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Abstract – Due to its features, permanent magnet synchronous motor (PMSM) has

gained popularity and is used in various industrial applications, including those with high

downtime costs like offshore equipment. Inter-turn short-circuit (ITSC) fault is one of

the most typical PMSM faults and therefore is its early diagnostics in real-time highly

valuable. Solving the problem using conventional signal, model-based, or data-driven

approaches faces challenges such as computational complexity, time demand, or need for

detailed domain expertise. This paper presents a computationally simple, robust, and

accurate method based on the 2D convolutional neural network (CNN). The proposed

data-driven model has first been validated with the help of experimental data obtained

from an inverter fed PMSM subject to ITSC faults in different time intervals, and secondly

its performances have been compared to a model-based structural analysis approach using

Dulmage-Mendelsohn decomposition tool. The comparison is based on the same data.

Results show that the accuracy of the CNN model for diagnosing early faults is more

than 98% without doing additional comprehensive fine-tuning. In addition, the paper

presents a robust method that can be successfully used as a metric for fast fault detection

benchmark.

G.1 Introduction

Permanent magnet synchronous motors (PMSMs) are deployed in various industrial sys-

tems, such as offshore equipment, wind generators, robotics or electric vehicles. While

having conventional three phase windings in the stator, PMSMs produce their rotor mag-

netic flux by the mean of permanent magnets, either embedded tangentially around the

rim of the rotor as seen in Fig. G.1, or buried radially for higher performances. Their

efficiency (92% - 97%) is significantly higher compared to traditional asynchronous motors

(75% - 92%) [1], while low reactive power consumption, improved dynamic performance,

light weight, and small dimensions are further reasons for their increased popularity. More

than 40% of all faults in synchronous motors start as stator related [2]. Among those, the

inter-turn short-circuit (ITSC) faults are the most common, however difficult to detect

automatically [3], which is partially caused by ITSC faults having little effect to the motor

performance in early stages. However, if not discovered and mended in time, the ITSC

fault can quickly grow into severe motor damage and consequently lead to total failure
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Figure G.1: Basic structure of a PMSM

of the system [4]. The drive to cut operating and maintenance costs and increase oper-

ational safety is pushing the agenda in the industry towards the adoption of predictive

maintenance strategies. In this process, fault diagnosis, i.e. fault detection and isolation,

represents an important part. A proven method for diagnosis of ITSC faults in their early

phase, that is easy to implement in practice, is therefore in great demand.

This paper focuses on a simple detection and diagnosis method for ITSC faults. While

deep CNNs have several layers, often of various types, shallow CNNs have only one besides

the input and the output layer. One objective of this study is to explore whether the

simplest CNNs can be successfully used as ITSC fault classifiers, i.e with high enough

accuracy, as they do not overfit on small datasets and require less computational time

and energy consumption than deep CNNs. Indeed, awareness about CO2 emission in

machine learning research started to arise lately [5]. According to the EU Annual Report

on SMEs (2019), in the EU just 6% of the SMEs use AI, although they represent 99.8% of

all enterprises in the EU-27, with lack of skill to be one of the main obstacles. Therefore,

any model that is easy to use, does not require high computational power and shows

robustness is of huge demand by the industry. Following a short literature overview in

section 2, the proposed method is described in section 3 while section 4 details the results

and compares the performances with a model-based method using the same experimental

setup and dataset. Finally, conclusions are drawn in Section 5.

G.2 Literature Review

Fault diagnosis can be divided from data processing into model-based, signal-based and

data-driven methods. The literature on PMSMs show that faults, as for example inter-

turn short circuit or demagnetisation faults, can be early detected using either of the

methods. Comprehensive reviews of methods for detection and diagnosis of ITSC faults

in PMSMs are presented in [3] and [6].

The model-based methods establish a mathematical model based on principles of

physics that describes the actual machine. The most accurate results have been achieved

with finite element analysis (FEA) models which compared to other models also have the

highest computational cost as well [6]. Other types of models, such as equivalent circuit,

219



field reconstruction and linear PMSM models, are beneficial in understanding how the

fault behaves assuming that they are detailed enough [3]. The signal-based and data

driven methods use statistical tools and mathematical transformations to identify and

extract fault patterns from signals such as current, voltage, vibrations and so on. Motor

current signal analysis (MCSA) is the most common model and is extensively studied [6].

