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A B S T R A C T   

S-N curves found in various rules and regulations are the basic tool for the practicing engineer when carrying out 
life predictions for welded details in dynamically loaded structures. The present work is investigating the ex-
pected fatigue life and associated scatter for welded steel joints subjected to Constant Amplitude (CA) loading. 
The objective is to obtain more reliable life predictions based on advancements in the probabilistic model fitted 
to collected life data. A Random Fatigue Limit Model (RFLM) is proposed to obtain fatigue resistance curves at 
given probability levels of survival. As a distinction to more conventional statistical methods, the model is 
treating both the fatigue life and the fatigue limit as random variables. The focus is on high cycle fatigue and 
long-life data and runouts are included in a rational and logical manner by using a maximum likelihood method. 
Life data for a transverse fillet welded attachment originally designated as a category 71 detail in Eurocode 3 Part 
1-9 are collected and analysed. The plate thickness of the specimens ranges from 20 mm to 32 mm and the steel 
quality is mild and medium strength Carbon-Manganese steel. The results are compared with the results obtained 
by conventional S-N curves. The compatibility between the fitted probabilistic models and the underlying fatigue 
damage mechanisms is emphasized.   

1. Introduction 

1.1. Design of welded details and the reliability against fatigue failure 

The reliability against fatigue failure of welded details is of vital 
importance in the design of dynamically loaded welded steel structures. 
When welded joints are subjected to dynamic repetitive loading a po-
tential fatigue failure will always be an issue of concern. Risk reduction 
measures must be implemented both in the detailed design of the joints 
and by planning of scheduled in-service inspections during the target 
service life. It is a major problem that the fatigue behaviour of welded 
joints is characterized by random variations caused by uncertainties 
related to residual stresses, imperfections such as the possible presence 
of initial flaws, and irregular weld toe geometries. These variables are 
often not possible to measure but they cause significant scatter in the 

fatigue damage evolution and final fatigue lives. Consequently, statis-
tical analysis of life data and reliability models must be applied to 
handle the problem in a consistent and rational manner. Fatigue lives 
must be predicted at an acceptable probability of failure during the 
target service life for the structure. Typical examples are bridge struc-
tures, large cranes, and offshore structures. 

The basic tool for engineering design is the S-N curves found in rules 
and recommendations. These curves are based on an exponential rela-
tionship between the applied stress range S and the number of cycles to 
failure N. The historical background for the development of these S-N 
curves has been neatly described by Murakami et al. [1] and will not be 
repeated herein. The curves are based on experiments with welded joints 
that have similar characteristics regarding the fatigue resistance. The 
specimens in such a test series are usually subjected to Constant 
Amplitude (CA) loading. This gives the necessary data for obtaining the 
life endurance at different stress ranges for the type of welded joint in 
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question. Due to the inherent scatter in life data, both a mean curve and 
a characteristic curve used in design are given. The S-N curves may be 
based on the nominal stress range or the geometrical hot spot stress 
range. A more detailed overview of these topics is given by Hobbacher 
[2], Radaj et al. [3], Lassen et al. [4], Lotsberg [5] and Maddox [6]. 
Important rules and recommendations are Eurocode 3 Part 1-9 [7], HSE 
Offshore rules [8], DNVGL-RP-C203 [9], ABS [10] and IS0 12107 [11]. 
In the present work the limitations and shortcomings of this conven-
tional statistical methodology for obtaining an S-N curve are discussed. 
An alternative probabilistic model based on the Random Fatigue-Limit 
Model (RFLM) in combination with a Maximum Likelihood Method 
(MLM) is investigated. 

1.2. Characteristics and shortcomings of the conventional S-N curves 

The present work is shortly reviewing the background and the rec-
ommended analyses for conventional bi-linear S-N curves. This is 
worthwhile doing because the applied methodology can still be a bit 
confusing for the experimentalist and the practicing engineer. The 
conventional procedure for establishing S-N curves for CA loading are 
usually characterized by:  

• An elementary reliability model with the fatigue life as the single 
random variable is assumed to be valid at any applied stress range 
above what is believed to be a fatigue limit.  

• The linear regression analysis carried out results in a log-normal 
distribution of the fatigue life because of the central-limit theorem.  

• Long-lasting failures and runouts are excluded from the analysis. 

The methodology is summarized in the Background Documentation 
9.01a [12] for Eurocode 3 Part 1-9 [7]. Given that the fatigue damage 
mechanism changes as the stress range decreases it is not obvious that 
the same reliability model gives the best description of the scatter in 
fatigue life at all stress levels. It is essential to make a distinction be-
tween crack initiation and the subsequent crack growth. The distinction 
is important as these two phases involve different damage mechanisms. 
The crack initiation phase is driven by cyclic shear stress variation and 
the resistance against this damage mechanism is related to the yield 
stress of the steel. The growth phase is usually driven by the cyclic 
principal stresses perpendicular to the crack planes (stress mode 1) and 
the resistance against crack growth is not related to the yield stress, but 

rather to the E-modulus of the steel. Each phase must be modelled 
separately to capture the characteristics of the damage mechanism 
involved (Schijve [13]). This point of view is also supported and elab-
orated in the more recent work carried out by Murakami et al. [1]. The 
assumptions that there exists a fatigue limit may not be true. In the last 
proposal from IIW the fatigue limit has been rejected for the CA curves, 
Hobbacher [14]. IIW suggested that the lower line segment shall be 
given a shallow slope with a slope parameter m = 22 based on the work 
of Sonsino [15]. 

Furthermore, the log-normal distribution may not always be the 
most appropriate function for the model fitted to the life data, a 
competing distribution is the Weibull function, Schijve [13], Wirsching 
[16], Engesvik et al. [17]. Although the log-normal model is widely 
applied in rules and recommendation the authors have not found any 
formal proof that this is the best choice based on hypothesis testing. 
Finally, it is the present author’s opinion that the long-lasting failures 
and runouts must not be excluded from the statistical analyses. In fact, 
these stress ranges are usually much closer to the magnitude of the stress 
ranges acting in service than the higher stress ranges applied in the 
linear regression for the conventional S-N curves. From that perspective 
the excluded data give more important information for an in-service 
load condition than the stress ranges that enter the linear regression 
analysis. Although an in-service stress spectrum gives significant addi-
tional uncertainty due to Variable Amplitude (VA) stresses the above 
arguments are still valid. Modification of the curve to handle VA loading 
must be carried out at a later stage in the same way as it is done for the 
conventional S-N approach. Hence, the damage accumulation under VA 
loading will be pursued when the life curve for CA loading has been 
properly understood and modelled. 

1.3. The random fatigue limit model and its advantages 

In the present context the expression reliability model is used if the 
model involves one random variable only such as described in the 
foregoing section. If several variables are involved the model shall be 
labelled as a probabilistic model. The RFLM gives a probabilistic resis-
tance curve where both the fatigue life and the fatigue limit are treated 
as random variables simultaneously. The advantages of the model when 
compared with the conventional S-N approach are: 

Nomenclature 

Roman letters 
a crack depth 
b fatigue strength exponent 
c crack half-length 
C crack growth rate parameter in the Paris equation 
f(t) frequency function 
L spacing of the weld base points 
loga intercept parameter of S-N curve 
m slope parameter of S-N curve 
m crack growth rate exponent in the Paris equation 
m1 slope parameter of upper part of S-N curve 
m2 slope parameter of lower part of S-N curve 
n number of specimens 
N number of cycles to failure 
Ni number of cycles to crack initiation 
Q vector containing RFLM model parameters 
R stress ratio 
R(t) reliability function 
S nominal stress range 

t time to failure 
T thickness of the specimen 
W width of the specimen 

Greek letters 
α significance level 
β0, β1 fatigue curve coefficients in RFLM 
γ fatigue limit defined as random variable 
Δσ notch stress range at the weld toe 
ΔK stress intensity factor range 
ΔK0 threshold value for the SIFR 
ΔS nominal stress range 
ΔS0 fatigue limit 
λ(t) failure rate function 
μ̂t sample mean 
μv mean value of the fatigue limit (logarithmic) 
σ’

f fatigue strength coefficient 
σm notch mean stress at the weld toe 
σ̂ t sample standard deviation 
σv standard deviation of the fatigue limit (logarithmic) 
σx standard deviation of the fatigue life (logarithmic)  
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• The life model may change as a function of the applied stress range 
because of the interaction between the two random variables in the 
model.  

