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ABSTRACT Identifying vital nodes is important in disease research, spreading rumors, viral marketing,
and drug development. The vital nodes in any network are used to spread information as widely as possible.
Centrality measures such as Degree centrality (D), Betweenness centrality (B), Closeness centrality (C), Katz
(K), Cluster coefficient (CC), PR (PageRank), LGC (Local and Global Centrality), ISC (Isolating Centrality)
centrality measures can be used to effectively quantify vital nodes. The majority of these centrality measures
are defined in the literature and are based on a network’s local and/or global structure. However, these
measures are time-consuming and inefficient for large-scale networks. Also, these measures cannot study
the effect of removal of vital nodes in resource-constrained networks. To address these concerns, we propose
the six new centrality measures namely GRACC, LRACC, GRAD, LRAD, GRAK, and LRAK. We develop
these measures based on the relative change of the clustering coefficient, degree, and Katz centralities after
the removal of a vertex. Next, we compare the proposed centrality measures with D, B, C, CC, K, PR,
LGC, and ISC to demonstrate their efficiency and time complexity. We utilize the SIR (Susceptible-Infected-
Recovered) and IC (Independent Cascade) models to study the maximum information spread of proposed
measures over conventional ones. We perform extensive simulations on large-scale real-world data sets and
prove that local centrality measures perform better in some networks than global measures in terms of time
complexity and information spread. Further, we also observe the number of cliques drastically improves the
efficiency of global centrality measures.

INDEX TERMS Complex networks, influential nodes, local centrality, relative change in centrality.

I. INTRODUCTION
The centrality measure effectively quantifies the network’s
influential nodes. Identifying powerful or vital nodes is
critical in many networking applications, including disease
research [1], [2], fake news spreading [3], viral market-
ing [4], drug development, opinion monitoring [5], bio-
logical field [6], fraud detection [7], structural design [8],
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social physics [9], and other fields [10]. In [1], authors
analyzed the centrality measures for a disease transmission
network and shown that relatively simple ego-network-based
network measures can be adequate to measure the spread of
the disease. Authors proposed a spreading scheme for viral
marketing in [4] by using different centrality measures and
some of the research insights presented to design marketing
schemes. Various centrality measures have been proposed
in [6] to identify the central nodes in large networks. It was
also shown that data can be reduced using machine learning
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methods to choose appropriate centrality measures. This is
the most meticulously researched fundamental concept in the
network science. In the literature, the centrality measure is
defined in a variety of ways. According to [11], it is defined
as the information or traffic contained in all possible paths
between pairs of nodes. These measures can be viewed as
mathematical heuristics for identifying prominent nodes in
networks based on local or global structural properties [12].
The centrality measures make certain assumptions about the
process in which information flows through a network [13].
In the last several decades, many centrality methods have
been proposed to find the seed nodes (vital nodes). Various
centrality measures, such as Degree centrality (D), Between-
ness centrality (B) [14], Closeness centrality (C) [13], Katz
(K) [15], PageRank (PR) [16], have been proposed in the
literature [17]. The centrality measures were broadly classi-
fied into three types: local measures, global measures, and
random-walkmeasures [18]. The degree is a local metric with
low accuracy because it focuses on first-order neighbors. The
information from the global network is ignored by the local
metrics. The global metrics are betweenness and closeness,
and these are considered the nodes’ global information. These
global metrics, however, necessitatemore computational time
for large-scale networks [19].

PageRank is a random-walk measure that provides better
performance and is appropriate for directed networks. All
of these metrics rank nodes based on their prominence in
the network. A node with high centrality in a social net-
work, for example, may represent a powerful personality. The
majority of these centrality measures are defined by the num-
ber of paths that connect pairs of nodes, the shortest paths,
betweenness, degree, page rank, and so on. Several centrality
measurements are computed using local and global informa-
tion from network nodes. However, for large-scale complex
networks, these measures are time-consuming, costly, and
inefficient. One of the interesting research directions in this
area is developing centrality measures that consider node
removal and neighborhood-level scenarios. When influential
nodes fail for any reason, nodes should consider the alternate
path or nearest neighbors, to find the important nodes. These
centrality measures find numerous applications in many real-
time networks. In [20], authors proposed the centrality mea-
sures to study the National Airspace System, and airport
network subjected to natural hazards. They have noted that
node removal according to dynamic centrality measures can
have faster collapse rates. Authors proposed a link centrality
measure in [21] based on topological and electrical properties
of power grid networks. They study the attack vulnerability
of power grids in network failures. In [22], authors used
centralitymeasures to reduce interference rate and congestion
around the influential nodes in Software-Defined Aerial Net-
works. Detecting the central nodeswhich can be a base station
can reduce the overall energy consumption in multi-hop wire-
less networks [23]. In [24], authors discussed the statistical
measurements in constantly changing cooperative commu-
nities to identify the most significant invaders. This work

is motivated by these applications in the areas of cascading
failures, natural hazards, and network congestion.

