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Abstract

This paper studies the attitude tracking control for an uncertain 2-degrees of freedom
helicopter system where the inputs and the states are quantized. An adaptive
backstepping based control scheme is proposed to handle the effect of quantization
for tracking of reference angles for pitch and yaw. All closed-loop signals are ensured
uniformly bounded and the tracking errors will converge to a compact set containing
the origin. Experiments on the helicopter system illustrate the proposed control
scheme.

D.1 Introduction

The interest for wireless communication, remote controlled systems and other network
control systems (NCSs) where the control loops are closed through a communication
network has increased recent years. The network bandwidth might be limited and
signals are required to be quantized before transmitted over the network. Then it
is important to choose a quantization scheme that can reduce the communication
burden over the network, and at the same time ensure sufficient precision for the
system. Quantization introduces nonlinear errors in the control loop that may lead
to degradation of system performance or even unstable control systems.

Various results have been reported for quantized feedback control systems with
input quantization, see e.g [1–4], where only the information from controller to the
plant is quantized, while the controller is designed by continuous measures of the
state feedback. The feedback control problem of systems with state quantization
has been studied in [5–8], where the system dynamics in these works are precisely
known.

Uncertainties often appears in systems, and adaptive control is a control method





       

that can be used to handle such uncertainties. Adaptive control schemes were
developed in [2, 9, 10] for uncertain systems with input quantization. Adaptive
backstepping technique was proposed in the 1990’s in [11] to deal with plant non-
linearity and parameter uncertainties. The backstepping technique has several
advantages over the conventional approaches such as providing a promising way to
improve the transient performance of adaptive systems by tuning design parameters.
Several results have been reported for adaptive backstepping control for systems
with input quantization, e.g. in [12, 13] for uncertain nonlinear systems, in [14]
for a 2-degrees of freedom (DOF) helicopter system, in [4] for tracking control for
under-actuated autonomous underwater vehicles and in [15] for formation tracking
control for a group of UAVs. Adaptive backstepping-based stabilization of uncertain
systems with state quantization are very limited, since the backstepping technique
requires differentiating the quantized states that are discontinuous. This problem
was solved in [16] where the states were quantized by a static bounded quantizer for
uncertain nonlinear systems. The solution in [16] to handle the discontinuous states
was considered in [17] for attitude control of a rigid body.

Both inputs and states are in practice quantized due to actuator and sensor
limitations, but there are only a few results handling both input and state quantization.
In [18], trajectory tracking control for autonomous underwater vehicles with the effect
of quantization was investigated using a sliding mode controller. In [19], adaptive
attitude control for a rigid body with input and output quantization was studied.
In [20], adaptive tracking control for nonholonomic mobile robots with input and
state quantization was considered. In [21], an adaptive neural network controller was
developed for a 2-DOF helicopter system with saturated input and quantized input
and state.

In this paper we extend the results from [22] and [14], where the adaptive
backstepping control of a 2-DOF helicopter was considered in [22] and with input
quantization in [14], to now deal with both input and state quantization for the same
helicopter system. The helicopter is a nonlinear multiple-input and multiple-output
(MIMO) system, with challenges in controller design due to its nonlinear behavior,
its cross coupling effect between inputs and outputs, and with uncertainties both in
the model and the parameters. Based on Lyapunov stability theory, the stability of
the helicopter system is analyzed, were the tracking errors are shown to converge to
an ultimate bound. Experiments on the helicopter system illustrate the proposed
control scheme.

The main contributions in this paper are summarized as follows.

• Compared to [14] where the problem of input quantization was considered, this
paper studies the problem where both the inputs and the states are quantized.
The main challenge is that the designed controller and virtual control can only





          
 

utilize quantized states, and this problem is being addressed.

• The attitude, i.e. orientation, of a MIMO 2-DOF helicopter system is to be
controlled, where the system has challenges due to uncertain parameters, there
is a coupling between the inputs and the outputs that makes control more
complicated, and quantization of both the inputs and the states introduce
errors that need to be handled in the control design and in the stability analysis.
We propose an adaptive control algorithm using the backstepping technique to
deal with these problems.