• The probabilistic model can also assume any frequency function for 
both variables, e.g. log-normal and Weibull functions.  

• An a-priori assumption regarding the existence of the fatigue limit is 
avoided.  

• The model parameters are found based on the MLM such that long 
lives and runouts are included in a logical and rational manner.  

• The resistance curves can be extrapolated into the very high cycle 
area without necessarily losing validity, although very few test re-
sults exist in this area. 

1.4. Research questions and the objectives of the present work 

Based on the above background the objectives and the research 
questions for the present work are:  

1) Starting with the elementary reliability model for the finite fatigue 
life at a given stress range, can a conclusion be reached regarding the 
distribution function that gives the best fit to the life data?  

2) When establishing the S-N curves with associated lower bounds 
based on CA life data, what are the principal differences between the 
conventional curves in rules and recommendations and the present 
resistance curve obtained by RFLM? What will be the practical 
outcome for fatigue life predictions based on the two approaches?  

3) The focus of the present analysis will be in the high cycle regime 
where the RFLM includes all available data whereas the conventional 
S-N curves do not include these data. How is the RFLM-based resis-
tance curve fitting these experimental data? Can any conclusion be 
reached regarding the existence of the fatigue endurance limit?  

4) Finally, there shall be a mutual agreement between the RFLM 
resistance curve and the underlying damage mechanisms. Can the 
probabilistic curves be explained and supported by physical models 
for these mechanisms? 

In the present study a population defined by a non-load-carrying 
fillet welded transverse attachment is investigated. This type of joint is 
designated category 71 in ENV 1993-1-9: 1992 [18] and class F in the 
offshore fatigue recommendations given by DNV [19]. According to 
current version of these standards [7,9] the proposed categorization is 
one level higher. The recommended categorization of such details has 
changed over the year, see the discussion in Section 4.3. The number 
that identifies the category in Eurocode 3 is defined as the fatigue 
strength at N = 2 × 106 cycles. To answer research question 1 above a 
large amount of life data is collected at a given CA stress range of 150 
MPa. The aim is to choose between the log-normal distribution and the 
Weibull distribution for the finite fatigue life under the same loading 
condition. Furthermore, a huge database at various stress ranges for the 
joint in question is applied to establish the conventional S-N curve and 
the RFLM resistance curve to answer research questions 2 and 3. In order 
to answer the last question 4 the underlying damage mechanisms for 
various phases in the fatigue damage evolution are modelled and dis-
cussed. The present work is based on the hypothesis that the under-
standing of the damage mechanism and which probabilistic model to 
select are inter-related problems. 

2. Conventional S-N curves based on elementary statistical 
methods 

2.1. Defining a population and a life model 

The welded joint investigated in the present analysis is shown in 
Fig. 1. The applied stresses are in the main plate perpendicular to the 
welding direction of the transverse attachment. The multiple fatigue 
cracks that may appear at the weld toe are indicated with one large crack 

only. The most important global geometry parameters with respect to 
fatigue are the plate thickness T and the spacing of the weld base points 
L. The fatigue life will increase if this distance decreases. Hence, for 
small attachment lengths the category changes from category 71 to 
category 80. The reason for this change is that the stress concentration at 
the weld toe decreases when the parameter L decreases. This is 
accounted for in Eurocode 3 Part 1-9 by a differentiation in detail 
category depending on the distance L when using the nominal stress 
range in the plate as the key to the life prediction. An alternative to this 
approach that circumvents this categorization problem is to use the hot 
spot method where the stress concentration due to the stiffener is 
explicitly accounted for. In the present work we shall focus on the S-N 
approach based on the nominal stress range. A more detailed discussion 
of the present category is given in Section 4.3 where the collected data 
are discussed. Important details for the damage evolution in the chosen 
welded detail is given by Mikulski and Lassen [20,21]. 

The consequence of the large scatter observed in test data is that the 
fatigue life t for a given welded joint must be treated as a random var-
iable. For fatigue life predictions the time t is usually given in number of 
cycles N to failure. The associated reliability model gives the design 
engineer the possibility to predict the fatigue life at a chosen probability 
of survival. It is an advantage if enough test results are available at a 
given constant stress range, such that the model can be determined 
regarding the type of frequency function. This will also give modest 
statistical uncertainty for the model parameters. Unfortunately, to limit 
the testing efforts, the tests are usually carried out at various stress 
ranges with rather few tests at each stress range level. The data are then 
analysed directly by an S-N approach as we shall discuss in the next 
section. However, before pursuing the S-N approach it is important to 
study the behaviour of the fatigue life at a given constant stress range to 
understand the basic ideas of reliability modelling. In the cases where 
enough data are collected at a given stress range this can also give 
important background information for the subsequent S-N analysis at 
various stress range levels. 

The basic characteristics for a reliability model at a given stress range 
are illustrated in Fig. 2. Based on the histogram fitted to the life data the 
frequency function f(t) with associated parameters can be determined. 
Subsequently the reliability function R(t) and the failure rate function 
λ(t) are obtained. The basic mathematical equations for the model are 
found in Appendix A. It must be borne in mind that the reliability model 
shown in Fig. 2 is valid for:  

• A defined damage mechanism (high cycle fatigue in the present case)  
• A given quality of the welded joint (joint geometry, steel quality, 

welding procedures, post-weld inspections and post-weld improve-
ment methods)  

• A given operating condition (the direction of the stresses, variations 
of the stresses) 

Fig. 1. Steel plate with transverse welded attachment.  

Z. Mikulski and T. Lassen                                                                                                                                                                                                                     



International Journal of Fatigue 155 (2022) 106626

4

The damage mechanism in the present case is high cycle fatigue, but 
to make things more subtle one may benefit from making a distinction 
between crack initiation and subsequent crack growth (Mikulski and 
Lassen [20,21], Lassen et al. [22]). The quality of the joint is usually 
given by the definition of the categories in Eurocode 3 Part 1-9. How-
ever, a category also includes considerations for the direction of the 
applied stresses relative to the welding direction. Finally, the given 
operating condition is the stress spectrum to which the welded detail is 
subjected during service. However, it is quite common to simplify the 
operating condition by applying various levels of CA stress ranges in 
laboratory tests. The reliability model is then conditional on an inde-
pendent free variable such as the CA nominal stress range S. 

In practice the design engineer must work with estimates for the true 
mean value µ=MTTF and the true standard deviation σ for the time to 
failure. These model parameters can be found by:  

• The method of moments  
• The least square method  
• The maximum likelihood method 

For a description of the two first methods the reader may look into 
[23]. The estimates are then generally given by a point estimate and an 
associated confidence interval. For the mean value the interval is 
determined from Student’s t statistics, whereas chi-square statistics are 
used to determine an interval for the standard deviation. If the life data 
contain runouts none of the two methods are applicable. For this case a 
Maximum Likelihood Method (MLM) can be applied to determine the 
model parameters. A pioneer work for the application of the MLM for 
fatigue life data was carried out by Bastenaire [24]. 

