ε̃Qdτ, (F.101)

where t0 and tf define start and end of experiment, respectively. The experiments
were run for 50 s and results are provided in Table F.2, and is an average of three
runs for each case. The tracking error is increased by introducing quantization as
expected. As the results show, a good performance can be maintained by introducing
quantization, while at the same time the communication burden over a network can
be decreased.

F.6 Conclusion

An adaptive backstepping control design has been developed for attitude tracking
of rigid body systems with uncertain parameters and with quantization of both
inputs and states. Since there exist two equilibria using unit quaternions, a target
equilibrium point is chosen before starting the maneuver, and thus one is regulated
to the closest equilibrium point. This will avoid the problem of unwinding. A class of
sector bounded quantizers has been considered, which introduce quantization errors
that are linearly dependent on the inputs to the quantizers. All signals in the closed
loop system are shown to be uniformly bounded and tracking of a given reference
signal is achieved. The tracking performance is also established and can be improved
by appropriately adjusting design parameters. The choice of quantization parameters
directly affects the size of the equilibrium set, and this relationship is shown in the
analysis. Experiments on a 2-DOF helicopter system illustrate the proposed control
scheme.

Appendix A. Proof of Lemma 1

From (F.24) we have

∥α∥ ≤ λmax(C1)∥ε̃∥ ≤ λmax(C1), (F.102)





         

where ∥ε̃∥ ≤ 1. From (F.20), (F.23) and Assumption 1, the angular velocity error
and angular velocity satisfy

∥ωe∥ ≤ ∥z2 + α∥ ≤ λmax(C1) + ∥z∥, (F.103)

∥ω∥ ≤ ∥ωe + Rb
iωd∥ ≤ λmax(C1) + kωd

+ ∥z∥ ∆= kω + ∥z∥, (F.104)

where z = [z⊤
1 , z

⊤
2 ]⊤.

Appendix B. Proof of Lemma 2

By using (F.34) and (F.47) and the property of (F.5) and (F.6), we have

∥RQ
i − Rb

i∥ = ∥RQ
b Rb

i − Rb
i∥ = ∥(RQ

b − I)Rb
i∥

≤ ∥−2dηS(dε̄)+2S2(dε̄)⊤∥ ∥Rb
i∥

≤ δε

(
2kε + 2k2

εδε

)
∆= δεkR. (F.105)

From the definition in (F.36) and the fact that Gz1 = ±ε̃ and GQzQ
1 = ±ε̃Q, it is

shown that

∥GQzQ
1 − Gz1∥ = ∥(±ε̃Q) − (±ε̃)∥ ≤ ∥dε̃∥ ≤ δεkε. (F.106)

From (F.24), (F.43) and (F.53) we have

∥αQ−α∥= ∥(−C1G
QzQ

1 ) − (−C1Gz1)∥≤λmax(C1)kεδε
∆= δεkα. (F.107)

From (F.12) and (F.50) we have

∥ωQ − ω∥ ≤ δω∥ω∥ + ωmin ≤ δωkω + ωmin + δω∥z∥. (F.108)

With the use of (F.46), (F.47) and (F.55) we have

∥ωQ
e − ωe∥ = ∥ωQ − RQ

i ωd − (ω − Rb
iωd)∥

≤ δεkRkωd
+ δωkω + ωmin + δω∥z∥. (F.109)

Using (F.23), (F.41), (F.54) and (F.56), we have

∥zQ
2 − z2∥ ≤ ∥ωQ

e − αQ − (ωe − α)∥

≤ δε(kRkωd
+ kα) + δωkω + ωmin + δω∥z∥

∆= δεkz2 + δωkω + ωmin + δω∥z∥. (F.110)





       

By using (F.28), (F.45), (F.49) and (F.56), we have

∥ᾱQ−α̇∥ = ∥1
2C1

[
∓[η̃QI + S(ε̃Q)]ωQ

e − [∓[η̃I + S(ε̃)]]ωe

]
∥

≤ 1
2λmax(C1) (2∥ωe∥ + δεkRkωd

+ δωkω + ωmin + δω∥z∥)
∆= δεkᾱ1 + δωkᾱ2 + ωminkᾱ3 + λmax(C1)2 + (λmax(C1) + δω)∥z∥. (F.111)

From Assumption 3, the unity property of unit quaternion and from (F.55) we
have

∥ΦQ−Φ∥ ≤ L1∥εQ−ε∥ + L2∥ωQ−ω∥

≤ δεL1 + δωL2kω + ωminL2 + δωL2∥z∥. (F.112)

Appendix C. Proof of Lemma 3

The norm of the control input u in (F.38) satisfies the following inequality

∥u∥ =∥−GQzQ
1 − C2z

Q
2 − (ΦQ)⊤θ̂ + S(RQ

i ωd)(JωQ)

+ S(αQ)(JωQ) − J
(
S(ωQ)RQ

i ωd − RQ
i ω̇d − ᾱQ

)
∥

≤ 1 + δεkε + λmax(C2) (δεkz2 +δωkω +ωmin+δω∥z∥+∥z2∥)

+ kθ (δεL1 + δωL2kω + ωminL2 + δωL2∥z∥ + ∥ε∥ + ∥ω∥)

+ λmax(J) (2kωd
+ ∥α∥ + δεkα) ∥ωQ∥ + λmax(J)

(
kω̇d

+ ∥ᾱQ∥
)

∆= δεku1 +δωku2 +ωminku3 +ku4 +δεku5∥z∥+δωku6∥z∥+ku7∥z∥, (F.113)

where we have used the properties from Lemmas 1 and 2. Then

∥uQ − u∥ ≤ δu∥u∥ + umin

≤ δu (δεku1 + δωku2 + ωminku3 + ku4) + umin

+ δu (δεku5 + δωku6 + ku7) ∥z∥. (F.114)





         

Appendix D. Proof of Lemma 4

We use the property

0 ≤ (1 ∓ η̃)2 ≤ (1 − η̃)(1 + η̃) = ε̃⊤ε̃, (F.115)

that holds by Assumption 4. Then

(1 ∓ η̃)2 + ε̃⊤ε̃ ≤ 2ε̃⊤ε̃ (F.116)
1
2z⊤

1 z1 ≤ ε̃⊤ε̃ (F.117)
1
2λmin(C1)z⊤

1 z1 ≤ ε̃⊤C1ε̃ = z⊤
1 G⊤C1Gz1. (F.118)
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