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Abstract. Since its early beginning, the paradigm of Learning Au-
tomata (LA), has attracted much interest. Over the last decades, new
concepts and various improvements have been introduced to increase
the LA’s speed and accuracy, including employing probability updat-
ing functions, discretizing the probability space, and implementing the
“Pursuit” concept. The concept of incorporating “structure” into the or-
dering of the LA’s actions is one of the latest advancements to the field,
leading to the ε-optimal Hierarchical Continuous Pursuit LA (HCPA)
that has superior performance to other LA variants when the number
of actions is large. Although the previously proposed HCPA is power-
ful, its speed has a handicap when the required action probability of
an action is approaching unity. The reason for this slow convergence is
that the learning parameter operates in a multiplicative manner within
the probability space, making the increment of the action probability
smaller as its probability becomes close to unity. Therefore, we propose
the novel Hierarchical Discrete Learning Automata (HDPA) in this pa-
per, which does not possess the same impediment as the HCPA. The
proposed machine infuse the principle of discretization into the action
probability vector’s updating functionality, where this type of updating
is invoked recursively at every depth within a hierarchical tree structure
and we pursue the best estimated action in all iterations through utiliza-
tion of the Estimator phenomenon. The proposed machine is ε-optimal,
and our experimental results demonstrate that the number of iterations
required before convergence is significantly reduced for the HDPA, when
compared with the HCPA.

Keywords: Reinforcement Learning · Learning Automata · Hierarchical
Discrete Pursuit LA.

1 Introduction

In the field of Learning Automata (LA), non-human agents, implemented through
computer programs, find solutions to problems of stochastic nature through the
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concept of learning. One of the main advantages of this type of Machine Learn-
ing (ML) is the scheme’s ability to operate adaptively. The paradigm is based on
a learning agent, or Learning Automaton, referred to as a LA, that interacts with
a teacher, referred to as the Environment [4]. The LA has several actions that
often correspond to the different solutions for the given problem. Through se-
lecting actions and getting feedback from the Environment, the LA learns which
action (behavior) results in the highest probability of receiving a Reward from
the Environment. Although the LA requires feedback from an Environment, it
learns in a Semi-Supervised manner. Thus, the LA does not need examples of so-
lutions to learn. They explore different actions and learn via trial-and-error. We
can model the Environment in numerous ways. The reader should note that, in
this paper, the shortened term LA refers to both the field of Learning Automata
and the Learning Automaton according to the context where it appears.

In LA, we evaluate the schemes’ performance by the number of iterations
needed before convergence and the schemes’ accuracy in finding the optimal
solution [4]. Improvements that have enhanced the accuracy and speed in LA
include using action probability vectors to decide the LA behavior (VSSA), dis-
cretizing the probability space of these vectors (Discrete LA), and deploying
the “pursuit” concept. In addition, pursuing the most likely action to receive a
Reward throughout the LA operation (Estimator-based LA) and ordering the
LA in a hierarchical structure (Hierarchical LA) improved the LA’s performance
further. The structuring of the LA led to the state-of-the-art ε-optimal Hierar-
chical Continuous Pursuit LA (HCPA) [12], which can handle a large number of
actions.

Although the HCPA handles a large number of actions, its convergence speed
has an impediment when any action probability approaches unity. The reason
for this slow convergence is that the learning parameter, and thus the updating
of the probabilities operates in a multiplicative manner within the probability
space. Consequently, the learning rate decreases as the probability approaches
unity. In more detail, as the learning continues, the increment of action prob-
ability is less and less, making it more challenging for the LA to converge in
the latter phase of learning. This drawback is even more apparent when the
criterion for convergence is high, i.e., when high accuracy is required. To solve
this problem, we propose the novel ε-optimal Hierarchical Discrete Learning Au-
tomata (HDPA) scheme in this paper. The HDPA includes all the phenomena
mentioned earlier to speed up the convergence when high accuracy is required.
The beauty of the HDPA is that the learning speed does not decrease as the
learning continues because it operates in a step-wise manner in the probability
space. Our simulation results demonstrate that the HDPA has significantly faster
convergence for high accuracy requirements. Thus, the HDPA outperforms the
state-of-the-art HCPA scheme presented in [12] when the accuracy requirement
is high.
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Our contributions are summarized as follows:

– We propose the novel HDPA that converges faster than the state-of-the-art
HCPA algorithm, when the accuracy requirement is high. The advantages
become more pronounced when a large number of actions exist.

