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On the Convergence of Tsetlin Machines for the
XOR Operator

Lei Jiao, Senior Member, IEEE , Xuan Zhang, Ole-Christoffer Granmo, and K. Darshana Abeyrathna

Abstract—The Tsetlin Machine (TM) is a novel machine learning algorithm with several distinct properties, including transparent
inference and learning using hardware-near building blocks. Although numerous papers explore the TM empirically, many of its
properties have not yet been analyzed mathematically. In this article, we analyze the convergence of the TM when input is non-linearly
related to output by the XOR-operator. Our analysis reveals that the TM, with just two conjunctive clauses, can converge almost surely
to reproducing XOR, learning from training data over an infinite time horizon. Furthermore, the analysis shows how the
hyper-parameter T guides clause construction so that the clauses capture the distinct sub-patterns in the data. Our analysis of
convergence for XOR thus lays the foundation for analyzing other more complex logical expressions. These analyses altogether, from a
mathematical perspective, provide new insights on why TMs have obtained the state-of-the-art performance on several pattern
recognition problems.

Index Terms—Tsetlin Automata, Propositional Logic, Tsetlin Machine, Convergence Analysis, XOR Operator

✦

1 INTRODUCTION

The emerging paradigm of Tsetlin machines (TM) [1], initi-
ated in 2018, makes a shift from arithmetic-based to logic-
based machine learning [2]. Like logical engineering, a TM
produces propositional/relational Horn clauses [3]. How-
ever, the logical expressions are robustly learnt using finite
state machines in the form of Tsetlin automata (TAs) [4].
Via a game-theoretic collaboration scheme, the TAs self-
organize to capture the distinct patterns in the data. The
dynamics of the collaboration involves three interacting
mechanisms. High pattern recall is enforced by a resource
allocation mechanism that diversifies clause construction.
Simultaneously, a mechanism that forces the clauses to cap-
ture frequent patterns combats overfitting. Finally, without
compromising high pattern frequency, the discrimination
power of the clauses is optimized by injecting discriminative
features.

TMs provide two main advantages: transparent infer-
ence and learning combined with hardware-near build-
ing blocks. TM transparency, which unravels the reason-
ing behind the decision making process, addresses one of
the most critical challenges in Artificial Intelligence (AI)
research – lack of interpretability [5]. In particular, deep
learning-based approaches mainly employ post-processing
for approximate local interpretation of individual predictions,
which do not guarantee model fidelity [6]. TMs, on the other
hand, is founded on conjunctive clauses in propositional
logic, which have been postulated as particularly easy for
humans to comprehend [7]. TMs further facilitate derivation
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of closed formula expressions for both local and global
interpretability, akin to SHAP [8]. Computationally, TMs
can be realized via a set of finite-state automata — the TAs
— which are well-suited for implementation in hardware,
such as on FPGA [9]. Different from the extensive arithmetic
operations required by most other AI approaches, a TA
learns using increment and decrement operations only [4].
Indeed, due to the robustness of TA learning and TM pattern
representation, the TM paradigm is shown to be inherently
fault-tolerant, completely masking stuck-at faults [10].

There are many variations of TMs, with two main ar-
chitectures being the convolutional TM (CTM) [11] and the
regression TM (RTM) [12], [13]. The CTM has provided
competitive performance on MNIST, Fashion-MNIST, and
Kuzushiji-MNIST, in comparison with K-Nearest Neighbor,
Support Vector Machines, Random Forests, Gradient Boost-
ing, BinaryConnect, Logistic Circuits, Convolutional Neural
Networks and ResNet [11]. Similarly, RTM has compared
favorably with Regression Trees, Random Forest Regres-
sion, and Support Vector Regression [13]. The above TM
approaches have further been enhanced by various mod-
ifications. By introducing real-valued clause weights, the
number of clauses can be reduced by up to 50× without
accuracy loss [14]. Also, the logical inference structure of
TMs makes it possible to index the clauses on the features
that falsify them, increasing inference and learning speed
by up to an order of magnitude [15]. In [16], stochastic
searching on the line automata [17] learns integer clause
weights, performing on-par or better than Random Forest,
Gradient Boosting, Neural Additive Models, StructureBoost
and Explainable Boosting Machines. In [18], a novel variant
of the TM that randomly drops clauses has been proposed,
from which we observe up to +10% increase in accuracy
and 2× to 4× faster learning compared with vanilla TM. For
natural language processing, the TM has also achieved com-
petitive results in text classification [19], [20], word sense
disambiguation [21], novelty detection [22], [23], fake news
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detection [24], semantic relation analysis [25], aspect-based
sentiment analysis [26], and robustness towards counter-
factual data [27]. Lately, more advanced architectures have
appeared, such as the relational TM [3] and the coalesced
TM [28].

The above studies report that TMs, with smaller memory
footprint and higher computational efficiency, obtain better
or competitive classification and regression accuracy com-
pared with most of the state-of-the-art AI techniques, while
maintaining transparency. Although numerous papers ex-
plore the TM empirically, many of its properties have not
yet been analyzed mathematically. In [29], convergence for
unary operators on one-bit data, i.e., the IDENTITY- and
the NOT operators, is analyzed. There, we first proved that
the TM can converge almost surely to the intended pattern
when the training data is noise-free. Thereafter, we analyzed
the effect of noise, establishing how the noise probability of
the data and the granularity hyper-parameter, i.e., s, of the
TM govern convergence [29].

Paper Contributions. In this paper, we analyze the
“XOR” case, which deals with the binary XOR operator, en-
compassing two critical sub-patterns. We start from a simple
structure of two clauses, each of which has four TAs with
only two states. For this structure, we prove convergence via
discrete time Markov chain (DTMC) analysis, analysing the
ability of TMs to learn the XOR operator from data. There-
after, we investigate the convergence behavior for more
than two clauses. From the latter analysis, we reveal the
crucial role the hyper-parameter T of TMs plays, showing
how this parameter controls the ability to robustly capture
multiple sub-patterns within one class, through allocating
sparse pattern representation resources (the clauses).

Paper Organization. The remainder of the paper is or-
ganized as follows. Section 2 briefly reviews the TM and
specifies the training process for XOR. In Section 3, we
present our analytical procedure and the main analytical
results. We conclude the paper in Section 5.

2 REVIEW OF THE TSETLIN MACHINE

In this section, we present the TM in brief, including an
overview of TA, the TM architecture, and the training pro-
cess of TMs. A more comprehensive exposition can be found
in [1].

2.1 Tsetlin Automata (TA)

A TA is a fixed structure deterministic learning automa-
ton [30], [31], forming a crucial component of TM learning.
By interacting with the environment, a TA aims to learn
the action that offers the highest probability of providing a
reward [4]. Figure 1 illustrates a two-action TA with 2N
states, where N ∈ [1,+∞). Which action a TA selects
is decided by its current state, which triggers a response
from the environment followed by the TM making a state
transition. That is, when the TA is in states 0 to N − 1, i.e.,
on the left-hand side of the state-space shown in Figure 1,
Action 1 is chosen. If the TA on the other hand finds itself in
states N to 2N − 1, i.e., on the right-hand side, Action 2 is
chosen. Once an action is chosen, the environment responds
with either a reward or a penalty. When the TA receives a

penalty, it will move towards the opposite half of the state
space, that is, towards the other action. This transition is
marked by the solid arrows in Figure 1. Conversely, if the
TA receives a reward, it will switch to a “deeper” state
by transitioning to the left or the right end of the chain,
depending on whether the current action is Action 1 or
Action 2. In the figure, this transition is captured by the
dashed arrows. Note that the number of states in a TA, i.e.,
2N , can be adjusted. The larger the number, the slower the
convergence. However, the TA learns more accurately in a
stochastic environment with a larger number of states.

2.2 Tsetlin Machines (TMs)

A TM is formed by m teams of TAs. The TAs operate on
binary input and employ propositional logic to represent
patterns. In general, the input of a TM can be represented
by X = [x1, x2, . . . , xo], with xk ∈ {0, 1}, k = 1, 2, . . . , o.
Each TA team contains o pairs of TAs, with each pair being
responsible for a certain input variable xk. Figure 2 shows
such a TA team Gi

j = {TAi,j
k′ |1 ≤ k′ ≤ 2o} that has 2o TAs.