2.2. The basic concept of an S-N curve 

To obtain a life model as described in Section 2.1 at any constant 
stress range an S-N curve must be established. The time to fatigue failure 
given in number of cycles N is obtained for any CA nominal stress range 
S. The basic Basquin equation reads: 

logN = loga − m⋅logS + ε (1) 

The basis for this equation is shown in Fig. 3. The figure includes the 
data points and the fitted mean curve. In the central part of the diagram 
the relation between S and N is assumed linear for a log-log scale as 
given by Eq. (1). The fatigue damage mechanism in this area is mainly 
crack growth governed by the stress intensity factor range pertaining to 
a crack. For higher stress ranges the linear relation is overly optimistic as 
indicated by the dotted upper curve. This is explained by the fact that the 
damage mechanism changes to low cycle fatigue which is mainly gov-
erned by the plastic strain variation. For lower stress ranges the linear 
assumption is overly pessimistic as indicated by the dotted lower curve. 

Again, the explanation is related to the change in damage mechanism as 
the fatigue life for these low stress ranges is dominated by a crack 
initiation phase. Based on the data points in the mid region of the dia-
gram a linear regression analysis is carried out for a log-log scale. The 
intercept parameter log a and the slope parameter m give the mean life 
at any stress range. A third parameter defined as the standard error is 
defined by the discrepancy ε for each individual data point relative to 
the obtained mean curve. The squared sum of the residuals will give an 
estimate for the standard error defining the standard deviation in the 
fatigue life. The standard deviation is assumed constant for all stress 
ranges and the design curve is found by subtracting a chosen number of 
standard deviations from the mean curve such that the probability of 
failure is regarded as acceptable. This curve is shown to the left in Fig. 3. 
In some cases, this design curve is chosen to be hyperbola shaped to 
reflect the increased confidence interval for stress ranges for which the 
available life data are scarce. This curve is given by the left dashed line 
in Fig. 3. 

2.3. Some details for the conventional statistical analysis 

Whereas there are no problems related to the conventional linear 
regression analysis, there is still some debate on how to obtain the 
design curves at defined probabilities of survival. Hobbacher [25,26] 
recommends that both the mean value and the standard deviation are 
chosen at an 87.5% one sided confidence level. Subsequently, these 
estimates are applied to determine the design curve at a 95% probability 
of survival. The calculations will result in a design curve that is parallel 
to the straight mean curve as shown by the fully drawn line in Fig. 3. 

An alternative and more direct way to determine the design curve by 
a lower prediction bound is given by the equation: 

logNk,limit = logNk − tα,dof σ̂

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
1
n
+

(
logSk − logS

)2

∑

i

(
logSi − logS

)2

√
√
√
√
√
√
√

(2)  

where n is the number of data points given by log Si and log Ni which 
define the parameters log a and m for the mean regression line. Nk is the 
mean life for the considered stress range Sk. logS is the mean of the n 
values of log Si. The parameter σ̂2 is the best estimate for the variance 
about the regression line which is equal to the sum of squared residuals 
divided by the number of degrees of freedom dof. In the case that both 
the parameters log a and m have been estimated from the data, the dof is 
equal to n-2. As can be seen from Eq. (2) the Student’s t-distribution still 
plays a central role when determining the design curve, but the chi- 
square distribution is no longer explicitly applied. This approach was 
originally based on the work by Cooper [27]. It has also been applied by 
Euler and Kuhlmann [28] and by Drebenstedt and Euler [29]. The shape 

Fig. 2. Definition of a reliability model for the fatigue life.  Fig. 3. An illustration of the basic concepts for the S-N curve.  
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of the lower limit according to Eq. (2) will be a hyperbola. In the outer 
part of the database both the uncertainty of the mean value and the slope 
parameter m of the curve will be added up in life predictions. The 
Background Documentation 9.01a [12] uses Eq. (2) when determining 
the fatigue strength at 2 × 106 cycles. To facilitate the calculations the 
term log Sk in Eq. (2) is replaced by log S50% which is determined at Nk 
= 2 × 106 cycles at the mean S-N curve. When introducing this term Eq. 
(2) becomes linear for a log-log scale. This linear curve is subsequently 
applied to define a design curve at a probability of survival chosen at 
95% in the Background Documentation 9.01a. This curve is parallel to 
the mean curve and the characteristic fatigue strength SC at 2 × 106 

cycles can be determined. This procedure is illustrated in Fig. 3 where 
both S50% and SC are indicated. As can be seen the stress range SC is 
slightly above the corresponding point on the hyperbola for N = 2 × 106 

cycles. 
A more simplified procedure uses the line obtained in the central 

area of the data given in Fig. 3. This straight line is subsequently used for 
any applied stress range such that the hyperbola shaped curve is 
replaced by a straight line from the very beginning. This means that the 
third term under the square root in Eq. (2) is ignored. Furthermore, as 
the sample size increases the second term under the square root can also 
be neglected. This can be justified for sample sizes larger than 20. For 
even larger sample sizes and with a required probability of survival 
equal to 97.5% the value of t will approach 1.96, i.e. for α = 2.5%. A very 
informative description of these matters is given by Schneider and 
Maddox [30]. These simplifications are usually accepted when estab-
lishing the S-N design curves in the rules and regulations for offshore 
structures. This is for a limited sample size somewhat non-conservative, 
but this is compensated by the requirement of a high probability of 
survival equal to 97.5%. One may say that the offshore rules are relaxed 
regarding the hyperbola shape of the lower boundary line, whereas the 
rules are strict regarding the required survival probability level. 
Therefore, in these rules and regulations it has become common practice 
to simply subtract 1.96 standard deviations from the mean S-N curve to 
define the design curve. 

2.4. Examples of obtained design curves for various calculation 
procedures 

The differences in current rules and regulations regarding the type of 
confidence interval, how to handle the hyperbola shaped lower bound 
and finally the chosen probabilities of survival are summarized in 
Table 1. 

To study the results from the two approaches recommended by the 
Background Documentation 9.01a and the common approach in 
offshore rules, the simple data sample presented by Drebenstedt and 
Euler [29] is applied. This data sample consists of 10 finite lives and 5 
runouts, see Appendix C. Following the prescribed recommendations, 
the 10 finite lives were analysed by the two approaches given in Table 1. 
The results are given in Table 2. As can be seen the two approaches 
applied in civil engineering and offshore engineering give the same 
design curve for all practical considerations. 

When determining the conventional design S-N curves for the pre-
sent collected data the approach used by the offshore industry will be 
applied, i.e. the hyperbola shape is neglected, and the probability of 

survival is set to 97.5%. 

2.5. Assessing the conventional S-N approach in relation to involved 
damage mechanisms 

As we have discussed the S-N curves assume that there is a single 
damage mechanism dominated by crack growth for any stress range. 
The curve is then cut off at a stress range that is designated the endur-
ance fatigue limit. The damage mechanisms are indeed more compli-
cated. The damage mechanism will mainly be crack growth at high 
stress ranges, whereas for low stress ranges the crack initiation damage 
mechanism will be dominant. This is in fact an objection to the basic 
idea of an S-N curve that assumes the same type of reliability model for 
any CA stress range level. Schijve [13] argued that scatter in crack 
initiation and crack growth are different issues. Baptista et al. [31] 
simulated the damage process in welded joints by three possible phases: 
crack initiation, micro crack growth and associated crack arrest and the 
final growth of larger cracks. These possible shifts in damage mecha-
nisms explain why the long life and runout data must be excluded in the 
conventional analysis. These data do not obey the simple reliability 
model assumed to be valid for the relatively high stress range levels. This 
gives doubt with respect to the general validity of the S-N curves when 
extrapolating them down to lower stress ranges. This is also the reason 
why the present authors advocate the application of a RFLM as an 
alternative to the conventional S-N curves. 

3. Resistance curves based on the random fatigue limit model 
(RFLM) 

3.1. Basic theory and numerical procedure 

The present work is based on the RFLM approach as presented by 
Pascual and Meeker [32]. The methodology was first applied for welded 
joints by Lassen et al. [33]. Similar analyses have also been carried out 
by D’Angelo and Nussbaumer [34] that included a Monte Carlo simu-
lation based on the model. Toasa and Ummenhofer [35] applied a 
modified approach based on a general formulation of the probability 
weighted moments using the three-parameter Weibull distribution. This 
work was further developed by the authors in [36] where the focus was 
on how to include the result from retesting of former runouts. Leonetti 
et al. [37] used the RFLM for welded cover plates on girders. The work 
suggested to introduce more parameters to the RFLM to enhance the 
model fitting. Furthermore, the possibility of applying Bayesian inter-
ference is emphasized. 