The paper is organized as follows. In Section D.2, the system model, problem
statement and the considered quantizer are presented. Section D.3 presents the
adaptive control design based on backstepping technique. In Section D.4 a stability
analysis is given, Section D.5 presents the results from experiment before a conclusion
is given in Section D.6.

D.2 Dynamical Model and Problem Formulation

D.2.1 Notations

Vectors are denoted by small bold letters and matrices with capitalized bold letters.
λmax(·) and λmin(·) denotes the maximum and minimum eigenvalue of the matrix
(·), and ∥·∥ denotes the L2-norm and induced L2-norm for vectors and matrices,
respectively.

D.2.2 System Model

The considered helicopter system is visualized in Fig. D.1 showing the body fixed
coordinate frame. This is a two-rotor laboratory equipment for flight control-based
experiments. The setup is a horizontal position of the main thruster and a vertical po-
sition of the tail thruster, which resembles a helicopter with two propellers driven by
two DC motors. The main motor is producing a force in the zb-direction that will give
a positive pitch angle, and at the same time the rotation of the propeller generates a
torque about the motor shaft causing a motion in the yb-direction, meaning this will
give a yaw angle. The tail motor is producing a force in the yb direction and at the
same time a torque changing the pitch angle. Thus, this is a MIMO system with 2
DOF, where each input will change both the pitch and the yaw angle. The helicopter
model is considered as a rigid body and the equations of motion are derived using
Euler-Lagrange equations as given in [22], where the system parameters are uncertain.





       

��

��

��

Figure D.1: Quanser Aero helicopter system with body coordinate frame

The state variables are defined as

x1 = [ϑ(t) ψ(t)]⊤ ∈ R2, x2 = [ϑ̇(t), ψ̇(t)]⊤ ∈ R2, (D.1)

where ϑ and ψ are pitch and yaw angles, and ϑ̇ and ψ̇ are angular velocities of pitch
and yaw. The nonlinear state space model is expressed as

ẋ =
 x2

Φ⊤
1 θ1 + Φ⊤

2 θ2 + Kuq

 ∈ R4, (D.2)

where

Φ1 =


−x2,1 0

− sin x1,1 0
x2

2,2 cosx1,1 sin x1,1 0

 ∈ R3×2, (D.3)

Φ2 =
0 −x2,2

0 −x1,2x2,2 cosx1,1 sin x1,1

 ∈ R2×2, (D.4)

are known nonlinear functions,

θ1 = 1
Ip


dp

mgr

mr2

 ∈ R3, θ2 = 1
Iy

 dy

2mr2

 ∈ R2, (D.5)





          
 

Controller

�
System

State

Quan�zer

�

��

Network

Network

Input

Quan�zer

��

�r

��

��

Figure D.2: Control system with input and state quantization over a network.

are unknown constant vectors,

K =
 k1

Ip

k2
Ip

−k3
Iy

k4
Iy

 ∈ R2×2, (D.6)

is the control allocation matrix. The constants k1 and k4 are torque thrust gains
from the main and the tail motors, k2 is a cross-torque thrust gain acting on pitch
from the tail motor, k3 is a cross-torque thrust gain acting on yaw from the main
motor, r is the distance between the center of mass and the origin of the body-fixed
frame, Ip and Iy are the moments of inertia of pitch and yaw respectively, g is the
gravity acceleration, m is the total mass of the Aero body, and dy and dp are damping
constants.

D.2.3 Problem Statement

We consider a control system as shown in Fig. D.2, where the state vector x and
the input vector u are quantized at the encoder side to be sent over a network. The
network is assumed noiseless, so that the quantized state signal xq is recovered and
sent to the controller and the quantized input signal uq is recovered and sent to the
plant.
The quantizers for the state and control input are modeled as follows.

xq = Q1(x), (D.7)

uq = Q2(u), (D.8)





       

where the control input u can only use the quantized state as follows:

u = [u1(t,xq), u2(t,xq)]⊤ ∈ R2. (D.9)

Given reference signal xr(t), the control objective is to design a control law for
u = u(t,xq) by utilizing only quantized state xq(t), to force the state x1(t) to track
the reference signal xr(t) when the inputs are quantized, and to ensure that all the
signals in the closed-loop system are uniformly bounded. To achieve the objective,
the following assumptions are imposed.