The index i refers to a specific pattern class and j is the
index of a specific clause. The automaton TAi,j

2k−1 returns
the input xk as is, whereas TAi,j

2k addresses the negation of
xk, i.e., ¬xk. Note that the inputs and their negations are
jointly referred to as literals.

Each TA chooses one of two actions, i.e., it either “In-
cludes” or “Excludes” its literal, outputting I(·) and E(·),
respectively. Let I(x) = x, I(¬x) = ¬x, and E(·) = 1,
with the latter meaning that an excluded literal does not
contribute to the output. Collectively, the I(·)/E(·)-outputs
of the TA team then take part in a conjunction, expressed by
the conjunctive clause [29]:

Ci
j(X) =



 ∧
k∈Ii

j

xk

 ∧

 ∧
k∈Īi

j

¬xk

 ∧ 1 For training, ∧
k∈Ii

j

xk

 ∧

 ∧
k∈Īi

j

¬xk

 ∨ 0 For testing.

(1)
In Eq. (1), Iij and Īij are the subsets of indexes for the
literals that have been included in the clause. Iij contains
the indexes of included non-negated inputs, xk, whereas Īij
contains the indexes of included negated inputs, ¬xk. The
“0” and “1” in Eq. (1) make sure that Ci

j(X) also is defined
when all the TAs choose to exclude their literals. As can
be observed, during training, an “empty” clause outputs 1,
while it outputs 0 during testing (operation).

Multiple TA teams, i.e., clauses, are finally assembled
into a complete TM. There are two architectures for clause
assembling: Disjunctive Normal Form Architecture and Vot-
ing Architecture. In this study, we focus on the latter one, as
shown in Figure 3. For this architecture, the voting consists
of summing the output of the clauses:

f∑(Ci(X)) =
m∑
j=1

Ci
j(X). (2)
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0 1 .... N − 2 N − 1 N N + 1 .... 2N − 2 2N − 1

Action 1 Action 2

Reward (R) : 99K Penalty (P ) : →

Fig. 1: A two-action Tsetlin Automaton with 2N states.

Inputs Literals TA team TA decisions Output

x1

x2

xo

x1

¬x1

x2

¬x2

xo

¬xo

TAi,j
1

TAi,j
2

TAi,j
3

TAi,j
4

TAi,j
2o−1

TAi,j
2o

I(x1) or E(x1)

I(¬x1) or E(¬x1)

I(x2) or E(x2)

I(¬x2) or E(¬x2)

I(xo) or E(xo)

I(¬xo) or E(¬xo)

Ci
j =

2o∧
k′=1

(
decision of TAi,j

k′

)

Fig. 2: A TA team Gi
j consisting of 2o TAs [29]. Here I(x1) means “include x1” and E(x1) means “exclude x1”.

TA team 1

TA team 2

TA team m− 1

TA team m

Ci
1

Ci
2

Ci
m−1

Ci
m

+

+

+

+

m∑
j=1

Ci
j

Fig. 3: TM voting architecture.

The output of the TM, in turn, is decided by the unit step
function:

ŷi =

{
0 for f∑(Ci(X)) < Th

1 for f∑(Ci(X)) ≥ Th
, (3)

where Th is a predefined threshold for classification. Note
that for this architecture, the TM can assign a polarity to
each TA team [1]. For example, TA teams with odd indexes
get positive polarity, and they vote for class i. The remaining
TA teams get negative polarity and vote against class i.
The voting consists of summing the output of the clauses,
according to polarity, and the threshold Th is configured as
zero. In this study, for ease of analysis, we consider only
positive polarity clauses. Nevertheless, this does not change

the nature of TM learning (negative polarity clauses simply
“invert” the feedback given to them).

2.3 The Tsetlin Machine Game for Learning Patterns
2.3.1 The Tsetlin Machine Game
The TM trains the TA teams, associated with the clauses,
to make the clauses Ci

j , j = 1, 2, ...,m, capture the
sub-patterns that characterize the class i. Data (X =
[x1, x2, ..., xo], yi) for training is obtained from a dataset
S , distributed according to the probability distribution
P (X, yi). The training process is built on letting all the TAs
take part in a decentralized game. In the game, each TA is
guided by Type I Feedback and Type II Feedback defined
in Table 1 and Table 2, respectively. Type I Feedback is
triggered when the training sample has a positive label, i.e.,
yi = 1, meaning that the sample belongs to class i. When
the training sample is labeled as not belonging to class i,
i.e., yi = 0, Type II Feedback is utilized for generating
responses. These two types of feedback are designed to
reinforce true positive output, i.e., (ŷi = 1, yi = 1) and
true negative output, i.e., (ŷi = 0, yi = 0). Simultaneously,
they suppress false positive, i.e., (ŷi = 1, yi = 0), and false
negative output, i.e., (ŷi = 0, yi = 1).

The formation of patterns is founded on frequent pattern
mining. That is, a parameter s controls the granularity of
the clauses. A larger s allows more literals to be included in
each clause, making the corresponding sub-patterns more
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fine-grained. A more detailed analysis on parameter s can
be found in [29].

Value of the clause Ci
j(X) 1 0

Value of the Literal xk/¬xk 1 0 1 0

TA: Include Literal
P (Reward) s−1

s
NA 0 0

P (Inaction) 1
s

NA s−1
s

s−1
s

P (Penalty) 0 NA 1
s

1
s

TA: Exclude Literal
P (Reward) 0 1

s
1
s

1
s

P (Inaction) 1
s

s−1
s

s−1
s

s−1
s

P (Penalty) s−1
s

0 0 0

TABLE 1: Type I Feedback — Feedback upon receiving a
sample with label y = 1, for a single TA to decide whether
to Include or Exclude a given literal xk/¬xk into Ci

j . NA
means not applicable [11].

Value of the clause Ci
j(X) 1 0

Value of the Literal xk/¬xk 1 0 1 0

TA: Include Literal
P (Reward) 0 NA 0 0
P (Inaction) 1.0 NA 1.0 1.0
P (Penalty) 0 NA 0 0

TA: Exclude Literal
P (Reward) 0 0 0 0
P (Inaction) 1.0 0 1.0 1.0
P (Penalty) 0 1.0 0 0

TABLE 2: Type II Feedback — Feedback upon receiving a
sample with label y = 0, for a single TA to decide whether
to Include or Exclude a given literal xk/¬xk into Ci

j . NA
means not applicable [11].

To avoid the situation that a majority of the TA teams
single in on only a subset of the patterns in the training
data, forming an incomplete representation, we use a hyper-
parameter T as target for the summation f∑. If the votes for
a certain sub-pattern accumulate to a total of T or more,
neither rewards or penalties are provided to the TAs when
more training samples of this sub-pattern are given. In this
way, we can ensure that only a few of the available clauses
are utilized to capture each specific sub-pattern. In more
details, the strategy works in the manner below:

Generating Type I Feedback. If the output of the train-
ing sample is yi = 1, we generate Type I Feedback for each
clause Ci

j ∈ Ci, where Ci is the set of clauses that are trained
for pattern i, however, not every time. Instead, the decision
to give feedback to a specific clause is random, according to
a feedback probability. The probability of generating Type I
Feedback is [1]:

u1 =
T −max(−T,min(T, f∑(Ci)))

2T
. (4)

Generating Type II Feedback. If the output of the
training sample is yi = 0, we generate Type II Feedback to
each clause Ci

j ∈ Ci, again randomly. The probability of
generating Type II Feedback is [1]:

u2 =
T +max(−T,min(T, f∑(Ci)))

2T
. (5)

After Type I Feedback or Type II Feedback have been
triggered for a clause, the individual TA within each clause
is given reward/penalty/inaction according to the probabil-
ity defined, and then the system is updated.

x1 x2 y
0 0 0
1 1 0
0 1 1
1 0 1

TABLE 3: The “XOR” logic.