II. RELATED WORK
This section briefly discusses the recent works on central-
ity measures in the literature. Authors have proposed trust
PageRank (TPR) [25], nearest neighborhood trust-PageRank
(NTPR) [26], extended cluster coefficient ranking mea-
sure (ECRM) [27], and normalised local centrality measure
(NLC) [28] using local and global network information. The
ECRM of a node is defined based on the correlation between
a node and its neighbors. By utilising the structure of the
local network around a node and the influence feedback
from the node’s closest neighbors, Zhao et al. [28] concen-
trated on normalised local centrality. Xin et al. [29] pro-
posed a heterogeneity-oriented immunization measure based
on individual heterogeneity and network topology factors.
Lellis and Porfiri [30] designed an algorithm for detecting
influential nodes in network dynamic systems using time
series. A community-based mediator (CbM) [31] is presented
as a metric for identifying influential nodes in a vast and
complex network, taking into account the entropy of a random
walk from a node to every community. The local and global
centrality is proposed by the authors [32] which is defined
based on degree and shortest distance between a pair of
nodes. A centrality based on isolation of vertex proposed by
authors [33].

The degree cluster coefficient method (DCC) [34] is used
for identifying influential nodes that takes into account
degree, clustering coefficient, and neighbors. The basic cen-
tralities and machine learning techniques are used to find
the vital nodes using SIR and the independent cascade
model [35]. The local relative change of average shortest
path (LRASP) [36] is proposed depending on the network’s
local structure. Based on the relative change in the average
shortest path (ASP) in the local network when the node is
removed, the LRASP measure for a node is calculated. From
the LRASP measure, we generalised the relative change in
centralities based on the global and local structures to find the
vital nodes. A new parallel algorithm is proposed in [23] to
find all central nodes by obtaining Breadth First Search trees.
Authors proposed a belief propagation and node reinsertion
method in [37] to identify the vital nodes. A novel centrality
measure based on fuzzy concept is proposed in [38] which
considered the idea of inner structure of node’s box. In [39],
authors presented a comparative study of two vertex deleted
centrality measures namely Laplacian centrality and alge-
braic centrality and proved that algebraic centrality is easier
to compute than Laplacian centrality. None of these works
focused on developing centrality measures which considers
local and global information for node removal cases using
clustering coefficient, degree, katz centralities.

In this work, we focus on deriving centrality measures
to identify the vital node with maximal information spread
and minimal time complexity. For this purpose, we propose
six new centrality measures in this paper: GRACC, LRACC,
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GRAD, LRAD,GRAK, and LRAK. These proposedmethods
focus on both local and global average structural informa-
tion. We propose generalised centrality measures based on
the relative change in degree, Katz, and clustering coeffi-
cient after node removal. GRAD, GRACC, and GRAK are
generalized global centrality measures based on the relative
change in degree, clustering coefficient, and Katz, respec-
tively. Similarly, local centrality measures are denoted as
LRACC, LRAD, and LRAK. The proposed methods were
compared to the standard measures available in the literature,
such as D, B, C, CC, K, PR, LGC, and ISC.

A. ORGANISATION
This paper is organized as follows. We define the basic
centrality measures in section III. Section IV presents the
proposed centrality measures and corresponding algorithms.
Section V is devoted to the data sets, spreading models, and
assessment approaches utilized to prove the efficiency of our
measures. Section VI includes discussions and the exper-
imental findings. Finally, Section VIII provides important
insights, conclusions, and future directions.

III. PRELIMINARIES
First, we define some benchmark centrality measures in this
section. Any graph or network is denoted by G, formulated
as G = (V ,E), where V represents nodes and E represents
edges. For computing the vital nodes in networks several cen-
tralities are represented in the existing work, such as degree
(D), betweenness (B), closeness (C), and clustering coeffi-
cient (CC) centralities are defined as follows: The degree
centrality (D) [40] is considered as number of direct ties
between one vertex to other vertices. The average length of
the shortest path connecting a node to all other nodes in the
graph is known as Closeness centrality (C) [41]. The C of
node v can be defined as

C(v) =
1∑

u∈V
d(v, u)

where d(v, u) indicates the shortest path distance between
u, v nodes. The betweenness centrality (B) [14] is global
centrality and it considers the shortest path through the node.
The B of node w can be defined as

B(w) =
∑

u6=v6=w∈V

duv(w)
duv

where duv is the distance from the vertex u to vertex v, duv(w)
is the path between vertices u and v that passes via vertex
w is the shortest. The number of closed triplets over the
total number of triplets is used to calculate the clustering
coefficient centrality (CC) [42], [43].

CC(v) =
2Nv

dv(dv − 1)

where Nv is number of links between neighbors of v, dv is
degree of node v. In the Katz centrality (K) of a network, the
relative influence of each node is calculated by taking first

level neighboring and next level neighboring nodes that are
connected with first level neighboring nodes. TheK of a node
vi is computed as

K (vi) = α
n∑
j=1

Ai,jK (vj)

where α is dumping factor (considered to be less than largest
eigen value).

PageRank (PR): A popular variation of the eigenvector
centrality technique, called PageRank centrality is presented
in [44] and [45]. In the Google search engine and other
commercial applications, PR is used to rank the websites.

PRtv =
1− α
n
+ α

∑
vi∈Nv

PRt−1vi

kvi

where n represents vertices, Nv represents vertex v neighbors,
α is jump probability, kvi is the number of vertices to which
the vertex vi points, and t is the iterative parameter. The first
term in PageRank is for regularising the PageRank. Here, the
sum will converge to one when the second term reaches its
maximum.