– Via extensive simulations, we demonstrate how much the HDPA converged
faster than the HCPA for Environments with many actions and high accu-
racy requirements.

2 Related Work

Michael Lvovitch Tsetlin pioneered the field of LA by inventing the Tsetlin Au-
tomata (TA) [10], which can be categorized as a Fixed Structure Stochastic Au-
tomata (FSSA). The FSSA has a discrete and state-based structure, where the
automaton’s current state determines its action. The first significant improve-
ment in LA was achieved through the discovery/invention of Variable Structure
Stochastic Automata (VSSA), where the action of the LA is selected by randomly
sampling an action probability vector. The probability vector is updated through
functions according to the Environment’s feedback, influencing and changing the
behavior of the LA (where this updating functionality can also change over time).
While an FSSA needs to move through numerous states before exploring another
action, VSSA can possibly explore distinct actions along consecutive iterations,
speeding up the exploration of the Environment.

The earlier established variants, the Linear Reward-Penalty (LR−P ) scheme,
the Linear Reward-Inaction (LR−I) scheme, the Linear Inaction-Penalty (LI−P )
scheme, and the Linear Reward-εPenalty (LR−εP ) scheme in [1] and [4] are all
examples of continuous VSSA schemes. The “linear”(L) schemes have such a
categorization because the action probabilities are increased in a linear manner.
The probabilities of the VSSA can also be increased in a non-linear manner [1, 2,
4]. In mathematical analyses, LA can described through Markov chains, where
we have ergodic and absorbing types [1, 8].

The next quantum step in terms of speed and accuracy in LA was achieved
through discretizing the action probability space [5]. In traditional VSSA, the
action selection probabilities can assume any real value in the interval [0, 1],
and the updating is achieved in a multiplicative manner with a learning pa-
rameter (λ ∈ (0, 1)). The drawback of this continuous approach is its sluggish
convergence. As the action probability approach unity, the updating step be-
comes smaller and smaller, slowing down the algorithm’s speed. To address this
issue, discretizing the probability space and updating the action probabilities in
constant steps was proposed, which significantly improved the convergence speed
in LA. The different properties (absorbing and ergodic) of these discretized LA,
and their different updating schemes were studied in [5, 6]. In addition, con-
tinuous and discretized updating mechanisms with mathematical analyzes are
investigated in [7] and [13], respectively.

The invention of Estimator-based Algorithms (EAs) increased the achieved
convergence speed of LA even further [9]. The EAs possessed a faster convergence
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than all earlier variants. These algorithms are based on VSSA, but in addition,
estimates of the reward probabilities of the different actions are maintained in
a separate vector. These reward estimates are employed in updating the action
selection probabilities, where the LA pursues the currently estimated best ac-
tion in terms of the reward estimates (referred to as the Pursuit paradigm).
The reward estimates can be found by Maximum Likelihood, or in a Bayesian
manner, investigated in [11]. Thereafter, the researchers combined dicretization
and the Pursuit paradigm and introduced the family of Discrete Estimator Al-
gorithms (DEAs) [3].

For the above mentioned LA, the convergence becomes challenging when
the number of possible actions is large. Understandably, for VSSA, the action
probability vector has a dimension of R (for R actions) and its elements sum
up to 1. When R is large, many of the action probabilities can have very small
values and may not even be chosen, thus rendering the principle behind VSSA to
be void. Inclusion of structure into the field of LA solved this problem, and the
HCPA constitutes the state-of-the-art [12]. Although HCPA solves the problem
to a certain extent, it is always valuable if we can improve the convergence
speed of the algorithm without satisfying the accuracy, leading to the proposed
algorithm in this paper.

3 The Proposed Algorithm

The concept of the HDPA is to utilize VSSA, discretizing the probability space,
structuring the LA instances in a hierarchical tree structure and incorporating
the Estimator concept. In more detail, we organize a set of Discrete Pursuit
Automata (DPA) instances in a tree structure, where each instance has a set of
actions corresponding to the possible paths down the tree structure from that
automaton. The probabilities of these actions are maintained through vectors
that are updated in a discretized manner. At the bottom level of the tree, we have
the actions that directly interact with the Environment. The HDPA maintains
reward estimates of all the actions throughout the tree structure, and we pursue
the action with the currently best reward estimate in all iterations according
to the pursuit paradigm. The reader should note that, in reality, the reward
estimates are only necessary for the actions at the leaf level. We utilize the
reward estimates in this way, because the proof of the algorithm’s convergence
needs the reward estimates along the path5. A more detailed explanation of the
algorithm is given in what follows.