2.3.2 The Training Process in the XOR Case

We now introduce the special case of training TMs to
capture XOR-patterns. We assume that the training sam-
ples shown in Table 3 are provided without noise. In
other words, we have P (y = 1|x1 = 0, x2 = 1) = 1,
P (y = 1|x1 = 1, x2 = 0) = 1, P (y = 0|x1 = 0, x2 = 0) = 1,
and P (y = 0|x1 = 1, x2 = 1) = 1. We also assume
that P (x1 = 0, x2 = 1) > 0, P (x1 = 1, x2 = 1) > 0,
P (x1 = 0, x2 = 0) > 0, and P (x1 = 1, x2 = 0) > 0. Clearly
P (x1 = 0, x2 = 1)+P (x1 = 1, x2 = 1)+P (x1 = 0, x2 =
0)+P (x1 = 1, x2 = 0) = 1. This guarantees that all types
of possible input-output pairs will appear in the training
samples. The aim is to show that after training, the TM can
output 1 for inputs x1 = 1, x2 = 0 or x1 = 0, x2 = 1, and 0
otherwise.

The above XOR-scenario leads to the following TM
training process, described step-by-step:

1) We initialize the TAs by assigning each of them
a random state among the states associated with
action Exclude.

2) We obtain a new training sample (x1, x2, y) and cal-
culate the value of each single clause Ci

j according
to Eq. (1).

3) The TA states for each clause are updated based on:
(i) the label y; (ii) the clause value Ci

j ; (iii) the value
of each individual literal (x1, ¬x1, x2, ¬x2,); and
(iv) the sum of the clause outputs for the class i,
f∑(Ci(X)). Finally, for each clause, the the states of
the associated TAs are updated according to Table 1
with probability u1 when y = 1. If y = 0, the TAs
are updated according to Table 2, with probability
u2.

4) Repeat from Step 2 until a given stopping criteria is
met.

Note that in the XOR case, there is only one class to be
learnt, which is the XOR-relation. We therefore ignore the
class index, i.e., i, in notation Ci

j and TAi,j
2k in the remainder

of the paper.
For XOR-relation, as can be seen from Table 3, the inputs

for the two to-be-learnt sub-patterns (x1 = 1, x2 = 0 and
x1 = 0, x2 = 1) are the bit-wise inversion of the other.
Therefore, the XOR relation is not linearly separable (in
2D) and thus a “single-layer” perceptron cannot implement
XOR [32]. In the training process of TM, different clauses
need to be guided to learn opposite propositional expres-
sions in order to follow both sub-patterns required by XOR.
The task seems to be difficult as the training samples that
reinforce the convergence of one sub-pattern will discourage
the convergence of the other sub-pattern. This motivates us
to study the convergence behavior of XOR operator in more
details in order to understand how TMs learn opposite sub-
patterns. In fact, it is the hyper-parameter T that plays the
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significant role via Eqs. (4) and (5), which is to be revealed
through the proof.

3 PROOF OF THE CONVERGENCE FOR THE XOR
OPERATOR

In what follows, we will reveal, step-by-step, the conver-
gence property of the TM for the XOR-relation. First, in
Subsection 3.1, we start from a special and simple case to
show that there exists a TM configuration that can learn
the XOR-relation. This establishes that TMs have the ability
to learn such a relation. Thereafter, in Subsection 3.2, we
analyze how a general TM can learn the XOR-relation,
including the criteria for learning. Through these analyses,
the dynamics of the learning process of the TAs, operating
within the TM clauses, are elaborated. In particular, we
investigate the self-organizing collaboration that happens
among the clauses, to cast light on how a TM learns multiple
sub-patterns.

3.1 The Simplest Structure for the XOR-relation

Theorem 1. There exists a TM structure that can converge
almost surely to the XOR-relation under an infinite time horizon.

Proof. To prove Theorem 1, we use a TM with two clauses,
C1 and C2. In C1, there are four literals, i.e., x1, ¬x1, x2, and
¬x2, each of which corresponds to a TA, namely, TA1

1, TA1
2,

TA1
3, and TA1

4. Similarly, in C2, there are also four literals,
i.e., x1, ¬x1, x2, and ¬x2, each of which corresponds to four
other TAs, namely, TA2

1, TA2
2, TA2

3, and TA2
4. Clearly, there

are in total 8 TAs in the system. Considering the simplest
structure for TA, we provide each TA with only two states,
as shown in Figure 4.

0 1

0 1

R

P

E I

Fig. 4: A simple TA with two states. In this figure, “P”,
“R”, “I”, and “E” means “penalty”, “reward”, “include”
and “exclude” respectively.

The behavior of the above depicted TM can be mod-
eled using a discrete time Markov chain (DTMC) with 8
elements, each of which represents the status of the corre-
sponding TA. In more details, any state of the DTMC is
represented by x = (h1, h2, h3, . . . , h8), where hi ∈ {0, 1},
i ∈ {1, . . . , 8}. Here, h1, h2, h3, . . . , h8 correspond to TA1

1,
TA1

2, TA1
3, TA1

4 TA2
1, TA2

2, TA2
3, and TA2

4. For example, h1

represents the state for TA1
1, with state 0 referring to “Ex-

clude” and state 1 referring to “Include”. This is also how
the other hi are organized. The state space of the DTMC, S ,
includes 28 = 256 states. If the system can capture the XOR-
relation after training, the DTMC must have and only have
two possible absorbing states, i.e., (1, 0, 0, 1, 0, 1, 1, 0) for
C1 = x1 ∧ ¬x2 and C2 = ¬x1 ∧ x2, and (0, 1, 1, 0, 1, 0, 0, 1)
for C1 = ¬x1∧x2 and C2 = x1∧¬x2. Let us index the states
from (0, 0, 0, 0, 0, 0, 0, 0) to (1, 1, 1, 1, 1, 1, 1, 1) as 1 to 256.

Then the states (0, 1, 1, 0, 1, 0, 0, 1) and (1, 0, 0, 1, 0, 1, 1, 0)
correspond to the 106th and the 151st state, respectively.

To determine whether the two states are absorbing, we
can observe the transition matrix of the DTMC and see if
there are any out going transitions from those two states.
This can be easily checked and confirmed. To demonstrate
that these two states are the only absorbing states, we
also need to show that all the other states are recurrent.
To demonstrate this point in a simple way, we calculate
the limiting matrix of the DTMC. In more details, we first
compose the transition matrix of the DTMC, P , and then
find the limiting matrix A = P∞. If the matrix A possesses
the below properties, we can conclude that state 106 and
state 151 are the only absorbing states. This, in turn, means
that after infinite training samples, the system will learn
the XOR-relation with probability 1. The properties are as
follows:

• The transition probability from the 106th state to the
106th state is 1, and the same applies to the 151st

state.
• The transition probabilities from any state other than

the two absorbing ones to the two absorbing ones
sum to 1.

• The transition probabilities from any state other than
the two absorbing ones to a non-absorbing state are
all zeros.

The matrix A represents the probability of arriving at a
destination state from any starting state after infinite time
steps. The first bullet point shows that the 106th and 151st

elements are indeed the absorbing states. This is because
each of these states returns to itself with probability 1.
Similarly, the second and the third bullet points indicate
that the other states are not absorbing states because starting
from any other state, the system will end up in one of the
absorbing states.

In principle, P must be multiplied with itself an infinite
number of times. In practice, however, we multiply P with
itself a sufficiently large number of times, until the entries
in P do not change.

To validate the convergence, we use the hyper-
parameters s = 10 and T = 1 as an example1 and use
Algorithm 1 in Appendix 1 for the calculation2. In this
example, we assume the training samples (1,1,0), (1,0,1)
(0,1,1) and (1,1,0) appear with the same probability, i.e., 25%
of the time each. From running the algorithm, we conclude
that the 106th and the 151st are indeed the only absorbing
states of the DTMC, which confirms that even the simplest
configuration of the TM can converge almost surely to the
XOR-relation.