Assumption 1. The reference signal xr and first and second order derivatives are
known, piecewise continuous and bounded. Then there exists kxr , kẋr , kẍr > 0 such
that ∥xr∥ < kxr , ∥ẋr∥ < kẋr and ∥ẍr∥ < kẍr ,∀t ≥ t0.

Assumption 2. The unknown parameter vectors θ1 and θ2 are bounded by ∥θ1∥ ≤
kθ1, ∥θ2∥ ≤ kθ2 where kθ1 , kθ2 are positive constants. Also θ1 ∈ Cθ1, θ2 ∈ Cθ2 where
Cθ1 and Cθ2 are known compact convex sets.

Assumption 3. The functions Φ1 and Φ2 satisfy locally Lipschitz conditions such
that

∥Φ1(t,y1) − Φ1(t,y2)∥ ≤ LΦ1∥y1 − y2∥, (D.10)

∥Φ2(t,y1) − Φ2(t,y2)∥ ≤ LΦ2∥y1 − y2∥, (D.11)

where LΦ1 and LΦ2 are constants and y1,y2 are real vectors.

D.2.4 Quantizer

In this paper, a uniform quantizer is considered for both state quantization Q1(x)
and input quantization Q2(u), which has intervals of fixed length and is defined as
follows:

yq = Q(y) =

 yi sgn(y), yi − l
2 < |y| ≤ yi + l

2

0, |y| ≤ y0
, (D.12)

where y0 > 0, y1 = y0 + l
2 , yi+1 = yi + l, l > 0 is the length of the quantization interval,

sgn(y) is the sign function. The uniform quantization yq ∈ U = {0,±yi}, and a map
of the quantization for yi > 0 is shown in Fig. D.3. The quantizer considered in this
paper has the following property

|yq − y| = |dy| ≤ δy, (D.13)
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Figure D.3: Map of the uniform quantizer for y > 0.

where y is a scalar signal, d is the quantization error and δy > 0 denotes the
quantization bound. Clearly, the property in (D.13) is satisfied with δy = max{y0,

l
2}.

When a vector is quantized, we have

yq =
[
yq

1 yq
2 · · · yq

n

]⊤
, (D.14)

and so each vector element is bounded by (D.13), and we have ∥yq − y∥ = ∥dy∥ ≤
∥δy∥ ∆= δy.

D.3 Adaptive Control Design

In this section we will design adaptive feedback control laws for the helicopter system
using backstepping technique. For this model, two steps are included, where the
control signal is designed in the last step. We first introduce the change of coordinates

z1 = x1 − xr, (D.15)

z2 = x2 − α − ẋr, (D.16)

where α is a virtual controller designed in the first step and chosen as

α = −C1z1, (D.17)





       

where C1 ∈ R2×2 is a positive definite matrix. The derivative of (D.15) and (D.16)
are given as

ż1 = x2 − ẋr = z2 + α, (D.18)

ż2 = Φ⊤
1 θ1 + Φ⊤

2 θ2 + Kuq − α̇ − ẍr. (D.19)

To propose a suitable control scheme, the quantized input uq(t) is decomposed into
two parts

uq(t) =u(t) + du(t), (D.20)

where du is the quantization error of the input, which is bounded by ∥du∥ ≤
∥[δu1 δu2 ]⊤∥ = ∥δu∥ ∆= δu, from (D.13).
The adaptive controller is designed as

u(t) = K−1
[

− zq
1 − C2z

q
2 − Φ1(xq)⊤θ̂1 − Φ2(xq)⊤θ̂2 + ᾱq + ẍr

]
, (D.21)