Artificial intelligence (AI) and machine learning (ML) -based approaches show in-

creased performance compared to conventional signal-based models providing a solution

for the complexity introduced by increased data quantity. However, it is often not easy

to apply traditional ML techniques in practice, due to lack of efficient methods to obtain

training data, and specific knowledge needed to train the models [7, 8]. The traditional

ML with tailor made and handcrafted features — typically used by applying feature ex-

traction and learning algorithms such as support vector machine (SVM), random forest

(RF), principle component analysis (PCA) or linear decrement analysis (LDA) [9] –– has

been used for many years while deep learning (DL) methods emerged in 2006.

DL represents a breakthrough in the field of AI and shows state-of-the-art performance

when compared to traditional machine learning in many fields. Constructing a ML system

needs careful engineering and high domain expertise to design a feature extractor that

transforms the raw data into a suitable representation from which the learning model can

detect or classify patterns [10].

In contrast, when it comes to DL, the features are learned automatically from raw data.

DL models used in motor fault detection and diagnosis include for instance deep belief

networks [11], generative adversarial networks (GAN) [12, 13], long short term memory

models (LSTM) [14]. Among DL methods for fault diagnosis, extensively used are CNNs

[15]. 1D CNNs are, among others, used with direct input of time-domain signals collected

in motors [16,17], while 2D CNNs are, among others, used by converting the time-domain

raw signals into 2D grey images without further feature extraction [18].

G.3 The proposed Method

This section presents the proposed data-driven method based on a shallow 2D CNN.

The input to the model is obtained from an experimental setup where a PMSM is run

through a healthy and three faulty sequences. Switching the faults on and off is done by

controllable relays placed between the winding taps. The three faulty sequences represent

the three ITSC faults. Each fault is applied on a designated phase by short-circuiting

different numbers of turns, resulting in different fault percentage, enabling establishing

a fault of less than 1% in terms of number of short-circuited turns per total number of

turn in one phase. Altogether, ten different features (four voltages, four currents, position

of the rotor and speed) in their raw form, without any prepossessing, have been used as

input to the model.

CNNs, primarily used for pattern recognition tasks, especially within images, usually

consist of three types of layers: convolutional, pooling, and fully-connected layers. As

the name indicates, the convolutional layers play the most important role, where the

learnable parameters origin from kernels. The structure of the proposed classification
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Table G.1: Motor parameters

Parameter Value

Rated DC bus voltage 280 V

Rated rms phase current 5 A

Rated output torque 7 Nm

Rated speed 1500 rpm

Stator resistance 0.8 Ω

Stator inductance 0.5 mH

Rotor inertia 30.065 kgm2

Pole pairs 2

model is outlined in Fig. G.2. It has only one convolutional layer. The output of the

model is one of the 4 classes: no-fault and ITSC faults at phases A, B and C. We use SHAP

Conv2D
64 filters
kernels:

3x3…10x10

Activation
ReLU Flatten Dense Activation

Softmax

10 features x 
10, 20, 50, 100 

time-steps

No-fault
ITSCa
ITSCb
ITSCc

Input Output

Figure G.2: The proposed shallow 2D CNN architecture

(Shapley Additive exPlanations), a method introduced in 2017 [19] to explain individual

predictions of models on global and local level. On the global level it can show which

features contribute to the model output and how significant their contribution is. On the

local level it can examine each data point and investigate why the model made a certain

decision.

G.4 Experiment and Results

The proposed method has been validated on the experimental setup used in [20], i.e. with

a 4-pole PMSM whose parameters are given in Table. G.1. Each of the motor phase

windings consists in two coils of 51 turns in series, with hence 102 turns per phase. As

shown in Fig. G.3, ITSC faults have been applied on each phase by short-circuiting

different number of turns resulting in a different fault percentage at each phase as shown

in Table. G.2. The experiment lasted for 20s with sampling time for data acquisition of

50µs. ITSC faults in phase A, B and, C were applied in the time intervals t = 4.471 −
7.238s, t = 9.613 − 12.760s and, t = 15.600 − 18.410s respectively, see Fig. G.4. The 10

inputs of the model are shown in Fig. G.5 around the transition between the no fault

region (green) and the ITSC fault in phase A (red) at t=4.471s. Samples of different
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Figure G.3: Applied ITSC faults

Table G.2: Applied ITSC faults per phase

Fault type Phase Nr. of short-circuited turns Applied ITSC fault in % Nr. of records

ITSCa A 1 0.89 55300

ITSCb B 3 2.94 62800

ITSCc C 5 4.90 56000

No-fault — 0 0.00 185600

Figure G.4: Timeline of applied ITSC faults
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Table G.3: Model attributes - approach 1

Sample

length

[time-

steps]

No. of

training

samples

Batch size Learning

rate

Average

training

time [min]

10 25 177 32 0.001 6.14

20 12 588 32 0.001 3.48

50 5 035 32 0.001 2.08

100 2 517 32 0.001 1.37

lengths have been stacked one under the other making a 2D input of size 10 times sample

length. The proposed method is evaluated using two approaches:

• Approach 1 - input data as separate non-overlapping samples.