3.2 Structures with More Than Two TA States and/or
More Than Two Clauses

Theorem 1 confirms that TMs are capable of learning the
XOR-relation. In the following, we study the cases where
there are more than two clauses and/or more than two TA

1. Here T = 1 is critical for the convergence, which is to be explained
in the proof of Theorem 2.

2. The Python code for Algorithm 1 can be obtained from https://
github.com/cair/TM-XOR-proof.

https://github.com/cair/TM-XOR-proof
https://github.com/cair/TM-XOR-proof
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x1 x2 Output
0 0 0
1 1 0
0 1 1

TABLE 4: A sub-pattern in “XOR” case.

x1 x2 Output
0 0 0
1 1 0
1 0 1

TABLE 5: A sub-pattern in “XOR” case.

states. The purpose is to uncover how the XOR-relation
is learnt by the TM in general. This also allows us to
demonstrate the role that the hyper-parameter T plays
during learning. We look in particular at how T governs
reinforcement of the different clauses to learn the distinct
sub-patterns associated with the XOR-relation.

The flow of the analysis is given via the lemmas and
theorem below:

Lemma 1. Any clause will converge almost surely to ¬x1 ∧ x2

given the training samples indicated in Table 4 in infinite time
when u1 > 0 and u2 > 0.

Lemma 2. Any clause will converge almost surely to x1 ∧ ¬x2

given the training samples indicated in Table 5 in infinite time
when u1 > 0 and u2 > 0.

Lemma 3. The system for any clause is recurrent given the input
and output pair indicated in Table 3 for u1 > 0 and u2 > 0.

Lemma 4. Given a number of clauses m and a threshold value T ,
T < m, the event that the sum of the clause outputs, i.e., f∑(Ci),
reaches T appears almost surely in infinite time.

Lemma 5. When the number of clauses that follow the same sub-
pattern reaches T , other clauses will not see the training samples
of this particular sub-pattern.

Theorem 2. The clauses can almost surely learn the sub-patterns
of XOR in infinite time, when T ≤ m/2.

The reasoning and the connections of the above lemmas
and theorem are outlined as follows. Lemma 1 confirms
the fact that the TM can learn the intended sub-pattern if
only one of the XOR sub-patterns, i.e., x1 = 0, x2 = 1 and
y = 1, appears in the training data. Similarly, Lemma 2
confirms the convergence of TM for the other sub-pattern.
In Lemmas 1 and 2, we assume non-negative u1 and u2

to guarantee that the training samples always trigger the
feedback shown in Table 1 or Table 2. Note that these
lemmas determine that the correct states are absorbing states
as well as the uniqueness of these states. Lemma 3 estab-
lishes the fact that when both sub-patterns are presented
in the training samples, a TM will not converge to any
one of these in probability 1, if both u1 and u2 are kept
positive. In other words, based on Lemmas 1-3, although
TM will converge to the intended sub-pattern if only one
sub-pattern appears in the training data, the system will not
converge to any one of the sub-patterns if both sub-patterns
appear during training. Therefore, it is necessary to have an
additional mechanism to guide the convergence when both
sub-patterns appear, which in fact is done by the hyper-

parameter T via Eqs. (4) and (5). Indeed, the probability
of triggering the feedback events in Table 1 or Table 2 is
reduced while a sub-pattern becomes learnt, and eventually
the corresponding training samples will be blocked to TM
for any learnt sub-pattern. Specifically, Lemma 4 establishes
that the number of clauses that learn a certain sub-pattern
will reach T at a certain time instant. Lemma 5 guarantees
that when the event described by Lemma 4 happens, the
corresponding training samples of the learnt sub-pattern
will be blocked from the system. In this way, only the
training samples of the unlearnt sub-pattern will appear to
TM so that the unlearnt sub-pattern can be learnt according
to Lemma 1 or 2. To summarize, Lemmas 1-3 cover the
system dynamics when T is not involved in the learning
(and thus u1 and u2 are kept positive), while Lemmas 4
and 5 shows how T blocks the training samples of a learnt
sub-pattern to make the system learn another sub-pattern.
Based on Lemmas 1-5, we prove that the TM can learn the
XOR-relation and the conditions for learning, in terms of
Theorem 2. In the remaining subsections, we will prove
them one by one.

3.2.1 Proof of Lemma 1 and Lemma 2
Now let’s study Lemma 1. Here, we will confirm that the
clauses in the TM will almost surely converge to the clause
¬x1 ∧ x2 when the training samples shown in Table 4 are
given to the TM. Note that the functionality of T is disabled
in this lemma, and u1 and u2 are assumed to be positive
constants.

Proof. Without loss of generality, we study clause C3, which
has TA3

1 with actions “Include” x1 or “Exclude” it, TA3
2

with actions “Include” ¬x1 or “Exclude” it, TA3
3 with ac-

tions “Include” x2 or “Exclude” it, and TA3
4 with actions

“Include” ¬x2 or “Exclude” it. To analyze the convergence
of those four TAs, we perform a quasi-stationary analysis,
where we freeze the behavior of three of them, and then
study the transitions of the remaining one. More specifically,
the analysis is organized as follows:

1) We freeze TA3
1 and TA3

2 respectively at “Exclude”
and “Include”. In this case, the first bit becomes ¬x1.
There are four sub-cases for TA3

3 and TA3
4:

a) We study the transition of TA3
3 when it has

the action “Include” as its current action,
given different training samples shown in
Table 4 and different actions of TA3

4 (i.e.,
when the action of TA3

4 is frozen at “Include”
or “Exclude”).

b) We study the transition of TA3
3 when it has

“Exclude” as its current action, given differ-
ent training samples shown in Table 4 and
different actions of TA3

4 (i.e., when the action
of TA3

4 is frozen at “Include” or “Exclude”).
c) We study the transition of TA3

4 when it has
“Include” as its current action, given differ-
ent training samples shown in Table 4 and
different actions of TA3

3 (i.e., when the action
of TA3

3 is frozen at “Include” or “Exclude”).
d) We study the transition of TA3

4 when it has
“Exclude” as its current action, given differ-
ent training samples shown in Table 4 and
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different actions of TA3
3 (i.e., when the action

of TA3
3 is frozen as “Include” or “Exclude”).

2) We freeze TA3
1 and TA3

2 respectively at “Include”
and “Exclude”. In this case, the first bit becomes x1.
The sub-cases for TA3

3 and TA3
4 are identical to the

sub-cases in the previous case.
3) We freeze TA3

1 and TA3
2 at “Exclude” and “Ex-

clude”. In this case, the first bit is excluded and
will not influence the final output. The sub-cases for
TA3

3 and TA3
4 are identical to the sub-cases in the

previous case.
4) We freeze TA3

1 and TA3
2 at “Include” and “Include”.

In this case, we always have C3 = 0 because the
clause contains the contradiction x1 ∧¬x1. The sub-
cases for TA3

3 and TA3
4 are identical to the sub-cases

in the previous case.

In the analysis below, we will study each of the four cases,
one by one.
Case 1
We now analyze the first sub-case, i.e., Sub-case 1 (a). In this
case, the first bit is in the form of ¬x1 always. We here study
the transition of TA3

3 when its current action is “Include”.
Depending on different training samples and actions of
TA3

4, we have the following possible transitions. Below, “I”
and “E” mean “Include” and “Exclude”, respectively.

Condition: x1 = 1, x2 = 1,
y = 0, TA3

4=E.
Therefore, we have Type II
feedback for literal x2 = 1,
clause C3 = 0.

R

P

I E

No transition

Condition: x1 = 0, x2 = 1,
y = 1, TA3

4=E.
Therefore, we have Type I
feedback for literal x2 = 1,
C3 = ¬x1 ∧ x2 = 1. R

P

I E

u1
s−1
s

Condition: x1 = 0, x2 = 0,
y = 0, TA3

4=E.
Therefore, we have Type II
feedback for literal x2 = 0,
C3 = ¬x1 ∧ x2 = 0.

R

P

I E

No transition

Condition: x1 = 1, x2 = 1,
y = 0, TA3

4=I.
Therefore, we have Type II
feedback for literal x2 = 1,
C3 = 0.