˙̂
θ1 = Proj{Γ1Φ1(xq)zq

2}, (D.22)
˙̂
θ2 = Proj{Γ2Φ2(xq)zq

2}, (D.23)

where C2,Γ2 ∈ R2×2 and Γ1 ∈ R3×3 are positive definite gain matrices, θ̂ is the
estimated value of θ, the vector θ̃ = θ − θ̂, and where Proj{·} is the projection
operator given in [11] and where

zq
1 = xq

1 − xr, (D.24)

zq
2 = xq

2 − αq − ẋr, (D.25)

αq = −C1z
q
1, (D.26)

Φ1(xq) =


−xq

2,1 0
− sin xq

1,1 0
(xq

2,2)2 cosxq
1,1 sin xq

1,1 0

 (D.27)

Φ2(xq) =
0 −xq

2,2

0 −xq
1,2x

q
2,2 cosxq

1,1 sin xq
1,1

 (D.28)

ᾱq ∆= −C1(xq
2 − ẋr). (D.29)

Remark 1. The projection operator Proj{·} in (D.22) and (D.23) ensures that
the estimates and estimation errors are nonzero and within known bounds, that is
∥θ̂∥ ≤ kθ and ∥θ̃∥ ≤ kθ, and has the property −θ̃⊤Γ−1Proj(τ ) ≤ −θ̃⊤Γ−1τ , which
are helpful to guarantee the closed-loop stability.

Remark 2. Only the quantized state can be used in the designed controller. Since





          
 

the quantized state is used in the design of the virtual controller αq in (D.26), the
derivative of the virtual controller is discontinuous and can not be used in the design
of the controller. Instead, a function ᾱq is used in (D.29), which is designed as if
the state is not quantized.

D.4 Stability Analysis

To analyze the closed-loop system stability, we first establish some preliminary results
as stated in the following lemmas.

Lemma 1. The effects of state quantization are bounded by the following inequalities:

∥zq
1 − z1∥ = ∥(xq

1 − xr) − (x1 − xr)∥ ≤ δx1 , (D.30)

∥αq − α∥ = ∥−C1z
q
1 + C1z1∥ ≤ λmax(C1)δx1

∆= δα (D.31)

∥zq
2 − z2∥ = ∥(xq

2 − x2) + (α − αq)∥ ≤ δx2 + δα
∆= δz2 (D.32)

∥Φ1(xq) − Φ1(x)∥ ≤ LΦ1∥xq − x∥ = LΦ1δx
∆= δΦ1 (D.33)

∥Φ2(xq) − Φ2(x)∥ ≤ LΦ2∥xq − x∥ = LΦ2δx
∆= δΦ2 (D.34)

∥ᾱq − α̇∥ = ∥−C1(xq
2 − ẋr) + C1(x2 − ẋr)∥ ≤ λmax(C1)δx2

∆= δᾱ, (D.35)

where δ(·) are positive constants.

Proof: Using the property (D.13) of the quantizer, we have

∥xq
1 − x1∥ = ∥dx1∥ ≤ ∥[δx1,1 δx1,2 ]⊤∥ = ∥δx1∥ ∆= δx1 , (D.36)

∥xq
2 − x2∥ = ∥dx2∥ ≤ ∥[δx2,1 δx2,2 ]⊤∥ = ∥δx2∥ ∆= δx2 , (D.37)

∥xq − x∥ = ∥[δx1 δx2 ]⊤∥ = ∥δx∥ ∆= δx. (D.38)

Then from (D.15)-(D.18), (D.24)-(D.26), Assumption 3 and (D.36)-(D.38) the in-
equalities (D.30)-(D.35) holds.

Lemma 2. The state x satisfies the following inequality:

∥x∥ ≤ kx1 + kx2∥z∥, (D.39)

where z = [z⊤
1 z⊤

2 ]⊤.