Local and Global Centrality (LGC): The LGC [32] is
defined based on the degree and shortest path between a
pair of vertices. It is a combination of the local and global
influence of a vertex. The LGC of node v is defined as
follows:

LGC(v) =
dv
n
×

∑
v6=u

√
du + α
d(u, v)

where dv represents the degree of node v, n is total number
of nodes, d(u, v) is the shortest distance between u and v,
and α is the parameter and range between 0 and 1. First part
indicates the local influence and second part indicates the
global influence.

Isolating Centrality (ISC): The ISC [33] of a node is
defined as the product of its degree and isolated coefficient.
The ISC of a node is calculated as:

ISC(v) =| Nv ∩ Dδ | ×dv

where Nv is the neighbors of v and Dδ is set of nodes with
degree δ, and dv is degree of node v. The average shortest path
(ASP) [43] is defined as the shortest paths for all potential
network pairs along with the average number of steps. The
ASP measures how well information is effectively transmit-
ted from powerful nodes to all other nodes in the network.
The ASP is computed for a graph G, as

ASP[G] =

∑
u6=v∈V

duv

N (N − 1)

where duv denotes the shortest path from nodes u and v. The
relative change in ASP (RASP) [46] can be computed as

RASP[k] =
|ASP[G′k ]− ASP[G]|

ASP[G]
, k = 1, 2, · · · ,N
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In a graph G, v is a vertex, consider a neighbourhood level
L. The LRASP [36] is a local centrality and calculated nodes
influence based on the network’s local structure. This LRASP
metric for a node is based on the relative change in the average
shortest path in the local networkwhen the node is eliminated.
NL(v) is the set of all neighbors up to the level L with vertex v.
RASP of GNL (v) will be calculated for an induced subgraph
GNL (v) of graph G with vertex set NL(v). The summary of
the methods is shown in Table 1. The LRASP is computed as
follows:

LRASPL[v] =
|ASP[GNL (v) \ v]− ASP[GNL (v)]|

ASP[GNL (v)]
,

A. CONTRIBUTIONS
1) Firstly, we propose a generalised centrality measure by

using the relative change in any centrality. For that, the
effect of the centrality measure after deleting a vertex
has been exploited.

2) Secondly, we propose six centralities such as GRACC,
LRACC, GRAD, LRAD, GRAK, and LRAK and com-
pared with the conventional measures D, B, C, CC, K,
PR, LGC, and ISC. Proposed measures are extremely
useful to study the complex networks with less compu-
tational complexity.

3) Finally, to verify the maximum information spread,
we test our centrality measures on real-world data sets
using SIR and IC models.

Next we define generalization of the centrality measure using
the relative change in the centrality.

IV. GENERALIZATION OF RELATIVE A CHANGE IN
CENTRALITY
In this section, we generalize the centrality measure based on
the relative change in the centrality. We propose this gener-
alization of the centrality measure of a vertex in the network
by using the effect of the centrality measure after removing a
vertex. The centralities of a node defined in the literature are
based on network local structure and global structure. But we
defined the local and global centrality measures of a node by
observing the effect of the relative change in any centrality
once the node is removed. Furthermore, we list local and
global centrality measures based on this generalization. The
summary of our proposed methods and existing methods are
shown in Table 1.

Consider any centrality C , for every vertex we can find the
values by using this centrality C and also we can find the
average centrality value for graph and it is denoted as AvgC .
We can define two measures, global and local, based on the
effect of relative change. It means we investigate the effect
of relative change of AvgC once the vertex is removed. The
global measure is defined as follows:

GRAvgC (v) =
|AvgC [G′v]− AvgC [G]|

AvgC [G]
(1)

where G′v is a network after removing the vertex v from
network G. The centrality GRAvgC is global for finding the

Algorithm 1 Algorithm for Finding Global Measure
GRAvgC (v) for a Vertex in Graph G
Input: Graph G = (V ,E), vertex v
Output: Global measure (GRAvgC (v)) of a vertex v

1 begin
2 V = nodelist,E = edgelist
3 for every vertex v in V do
4 find C (v)

5 find AvgC (G)
6 similarly find AvgC [G′v] /* G

′
v is a graph after

removing a vertex v from G */
7 find GRAvgC (v) = |AvgC [G′v]−AvgC [G]|

AvgC [G]
8 return (GRAvgC (v))

centrality of a vertex in the entire network. Process of finding
theGRAvgC of vertex v of graphG given in Algorithm 1. The
global measure defined above based on the global structure
and for this measure we need entire network information.
Now we define a local measure based on local structure of
graph and for this measure we need local network informa-
tion. Consider the neighbourhood level L for a vertex v in
G and NL(v) is the vertex v of the neighbors up to the level
L in the graph. The level L can range from 0 to the graph’s
diameter. Let us define the local measure which is as follows:

LRAvgCL(v) =
|AvgC [GNL (v) \ v]− AvgC [GNL (v)]|

AvgC [GNL (v)]
, (2)

where GNL (v) \ v is a graph GNL (v) after deleting a vertex
v. Assume a neighbourhood level L for a vertex v in G,
NL(v) is the vertex v of the neighbors up to the level L in
the graph. Find the AvgC of induced subgraph GNL (v) of
graph G with vertex set NL(v). The centrality LRAvgC is
local for finding the centrality of a vertex by involving only
neighboring vertices up to the level L. Process of finding the
LRAvgCL of a vertex v of graph G is given in Algorithm 2.
Next we list local and global centrality measures based on
this generalization.We consider the centralityC as clustering
coefficient, degree and Katz centrality which are shown in
Table 1.