R

P

I E

No transition

Condition: x1 = 0, x2 = 1,
y = 1, TA3

4=I.
Therefore, we have Type I
feedback for literal x2 = 1,
C3 = 0.

R

P

I E

u1
1
s

Condition: x1 = 0, x2 = 0,
y = 0, TA3

4=I.
Therefore, we have Type II
feedback for literal x2 = 0,
C3 = 0.

R

P

I E

No transition

The above analyzed sub-case has 6 instances, depending
on the variations of the training samples and the status of
TA3

4, where the first three correspond to the instances where
TA3

4=E while the last three represent the instances where
TA3

4=I. We now investigate the first instance, which covers
the training samples: x1 = 1, x2 = 1, y = 0, and TA3

4=E.
This training sample will trigger Type II feedback because of
y = 0. Then the clause becomes C3 = ¬x1 ∧ x2 = 0 because
the studied instance has TA3

1=E, TA3
2=I, TA3

3=I, and TA3
4=E.

Because we now study TA3
3, the corresponding literal is

x2 = 1. Based on the above information, we can check from
Table 2 that the probability of “Inaction” is 1. Therefore, the
transition diagram does not have any arrow, indicating that
there is “No transition” for TA3

3 in this circumstance.

To study a circumstance where transitions may happen,
let us look at the second instance in the analyzed sub-case,
with x1 = 0, x2 = 1, y = 1, and TA3

4=E. This training
sample will trigger Type I feedback as y = 1. Together with
the current status of other TAs, the clause is determined to
be C3 = ¬x1∧x2 = 1 and the literal is x2 = 1. From Table 1,
we know that the reward probability is s−1

s and the inaction
probability is 1/s. To indicate the transitions, we have
plotted the diagram showing the reward probability. Note
that the overall probability is u1

s−1
s , where u1 is defined

by Eq. (4). Understandably, u1 ∈ [0, 0.5] and u2 ∈ [0.5, 1]
for any f∑(Ci) ≥ 0. For now, we assume we find a certain
T such that u1 > 0 holds. The role of T and u1 will be
analyzed later.

We now consider Sub-case 1 (b). The literal ¬x1 is still
included, and we study the transition of TA3

3 when its
current action is “Exclude”. The possible transitions are
listed below.

Condition: x1 = 1, x2 = 1,
y = 0, TA3

4=E.
Therefore, Type II, x2 = 1,
C3 = ¬x1 = 0. R

P

I E

No transition

Condition: x1 = 0, x2 = 1,
y = 1, TA3

4=E.
Therefore, Type I, x2 = 1,
C3 = ¬x1 = 1. R

P

I E

u1
1
s

Condition: x1 = 0, x2 = 0,
y = 0, TA3

4=E.
Therefore, Type II, x2 = 0,
C3 = ¬x1 = 1. R

P

I E

u2 × 1

Condition: x1 = 1, x2 = 1,
y = 0, TA3

4=I.
Therefore, Type II, x2 = 1,
C3 = ¬x1 ∧ ¬x2 = 0. R

P

I E

No transition

Condition: x1 = 0, x2 = 1,
y = 1, TA3

4=I.
Therefore, Type I, x2 = 1,
C3 = ¬x1 ∧ ¬x2 = 0. R

P

I E

u1
1
s
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Condition: x1 = 0, x2 = 0,
y = 0, TA3

4=I.
Therefore, Type II, x2 = 0,
C3 = ¬x1 ∧ ¬x2 = 1. R

P

I E

u2 × 1

Now let us move onto the third sub-case in Case 1, i.e.,
Sub-case 1 (c). The literal ¬x1 is still included, and we study
the transition of TA3

4 when its current action is “Include”.
To save space, we remove the instances where no transition
happens in the remainder of the paper. Note that we are
now studying TA3

4 that corresponds to ¬x2 rather than x2.
Therefore, the literal in Tables 1 and 2 becomes ¬x2.

Condition: x1 = 0, x2 = 1,
y = 1, TA3

3=E.
Therefore, Type I, ¬x2 = 0,
C3 = ¬x1 ∧ ¬x2 = 0. R

P

I E

u1
1
s

Condition: x1 = 0, x2 = 1,
y = 1, TA3

3=I.
Therefore, Type I, ¬x2 = 0,
C3 = 0. R

P

I E

u1
1
s

For the Sub-case 1 (d), we study the transition of TA3
4

when it has the current action “Exclude”.
Condition: x1 = 0, x2 = 1,
y = 1, TA3

3=E.
Therefore, Type I, ¬x2 = 0,
C3 = ¬x1 = 1. R

P

I E

u1
1
s

Condition: x1 = 0, x2 = 1,
y = 1, TA3

3=I.
Therefore, Type I, ¬x2 = 0,
C3 = ¬x1 ∧ x2 = 1. R

P

I E

u1
1
s

So far, we have gone through all sub-cases in Case 1.
We are now ready to sum up Case 1 by looking at the
transitions of TA3

3 and TA3
4 in different scenarios. In this

case, TA3
4 will become “Exclude” in the long run because

it has only one direction of transition, i.e., towards action
“Exclude”. Given TA3

4 is “Exclude”, action “Include” of
TA3

3 is an absorbing state. Therefore, if TA3
1 and TA3

2 are
“Exclude” and “Include”, respectively, TA3

3 will become
“Include”, and TA3

4 will eventually be “Exclude”. In other
words, C3 will converge to ¬x1 ∧ x2 in Case 1.

Case 2
Case 2 studies the behavior of TA3

3 and TA3
4 when TA3

1

and TA3
2 select “Include” and “Exclude”, respectively. In

this case, the first bit is in the form of x1 always. There are
here also four sub-cases and we will detail them presently.

We first study TA3
3 with action “Include”, providing the

below transitions.
Conditions: x1 = 0, x2 = 1,
y = 1, TA3

4=E.
Therefore, Type I, x2 = 1,
C3 = 0. R

P

I E

u1
1
s

Conditions: x1 = 0, x2 = 1,
y = 1, TA3

4=I.
Therefore, Type I, x2 = 1,
C3 = 0. R

P

I E

u1
1
s

We then study TA3
3 with action “Exclude”, and transi-

tions are shown below.

Conditions: x1 = 0, x2 = 1,
y = 1, TA3

4=E.
Therefore, Type I, x2 = 1,
C3 = 0. R

P

I E

u1
1
s

Conditions: x1 = 0, x2 = 1,
y = 1, TA3

4=I.
Therefore, Type I, x2 = 1,
C3 = 0. R

P

I E

u1
1
s

We now study TA3
4 with action “Include” and the tran-

sitions are presented below.

Condition: x1 = 0, x2 = 1,
y = 1, TA3

3=E.
Therefore, Type I, ¬x2 = 0,
C3 = x1 ∧ ¬x2 = 0. R

P

I E

u1
1
s

Conditions: x1 = 0, x2 = 1,
y = 1, TA3

3=I.
Therefore, Type I, ¬x2 = 0 ,
C3 = 0. R

P

I E

u1
1
s

We study lastly TA3
4 with action “Exclude”, leading to

the following transitions.

Conditions: x1 = 1, x2 = 1,
y = 0, TA3

3=E.
Therefore, Type II, ¬x2 = 0,
C3 = x1 = 1. R

P

I E

u2 × 1

Conditions: x1 = 0, x2 = 1,
y = 1, TA3

3=E.
Therefore, Type I, ¬x2 = 0,
C3 = 0. R

P

I E

u1
1
s

Conditions: x1 = 1, x2 = 1,
y = 0, TA3

3=I.
Therefore, Type II, ¬x2 = 0,
C3 = x1 ∧ x2 = 1. R

P

I E

u2 × 1

Conditions: x1 = 0, x2 = 1,
y = 1, TA3

3=I.
Therefore, Type I, ¬x2 = 0,
C3 = x1 ∧ x2 = 0. R

P

I E

u1
1
s

To sum up Case 2, we understand that TA3
3 will select

“Exclude”, and TA3
4 will switch between “Include” or

“Exclude”, depending on the training samples and system
status.