Proof: From the definitions in (D.15)-(D.17) and Assumption 1 we have

∥x1∥ ≤ ∥z1 + xr∥ ≤ kxr + ∥z1∥ ≤ kxr + ∥z∥, (D.40)

∥α∥ ≤ λmax(C1)∥z1∥, (D.41)

∥x2∥ ≤ ∥z2 + α + ẋr∥ ≤ ∥z2∥ + λmax(C1)∥z1∥ + kẋr





       

≤ kẋr + [1 + λmax(C1)]∥z∥. (D.42)

Then

∥x∥ = ∥[x⊤
1 x⊤

2 ]⊤∥ =
√

(∥x1∥)2 + (∥x2∥)2

≤ (kxr + kẋr) + (2 + λmax(C1))∥z∥
∆= kx1 + kx2∥z∥. (D.43)

The main results are now stated in the following theorem.

Theorem 1. Consider the closed-loop adaptive system consisting of the plant (D.2)
with input and state quantization satisfying the bounded property (D.13), the adaptive
controller (D.21), the parameter updating laws (D.22)-(D.23) and Assumptions 1-3.
All signals in the closed-loop system are ensured to be uniformly bounded and the
error signals will converge to a compact set, i.e.

∥z(t)∥ ≤
√

2a
c0
, (D.44)

where c0 is the minimum eigenvalue of C0 = min{C1,C2}, and where

a = δV1 + 1
2c0

d2
V2 , (D.45)

δV1 = δθ11 + δθ21 , (D.46)

δV2 = δz2 + δx1 + δᾱ + ∥K∥δu + δθ12 + δθ22 , (D.47)

and is ultimately bounded. Tracking of a given reference signal is achieved, with a
bounded error.

Proof: We choose a Lyapunov function candidate as

V =1
2z⊤

1 z1 + 1
2z⊤

2 z2 + 1
2 θ̃⊤

1 Γ−1
1 θ̃1 + 1

2 θ̃⊤
2 Γ−1

2 θ̃2. (D.48)

Following the controller design in (D.21)-(D.23), the derivative of (D.48) is

V̇ = −z⊤
1 C1z1 + z⊤

1 z2 −θ̃⊤
1 Γ−1

1
˙̂
θ1 −θ̃⊤

2 Γ−1
2

˙̂
θ2 + z⊤

2 [Φ⊤
1 θ1 + Φ⊤

2 θ2 + Kuq − α̇ −ẍr]

= − z⊤
1 C1z1 − z⊤

2 C2z
q
2 + z⊤

2 (z1 − zq
1) + z⊤

2 (ᾱq − α̇) + z⊤
2 Kdu

+
[
z⊤

2

(
Φ1(x)⊤θ1 − Φ1(xq)⊤θ̂1

)
− θ̃⊤

1 Φ1(xq)zq
2

]
+
[
z⊤

2

(
Φ2(x)⊤θ2 − Φ2(xq)⊤θ̂2

)
− θ̃⊤

2 Φ2(xq)zq
2

]
. (D.49)

By using (D.10), (D.33), (D.38) and (D.43) and Assumption 2, The following in-





          
 

equality is satisfied for the terms in (D.49) containing θ1 and θ̂1:

z⊤
2 (Φ1(x)⊤θ1 − Φ1(xq)⊤θ̂1) − θ̃⊤

1 Φ1(xq)zq
2

= θ⊤
1 Φ1(x)z2 − θ⊤

1 Φ1(xq)z2 + θ̃⊤
1 Φ1(xq)z2 − θ̃⊤

1 Φ1(xq)zq
2

≤ ∥θ1∥∥Φ1(x) − Φ1(xq)∥∥z2∥ + ∥θ̃1∥∥Φ1(xq)∥∥z2 − zQ
2 ∥

≤ kθ1δΦ1∥z∥ + kθ1LΦ1∥xq∥δz2

≤ kθ1δΦ1∥z∥ + kθ1δz2LΦ1(kx1 + kx2∥z∥ + δx)

= [kθ1δz2LΦ1(kx1 + δx)] + [kθ1δΦ1 + kθ1δz2LΦ1kx2 ]∥z∥
∆= δθ11 + δθ12∥z∥. (D.50)