A. CENTRALITY C IS CLUSTERING COEFFICIENT
If we consider centralityC as clustering coefficient (CC) [47]
then the average clustering coefficient (ACC) is calculated for
graph G as:

ACC[G] =

∑
v∈V

CC(v)

N
(3)

where CC(v) indicates the clustering coefficient of a node v.
The global relative change in average clustering coefficient
of a vertex v is defined as:

GRACC(v) =
|ACC[G′v]− ACC[G]|

ACC[G]
,
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Algorithm 2 Algorithm for Finding Local Measure
LRAvgCL(v) for a Vertex in Graph G
Input: Graph G = (V ,E), vertex v and level L
Output: Local measure (LRAvgCL(v)) of a vertex v

1 begin
2 V = nodelist,E = edgelist, n := len(V );
3 for i from 1 to L do
4 find the neighbours of vertex v for each level i

and add to the set NL(v) by using edgelist E .

5 Consider H = GNL (v) /* find induced subgraph of G
with set vertex set NL(v) by using edge list E */

6 find LRAvgCL(v) =
|AvgC [H\v]−AvgC [H ]|

AvgC [H ]
7 where H \ v is a graph obtained after removing a

vertex v from V (H ) and we can also find AvgC of a
graph.

8 return (LRAvgCL(v))

Local relative change in average clustering coefficient for a
vertex v of G defined as follows:

LRACCL(v) =
|ACC[GNL (v) \ v]− ACC[GNL (v)]|

ACC[GNL (v)]
,

B. CENTRALITY C IS KATZ CENTRALITY
If we consider centrality C as Katz centrality (K) [15] then
average Katz centrality (AK) of graph is determined as:

AK [G] =

∑
v∈V

K (v)

N
(4)

where K (v) indicates the Katz centrality value of a node v.
The global relative change in average Katz centrality can be
calculated as:

GRAK (v) =
|AK [G′k ]− AK [G]|

AK [G]
, v ∈ V

Local relative change in average Katz centrality of a vertex v
of G defined as follows:

LRAKL(v) =
|AK [GNL (v) \ v]− AK [GNL (v)]|

AK [GNL (v)]
,

C. CENTRALITY C IS DEGREE
If we consider centrality C as degree (D) [48] the average
degree is calculated as:

AD[G] =

∑
v∈V

dv

N
(5)

where dv denotes the degree of a node v. The global relative
change in average degree of a node v in graph G can be
determined as:

GRAD(v) =
|AD[G′v]− AD[G]|

AD[G]
, v ∈ V

FIGURE 1. Toy Graph with 12 vertices and 14 edges.

Local relative change in average degree of a node v in graph
G defined as follows:

LRADL(v) =
|AD[GNL (v) \ v]− AD[GNL (v)]|

AD[GNL (v)]

Example:We illustrate these proposed centralities by using
toy example. Simple graph with 12 vertices and 14 edges is
given in the Fig. 1. For the network given in the Fig. 1, we find
the centrality D, B, C, CC, K, PR, LGC, ISC, GRACC,
LRACC, GRAD, LRAD, GRAK, and LRAK values for every
vertex which are given in the Table 2. While finding the local
measures (LRACC, LRAD and LRAK), we consider L is half
of the diameter.

D. COMPLEXITY OF FINDING GRAvgC AND LRAvgC

Let us consider the network G = (V ,E), where |V | = n
denotes the number of nodes and |E| = m represent the
number of edges. For a graph G, consider the computational
complexity for evaluating the relative change in AvgC for all
vertices as O(f (n)). The complexity for finding the global
measure GRAvgC in algorithm 1 is O(f (n)). The compu-
tational complexity for local centrality LRAvgC mentioned
in algorithm 2 is O(n2 + f (|NL(v)|)). Here, v denotes num-
ber of nodes and NL(v) represents neighbors of vertex v to
the level L. Finding the induced subgraph in a given graph
takes run time O(n2), and finding the LRAvgC value for this
induced subgraph costs f (|NL(v)|) where |NL(v)| is the size
of the induced subgraph. The level L can range from 0 to
the graph’s diameter. An alternative way, if L is the graph’s
diameter, then LRAvgC equals GRAvgC . In worst-case sce-
nario, the |NL(v)| value is n. In this paper, we assume that
level L is half the diameter of the graph. In the given graph
for calculating centrality, LRAvgC for each vertex, takes
O(n(max{n2, f (|NL(v)|)})). This time complexity is defined
by the local structure of each vertex as max{n2, f (|NL(v)|)}.
Computing global measure GRAvgC takes more runtime
when compared to local LRAvgC measure. Computing the
LRAvgC measure for any graph is very efficient. We present
the time complexity of the proposed centralities in the Table 4.

The neighborhood level L values can be varied from
real value 1 to diameter. We have examined that L is
equal to half of the diameter that covers the more local
neighbors’ information with less time complexity. From
our simulation experiments, we have also observed that
this particular L value maintains a trade-off between time
complexity and maximum information spread. One more
interesting finding is when L converges to diameter, it will
be a global measure. In our simulations, we have observed
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TABLE 1. GRAvgC and LRAvgC are proposed centralities, where C stands for D (Degree), K (Katz), CC (Clustering Coefficient), and ASP (Average Shortest
Path). The Proposed centralities in this work are colored in red.