3.1 The Structure of the HDPA

For ease of explanation of the HDPA in this paper, we utilize 2-action DPRI
instances as the LA in the tree structure. The reason for using Reward-Penalty

5 A formal proof of the HDPA’s convergence will be given in an extended version of
this paper.
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Inaction LA is that they have demonstrated better performance than other con-
figurations [12]. Furthermore, we use 2-actions automatons in our explanations.
Therefore, we can model the HDPA as a balanced full binary tree for a problem
with 2K actions, where K is the maximum depth of the tree. The number of
actions per LA instance can be changed to another configuration. However, the
reader should remember that one of the main reasons for organizing the actions
in a tree structure is to mitigate a large action probability vector because of its
inferior performance [12]. Therefore, the number of actions in the LA instances
should, in any case, be limited. The HDPA in these explanations is, thus, con-
figured to handle 2K original actions. If the number of original actions is not
2K , we consider the nearest power of 2 above the number of original actions
and configure the excess number of actions with zero Reward probability. To
continue our explanations in greater detail, we further formalize the levels in the
tree structure as follows:

– Hierarchical tree structure: The depth of the tree is indexed by parame-
ter k, k ∈ {0, ...,K}. For each level of depth, the number of nodes is indexed
by j ∈ {1, ..., 2k}. Note that k and j are also employed to index different LA
and actions with their corresponding ranges of definition.

– The various LA: The LA j ∈ {1, ..., 2k} at depth k, is referred to as A{k,j},
where k ∈ {0, ...,K − 1}. The LA at the root is the one at depth 0.

– The LA at depths from 0 to K − 1 (0 ≤ k < K − 1):
• Each of the LA, A{k,j}, has two actions, denoted by α{k+1,2j−1} and
α{k+1,2j}, respectively.

• Whenever the action α{k+1,2j−1} is chosen, the LA, A{k+1,2j−1}, at the
next level is activated.

• Whenever the action α{k+1,2j} is chosen, the LA, A{k+1,2j}, at the next
level is activated.

– The LA at depth K − 1 (k = K − 1): The LA at depth K − 1 select the
actual actions to interact with the Environment.
• All of the LA at depth K − 1 have two possible actions each, referred to

as α{K,2j−1} and α{K,2j}, respectively.
• The K−1 depth of the tree has 2K actions in total, referred to as α{K,j}

where j ∈ {1, ..., 2K}.
• The selected action denoted by: α{K,j}, is the child of A{K−1,dj/2e}.

– The actions at level K (k = K): At depth K, i.e., at leaves of the tree,
we have the actions that directly interact with the Environment.

– P{k,j} = [p{k+1,2j−1}, p{k+1,2j}]: The action probability vector of LA A{k,j},
where k ∈ {0, ...,K − 1} and j ∈ {1, ..., 2k}.

Fig. 1 visualizes the structure of a simple HDPA when four actions exist in
the Environment. The leaves of the tree are representations of the actions that
the HDPA can take and interact with the Environment. For a HDPA with 2K

actions in the leaf level, the number of LA in the tree structure is 2K − 1. In
this example, we have three LA, i.e., A{0,1}, A{1,1} and A{1,2}. As depicted,
each LA in the tree has two actions. To choose an action, HDPA follows the
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Fig. 1. A visualization of the hierarchy of the HDPA. The instances at the bottom/leaf
level of the tree represent the actions that interact with the Environment.

path down the tree by sampling of these action probabilities in the vector. For
example, when A{0,1} has an action probability vector of [0.9, 0.1], it selects
α{1,1} at the root level with probability 0.9. Once α{1,1} is chosen, A{1,1} is
selected for making the decision at level 1 for the next level (which is at the
leaf level in this example), following the action probability vector that A{1,1}
maintains. Thereafter, if A{1,1} happens to select the action α{2,2}, it means
that the second action is chosen to interact with the Environment. Thereafter,
the HDPA updates its parameters based on the feedback from the Environment.
If and only if the Environment offers a Reward, following the pursuit concept,
the action probabilities are updated, following the reverse path from the leaf
with the current maximum reward estimate to the root. The reader should note
that HDPA might reward another action than the one that is currently selected,
due the inferior reward estimate in the currently selected action. Independent of
whether a Reward or Penalty is received, the reward estimates in all the DPA
instances are updated according to whether the action received a Reward or not.
The process is detailed as follows:

Parameters:
∆: The learning parameter, where 0 < ∆ < 1, and its value is usually configured close
to zero.
u{K,j}: The number of times that action α{K,j} was rewarded when selected, where
j ∈ {1, . . . , 2K}.
v{K,j}: The number of times that action α{K,j} was selected, where j ∈ {1, . . . , 2K}.
d̂{k,j}: The estimated reward probability of action α{k,j}, k ∈ {1, ...,K}, j ∈ {1, . . . , 2k}.
At level K, d̂{K,j} is computed as d̂{K,j} =

u{K,j}
v{K,j}

, where j ∈ {1, . . . , 2K}.
β: The response from the Environment, where β = 0 corresponds to a Reward, and
β = 1 to a Penalty.
T : Convergence criterion threshold.
We initialize the estimate of the reward probabilities as 0.5, i.e., u{K,j}(0) = 1,

v{K,j}(0) = 2, thus d̂{K,j}(0) = 1
2
. The action probability vector is also initialized as

0.5 for all the LA, i.e., P{k,j}(0) = [ 1
2
, 1
2
], where k ∈ {0, ...,K − 1} and j ∈ {1, ..., 2k}.

Begin algorithm:

t = 0
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Loop

1. Depths 0 to K − 1:
– The LA A{0,1} selects an action by randomly (uniformly) sampling as per its

action probability vector [p{1,1}(t), p{1,2}(t)].
– Let j1(t) be the index of the chosen action at depth 0, where j1(t) ∈ {1, 2}.
– The next LA is activated A{1,j1(t)} which in turn chooses an action and acti-

vates the next LA at depth “2”.
– This process continues including depth K − 1.

2. Depth K:
– Let jK(t) be the index of the chosen action at depthK where jK(t) ∈ {1, . . . , 2K}.
– Update d̂{K,jK(t)}(t) based on the response from the Environment at the leaf

depth, K:
u{K,jK(t)}(t+ 1) = u{K,jK(t)}(t) + (1− β(t))
v{K,jK(t)}(t+ 1) = v{K,jK(t)}(t) + 1

d̂{K,jK(t)}(t+ 1) =
u{K,jK (t)}(t+1)

v{K,jK (t)}(t+1)
.

– For all other “leaf actions”, where j ∈ {1, ..., 2K} and j 6= jK(t):
u{K,j}(t+ 1) = u{K,j}(t)
v{K,j}(t+ 1) = v{K,j}(t)

d̂{K,j}(t+ 1) =
u{K,j}(t+1)

v{K,j}(t+1)
.

3. Define the reward estimate for all other actions along the path to the root, k ∈
{0, ...,K − 1} in a recursive manner, where the LA at any one level inherits the
feedback from the LA at the level below:

d̂{k,j}(t) = max
(
d̂{k+1,2j−1}(t), d̂{k+1,2j}(t)

)
.

4. Proceed to updating the action probability vectors in the LA along the reverse
path from the leaf with the current maximum reward estimate, as follows:
– By definition, each LA j ∈ {1, ..., 2k} at depth k, referred to as A{k,j}, where
k ∈ {0, ...,K − 1}, has two actions α{k+1,2j−1} and α{k+1,2j}. Let jhk+1(t) ∈
{2j − 1, 2j} be the index of the larger element between d̂{k+1,2j−1}(t) and

d̂{k+1,2j}(t).

– Let jhk+1(t) = {2j − 1, 2j} \ jhk+1(t) be the opposite action, i.e., the one that
has the lower reward estimate.

– Update p{k+1,jh
k+1

(t)} and p
{k+1,jh

k+1
(t)}

using the estimates d̂{k+1,2j−1}(t) and

d̂{k+1,2j}(t) as (for all k ∈ {0, ...,K − 1}):
If β(t) = 0 Then

p{k+1,jh
k+1

(t)}(t+ 1) = min
(
p{k+1,jh

k+1
(t)}(t) +∆, 1

)
,

p
{k+1,jh

k+1
(t)}

(t+ 1) = 1− p{k+1,jh
k+1

(t)}(t+ 1).