Table 1 
Characteristics for the fatigue design S-N curves in civil engineering and offshore structures.  

Rules Application area Type of lower bound Hyperbolic lower bound line Chosen probability level of survival 

Background Documentation 9.01a Civil engineering Prediction limit Yes  0.95 
ABS   Ship and Offshore structures Prediction limit No  0.975 

HSE 
DNVGL-RP-C203  

Table 2 
Design S-N curves based on Eurocode and the offshore recommendations.  

Approach log a  
(mean 
value) 

Standard 
deviation 

log a 
(design) 

S at N = 2 ×
106 

Eurocode 3 12.104 0.116  11.838  70.1* 
Offshore 

rules  
11.829  69.6** 

*At survival probability 0.95. **At survival probability 0.975. 
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The basic equation of the RFLM curve reads: 

lnN = β0 − β1ln(ΔS − γ) + ε (3)  

where γ = ΔS0 is the fatigue-limit defined a random variable. The pa-
rameters β0 and β1 are fatigue curve coefficients. As can be seen, Eq. (3) s 
fundamentally different from Eq. (1). The life data are transformed by x 
= ln(ΔS) and w = ln(N). For a sample of data for xi and wi obtained from 
various test specimens i = 1,n, the model parameters can be determined 
by the Maximum Likelihood (ML) function: 

L(Q) =
∏n

i=1
[fw(wi; xiQ]

δi [1 − FW(wi; xiQ) ]
1− δi (4)  

where δI = 1 if wi is a failure and δI = 0 if wi is a censored observation 
(runout). 

The vector Q contains the model parameters: 

Q = (β0, β1, σx, μvσv, ) (5) 

Once these parameters have been determined from optimization of 
Eq. (4), the corresponding confidence intervals can be obtained by a 
profile likelihood method using the profile ratio of the variables together 
with chi-square statistics. The basic equations are given in Appendix B 
and further details for these calculations can be found in Pascual and 
Meeker [32]. The optimization of Eq. (4) and the necessary integration 
of the involved functions must be done numerically. The problem with 
local maxima may occur. In the present work an algorithm is developed 
in Matlab to obtain the global maximum of the object function with high 
accuracy. For that purpose, a multivariable object function is defined 
based on Eq. (4). Numerically this is carried out by searching for the 
minimum of the function -log(L(Q)). This nonlinear optimization prob-
lem is solved using the fmincon built-in function in Matlab. This is a 
gradient-based method dependent on the specified initial point. Hence, 
the global maximum is found using semi-manual procedure by 
comparing results for many different sets of initial values. When the 
parameters are determined we can calculate the fatigue life for a chosen 
probability p of failure, see Eq. (B4) in Appendix B. Hence, the median 
curve and percentile curves for design purpose are obtained. 

3.2. Illustrating example 

To illustrate the differences between the conventional S-N curves and 
the present RFLM resistance curves the data given by Drebenstedt and 
Euler [29] (see Appendix C and Table 2) are plotted in Fig. 4 together 
with the two types of curves. As can be seen the curves from the two 

models are quite close in the upper left region of the diagram. The RFLM 
curve does not deviate much from a linear line and may be approxi-
mated by a straight line if the number of finite life data increases. In the 
lower region the conventional curve is still linear until it stops at N = 5 
× 106 or 107 cycles where it is assumed to change to a horizontal line 
(not shown). This is in accordance with the Background Documentation 
9.01a [12]. In this region of the diagram the RFLM curve captures the 
influence of the runouts. The fact that these test specimens could have 
lasted even longer gives a RFLM curve that changes slope gradually such 
that predicted lives will be longer. The mean RFLM curve is significantly 
more optimistic than the conventional curve because of the 5 runouts 
that are included in the sample. These runouts represent 1/3 of the 
entire sample of 15 specimens. Nevertheless, the RFLM design curve at a 
PoF of 2.5% is on the safe side of all the failures. It is seen from Fig. 4 that 
the RFLM-based curve does not become horizontal in the area where the 
fatigue limit is assumed to exist in the conventional analysis. At N = 107 

cycles the RFLM curve is still falling with a shallow slope. The non-linear 
shape of the RFLM resistance curve is quite like the original S-N curve 
proposed by Weibull back in the nineteen fifties. This model was 
revisited by D’Antuono in a recent publication [38]. However, that 
model has not included a random variable for the fatigue limit and does 
not apply the maximum likelihood method such that runouts can be 
included. 

4. Data analysis and choice of reliability model 

4.1. Present data collection at a given constant stress range of 150 MPa 

In the present section the problem of selecting an appropriate dis-
tribution for the fatigue life model at a given stress range is pursued. The 
issue was discussed in Section 2 and illustrated in Fig. 2. Life data are 
collected at a constant stress range of 150 MPa (see Table 3 and Ap-
pendix D). All results are for mild and medium strength C-Mn steel with 
a plate thickness of 25 and 32 mm. The typical joint configuration was 
shown in Fig. 1. For some of the test specimens very frequent and 
detailed crack depth measurements were carried out during each test. 
This gives a unique database containing both life data and associated 
crack growth histories (Mikulski and Lassen [21]). The tests were car-
ried out at rather low R ratios. For Series 1 the effective R ratio was equal 
to 0.35, whereas it was 0.1 for the other test series. For further details 
regarding test set-up and crack growth measurements the reader may 
follow the references given in the right column in Table 3. A total 
number of 138 life data were collected for the same given stress range 

Fig. 4. S-N curves fitted to the data applied by Drebenstedt and Euler, see Appendix C.  
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and this collection permits the authors to seek the most appropriate 
distribution type for the life model. 

4.2. Present data collection at various stress ranges 

Fatigue life data at various stress ranges, besides the data presented 
in Section 4.1, were taken from the literature. The data collection pre-
sented in [42–44] were examined and results that were representative 
for the present population were included. The runout data was available 
only in [44]. Some fatigue life data come originally from [45–47]. These 
additional fatigue life data consist of 88 specimens in total, of which 15 
are runouts. 

4.3. Categorization and conventional life predictions for the chosen test 
specimen 

Categorization of the welded detail in question has been changed 
over the years in the design standards. An overview of these changes in 
Eurocode 3 and DNV offshore rules is presented in Table 4. As can be 
seen, most of the specimens investigated in the present analysis are at 
the boundary given for the categorization according to the current rules. 
But when using the original version of these standards, the present detail 
has category 71 or class F undoubtedly, and this detail category is 
chosen in the present analysis. Moreover, the results from the present 
analysis of the collected life data corroborate that the chosen categori-
zation is correct. 

The following design and mean S-N curves [9] for N < 107 cycles 
regardless of the applied R ratio for the F class welded detail are given: 

design : logN = 11.855 − 3logΔS
mean : logN = 12.255 − 3logΔS (6) 

It should be mentioned that the results for test series 3 and 4 are 
treated as-is without any thickness correction. A minor thickness 
correction would not change our conclusions from the present analyses. 
Statistics of the total fatigue life for the entire data collection (138 
specimens) are presented in Table 5. As can be seen the collected data 
are very close to the S-N curve statistics for an F class. The F-class mean 

S-N curve gives a median life of 533,000 cycles whereas the corre-
sponding value from the test series is 455,000 cycles. The scatter for the 
present test series is given by a standard deviation of log N equal to 
0.185, whereas it is close to 0.21 for the F class. Hence, the present 
collected test data have normal fatigue quality and are representative for 
the population pertaining to the F-class or category 71 in the codes. 