• Approach 2 - input data as overlapping samples using sliding windows.

Sample sizes range over 10, 20, 50 and 100 time-steps corresponding to 0.5, 1, 2.5 and 5

ms. Each model is trained on 500 epochs using kernel sizes from 3x3 to 10x10 in order

to achieve optimal results in terms of accuracy, simplicity, computational and energy ef-

ficiency. The number of filters has been set to 64. Adam optimizer with learning rate of

0.001 is used for all model configurations. Data has been divided into train and valida-

tion/test set in 70:30 ratio after random shuffling, resulting in train and validation/test

sets being different for each training session. The final accuracies for the different model

configurations have been determined as the average value of accuracies obtained after 30

trainings.

Trainings are performed on 4 NVIDIA Tesla V100 GPUs using Uber’s horovod frame-

work for distributed learning on TensorFlow. All available data has been used for training

and testing, which results in slightly imbalanced classification due to data size in ratios

of 52% (no fault), 15% (ITCSa), 17% (ITSCb), 16% (ITSCc).

G.4.1 Approach 1 - Non-overlapping Samples

This subsection investigates what is the optimal length of the input samples. We start

with the simplest approach, slicing the sequences into non-overlapping segments of 10,

20, 50 and 100 time-steps. By using 2D inputs into the convolutional network we expect

from the model to find pattern between the different features sampled at the same time.

In case of clear patterns, we expect that shorter lengths can deliver as good results as

longer ones, potentially even better. The attributes of the model variations, together with

the average time needed for training are given in Table G.3 while Table G.4 shows the

corresponding validation accuracies. The max accuracies achieved for the best performing

models are given in Fig. G.6 and Fig. G.7.
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(a) Voltages

(b) Currents

(c) Rotor position and speed

Figure G.5: 10 features - input to 2D CNN.
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Figure G.6: Best performing models - max accuracies - appr. 1

Figure G.7: Best performing models - confusion matrices - appr. 1
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Figure G.8: SHAP values: kernel = 4x4, time-steps = 10, appr.1
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Table G.4: Validation acc. [%] - approach 1

Kernel Sample length [time-steps]

size 10 20 50 100

µ σ µ σ µ σ µ σ

3x3 91.00 1.81 94.92 1.76 94.95 2.46 97.91 0.90

4x4 92.46 1.23 96.33 0.95 96.74 0.61 98.42 0.72

5x5 88.16 2.68 94.49 2.53 93.73 4.64 97.32 1.54

6x6 88.26 2.45 94.18 2.82 94.49 2.45 97.04 1.85

7x7 87.81 2.27 94.25 3.74 95.41 0.93 96.36 3.57

8x8 88.00 1.56 94.60 1.12 94.82 2.57 96.60 2.80

9x9 86.68 1.44 92.79 2.15 93.84 2.23 86.11 11.59

10x10 67.20 12.42 61.13 14.73 66.29 15.11 58.96 10.41

G.4.1.1 Discussion

The proposed method results in high accuracies. The accuracy of the models shows

general increase with the length of timesteps for all kernels, except for kernels 9x9 and

10x10 that show slight deviation. The best performing model is the one based on 100

time-steps and kernel size 4x4. It achieves an average accuracy of 98.42%. Fig. G.8 shows

SHAP values corresponding to four different outcomes: no-fault, and three ITSC faults.

As seen, the voltages in phases A, B and C play an important role together with the

currents. However, the last two features (rotor position and speed) have a minimum or

no impact on the results. Fig. G.8 shows the best performing model for time-steps length

of 10, however the conclusions are valid for all models.

G.4.2 Approach 2 - Sliding Windows

In this subsection we investigate whether we can get better results by using overlapping

segments of 10, 20, 50 and 100 time-steps. We approximately double the number of

train input samples and test whether introducing additional sequences of data gives more

information. The model attributes and the validation accuracies are given in Table G.5

and Table G.6. The max accuracies achieved for the best performing models (kernel size

4x4) are given in Fig. G.9 and Fig. G.10.