Case 3
Now we move onto Case 3, where TA3

1 and TA3
2 both

select “Exclude”. We study the behavior of TA3
3 and TA3

4

for different sub-cases. In this case, the first bit x1 does not
play any role for the output.

We first examine TA3
3 with action “Include”, providing

the transitions below.

Conditions: x1 = 0, x2 = 1,
y = 1, TA3

4=E.
Therefore, Type I, x2 = 1,
C3 = x2 = 1. R

P

I E

u1
s−1
s
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Conditions: x1 = 0, x2 = 1,
y = 1, TA3

4=I.
Therefore, Type I, x2 = 1,
C3 = 0. R

P

I E

u1
1
s

We then study TA3
3 with action “Exclude”, transitions

shown below. In this situation, if TA3
4 is also excluded, C3 is

“empty” since all its associated TA select action “Exclude”.
To make the training proceed, according to the training rule
of TM, we assign C3 = 1 in this situation.

Condition: x1 = 0, x2 = 1,
y = 1, TA3

4=E.
Therefore, Type I, x2 = 1,
C3 = 1. R

P

I E

u1
s−1
s

Condition: x1 = 0, x2 = 0,
y = 0, TA3

4=E.
Therefore, Type II, x2 = 0,
C3 = 1. R

P

I E

u2 × 1

Condition: x1 = 0, x2 = 1,
y = 1, TA3

4=I.
Therefore, Type I, x2 = 1,
C3 = ¬x2 = 0. R

P

I E

u1
1
s

Condition: x1 = 0, x2 = 0,
y = 0, TA3

4=I.
Therefore, Type II, x2 = 0,
C3 = ¬x2 = 1. R

P

I E

u2 × 1

We thirdly study TA3
4 with action “Include”, covering

the transitions shown below.
Condition: x1 = 0, x2 = 1,
y = 1 TA3

3=E.
Therefore, Type I, ¬x2 = 0,
C3 = 0. R

P

I E

u1
1
s

Condition: x1 = 0, x2 = 1,
y = 1, TA3

3=I.
Therefore, Type I, ¬x2 = 0,
C3 = 0. R

P

I E

u1
1
s

Lastly, we study TA3
4 with action “Exclude”, transitions

shown below. Similarly, in this situation, when TA3
3 is also

excluded, C3 becomes “empty” again, as all its associated
TAs select action “Exclude”. Following the training rule of
TM, we assign C3 = 1.

Conditions: x1 = 1, x2 = 1,
y = 0, TA3

3=E.
Therefore, Type II, ¬x2 = 0,
C3 = 1. R

P

I E

u2 × 1

Conditions: x1 = 0, x2 = 1,
y = 1, TA3

3=E.
Therefore, Type I, ¬x2 = 0,
C3 = 1. R

P

I E

u1
1
s

Conditions: x1 = 1, x2 = 1,
y = 0, TA3

3=I.
Therefore, Type II, ¬x2 = 0,
C3 = 1. R

P

I E

u2 × 1

Conditions: x1 = 0, x2 = 1,
y = 1, TA3

3=I.
Therefore, Type I, ¬x2 = 0,
C3 = 1. R

P

I E

u1
1
s

Obviously, in Case 3, there is no absorbing state.

Case 4
Now, we study Case 4, where ¬x1 and x1 both select
“Include”. For this reason, in this case, we always have
C3 = 0. We study firstly TA3

3 with action “Include” and
the transitions are shown below.

Condition: x1 = 0, x2 = 1,
y = 1, TA3

4=E.
Therefore, Type I, x2 = 1,
C3 = 0. R

P

I E

u1
1
s

Condition: x1 = 0, x2 = 1,
y = 1, TA3

4=I.
Therefore, Type I, x2 = 1,
C3 = 0. R

P

I E

u1
1
s

We secondly study TA3
3 with action “Exclude”.

Condition: x1 = 0, x2 = 1,
y = 1, TA3

4=E.
Therefore, Type I, x2 = 1,
C3 = 0. R

P

I E

u1
1
s

Condition: x1 = 0, x2 = 1,
y = 1, TA3

4=I.
Therefore, Type I, x2 = 1,
C3 = 0. R

P

I E

u1
1
s

Now, we study TA3
4 with action “Include”.

Condition: x1 = 0, x2 = 1,
y = 1, TA3

3=E.
Therefore, Type I, ¬x2 = 0,
C3 = 0. R

P

I E

u1
1
s

Condition: x1 = 0, x2 = 1,
y = 1, TA3

3=I.
Therefore, Type I, ¬x2 = 0,
C3 = 0. R

P

I E

u1
1
s

We lastly study TA3
4 with action “Exclude”.

Condition: x1 = 0, x2 = 1,
y = 1, TA3

3=E.
Therefore, Type I, ¬x2 = 0,
C3 = 0. R

P

I E

u1
1
s

Condition: x1 = 0, x2 = 1,
y = 1, TA3

3=I.
Therefore, Type I, ¬x2 = 0,
C3 = 0. R

P

I E

u1
1
s

To summarize Case 4, we realize that both TA3
3 and TA3

4

will converge to “Exclude”.
Based on the above analyses, we can summarize the

transitions of TA3
3 and TA3

4, given different configurations
of TA3

1 and TA3
2 in Case 1 – Case 4 (i.e., given four different

combinations of x1 and ¬x1). The arrow shown below
means the direction of transitions.

Scenario 1: Study TA3
3 = I and TA3

4 = I.
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Case 1: we can see that
TA3

3 → E
TA3

4 → E

Case 2: we can see that
TA3

3 → E
TA3

4 → E

Case 3: we can see that
TA3

3 → E
TA3

4 → E

Case 4: we can see that
TA3

3 → E
TA3

4 → E
From the facts presented above, it is confirmed that

regardless of the state of TA3
1 and TA3

2, if TA3
3=I and TA3

4=I,
they (TA3

3 and TA3
4) will move towards the opposite half

of the state space (i.e., towards “Exclude” ), away from the
current state. So, the state with TA3

3=I and TA3
4=I is not

absorbing.
Scenario 2: Study TA3

3 = I and TA3
4= E.

Case 1: we can see that
TA3

3 → I
TA3

4 → E

Case 2: we can see that
TA3

3 → E
TA3

4 → I, E

Case 3: we can see that
TA3

3 → I
TA3

4 → I, E

Case 4: we can see that
TA3

3 → E
TA3

4 → E
In this scenario, the starting point of TA3

3 is “Include”
and that of TA3

4 is “Exclude”. In Case 1, where TA3
1 = E

and TA3
2 = I, TA3

3 will move towards “Include” and TA3
4

will move towards “Exclude”. Therefore, given TA3
1 = E

and TA3
2 = I hold, TA3

3 in “Include” and TA3
4 in “Exclude”

are absorbing actions, while in other cases (i.e., in other
configurations of TA3

1 and TA3
2), actions “Include” and

“Exclude” for TA3
3 and TA3

4 are not absorbing.
Scenario 3: Study TA3

3 = E and TA3
4 = I.

Case 1: we can see that
TA3

3 → I, E
TA3

4 → E

Case 2: we can see that
TA3

3 → E
TA3

4 → E

Case 3: we can see that
TA3

3 → I, E
TA3

4 → E

Case 4: we can see that
TA3

3 → E
TA3

4 → E
From the transitions of TA3

3 and TA3
4 in Scenario 3, we can

conclude that the state with TA3
3 = E and TA3

4 = I is not
absorbing.