4.4. Determining the distribution type for the life model at a stress range 
of 150 MPa 

Before determining the distribution type for the life model, the very 
long lives pertaining to the fully automated SAW test specimen (Series 
1b) are excluded from the present data base. These specimens had a 
peculiar shape of the weld toe and very long lives. The reason for 
excluding these results is that we shall focus on the results at the left tail 
of the fitted life distribution models. Hence, abnormal long lives on the 
right tail are not of interest. Our selected data population will conse-
quently be representative for manual and semi-manual welding pro-
cedures. The SAW specimens are outliers in this respect. In the present 
work the following types of probability distributions were fitted to the 
collected data sample:  

• The 2-parameter log-normal distribution  
• The 2-parameter Weibull distribution  
• The 3-parameter Weibull distribution 

Results from the present analysis and the fitted distributions are 
illustrated in Fig. 5. 

Only the 2-parameter log-normal distribution and the 3-parameter 
Weibull distribution passed the chi-square goodness-of-fit test at a 5% 
significance level. The log-normal distribution gave a better fit than 3- 
parameter Weibull distribution. Furthermore, as can be seen from 
Fig. 5, the log-normal distribution gives a better fit at the left tail where 
the safe life limit is determined. The main conclusion to be drawn from 
the present descriptive statistical analysis is that the 2-parameter log- 
normal distribution applied in rules and regulations is an appropriate 
choice for characterizing the life model for the collected life data. The 
competing model based on the 2-parameter Weibull model did not pass 
the chi-square test. Furthermore, the 3-parameter Weibull distribution 
gave a poorer fit to the data than the log-normal distribution, 

Table 3 
Overview of test series at a given applied stress range of 150 MPa.  

Test data 
identification 

Geometry Number of 
specimens 

Thickness Steel 
grade 

Welding 
procedure 

Loading 
mode 

Life 
data 

Crack growth 
data 

References 

Series 1a cruciform 34 25 S355 SMAW, FCAW axial x x 1) Mikulski and Lassen  
[20] 
2) Lassen [39] 

Series 1b cruciform 10 25 S355 SAW axial x x Lassen [39] 
Series 2 cruciform 42 25 S355 SMAW axial x  Engesvik and Lassen  

[40] 
Series 3 cruciform 42 32 S235 SMAW axial x  1) Engesvik [41] 

2) Engesvik and Moan  
[17] 
3) Engesvik and Lassen  
[40] 

Series 4 T-joint 10 32 S355 SMAW bending x x Mikulski and Lassen  
[19]  

Table 4 
Categorization of the present welded detail in the design standards.  

Standard Governing parameter Detail category and limitation 

ENV 1993-1-9: 
1992 

attachment plate 
thickness, T 

80 for T ≤
12 mm 

71 for T > 12 
mm 

EN 1993-1-9: 
2005 

spacing of the weld base 
points, L 

80 for L ≤
50 mm 

71 for 50 < L ≤
80 mm 

DNV RP-C203 
(2001) 

attachment plate 
thickness, T 

E for T ≤ 12 
mm 

F for T > 12 mm 

DNVGL RP-C203 
(2016) 

E for T ≤ 25 
mm 

F for T > 25 mm  

Table 5 
Statistics of the total fatigue life at stress range 150 MPa.  

Statistical parameter All present test data (138 specimens) DNVGL (F-class) 

Median 455,000 533,000 
Standard Deviation 278,000 288,000 
Minimum 189,000 – 
Maximum 2,074,000 –  
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particularly to the important left tail of the distribution. The failure rate 
functions pertaining to the various distributions are shown in Fig. 6. As 
can be seen the Weibull model is highest in the very beginning before the 
log-normal failure rate increases and passes. However, the failure rate 
function for the log-normal model levels off when the median value for 
the life has been passed. This difference is generally not emphasized in 
engineering but gives important information for welded details in aging 
structures. 

As conclusive remark it should be added that the model is validated 
at a stress range of 150 MPa and it may not represent the correct model 
for substantial lower stress ranges. 

5. Resistance curves obtained by the RFLM 

5.1. Analysis of CA fatigue lives 

In the present section the RFLM methodology described in Section 3 
is applied to establish fatigue resistance curves under CA loading. For 
the present analyses a large portion of data (216 samples) were collected 
at various stress ranges, particularly at lower stress ranges [42–47]. 
Some of these data are runouts such that the conventional linear 
regression analysis is not capable of including them. An RFLM analysis is 
carried out and the results are shown in Fig. 7. The three curves in Fig. 7 
are 1) the rule-based curve, 2) the conventional S-N curves for the 
present data and 3) the RFLM resistance curve for the present data. The 
rule-based curve designated F class and is equal to the 71 category and is 
based on a larger amount of data. A resume of the model parameters is 
given in Table 6. As can be seen from the numbers in Table 6, the dif-
ference between the present conventional curve and the curves 

pertaining to the F class is benign and is owed to the fact that the present 
data is limited compared to the huge database pertaining to the curves in 
rules and regulations. On this background we shall emphasize the dif-
ferences found between the present conventional S-N curve and the 
RFLM curve as they are both based on the same collected data. But it 
should be commented that the all the three mean curves in Fig. 7 do 
coincide when the number of cycles is below 2 × 106. The design curves 
defined at a 97.5% probability of survival are also quite close in the same 
area. The small differences in these curves are caused by a small dif-
ference in the scatter of the applied data. As can be seen from Fig. 7 the 
present conventional mean curve and the RFLM mean curve are parallel 
at about 3 × 105 cycles. The discrepancy in the upper left region of the 
diagram is caused by the lack of data for the RFLM in this high stress 
regime. More data could be provided to force the RFLM curve to become 
almost linear in this area, but this area is not the primary stress range 
area of the present investigation. Above the given parallel point at 3 ×
105 cycles, the conventional straight line will be accepted. The design 
curves in Fig. 7 are somewhat more separated than the mean curves in 
the same stress cycle region. However, the curves are not very different 
before 106 cycles are passed. If we focus on fatigue lives longer than 106 

cycles it is interesting to compare the stress ranges for the two curves at 
2 × 106 cycles. This is the fatigue life that is used for defining the fatigue 
strength and the associated fatigue category in Eurocode 3 Part 1-9. 
Following the procedures described in Section 2, the fatigue strength 
is 69 MPa for the present conventional curve whereas it is 74 MPa when 
defined at the RFLM curve. The increase in the fatigue strength found by 
the RFLM curve is reflecting the optimism inherent in the long-life data 
and the runouts. This gives a hyperbola curve that has the opposite 
curvature compared to the hyperbola used in the conventional theory. 
This optimism is lost when these data are excluded by the conventional 
analysis. The increase in fatigue strength is close to 7% and the increase 
in predicted fatigue life will be close to 20% in this stress region. These 
increases are substantial. In the high cycle regime, it is noticed that the 
RFLM design line continues to drop between N = 107 cycles and N = 108 

cycles. This is in contradiction with the assumption of the existence of a 
fatigue limit in this area. Parameters of the fitted S-N curves and the S-N 
curves from codes are presented in Table 6. Only parameters that exist in 
basic equations are listed. The complete set of parameters of the fitted 
RFLM model is shown in Fig. 7. 

Fig. 7 also shows that the RFLM design curve predicts significantly 
longer lives beyond 2 × 106 cycles before the stress ranges decrease to 
the conventional fatigue limit of 48 MPa defined at 5 × 106 cycles ac-
cording to Eurocode 3 Part 1-9 for detail category 71. The RFLM curve 
crosses this conventional horizontal fatigue limit line at about 2 × 107 

cycles. Beyond this life the RFLM model will in fact predict shorter fa-
tigue lives than the conventional design curve given by Eurocode 3. This 
is an important nonconformity when comparing with the conventional 
curves. If we compare with the conventional design curve where it is 
assumed that the fatigue limit is given at 107 cycles the RFLM curve will 
predicts longer lives up until 109 cycles is reached. 