G.4.2.1 Discussion

This approach shows similar results as approach 1, however it generally achieves slightly

lower accuraccies for the same number of epochs (97.47% compared to 98.42%). The best

performing model is again the one based on 100 time-steps and kernel size 4x4. Fig. G.11

shows SHAP values for four different outcomes with the same conclusions as earlier. The

voltages and currents in phases A, B and C play an important role while the last two

features contribute less.
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Table G.5: Model attributes - approach 2

Sample

length

[time-

steps]

No. of

training

samples

Batch size Learning

rate

Average

training

time [min]

10 50350 32 0.001 12.93

20 25171 32 0.001 7.03

50 10065 32 0.001 3.45

100 5028 32 0.001 2.31
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Figure G.9: Best performing models - max accuracies - appr. 2

Figure G.10: Best performing models - confusion matrices - appr. 2
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Table G.6: Validation acc. [%] - approach 2

Kernel Sample length [time-steps]

size 10 20 50 100

µ σ µ σ µ σ µ σ

3x3 89.89 1.42 92.43 1.02 89.52 2.12 95.75 0.89

4x4 90.92 0.90 93.80 0.86 93.83 1.54 97.47 0.51

5x5 86.78 1.72 88.93 2.77 86.96 2.48 92.64 5.87

6x6 87.40 1.67 88.67 2.68 87.76 2.23 95.07 1.74

7x7 87.52 2.13 90.42 0.87 89.64 1.65 94.44 3.10

8x8 87.34 1.79 90.20 1.67 90.32 1.58 95.28 1.24

9x9 87.17 1.74 87.98 1.06 87.77 2.63 88.99 7.20

10x10 67.15 12.33 56.60 10.14 51.61 0.00 58.90 11.16
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0.4 0.2 0.0 0.2 0.4
SHAP value
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(d) ITSCc fault

Figure G.11: SHAP values: kernel = 4x4, time-steps = 10, appr.2

G.4.3 Comparison with Model-based Approach

The main difference between data-driven (NNs) approach and signal- or model-based ap-

proach is the need of a priori understanding of the system. While both signal- and model-

based approaches require a deep domain knowledge of the underlying system, data-driven

approach discovers dependencies automatically. However, large amount of historical data

for training the models, both healthy and faulty, is needed which is usually not available

in such scale. Moreover, producing such data comes with high cost.

A model-based approach developed on the same underlying data [20] is used in this

secton to allow for direct comparison. This method relies on structural analysis, where

a dynamic mathematical model of the system is presented in matrix form, and where

Dulmage-Mendelsohn decomposition tool has been used to extract small redundant parts

and to design the error residuals further used for detection of the three ITSC faults
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Table G.7: Best performing model - appr. 1 - performance metrics

Binary classification Multiclass classification

Metrics No-fault/fault ITSCa ITCSb ITSCc W. avg

Precision 0.9843 0.9722 0.9759 0.9900 0.9793

Sensitivity 0.9883 0.9960 0.9713 0.9839 0.9832

Specificity 0.9852 0.9948 0.9949 0.9982 0.9959

F1 score 0.9863 0.9839 0.9736 0.9870 0.9812

PD 0.9883 0.9960 0.9713 0.9839 0.9832

PFA 0.0148 0.0052 0.0051 0.0018 0.0041

Support 557/523 166 189 168 -

through a statistical test based on the generalized likelihood ratio test (GLRT). This

approach has achieved detection rates (PD) of 60.93% for ITSCa, 98.13% for ITSCb and

100% for ITSCc fault, given that the probability of false alarm (PFA) has been set to 2%.

It should be noted that this approach only detects the presence of the fault but does not

distinguish among types of faults.

The achieved overall detection rate of the 2D CNN model presented in this paper

is 98.83% when calculating on the best performing model. The overall and the detec-

tion rates for ITSCa, ITSCb and ITSCc faults, together with other performance metrics

are shown in Table. G.7. The main limitation of the model is the need for sufficient

amount of training data, especially faulty data that can be challenging to obtain outside

of experimental setup.

G.5 Conclusions

This paper presented a straightforward method for detection and diagnosis of ITSC faults

in PMSMs based on shallow 2D CNNs that compared to a model-based method showed

a few advantages. The main advantage shown is the ability to deliver high accuracies

without high calculation cost and without need for any feature pre-processing. In the

future work, we intend to implement this type of approach to real-time monitoring of

the motors located on an offshore rig. The input data is available, however not used and

offered to customers as a service, mainly due to lack of a robust and easy to implement

modeling. In addition, companies face a challenge during the official accreditation of the

service due to the inability to explain the results of the model used. This challenge can

be successfully faced with methods such as SHAP briefly outlined in this paper.
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