TABLE 2. D (Degree), B (Betweenness), C (Closeness), CC (Clustering Coefficient), K (Katz), PR (PageRank), LGC (Local and Global Centrality), ISC (Isolating
Centrality), GRACC (Global Relative change in Average Clustering Coefficient), LRACC (Local Relative change in Average Clustering Coefficient), GRAD
(Global Relative change in Average Degree), LRAD (Local Relative change in Average Degree), GRAK (Global Relative change in Average Katz), and LRAK
(Local Relative change in Average Katz) centralities values at a vertex for a graph are shown in Figure 1. Top three influenced nodes are represented in red
color.

TABLE 3. Basic properties of six data sets.

TABLE 4. Time complexity of finding AvgC , GRAvgC and LRAvgC where
C is D, K, CC, and ASP, where dmax is the maximum degree of a network,
n (m) number of vertices (edges) of graph, and L represents
neighborhood level.

that LRACC(v) = GRACC(v),LRAD(v) = GRAD(v), and
LRAK (v) = GRAK (v) when L is the diameter of the network.

V. IMPLEMENTATION
This section illustrates six real distinct networks to evaluate
the performance of our methods. Later SIR, the Independent

cascade model, and Kendall rank correlation are described to
analyze the results.

A. DATA
Six real networks are used for simulations such as USAir97,
bio-celegans, ca-netscience, web-polblogs, email-univ, and
Fb_Pages. These real networks are downloaded from [49].
The basic details of the data sets are summarised in the
Table 3. The degree distribution plots for six datasets are
shown in Fig. 2. The degree distribution (neighbor distri-
bution) is the most significant characteristic of a network
structure.

B. SPREADING MODELS
The SIR (Susceptible-Infected-Recovered) model is one of
the epidemic model [50], [51]. To assess the techniques
in this report, we apply the SIR model with minimal con-
tact. Each node in the SIR model must be in one of these
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FIGURE 2. Degree distribution for USAir97, bio-celegans, ca-netscience, web-polblogs, email-univ, and Fb_Pages data sets.

TABLE 5. Rank Correlation (τ ) values of various ( Where D (Degree), B (Betweenness), C (Closeness), CC (Clustering coefficient), K (Katz), PR (PageRank),
LGC (Local and Global Centrality), ISC (Isolating Centrality), GRACC (Global relative change in average clustering coefficient), LRACC (Local relative change
in average clustering coefficient), GRAD (Global relative change in average degree), LRAD (Global relative change in average degree), GRAK (Global
relative change in average Katz), and LRAK (Local relative change in Katz)) centralities.

three states. state of being susceptible (S), infected (I), and
recovered (R). For the implementation process, the top −
10 nodes are picked for infection nodes based on a cen-
trality score. For every time instant, an infected node tries
with a chance to infect one of its neighbors with proba-
bility β. Simultaneously, there is a high chance of success
for every infected node to get recovered with a probabil-
ity γ , if successful, it will never be infected again and
will no longer infect additional susceptible nodes. Further,
the completion of the process indicates that the network
has no infected nodes. The diffusion process was replicated
100 times in this study. The infection rate β is considered to
be in the range of 0.1 to 0.3 for the simulations in the SIR
model.

Independent cascade model (IC) is an information diffu-
sion model [52], [53]. The IC model is a dynamical infor-
mation propagation approach in which data travels through
a cascade across the network. Considering the average of a
massive number of Monte Carlo simulations the expected
spread of a given seed set is computed. Nodes can exist in
either an active or passive. (i) Active signifies the already
influenced node by the data available in diffusion. (ii) Inactive
signifies that the node is entirely ignorant of the information.

The IC and SIR models are used to examine our proposed
measures.

C. KENDALL COEFFICIENT
It is a rank correlation metric that measures how compa-
rable the data’s orderings are when ranked by each of the
variables [54], [55], [56]. A similar rank in observations
results in a high Kendall correlation among the two variables
where as dissimilar rank in observations results in low corre-
lation between two variables. Consider a set of observations
(a1, b1), · · · , (an, bn) in which A, B are two random variables
and (xi), (yi) are unique values. For any observations (ai, bi) as
well as (aj, bj), in which i < j are concordant if both (ai > aj)
and (bi > bj) holds or (ai < aj) and (bi < bj) holds. Else
they are discordant. The Kendall’s τ coefficient is computed
as τ = NC−ND

1
2 (n(n−1))

, where NC denotes the total number of con-

cordant pairs and ND denotes the total number of discordant
pairs respectively. The range of coefficients must be within
the acceptable range −1 ≤ τ ≤ 1, for the denominator to be
in the total number of possible combinations in the pair. The
coefficient is said to have a specific value of 1 if rankings
there is a perfection in the agreement among the two ranking
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FIGURE 3. Rank Correlation with basic centralities for six data sets. Where D (Degree), B (Betweenness), C (Closeness),
CC (Clustering Coefficient), K (Katz), PR (PageRank), LGC (Local and Global Centrality), ISC (Isolating Centrality), GRACC (Global
Relative change in Average Clustering Coefficient), LRACC (Local Relative change in Average Clustering Coefficient), GRAD
(Global Relative change in Average Degree), LRAD (Local Relative change in Average Degree), GRAK (Global Relative change in
Average Katz), and LRAK (Local Relative change in Average Katz).

whereas the coefficient value is −1 if there is a discrepancy
between the two ranks which is perfect. We would anticipate
the coefficient to be close to zero if R and S are distinct.