5.2. Defining the RFLM design curve for CA loading 

Based on the discussion in Section 5.1, the final CA design curve 
obtained by the RFLM can be defined. The proposed design curve is 
shown in Fig. 8 together with the conventional S-N curve obtained from 
the present data. In the illustration the latter linear curve is chosen to 
have a fatigue limit at 107 cycles and not at 5 × 106 cycles as in Eurocode 
3 Part 1-9. The RFLM design curve is defined at 97.5% probability of 
survival. The obtained resistance curve is accepted as it is; however, to 
the left of 3 × 105 cycles, the RFLM curve shall be parallel with the 
conventional linear S-N curve, i.e. m = 3.0. The chosen point is where 
the RFLM curve is close to tangential to the conventional linear curve. 
The argument for this choice is that there is no reason to question the 
conventional analysis in this high stress range regime. This part of the 
conventional S-N curve is in the gravity centre of the data included in the 

Fig. 5. Fitted probability distributions (128 samples, SAW excluded).  

Fig. 6. Failure rate function of the Weibull and lognormal life models.  
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linear regression analysis. The conventional design S-N curve gives a 
fatigue limit of 40 MPa for the present data. As can be seen from the 
figure the RFLM curve will predict longer CA lives than the conventional 
curve between 106 cycles and 109 cycles. For stresses below the 

conventional fatigue limit of 40 MPa the RFLM will predict finite long 
lives beyond 109 cycles, but not infinitely long as is the case for the 
conventional curve predictions. 

It is obvious that the non-linear RFLM curve is more in agreement 
with the lower data points than the conventional S-N curve. But the 
RFLM curve has increased uncertainty at very low stresses due to the 
scarcity of data in this long-lasting life area. As shown, the RFLM curve 
will give more optimistic CA life predictions than the conventional curve 
if the fatigue limit is defined at 107 cycles. However, this is not the case if 
the conventional fatigue limit had been drawn at 5 × 106 cycles as 
recommended in Eurocode 3 Part 1-9. The design curve suggested by 
IIW is also included in Fig. 8. As this curve is keeping m = 3 down to the 
knee point at 107 cycles and has a constant slope parameter of m = 22 
beyond this point, the curve becomes significantly more pessimistic than 
the present RFLM curve. It must be born in mind that the two curves are 
not obtained from the same data sample. 

6. Considerations for the underlying damage mechanisms 

As discussed in Section 2.5 the chosen probabilistic models and the 

Fig. 7. RFLM fitted to all available data with plate thickness 20–32 mm, (SAW samples excluded).  

Table 6 
S-N curve parameters.  

S-N curve Mean curve Design curve 

Category 71 
(Eurocode 3, part 1- 
9) 

Not given loga1 = 11.855 
m1 = 3 

F-class (DNV) loga1 = 12.255 
m1 = 3 

loga1 = 11.855 
m1 = 3 

Conventional S-N curve 
for the present data 

loga1 = 12.227 
m1 = 3 

loga1 = 11.817 
m1 = 3 

RFLM for the present 
data 

β0 = 21.42 
β1 = 1.856 
γ = exp(μv) =
exp(4.097) =
60.2 

no direct parameters for probabilistic 
model, can be found by fitting to the 
numerical results with approximation 
function of the same type as basic 
RFLM Eq. (3)  

Fig. 8. Design S-N curves based on RFLM for CA loading together with the conventional S-N curve.  
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involved damage fatigue mechanisms shall be compatible. For the high 
stress ranges the present analysis confirms what is accepted as common 
knowledge, the upper linear S-N curve has a slope parameter m that 
coincides with the exponent m in the Paris crack propagation law: 

da
dN

= C(ΔK)
mforΔK ≥ ΔK0 (7a)  

da
dN

= 0forΔK < ΔK0 (7b) 

Hence, the fatigue life in this area consists mainly of crack growth as 
described by Eq. (7a). The RFLM curve continues to fall at lower stress 
ranges, but the slope of the curve gets more and more shallow. However, 
the RFLM curve does not turn into a horizontal line. This observation 
does in fact reject the hypothesis that a fatigue limit exists. The tradi-
tional explanation for such a fatigue limit has been that the stress in-
tensity factor range ΔK for a given initial cracklike defect is less than the 
threshold value ΔK0, i.e. as explained by Eq. (7b). Variations of such 
models have been used by Haibach [48] and Gurney [49,50] to establish 
S-N curves both for CA and VA loading. This results in an abrupt knee- 
point of the conventional S-N curve. In the present work the shape of 
the lower part of the RFLM curve demonstrates that the fatigue damage 
mechanism is changing gradually from crack growth to a crack initiation 
mechanism such that the crack initiation phase becomes the dominant 
part of the fatigue life. It is the present authors opinion that this shift in 
damage mechanisms is a better description of the physical realities than 
a cut-off given by the threshold value based on LEFM and Eq. (7b). To 
investigate this topic further the RFLM curve is split into two parts. One 
part is defined by a crack growth mechanism only. The corresponding 
curve is obtained by extrapolating the upper linear curve with slope 
parameter m down to a low stress range level of 1 MPa. When sub-
tracting this crack growth life curve from the total RFLM curve given in 
Fig. 8 the other phase of the damage mechanism is obtained. The result 
is shown in Fig. 9. A conspicuous finding is that the curve obtained by 
subtracting the crack growth is also very close to being a straight line for 
a log-log scale. This curve agrees with common mechanic models for 
time to crack initiation such as the Coffin-Manson equation. If the pre-
sent curve is linearized between 107 and 108 cycles the slope parameter 
m is close to m2 = 10. This is in good agreement with the inverse value of 
the fatigue strength exponent ( − 1/b) of the elastic part of the Coffin- 
Manson equation. The equation can be written: 

Δσ
2

= σ’
f (2Ni)

b (8)  

where Δσ is now the weld notch stress range, 2Ni is the number of re-

versals to crack initiation, σ’
f is the fatigue strength coefficient and b is 

the fatigue strength exponent. The equation can be written: 

Ni =
1
2

(
2σ’

f

)− 1/b

(Δσ)− 1/b
(9) 

The notch stress range Δσ at the weld toe is directly linear propor-
tional to the nominal stress S under linear elastic conditions. This is 
assumed to be the case when the number of cycles to failure is longer 
than 107 cycles. The mean stress effect can be modelled by adding the 
Morrow correction to Eq. (9): 

Ni =
1
2

(
2
(

σ’
f − σm

))− 1/b

(Δσ)− 1/b
(10)  

where σm is the local mean stress at the weld toe notch. The formula 
allows to take into account the magnitude of the residual stresses. 

It should be added that the random variations in the strength expo-
nent b can be substantial such that other results for the second slope 
parameter of the S-N curve are possible. Baptista et al. [31], found a 
value close to 12, and even the slope parameter of 22 suggested by 
Sonsino [15] cannot be completely rejected. However, Sonsino did not 
consider the possibility that the slope of the S-N curve may change 
gradually beyond 106 cycles. One should also be aware of that if the 
Coffin-Manson equation is adopted as the governing equation in this low 
stress regime it will lead to different slopes of the S-N curves for various 
steel grades. High strength steels will have the shallowest slope, i.e. the 
highest parameter m. This is well known for welded joints that have been 
subjected to post weld improvement techniques. However, the phe-
nomenon is usually neglected for as-welded joints. The present discus-
sion is summarized in Table 7. The low cycle fatigue phenomenon with 
number of cycles to failure less than 104 cycles is not included. These 
short lives are not within the scope of the present study. In the medium 
cycle area with lives between 104 and 106 cycles both the mechanical 
models pertaining to the S-N curve and the RFLM curve is given by the 
Paris propagation law. In the high cycle area where N is between 106 and 
107 cycles the S-N curve is still assuming that the Paris propagation law 
alone is governing the damage evolution, but now a possible cut-off 
given by the threshold value for the SIFR is included. In this stress re-
gion the RFLM curve is supported by a two-phase model where both the 
time to crack initiation and the time spent in crack growth play an 
important role. 