Scenario 4: Study TA3
3 = E and TA3

4 = E.
Case 1: we can see that
TA3

3 → I
TA3

4 → E

Case 2: we can see that
TA3

3 → E
TA3

4 → I, E

Case 3: we can see that
TA3

3 →I
TA3

4 →I, E

Case 4: we can see that
TA3

3 → E
TA3

4 → E
From the transitions of TA3

3 and TA3
4 in Scenario 4, we

can conclude that the state with TA3
3 = E and TA3

4 = E is also
absorbing in Case 4, when TA3

1 and TA3
2 have both actions

as Include.
From the above analysis, we can conclude that when

we freeze TA3
1 and TA3

2 with certain actions, there are
altogether two absorbing cases. (1) Given that TA3

1 selects
“Exclude” and TA3

2 selects “Include”, TA3
3 selects “Include”

and TA3
4 selects “Exclude”. (2) Given that TA3

1 selects “In-
clude” and TA3

2 selects “Include”, TA3
3 selects “Exclude”

and TA3
4 selects “Exclude”.

So far, we have finished half of the proof. More specif-
ically, we have studied the case when we freeze the tran-
sitions of TAs for the first input bit (TA3

1 and TA3
2) and

examine the transitions of TAs for the second input bit
(study TA3

3 and TA3
4 by frozen one of them and illustrate the

transitions of the other one). In the following paragraphs,
we will move on to the second half, i.e., we freeze TA3

4 and
TA3

4 and study the transition of TA3
1 and TA3

2. The analysis
procedure is similar to the one that has been done in the
above paragraphs, as seen in the following.

1) We freeze TA3
3 and TA3

4 as “Exclude” and “In-
clude”. In this case, the second bit becomes ¬x2.
There are four sub-cases for TA3

1 and TA3
2.

• We study the transition of TA3
1 when it has

the action “Include” as its current action,
given different input training samples shown
in Table 4 and different actions of TA3

2 (i.e.,
when the action of TA3

2 is frozen as “Include”
or “Exclude”).

• We study the transition of TA3
1 when it has

the action “Exclude” as its current action,
given different input training samples shown
in Table 4 and different actions of TA3

2 (i.e.,
when the action of TA3

2 is frozen as “Include”
or “Exclude”).

• We study the transition of TA3
2 when it has

the action “Include” as its current action,
given different input training samples shown
in Table 4 and different actions of TA3

1 (i.e.,
when the action of TA3

1 is frozen as “Include”
or “Exclude”).

• We study the transition of TA3
2 when it has

the action “Exclude” as its current action,
given different input training samples shown
in Table 4 and different actions of TA3

1 (i.e.,
when the action of TA3

1 is frozen as “Include”
or “Exclude”).

2) We freeze TA3
3 and TA3

4 as “Include” and “Ex-
clude”. In this case, the second bit becomes x2. The
sub-cases for TA3

1 and TA3
2 are identical to the sub-

cases in the previous case.
3) We freeze TA3

3 and TA3
3 as “Exclude” and “Ex-

clude”. In this case, the second bit is excluded and
will not influence the output. The sub-cases for
TA3

1 and TA3
2 are identical to the sub-cases in the

previous case.
4) We freeze TA3

3 and TA3
4 as “Include” and “Include”.

In this case, the second bit will always be 0 and
therefore C3 = 0. The sub-cases for TA3

1 and TA3
2

are identical to the sub-cases in the previous case.

When we go through all the possible transitions, we can
conclude that (1) when TA3

3 and TA3
4 are frozen as “Include”

and “Exclude”, TA3
1=E and TA3

2=I are absorbing. (2) When
TA3

3 and TA3
4 are frozen as “Include” and “Include”, TA3

1=E
and TA3

2=E are also absorbing. The detailed proof of this
statement can be found in Appendix 2.

When we look at the absorbing cases that are condi-
tioned upon the frozen actions of both “Include” (i.e., when
TA3

3 and TA3
4 are frozen as Include and Include, and when

TA3
1 and TA3

2 are frozen as Include and Include), we can
easily conclude that those conditions cannot be fulfilled
and thus the corresponding system states are not absorbing.
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The main reason is that the condition of both “Include” is
surely not absorbing and such state cannot be frozen as a
stable state. Differently, for the state with TA3

1=E, TA3
2=I,

TA3
3=I and TA3

4=E, the learning mechanism together with
the training samples will reinforce the individual TA to
move to a deeper state for the selected actions. Therefore,
the state is indeed an absorbing state and it is the only
absorbing state in the system. Therefore, given infinite time
horizon, the TM will converge to the expected logic, which
is half of the XOR-relation. We thus prove Lemma 1.

Following the same strategy used for the proof in
Lemma 1, we can prove Lemma 2. We do not detail the
proof for the sake of brevity.

3.2.2 Proof of Lemma 3

Proof. To prove that the system is recurrent, we just need
to show that the only absorbing state in the TM based
on the training samples from Table 5 disappears when the
training samples in Table 3 is given. More specifically, once
the TM is trained based on Table 5, we will show that the
absorbing state disappears when training sample x1 = 1,
x2 = 0, and y = 1 is given in addition. To validate this
point, we can simply show that one of the TA, i.e., TA3

3

with an “Including” action will not move only towards
“Include” when the output of the first literal is ¬x1, and
when TA3

4 is “Exclude”, given the newly added training
sample. The diagram below indicates the transition of TA3

3

in the above mentioned condition when the new training
sample is given.

Condition: x1 = 1, x2 = 0,
y = 1, TA3

4=E.
Therefore, we have Type I
feedback for literal x2 = 0,
clause C3 = ¬x1 ∧ x2 = 0. R

P

I E

u1
1
s

When x1 = 1, x2 = 0, and y = 1 is given in addition,
TA3

3 has a non-zero probability to move towards “Exclude”.
Therefore, “Include” is not the only direction that TA3

3

moves to upon the input, and this will make the state not
absorbing any longer. For other states, the newly added
training sample will not remove any transition from the
previous case. Therefore, the system will not have any new
absorbing state. Given the non-zero probability of returning
II, IE, EI, EE, these system states are recurrent.

To summarize so far, from Lemma 1 and Lemma 2, we
understand that each individual clause is able to learn any
sub-pattern from the XOR-relation. However, when the full
logic of XOR is given, as shown in Table 3, the system state
II, IE, EI and EE becomes recurrent. In other words, each
clause may stay in any of the above states in probability
that is less than 1. For this reason, it is necessary to have a
parameter to guide the learning process of different clauses
so that they can converge or cover different sub-patterns.
The parameter is T , and the analysis is given presently.

3.2.3 Proof of Lemma 4 and Lemma 5

Proof. Consider m clauses in the TM, and m > T . Let’s
study parameter u1 first. When f∑(Ci) is zero, u1 = 1/2.
When 0 < f∑(Ci) < T , u1 =

T−max(−T,min(T,f∑(Ci)))

2T =

T−f∑(Ci)

2T , and u1 monotonically decreases as f∑(Ci) in-
creases. When T ≥ m, u1 = 0 holds. For u2, when f∑(Ci) =
0, u2 = 1/2. When 0 < f∑(Ci) < T , u2 =

T+f∑(Ci)

2T , and it
monotonically increases when f∑(Ci) grows. When T ≥ m,
u2 = 1 holds.

Clearly, u2 > 0 always holds regardless the value of
f∑(Ci). Therefore, the variations of f∑(Ci) does not change
the directions of system transitions upon Type II feedback.

To guarantee u1 > 0, it is required 0 ≤ f∑(Ci) < T .
When this condition fulfills, the variations of f∑(Ci) does
not change the directions of system transitions upon Type I
feedback.

According to the system updating rule of TM, once
the Type I or Type II feedback is triggered, the clauses
are updated independently. Due to the recurrent property,
each clause will transit among II, IE, EI and EE, as long as
0 ≤ f∑(Ci) < T . In other words, each clause will move
among those four status, until T clauses follow the same
sub-pattern. Therefore, consider infinite time horizon, the
event that T , T < m, clauses appear in the same sub-pattern
will almost surely happen.

When f∑(Ci) = T , it means there are T clauses that have
followed the same sub-pattern. Once this happens, it means
that there are certain number of clauses that have learnt a
certain sub-pattern already and we would like to encourage
the other clauses to learn the other sub-pattern. This is to be
shown in Lemma 5.