VI. RESULTS AND DISCUSSION
We show the results from various datasets in this section. Ini-
tially, we display the correlation between proposed centrality

and basic centralities. We explain that the spread of informa-
tion grows as the centrality of a network node’s value rises.
We examined cumulative infected nodes for D, B, C, CC, K,
PR, LGC, ISC, GRACC, LRACC, GRAD, LRAD, GRAK,
and LRAK centralities using the SIR and independent cas-
cade models. For these centralities, we observe the pattern of
maximal effect with varying infection rates.
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FIGURE 4. Using SIR model, Centrality value with infection rate for six networks in column wise. Where D (Degree), B
(Betweenness), C (Closeness), CC (Clustering Coefficient), K (Katz), PR (PageRank), LGC (Local and Global Centrality), and ISC
(Isolating Centrality).

A. RANK CORRELATION OF GRACC, LRACC, GRAD, LRAD,
GRAK, AND LRAK WITH BASIC CENTRALITIES
We define the global and local measures such as GRACC,
LRACC, GRAD, LRAD, GRAK, and LRAK in section IV.
We investigate the proposed centralities close with any exist-
ing centralities by using the Kendall coefficient. On six real
networks, we show the correlation of GRACC, LRACC,
GRAD, LRAD, GRAK, and LRAK with D, B, C, CC, K,
PR, LGC, and ISC centralities. Using the network’s central-
ities, we calculate the ranking of each vertex. For each top

N vertices, we provide correlation graphs of the GRACC,
LRACC, GRAD, LRAD, GRAK, LRAK with fundamen-
tal centrality methods in Fig. 3, here N represents set of
values i.e. N = {1, 2, · · · , n} and n denotes total num-
ber of nodes in a network. We find correlation between
the new rankings (new measures) with basic ranking (X =
1, 2, 3, · · · ,N ) [38], [57], [58]. Table 5 shows that correlation
between new measures and basic centralities for all vertices.
In Fig. 3, we show the correlation at every value of x where x
is from 1 to the number of vertices of network. In the network,
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FIGURE 5. Using SIR model, Centrality value with infection rate for six networks in column wise. Where GRACC (Global Relative
change in Average Clustering Coefficient), LRACC (Local Relative change in Average Clustering Coefficient), GRAD (Global
Relative change in Average Degree), LRAD (Local Relative change in Average Degree), GRAK (Global Relative change in Average
Katz), and LRAK (Local Relative change in Average Katz).

we compute rankings of every node by using centrality mea-
sures. In USAir97 data set, the correlation between LRACC
and LRAD is almost close and LRACC is not correlated with
other centralities. In bio-celegans, CC and LRAK, D and
B are very closely related respectively. In ca-netscience,
B andGRADare closely correlated. Our proposed centralities
(GRACC, LRACC, GRAD, LRAD, GRAK, and LRAK) are
not close to basic centralities in web-polblogs, shown in
Fig. 3. The proposed centralities’ performance is not close
to the conventional measures in email-univ and Fb_Pages
networks. Initially, GRACC and LRAD centralities are highly
correlated with each other. Similar results were observed for
GRAK and LRAK centralities. As shown in Fig. 3, other
centralities are not correlated in Fb_Pages network.

B. SPREADING ABILITY WITH CENTRALITY VALUE
Considering the count of 100 simulations in the SIR model,
we study the relationship between the spread ability and the
centrality value of the node in this section. Various centrality
methods are assessed for the centrality value of every node.

The node with the highest centrality value is considered as
an infected node. With 100 times SIR model simulations
(described in section V), the total number of infected people
is calculated. The infection probability β is set within the
range 0.1 to 0.3. If the infection probability goes beyond
0.4, then most of the people in the network will be infected.
Using centrality methods such as GRACC, LRACC, GRAD,
LRAD, GRAK, LRAK, ISC, LGC, PR, K, CC, C, B, and
D, a comparison between the centrality of node’s value
and the infection rate is graphically plotted. In the Fig. 4,
and 5 it is observed that with an increase in infection rate,
there is an increase in the centrality value. The experimen-
tal results, in Fig. 5(a), show that the proposed methods
LRACC, LRAD, and LRAK spread more information com-
pared to other basic centrality methods. More information
is being disseminated through GRACC and C centralities.
As shown in Fig. 4(b), C, LRACC, and LRAK centralities
spread more information than D, B, CC, K, PR, LGC, ISC,
GRACC, GRAD, LRAD, GRAK. Later more information is
being disseminated through GRAD and GRAK centralities.
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FIGURE 6. 100 simulations of the SIR model’s cumulatively infected nodes for the USAir97, bio-celegans, ca-netscience,
web-polblogs, email-univ, and Fb_Pages networks. The first 10 nodes listed are infected nodes, as determined by
proposed centralities and different centralities.