The model for the conventional S-N curve that ignores the crack 
initiation phase will result in an S-N curve that gives overly pessimistic 
life predictions in this curve segment. Finally, in the very high cycle 
regime with N > 107 cycles, the S-N curve will predict infinite lives 
supported by the threshold value for the SIFR, whereas the RFLM will 
predict very long lives with the same two-phase model as before. The 
only difference for the underlying physical model for the RFLM curve is 
that the initiation part of the fatigue life has become dominant. It is the 
authors opinion that the LEFM applied to explain the fatigue endurance 
limit given by the S-N curves should be rejected. Extensive testing has 
shown that there exists a significant initiation period in the fatigue lives 
even at stress levels as high as 150 MPa and with lives less than 106 

cycles (Mikulski and Lassen [20,21]). The test series in this work had an 
initiation period close to 20% of the total fatigue life when defined as the 
time to reach a crack depth of 0.1 mm. This becomes even more pro-
nounced at stress ranges giving fatigue lives beyond 107 cycles. The life 
data from the test series were typical for an F class detail such that the 
fatigue quality of the joint is representative for this category. The same 
investigation also demonstrated that the involved welding imperfections 
do not have a size large enough such that LEFM can be directly applied 
from the very beginning of the damage process such as assumed when 
constructing the conventional S-N curves. An objection to the present 
underlying physical model for the RFLM curve is that it does not Fig. 9. Splitting the RFLM design curve into two straight lines for crack initi-

ation and crack growth. 
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explicitly model the influence of weld imperfections such as micro de-
fects and non-metallic inclusions. A good review of possible weld im-
perfections is given by Hobbacher [14]. Hence, our model does not 
include possible micro crack nucleation, subsequent crack growth and 
possible crack arrest. Zerbst et al. [51] have modelled such micro crack 
behavior in welded joints and LEFM is not applicable. In the present case 
these topics would have given a physical three-phase model which also 
could have agreed with the shape of the RFLM resistance curve. How-
ever, the present authors have been reluctant to include this third phase, 
as the underlying model would become more complicated. It is our 
opinion that the present two-phase model strikes the balance between 
accuracy in life prediction and model simplicity. The possible weakness 
is that the initiation life model is developed for a theoretical micro-
structure without weld imperfections such as small defects. However, 
the crack initiation curve is in the present case obtained directly from 
experimental life data by subtracting the crack growth phase, such that 
any initial defects or flaws are indirectly accounted for in the initiation 
model. Consequently, the parameters in the physical model will reflect 
the presence of such possible flaws although the theoretical model was 
originally developed for a flawless microstructure. 

7. Discussion and conclusions 

The results from descriptive statistical analysis and probabilistic 
modelling for the fatigue life in fillet welded steel joints subjected to CA 
loading have been presented. The plate thicknesses are ranging from 20 
to 32 mm and the steel qualities are mild and medium strength C-Mn 
steel. The welded details are originally designated category 71 in 
Eurocode 3 Part 1-9, whereas same population is designated as an F class 
in offshore rules and regulations. Various elementary life models at a 
given stress range are studied and the construction of conventional S-N 
curves is included. Finally, the more advanced resistance curves ob-
tained by the RFLM are fitted to the test data. The results from the 
various models are compared and discussed. Based on the obtained re-
sults the following conclusions can be drawn:  

1) For the fatigue life data collected at a constant stress range of 150 
MPa it is demonstrated that the two-parameter log-normal dis-
tribution gives the best fit to the test results. The Weibull distri-
bution gives a poorer fit to the life histogram. This finding 
supports the common life model applied for the S-N curves in 
current rules and regulations where the underlying linear 
regression analysis implies a normal distribution for a log-log 
scale.  

2) The acceptance of the log-normal distribution for the fatigue life 
gives more optimistic safe life predictions than a Weibull distri-
bution does. Furthermore, the log-normal distribution gives a 
failure rate function that will decay after the mean time to failure 
(MTTF) has been reached. This is not the case for a Weibull model 
that gives a steadily increasing failure rate function. The shape of 
the log-normal failure rate function indicates that when a welded 
joint has survived many cycles, it has proven its fatigue quality 
and may continue to be fit for purpose. This is interesting infor-
mation for aging structures that have passed their fatigue design 

lives. If the structure has been kept in service by a scheduled 
program with frequent detailed inspections up to the MTTF one 
does not necessarily have to increase the inspection frequency 
during a further life prolongation. However, the decrease in the 
failure rate function should not be used as an argument for 
omitting in-service scheduled fatigue inspection for such 
structures.  

3) More life data were collected for the actual detail at various stress 
ranges to establish S-N curves. The conventional linear regression 
analysis was carried out using the lower prediction bound as basis 
for defining the design curves at chosen probability of survival. A 
comparison between the design curves given by the building 
codes for civil engineering (e.g. Eurocode 3 Part 1-9) and the 
codes for marine structures (e.g. DNVGL-RP-C203) was per-
formed. Although somewhat different statistical analysis pro-
cedures are applied in the two codes, no significant differences 
were found in the obtained design curves. The lower prediction 
bound defined by a 95% probability of survival is recommended 
when defining the design curve in Eurocode 3 Part 1-9. If the 
statistical procedure accounts for the hyperbola shape of the 
prediction interval, this will give the same design curve as the one 
obtained when the probability of survival is set to 97.5% with the 
hyperbola shape neglected. The latter procedure is the basis for 
DNV recommendations. Both procedures give the same design 
curve.  

4) At lower stress levels the linear regression has the unfortunate 
limitation that it excludes the long-life failures and the runout 
results. These data are essentially important in the way that they 
usually are closer to the magnitude of the acting stress ranges in- 
service than the finite life data entering the linear regression 
analysis. The short-comings of the conventional S-N curves were 
eliminated by using the Random Fatigue Limit Model.  

5) The design curve obtained by the RFLM is non-linear for a log-log 
scale. The RFLM design curve is defined at a 97.5% probability of 
survival. The obtained resistance curve is accepted as it is; how-
ever, to the left of 3 × 105 cycles, the RFLM curve shall be parallel 
with the conventional linear S-N curve. The chosen point is where 
the RFLM curve is close to tangential to the conventional linear 
curve. The RFLM fatigue resistance curve will as a result coincide 
with the conventional linear S-N curve in the medium cycle fa-
tigue range for stress ranges above 80 MPa. Both curves have a 
slope parameter m = 3. This part of the curve is the area where 
the gravity centre of the test data is found. At lower stresses 
where the conventional S-N curve has a knee point, the non-linear 
RFLM curve has its maximum curvature. This shape gives far 
better agreement with the long-life data in this area. Below the 
conventional S-N knee point the RFLM curve continues to fall 
with an increasing slope parameter m with a decreasing curva-
ture. The curve becomes almost linear when 107 cycles are 
passed, but the curve does not become horizontal.  

6) When comparing with a conventional S-N curve that has a CA 
fatigue limit at 107 cycles, the RFLM curve is very close to 
tangential to both the upper line segment and the fatigue limit 
when approaching 108 cycles. Consequently, the RFLM curve will 

Table 7 
The reciprocal relation between the probabilistic model and the mechanical models.  

Fatigue type categorization Damage mechanisms Segment of conventional 
S-N curve 

Basic physical 
equation 
S-N curve 

Segment of RFLM resistance 
curve 

Basic physical equation 
RFLM 

medium cycle fatigue 
104–106cycles 

mainly crack growth upper straight line Paris law upper straight line Paris law 

high cycle fatigue 
106–107cycles 

crack initiation and 
crack growth 

lower part of straight line Paris law transition segment with 
maximum curvature 

Coffin- Manson equation 
and Paris law 

very high cycle fatigue longer 
than 107 cycles 

mainly crack initiation lower horizontal line from 
knee point 

threshold cut-off in 
Paris law 

lower segment which 
approaches a straight line 

Coffin-Manson equation  
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almost always give more optimistic CA life predictions compared 
to predictions based on the conventional curves found for 
offshore structures.  