Proof. Lemma 5 is self-evident. When f∑(Ci) = T , u1 = 0
holds and thus Type I feedback will not be generated to
the TM for any updates when the same training sam-
ple is given. For example, without loss of generalization,
we assume there are T clauses that have converged to
c3 = ¬x1 ∧ x2 = 1. When another training sample x1 = 0,
x2 = 1, y = 1 is given, Type I feedback will not be given
any longer because u1 = 0. Therefore, such input training
sample is filtered out and the system will only update for
Type I feedback when training sample x1 = 1, x2 = 0,
y = 1 is given (i.e., the TM will update based on the samples
shown in Table 5, guiding the TM to learn the other sub-
pattern according to Lemma 2. )

3.2.4 Proof of Theorem 2
Proof. Based on Lemmas 1-5, we can prove Theorem 2.

Clearly, u1 monotonically decreases as f∑(Ci) increases.
When the number of clauses that follow a certain sub-
pattern increases, due to the monotonicity of u1, the impact
of such training samples becomes less and less to the system.
Ultimately, when f∑(Ci) = T holds, the system will not
be updated for the learnt sub-pattern. Therefore, at this
particular time, only the other sub-pattern will be used
for system training. This behavior can avoid the situation
that many clauses learn one sub-pattern but the other sub-
pattern is not learnt.

Now let’s consider the case where the selected T is less
than or equal to half of the number of the clauses, i.e.,
T ≤ m/2. From Lemma 4, we know that the system will
eventually have T clauses that follow one sub-pattern. Once
this happens, due to Lemmas 1 and 2, we understand that
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all clauses will move towards the only absorbing state of
the system corresponds to the other sub-pattern. As soon
as the number of the clauses that follow each sub-pattern
reaches T , the system will not be updated any longer for
any training input. In this situation, the system have been
absorbed to the point where both sub-patterns of XOR have
been learnt.

We thus complete the proof.

Note that the clauses that already follow a sub-pattern
may get out of the sub-pattern when training samples from
the other sub-pattern are given. So even if there are T
clauses that are have learnt a sub-pattern, the number of
learnt clauses may decrease in front of training samples
from the other sub-pattern. However, as soon as the sum
of the clauses for the same sub-pattern is less than T , the
corresponding Type I feedback can be triggered again for
this sub-pattern, leading the clauses to possibly move back
to the sub-pattern again. Nevertheless, when the number
of the clauses that follow each sub-pattern reaches T , the
system is then converged to and locked at the intended
pattern.

Note also that when T is less than half of the number
of the clauses, there are m − 2T clauses that do not follow
to any of the sub-patterns when the system stops updating.
Therefore, those clauses that do not follow the correct XOR
sub-patterns may involve incorrect output if they all happen
to follow a certain incorrect logic and the sum of them
happens to be greater than or equal to T . For this reason,
even if the absorbing states exist, the number of clauses, the
threshold value T need to be carefully chosen.

Remark 1. The system configuration described in Theorem 1 is
a special case of Theorem 2.

Remark 2. When T is greater than half of the number of the
clauses, i.e., T > m/2, the system will not have any absorbing
state. We conjuncture that the system can still learn the two sub-
patterns in a balanced manner, as long as T is not configured too
close to the total number of clauses m and when s is sufficiently
large.

To address the conjecture in Remark 2, we now study the
system behavior when T > m/2. According to Lemma 3,
at a certain time slot, there will be T clauses following a
certain sub-pattern, named sub-pattern 1. In this situation,
the corresponding training samples for sub-pattern 1 will
not trigger any Type I feedback to the system and therefore
the other training samples will guide the remaining clauses
to learn towards the other sub-pattern, named sub-pattern 2.
As the training process continues, all the clauses (including
those T clauses who have learned sub-pattern 1, although
the action probability (u1/s) is low) will lean towards sub-
pattern 2.

Because m− T < T , the clauses following sub-pattern 2
will not block the training samples for sub-pattern 2 even if
there are m− T clauses that follow this sub-pattern. There-
fore, as more training samples are given, the remaining
clauses will eventually move out of sub-pattern 1 or their
current states and then move towards sub-pattern 2, until T
clauses follow sub-pattern 2 before the training samples for
the sub-pattern 2 are completely blocked. Then the clauses
will again move towards sub-pattern 1.

The system will thus oscillate and will not be absorbed
to a certain state. Nevertheless, with high probability, the
system will have at least m − T clauses that follow each
sub-pattern, especially when s is large. According to the
updating rule of Type I feedback, the probability for an
included literal in a clause that has learnt a certain sub-
pattern to change towards the other sub-pattern is u1/s,
which only happens when a training sample of the other
sub-pattern is given. On the other hand, the reward is u1

s−1
s

if a training sample of the same sub-pattern is received.
Therefore, when s is large, the clause is less likely to get out
of the learnt sub-pattern due to a training sample from the
conflicting sub-pattern. In other words, the system will most
probably have at least m − T clauses for each sub-pattern
after training, and in the worst case, m − 2(m − T ) clauses
will appear in states other than any intended sub-pattern,
depending on the stop time of training. To summarize, if we
select the threshold as m − T , the two sub-patterns of the
XOR-relation can still be followed with high probability.

4 SIMULATION EXPERIMENT

To validate the above theoretical results, we have added two
experiments3:

• We employ 5 clauses and set T = 2. Based on the
analytical result, i.e., Theorem 2, the system will be
absorbed at one state, where two clauses learn one
sub-pattern, two other clauses learn the other sub-
pattern, and the remaining clause is in any state
that may or may not belong to any one of the sub-
patterns. Once the system is absorbed, no update will
happen in TAs for any input training samples.

• We employ 5 clauses and set T = 3. In this case,
as stated in Remark 2, the system does not have
an absorbing state. Instead, four clauses will still
cover all sub-patterns, two for each sub-pattern, with
high probability. The remaining one transits back and
forth between the sub-patterns. In this case, the TAs
will still update their states upon new input samples.

Figures 5 and 6 show the output of different clauses as
a function of the training epochs for T = 2 and T = 3
respectively. In those figures, when a clause recognizes the
sub-pattern (x1 = 1, x2 = 0), it is represented by a
blue star. Similarly, when a clause learns the sub-pattern
(x1 = 0, x2 = 1), it is represented by a red square. All the
other possible states are represented with a black triangular.
Figure 7 shows the variation of the number of TA updates
per epoch for the above different T values.

From Figure 5, we can see that the clauses have ran-
dom initial starting points. When the input samples are
given, the states become updated. At around epoch 60, two
clauses learn one intended sub-pattern (in red block) and
two clauses learn the other sub-pattern (in blue star), and
Clause 3 is in another state which is different from any of the
sub-patterns of XOR. Thereafter, the system will not update
any longer, which can be confirmed by the curve of T = 2
after epoch 60 in Figure 7. From Figure 6, we can see that the
system will not be absorbed for T = 3 (also see the curve

3. The simulation code for XOR-relation can be found at https://
github.com/cair/TM-XOR-proof.

https://github.com/cair/TM-XOR-proof
https://github.com/cair/TM-XOR-proof
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for T = 3 in Figure 7), but each sub-pattern of XOR has
been covered by at least two clauses after about epoch 60.
Not surprisingly, there are indeed a few observed cases for
T = 2 and T = 3 that two clauses have followed the two
distinct sub-patterns respectively and one clause is in a non-
intended pattern. Nevertheless, due to the majority voting
mechanism of TM, the trained TM can still give the correct
output of the XOR-relation.
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Fig. 5: The convergence of a TM with 5 clauses when T = 2.
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Fig. 6: The convergence of a TM with 5 clauses when T = 3.
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Fig. 7: The number of TA updates as a function of training
epochs.

5 CONCLUSIONS

In this paper, we complete the proof on the convergence
of the XOR-relation. Firstly, we demonstrate that TM can
almost surely learn the XOR-relation with the simplest struc-
ture. Thereafter, we analyze the dynamics of the system and
reveal the relationship between the number of clauses and
the hyper-parameter T when multiple sub-patterns exist.
The analytical results not only confirm the convergence
property of TM in XOR-relation, they also illustrate the role
of the hyper-parameter T when multiple sub-patterns exist.
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