Else
p
{k+1,jh

k+1
(t)}

(t+ 1) = p
{k+1,jh

k+1
(t)}

(t),

p{k+1,jh
k+1

(t)}(t+ 1) = p{k+1,jh
k+1

(t)}(t).

EndIf
5. For each A{k,j}, if either of its action probabilities p{k+1,2j−1} and p{k+1,2j} sur-

passes a threshold T , where T is a positive number that is close to unity, the action
probabilities for the HDPA will stop updating, and convergence is achieved.

6. t = t+ 1

EndLoop
End algorithm
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4 Experimental Results

To demonstrate the performance of the HDPA compared with the HCPA in [12], we
simulated the different schemes’ performance for distinct Environments. To enhance the
validity of our simulations, we increased the number of experiments and the criteria for
convergence compared with the simulations in [12]. As discussed previously, the HCPA
has an impediment when the action probability vector approach unity. Our simulations,
which we present in more detail shortly, demonstrate the advantage of the HDPA over
the HCPA as the convergence criterion is high. The reader should note that we have
omitted the comparison with the traditional CPA variants in this paper due to their
well-known inferior performance [12].

We conducted experiments for different Environments with many actions. The
Environments for the 16, 32, and 64 actions were based on the benchmark action
probabilities that were first established in [12]. For the 128 actions Environment, we
uniformly generated 128 different probabilities between zero and unity, representing
the probabilities of the LA receiving a Reward from the Environment. The 128-action
Environment’s reward probabilities are visualized in Fig. 2.

4.1 The Learning Parameters

From the mathematical proof in [12], and the established theory of VSSA, we under-
stand that when the learning parameter, λ, is sufficiently small, the HCPA will most
likely converge to the action that ensures it the maximum probability of obtaining a
Reward. The same applies to the value of ∆ [14]. In general, a smaller learning pa-
rameter results in a slower convergence but has a higher probability of finding the
optimal action as its configured value approaches zero. Therefore, tuning the learning
parameter is a trade-off between the system’s accuracy and convergence speed. In this
paper, to find the best value of λ and ∆, we utilized a top-down approach. In more
detail, we decreased the value of the learning parameters in a step-wise manner with
two decimals precision until their configured value made the LA achieve 100% accu-
racy for all the given experiments. Consequently, the value of the learning parameters
that fulfilled these criteria represents the assumed “best” values of λ and ∆ given the
distinct Environments used in the simulations.

Although the values for λ and ∆ are obtained through extensive testing, it is not
entirely certain that one will achieve convergence to the correct action with the found
values of λ or ∆ for a certain number of consecutive experiments. The Environment and
the LA’s stochastic behavior over time make it impossible to determine whether the
LA will surely converge correctly with a λ or ∆ below a certain threshold. The reader
should also note that the λ and ∆ values are entirely dependent on the Environment’s
reward probabilities and that the best λ and ∆ can vary from case to case. Therefore,
we refer to the obtained values of λ and ∆ as the “best” learning parameters (and not
the optimal ones).

4.2 The Average Number of Iterations

In the field of LA, a learning scheme’s performance is often measured through the
number of iterations required before the algorithm has converged. Due to the stochastic
nature of the Environments that LA operates in, we normally measure the average
number of iterations, i.e., we conduct many experiments and report the average number
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Table 1. HCPA performance for the different simulation Environments.

Number of actions Mean Standard deviation (Std.)

16 1,366.61 121.14
32 10,281.84 681.82
64 169,839.67 13,687.48
128 155,088.62 10,613.21

Table 2. HDPA performance for the different simulation Environments.

Number of actions Mean Standard deviation (Std.)

16 868.25 135.50
32 6,172.38 744.84
64 100,638.41 17,653.41
128 97,795.59 13,266.12

of iterations required before convergence over a number of experiments. In VSSA, the
LA has achieved convergence once the action probability of any one of the actions has
reached a certain threshold. The convergence criterion threshold is often configured
close to unity. In these simulations, we configured T = 0.992, and considered the
average of the schemes’ performance for 600 experiments.

The simulations discussed in this section, the “best” learning parameters for the
Environment with 16 actions were λ = 0.0043 and ∆ = 0.0011. For the Environment
with 32 and 64 actions, the best learning parameters were λ = 0.00057 and λ = 3.6e−5,
and ∆ = 0.00015 and ∆ = 9.9e−6, respectively. The “best” obtained values for the
128 action Environment were λ = 3.9e−5 and ∆ = 9.7e−6. The reader will observe
that the learning parameters for the 64 actions and 128 actions cases are quite similar,
which is because the 64 actions’ Environment’s benchmark probabilities were more
challenging than the generated Environment for 128 actions.