7) When comparing with a conventional S-N curve that has a CA 
fatigue limit at 5 × 106 cycles (as the category 71 in Eurocode 3 
Part 1-9 for civil engineering), the RFLM curve is still very close to 
tangential to the upper line segment, but the RFLM curve has a 
more pessimistic shape compared to the conventional fatigue 
limit. For a large band of stress ranges the RFLM curve will in fact 
predict shorter fatigue lives than the conventional curve.  

8) The comparison with the conventional curves from the offshore 
industry and Eurocode 3 Part 1-9 indicates that a fatigue limit 
drawn at 107 cycles is a better choice than drawing it at 5 × 106 

cycles for a detail category 71. However, the RFLM resistance 
curve does in fact reject the existence of a fatigue limit before 109 

cycles is reached. This rejection agrees well with the latest pro-
posal for CA S-N curves from IIW. However, the IIW curve pre-
dicts significantly shorter fatigue lives close to its knee-point. 
There is still a lack of data in this very high cycle regime to 
support a final conclusion on this matter.  

9) Based on the above observations the present RFLM resistance 
curve is not envisioned to replace the conventional S-N curves 
found in rules and regulations. However, the RFLM curve gives an 
important supplement for fatigue assessment in the high cycle 
regime.  

10) It has been demonstrated that the shape of the obtained RFLM 
resistance curve agrees well with a two-phase model for the 
involved damage mechanisms. An initiation model based on the 

Coffin-Manson equation and a crack growth model based on the 
Paris propagation law have been proposed. These models will 
support the RFLM resistance curve to handle changes in impor-
tant variables such as the applied stress ratio and the magnitude 
of the residual stresses.  

11) Future work will be focusing on how to handle VA loading with 
the present RFLM resistance curves. The split into two separate 
curves and the conclusion drawn in clause 9) above will play an 
important role in this work. The support from the underlying 
physical equations is expected to increase the accuracy of the 
calculated damage accumulation. This will be the hypothesis for 
the future work. 
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Appendix A. Summary of the mathematics for an elementary life model 

The probability of failure pertaining to the SLL on the left tail in Fig. 2 in the main text is theoretically obtained by the equation: 

P(t ≤ t) = F(t) =
∫t

0

f (t’)dt’ (A1) 

The reliability R(t) is defined by the probability of surviving the SLL which is the complementary probability to the expression in Eq. (A1): 

P(t > t) = R(t|μ, σ, S| ) (A2) 

The failure rate function is defined by, Lewis [52]: 

λ(t) =
f (t)
R(t)

(A3) 

The failure rate function is a conditional probability function. It gives the probability of failure per time unit just after the time t is reached, given 
that the joint has survived up to the time t. 

Appendix B. Summary of the mathematics for the RFLM curves 

With Eq. (3) in the main text as basis, it is assumed that v = ln(γ) has a Probability Density Function (PDF) given by: 

fV(v) =
1
σv

φV

(
v − μv

σv

)

(B1)  

with location parameter and scale parameter μv and σv, respectively. ϕv(⋅) is the normal frequency function. Let x = ln(ΔS) and W = ln(N). Assuming 
that V is given and that V < x, W|V then has a frequency function: 

fW|V (w) =
1
σx

φW|V

(
w − [β0 − β1ln(exp(x) − exp(v))]

σx

)

(B2)  

with the location parameter β0 − β1ln(exp(x) − exp(v)) and scale parameter σx. The marginal frequency function of W is given by: 

fW(w) =
∫ x

− ∞

1
σxσv

φW|V

(
w − [β0 − β1ln(exp(x) − exp(v))]

σx

)

φV

(
v − μv

σv

)

dv (B3) 

The marginal Cumulative Distribution Function (CDF) of W is given by: 
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F(w) =
∫ x

− ∞

1
σv

ΦW|V

(
w − [β0 − β1ln(exp(x) − exp(v))]

σx

)

φV

(
v − μv

σv

)

dv (B4) 

where ΦW|V(⋅) is the CDF of W|V. Further details are found in [32,33]. 

Appendix C. Life data for the Drebenstedt and Euler example 

Life data from [28,29]   

Stress range [MPa] Cycles failure/runout 

265 42,000 failure 
265 70,000 failure 
265 79,000 failure 
202 107,000 failure 
202 188,000 failure 
202 204,000 failure 
139 537,000 failure 
139 597,000 failure 
108 800,000 failure 
108 1,077,000 failure 
108 5,000,000 runout 
108 5,200,000 runout 
108 5,400,000 runout 
74 5,000,000 runout 
74 5,200,000 runout  

Appendix D. Life data at a stress range of 150 MPa  

Series 1a Series 1b Series 2 Series 3 Series 4 

A3 387,235 A11 999,119 S2-1 323,520 S3-1 326,810 B2 1,578,652 
A4 370,248 A15 603,314 S2-2 262,950 S3-2 551,000 B3 636,004 
A5 436,426 A23 523,562 S2-3 259,310 S3-3 552,900 B5 599,388 
A6 483,540 A27 523,656 S2-4 270,510 S3-4 416,860 B6 571,395 
A8 647,939 A28 505,000 S2-5 454,300 S3-5 632,400 B7 376,006 
A9 544,635 A31 1,490,400 S2-6 265,970 S3-6 1,073,630 B8 658,011 
A10 336,070 A35 2,073,554 S2-7 314,480 S3-7 707,270 B9 410,012 
A12 576,732 A40 651,503 S2-8 323,290 S3-8 387,380 B10 446,519 
A13 428,970 A43 1,074,052 S2-9 286,650 S3-9 370,620 B11 590,574 
A14 374,064 A48 1,008,050 S2-10 189,270 S3-10 1,016,410 B12 318,504 
A16 512,159   S2-11 305,120 S3-11 859,160   
A17 424,542   S2-12 282,630 S3-12 679,950   
A18 334,876   S2-13 283,220 S3-13 650,260   
A20 588,573   S2-14 388,710 S3-14 984,700   
A21 414,214   S2-15 330,070 S3-15 771,560   
A22 352,006   S2-16 312,400 S3-16 522,390   
A24 553,546   S2-17 244,490 S3-17 729,880   
A25 478,004   S2-18 327,230 S3-18 582,590   
A29 702,468   S2-19 294,680 S3-19 705,180   
A30 594,047   S2-20 255,400 S3-20 905,440   
A33 456,790   S2-21 367,388 S3-21 432,050   
A34 361,002   S2-22 390,560 S3-22 647,280   
A36 551,015   S2-23 472,230 S3-23 954,790   
A37 527,270   S2-24 305,266 S3-24 484,140   
A38 332,513   S2-25 425,700 S3-25 693,870   
A39 734,505   S2-26 376,390 S3-26 379,470   
A41 525,507   S2-27 268,250 S3-27 1,163,580   
A42 349,059   S2-28 404,030 S3-28 549,230   
A44 580,007   S2-29 276,320 S3-29 522,380   
A45 382,012   S2-30 319,820 S3-30 323,960   
A46 447,015   S2-31 374,080 S3-31 1,191,670   
A47 445,007   S2-32 310,590 S3-32 565,680   
A49 465,717   S2-33 362,750 S3-33 947,660   
A50 345,074   S2-34 356,300 S3-34 455,550       

S2-35 326,170 S3-35 463,760       
S2-36 367,110 S3-36 530,000       
S2-37 365,450 S3-37 736,780       
S2-38 288,810 S3-38 527,320       
S2-39 380,690 S3-39 754,890       
S2-40 334,540 S3-40 532,700       
S2-41 346,350 S3-41 901,850       
S2-42 366,210 S3-42 713,450    
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