As shown in Fig. 5(c), our proposed local centralities are
transforming information more than other centralities. In this
dataset, all centralities are transmitting more information
except betweenness centrality. In the web-polblogs data set,
LRACC, LRAD, and LRAK spread more than other central-
ities, as shown in Fig. 5(d). Later, GRACC and C central-
ities transmit more information in the network. In Fig. 5(e),
LRACC and LRAK centrality infection rates are higher. Later
C and GRACC have information transmission that is higher
than other centralities. The spread of information increases
with the node’s influence. In the Fb_Pages network, GRAD,

LRAK, and C centralities have higher infection rates than
other centralities as shown in the Fig. 5(f ).

C. CUMULATIVE INFECTED NODES FOR GRACC, LRACC,
GRAD, LRAD, GRAK, AND LRAK WITH BASIC
CENTRALITIES
This section displays the overall infected nodes, as well as
the effect of distributing the information after being infected
by the top−10 influential (vital nodes) nodes. Using the pro-
posed centrality methods (GRACC, LRACC, GRAD, LRAD,
GRAK, and LRAK) and basic centrality methods (D, B, C,
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FIGURE 7. Using the independent cascade model (IC model) with top − 10 seed nodes, we calculated the average
information spread among GRACC, LRACC, GRAD, LRAD, GRAK, and LRAK with other centralities for the six
networks Where D (Degree), B (Betweenness), C (Closeness), CC (Clustering Coefficient), K (Katz), PR (PageRank),
LGC (Local and Global Centrality), ISC (Isolating Centrality), GRACC (Global Relative change in Average Clustering
Coefficient), LRACC (Local Relative change in Average Clustering Coefficient), GRAD (Global Relative change in
Average Degree), LRAD (Local Relative change in Average Degree), GRAK (Global Relative change in Average Katz),
and LRAK (Local Relative change in Average Katz).

CC, K, PR), the latest measures (LGC, ISC), the most influ-
ential top− 10 nodes were calculated. The top− 10 vertices
which have high centrality are infected initially in the SIR
model. In the next stage, the seed nodes of the surround-
ing/neighboring vertices are infected with infection probabil-
ity β. The predicted value for infection probability lies within
the range of 0.1 to 0.3. Most of the people in the network
will be infected if the infection probability goes beyond 0.5.
After a certain time period, anyone who becomes infected can

be recovered at a specific rate γ , which is defined as 1. The
100 simulations resulted in cumulative infected nodes on an
average.We consider the 10 time steps in Fig. 6 which depicts
the results. In bio-celegans, ca-netscience, web-polblogs, our
proposed centralities LRAD, LRAK, and GRAD all have
more spread ability than the other centralities. In the USAir97
data set, the betweenness is performed well and also our
centrality LRACC is performed well. Initially, up to some
intervals, the degree is performed well. Later, our centrality
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FIGURE 8. Using the SIR simulations, the maximum information spread of the top − 10 influenced nodes of
networks with varied infection probabilities was normalized. Where D (Degree), B (Betweenness), C (Closeness),
CC (Clustering Coefficient), K (Katz), PR (PageRank), LGC (Local and Global Centrality), ISC (Isolating Centrality),
GRACC (Global Relative change in Average Clustering Coefficient), LRACC (Local Relative change in Average
Clustering Coefficient), GRAD (Global Relative change in Average Degree), LRAD (Local Relative change in Average
Degree), GRAK (Global Relative change in Average Katz), and LRAK (Local Relative change in Average Katz).

measure LRACC reaches the top along with the betweenness.
In the bio-celegans data set, LRACC has more spread ability
than the other centralities. Later, betweenness centrality also
transmits more information, as shown in Fig. 6. GRAD is in
top position for spreading information compared to other cen-
tralities inweb-polblogs. Later, Katz centrality is in the ability
to spread more. Our centralities have the ability to spread
more in web-polblogs, and some of the basic centralities also
have the ability to spread more. GRAD centrality spreading
ability is greater when compared with other centralities in the
email-univ. GRAK, GRACC, and C centralities spread infor-

mation faster in Fb_Pages network as shown in the Fig. 6.
We have observed a similar phenomenon for the independent
cascade method. Using the independent cascade model (IC
model), we illustrate the average number of nodes that are
information retrieved with different time scales in Fig. 7.
Different centrality measurements are used to construct the
seed nodes, which are input to ICmodel. 1000 iterations were
employed for simulations in the IC model. In the USAir97
network, the average information spread is more for our
proposed methods such as LRACC, and LRAD compared
to other centralities. In the bio-celegans network, C, CC,
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FIGURE 9. Using the independent cascade model (IC model), the maximum information spread of the
top − 10 influenced nodes of networks with varied infection probabilities was normalized. Where D (Degree), B
(Betweenness), C (Closeness), CC (Clustering Coefficient), K (Katz), PR (PageRank), LGC (Local and Global
Centrality), ISC (Isolating Centrality), GRACC (Global Relative change in Average Clustering Coefficient), LRACC
(Local Relative change in Average Clustering Coefficient), GRAD (Global Relative change in Average Degree), LRAD
(Local Relative change in Average Degree), GRAK (Global Relative change in Average Katz), and LRAK (Local
Relative change in Average Katz).

and GRAK spread more information than D, B, K, GRACC,
LRACC, GRAD, LRAD, and LRAK. The results are shown
in Fig. 7. GRAD has a better average information spread
than the other methods in the ca-netscience network. GRAD,
GRAK, and GRACC have good information spread com-
pared to other centralities in the web-polblogs, the results
shown in Fig. 7. In email-univ network, GRAK centrality
average information spread is more. As shown in the Fig. 7,
GRAK centrality information is more effective over other
measures in Fb_Pages network for both SIR and IC models.