In a similar way, by using (D.11), (D.34), (D.38) and (D.43) and Assumptions 2, the
following inequality is satisfied for the terms in (D.49) containing θ2 and θ̂2:

z⊤
2 (Φ2(x)⊤θ2 − Φ2(xq)⊤θ̂2) − θ̃⊤

2 Φ2(xq)zq
2

= [kθ2δz2LΦ2(kx1 + δx)] + [kθ2δΦ2 + kθ2δz2LΦ2kx2 ]∥z∥
∆= δθ21 + δθ22∥z∥. (D.51)

Using the properties (D.30), (D.32) and (D.35) in Lemma 1 together with (D.50)
and (D.51) and Young’s inequality, we have

V̇ ≤ − z⊤
1 C1z1 − z⊤

2 C2z2 + ∥z2∥δz2 + ∥z2∥δx1 + ∥z2∥δᾱ + ∥z2∥∥K∥δu + δθ11

+ δθ12∥z∥ + δθ21 + δθ22∥z∥

≤ − c0∥z∥2 + δV1 + δV2∥z∥

≤ − c0

2 ∥z∥2 + δV1 + 1
2c0

δ2
V2

= − c0

2 ∥z∥2 + a. (D.52)

From (D.48) and (D.52) it is shown that V̇ < 0 ∀∥z∥ >
√

2a
c0

, thus z(t) is ultimately
bounded and satisfies (D.44). The boundedness of z and (D.30) and (D.32) ensure
the boundedness of the quantized error states zq

1 and zq
2. Then αq in (D.31) is

also bounded. Since x is bounded in (D.43), then from (D.38) also xq is bounded.
From the projection operator, θ̂1 and θ̂2 are ensured bounded. Then, together with
Assumptions 1-3, u in (D.21) is also bounded, and so all the closed-loop signals
are uniformly bounded. Tracking is achieved, where the tracking error is ultimately
bounded by (D.44).





       

Table D.1: Helicopter Parameters and initial values.

Symbol Value
x(t0) [0 0 0 0]⊤
θ̂1(t0) [0.3218 1.8423 0.0007]⊤
θ̂2(t0) [0.4374 0.0014]⊤

K

[
0.0506 0.0506

−0.0645 0.0810

]

D.5 Experimental Results

The proposed controller was simulated using MATLAB/Simulink and tested on the
Quanser Aero helicopter system. The mathematical model is described by (D.2),
and the initial states and parameters used for simulation and experiments are shown
in Table D.1.

The objective was to track a reference signal chosen as xr(t) = [40π/180 sin(0.1πt)
100π/180 sin(0.05πt)]⊤ when both the inputs and the states were quantized, and to
ensure that all the signals in the closed-loop system were uniformly bounded. The
inputs have limits of ±24 V. The quantization levels were chosen as lu = 0.3 for both
inputs, and ls = 0.02 for all the states. The gain matrices were set to C1 = 6I3,
C2 = 3I2, Γ1 = I3 and Γ2 = I2.

The trajectories of the quantized states xq = [ϑq(t), ψq(t), ϑ̇q(t), ψ̇q(t)]⊤ are shown
in Fig. D.4, where the desired states are shown with a dotted line and measured
values from test on the helicopter system are shown with a solid line. The error in
states xq

1 − xr and xq
2 − ẋr are shown in Fig. D.5, and Fig. D.6 shows the quantized

input uq. The results here illustrate the theoretical findings in Theorem 1, where
tracking is achieved and all signals are shown to be uniformly bounded.
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Figure D.4: Trajectories of the quantized states xq from experiment.
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D.6 Conclusion

In this paper, an adaptive backstepping control scheme for an uncertain nonlinear
MIMO helicopter system with both input and state quantization was developed. The
quantizer considered satisfies a bounded condition and so the quantization error is
bounded. For the closed loop system, all signals are shown to be uniformly bounded
where the error signals will converge to a compact set containing the origin. Tracking
of a given reference signal is achieved, with a bounded error. Experiments on the
helicopter system support the proof.
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