Tables 1 and 2 show results for our different simulation Environments. In these
simulations, we used the benchmark probabilities for the Environments with 16, 32,
and 64 actions. For the 128 actions Environment, we used the reward probabilities
visualized in Fig. 2. The tables include both algorithms’ results and list both the mean
and the Standard Deviation (Std). Let us first consider the 16, 32, and 64 actions’
Environments, where the HDPA had approximately 37%, 40%, and 41% fewer required
iterations compared with the HCPA. Consequently, the benefit of HDPA over HCPA
increased with the number of actions. Observing the Std, the HDPA had more variation
in the number of iterations for all the three action configurations.

Considering the results obtained for the 128 actions’ Environment (based on the
reward probabilities visualized in Fig. 2), the HDPA converged within approximately
98, 000 iterations, while the HCPA required 155, 000 iterations before convergence.
Comparing the algorithms’ Std, the HDPA had more variation in the number of iter-
ations before convergence than the HCPA. Thus, the HDPA was more unpredictable
in its number of iterations required before convergence, but needed significantly fewer
iterations on average!
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0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. The action probabilities for the 128 actions Environment.

4.3 The Nature of Convergence

The nature of convergence for the HDPA compared with the HCPA is different. As
explained earlier, the HDPA updates its action probability in a discretized manner. In
contrast, the HCPA updates these probabilities multiplicatively, where the increase in
the probability vector can take any value in the interval [0, 1). In Fig. 3 and Fig. 4,
we can observe the differences between the operations of the HDPA and the HCPA
in greater detail. In these experiments, we increased the convergence criterion to T =
0.999 and used the 64 actions Environment from the benchmark probabilities. The
figures depict the different schemes’ operation for a single iteration. We found the “best”
learning parameters through the same top-down approach as explained earlier. The
“best” learning parameters were configured as ∆ = 1e−5 and λ = 5.3e−5, respectively.
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Fig. 3. The action probability of the optimal action per iteration compared to the
theoretical increase in the action probability vector for the different schemes.

Fig. 3 depicts the action probability per iteration. As we can observe from the
figure, the HDPA requires fewer iterations before convergence than the HCPA does. In
addition, we observe the different nature of the two schemes. While the HDPA has a
rather linear increase in the action probability, the increase of the action probability for
the HCPA scheme slows down as the probability approach unity. Indeed, the HCPA
has a faster increase than the HDPA in the initial iterations but suffers from slow
convergence because of its behavior as the action probability increases. The reader
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Fig. 4. The number of times that the optimal and the most inferior action were selected
for the number of iterations required before convergence for the different schemes.

should also observe that both schemes do not follow the theoretical increase lines in
the respective plots. The theoretical increase lines show the convergences when the
optimal action is chosen in each iteration, where the action probabilities of the actions
in the optimal branch are monotonically increasing. Clearly, these lines depict the
theoretical convergence benchmarks without any exploration and are only achievable
when the optimal action is known in advance.

In Fig. 4, we observe the difference between the optimal and inferior action for
the different schemes. As we observe, the inferior action (the action with the lowest
probability of resulting in a Reward) is only selected in the initial phase of the schemes’
operation and rarely sampled as the algorithms approach convergence. In contrast, the
optimal action is selected more often as the number of iterations increases. As we ob-
serve from the figure, the HDPA required significantly fewer iterations than the HCPA.
The plots also demonstrate that the inferior action is, indeed, explored throughout the
LA operation.

5 Conclusion

In this paper, we proposed the HDPA scheme. The HDPA incorporates all the major
phenomena within LA that have improved these algorithms over the last six decades. By
implementing VSSA probability updating functionality and discretizing the probability
space, utilizing the Estimator phenomenon, and structuring the LA in a hierarchical
tree structure akin to the concept of binary search, the HDPA outperforms the state-of-
the-art HCPA when the convergence criterion is close to unity, i.e., when the accuracy
requirement is high. Our simulations demonstrated the clear advantage of the HDPA
over the HCPA for different Environments with many actions. We also demonstrated
the difference between the action probability updating of the schemes, and thus, why
their performance and convergence speeds are different.
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