D. NORMALIZED MAXIMUM INFLUENCE FOR GRACC,
LRACC, GRAD, LRAD, GRAK, AND LRAK WITH BASIC
CENTRALITIES
This section displays the assessment of infection spread abil-
ity for the top-10 most influential nodes with different infec-
tion rate. These nodes are discovered by the D, B, C, CC, K,
PR, LGC, ISC, GRACC, LRACC, GRAD, LRAD, GRAK,
and LRAK centrality methods. The important nodes have the
potential to propagate depending on the information in the
networks. Evaluation of infection probability was estimated
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in the range of 0.1 and 0.5 by using the SIR model (100 sim-
ulations). If the infection probability goes beyond 0.5, then
most of the people in the network will be infected. When
compared with conventional centralities, it was observed that
our proposed centrality showed the highest infection pop-
ulation at different levels of infection probability. In this
part, we use the IC model to discuss maximum informa-
tion spread with various infection probabilities (range from
0.1 to 0.3). The results in Fig. 8, show 1000 iterations of
IC model simulations. In Fig. 8, we displayed normalized
infection (maximum) with different infection probabilities.
On the USAir97 network, our methods GRAD, GRAK along
with B performedwell when evaluated with other centralities.
GRAK, GRAD, GRAK, LRAK have highest spread ability
than rest of the centralities on the bio-celegans. GRAD, K are
positioned top on the ca-netscience data set when compared
with rest of the centralities. Similarly GRACC, LRAK are
top positioned on the web-polblogs, which are shown in the
Fig. 8. As shown in the Fig. 8, faster information spreading is
observed for GRAK andGRAD centralities in email-univ and
Fb_Pages networks. In Fig. 9, using IC model, we describe
maximum information spread with varied probability infec-
tion. In the USAir97 network, D and GRACC spread maxi-
mum information than B, C, CC, K, LRACC, GRAD, LRAD,
GRAK, and LRAK. In the bio-celegans, the LRACC, LRAK,
and D centrality methods transfer more information. In the
ca-netscience data set, GRAD showed the highest informa-
tion spread, which is shown in the Fig. 9. In web-polblogs,
our centrality methods are at the top, which indicates that
information spread is greater. GRAK and GRAD central-
ities exhibit faster information spread for email-univ and
Fb_Pages networks, whereas GRACC centrality shows better
performance in Fb_Pages as shown in Fig. 9. Similar obser-
vations are clearly seen from both the methods of SIR and IC.

VII. COMPARISON OF PROPOSED CENTRALITIES
In this section, we present the comparative analysis of
proposed centrality measures for various real-world data
sets. We have tested these measures namely GRACC,
LRACC, GRAD, LRAD, GRAK, and LRAK on USAir97,
bio-celegans, ca-netscience, web-polblogs, email-univ, and
Fb_Pages datasets. We have observed that the perfor-
mance of GRACC, GRAK, and GRAD measures is good
for ca-netscience, email-univ networks, web-polbogs, and
Fb_Pages. Similarly, the performance of LRACC, LRAD,
and LRAK is better for USAir97 and bio-celegans networks.
From the simulation results, we can conclude that the perfor-
mance of the local and global centralities is highly controlled
by the network’s structure and properties. It has been also
noted that global centralities perform well compared with
local centralities for networks with more number of cliques.

VIII. CONCLUSION
In this paper, we proposed six new centrality measures that
make use of both local and global structural information.
First, we proposed generalized centrality measures based on

the relative change of the clustering coefficient, degree, and
Katz following node deletion. Then, we demonstrated that
the proposed centralities GRACC, LRACC, GRAD, LRAD,
GRAK, and LRAK outperformed other centralities such as
D, B, C, CC, K, PR, LGC, and ISC. We tested our cen-
trality measures on standard SIR and IC models to ensure
maximum information spread. Kendall’s tau is used to deter-
mine whether the GRACC, LRACC, GRAD, LRAD, GRAK,
LRAK, and other existing centralities are equivalent. Fur-
thermore, we demonstrated that our proposed local centrality
measures LRACC, LRAD, and LRAK require less computa-
tional time. Finally, we demonstrated that the proposed global
centrality measures GRACC, GRAD, and GRAK outperform
conventional measures in terms of information spread. One
of the intriguing future directions is to propose centrality
measures that achieve maximum information spread while
requiring the least amount of computational time. One of our
intuitions is that this can be achieved by combining local and
global centrality measures. Furthermore, the relative change
of other centralities in the literature can be generalized to
investigate the efficacy of current ones.

ABBREVIATIONS
The following are the abbreviations used in this paper:

D: Degree centrality
B: Betweenness centrality
C: Closeness centrality
K: Katz centrality
PR: PageRank
LGC: Local and global centrality
ISC: Isolating centrality
ASP: Average Shortest Path
GRASP:Global Relative change of Average Shortest Path
LRASP: Local Relative change of Average Shortest Path
GRACC: Global Relative change in Average Clustering
Coefficient
LRACC: Local Relative change in Average Clustering
Coefficient
GRAD: Global Relative change in Average Degree
LRAD: Local Relative change in Average Degree
GRAK: Global Relative change in Average Katz
LRAK: Local Relative change in Average Katz
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