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Abstract—Extracting causal graph structures from multivari-
ate time series, termed topology identification, is a fundamental
problem in network science with several important applications.
Topology identification is a challenging problem in real-world
sensor networks, especially when the available time series are
partially observed due to faulty communication links or sensor
failures. The problem becomes even more challenging when the
sensor dependencies are nonlinear and nonstationary. This paper
proposes a kernel-based online framework using random feature
approximation to jointly estimate nonlinear causal dependen-
cies and missing data from partial observations of streaming
graph-connected time series. Exploiting the fact that real-world
networks often exhibit sparse topologies, we propose a group
lasso-based optimization framework for topology identification,
which is solved online using alternating minimization techniques.
The ability of the algorithm is illustrated using several numerical
experiments conducted using both synthetic and real data.

Index Terms—nonlinear topology inference, online learning,
random Fourier features, missing data

I. INTRODUCTION

Data analytics on complex networked systems such as
large-scale sensor networks, social networks, brain networks,
etc., have gained much research attention in the last decade.
Most such complex networks generate data in the form of
multivariate time series, which are often interdependent. These
dependencies can be represented in the form of a graph. Repre-
senting and processing data on graph structures have become
increasingly important due to diverse range of applications,
such as data compression, denoising, change point detection,
etc. Often, such dependencies are not directly observable
and must be inferred. Identification of causal graph structure
from multivariate time series is termed topology identification,
which is a challenging task due to the nonstationary and
nonlinear nature of the dependencies.

It is essential to have sufficient and good quality data
when solving a topology identification problem; however, data
might not be fully observable in many real-world situations.
Sensor networks, for instance, transmit data captured by
sensors through communication channels to an end-user for
processing. These networks are susceptible to data loss due
to sensor failures or communication impairments, making it
challenging to identify the topology. A practically significant
algorithm for topology identification must be (i) capable of
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working online to handle nonstationary dependencies, (ii) ca-
pable of recognizing nonlinear dependencies, and (iii) capable
of dealing with noisy and incomplete observations.

Online linear topology identification is fairly well studied
in the literature [1], [2]. In [1], an optimization problem is
formulated by taking into account the sparse nature of real-
world dependencies and solving the problem using composite
objective mirror descent (COMID), and in [2], a time-varying
convex optimization framework has been used for topology
identification. Recently, several works on nonlinear topology
identification have been proposed [3]–[8], among which [4],
[6], [8] propose online solutions for nonlinear topology identi-
fication problems, whereas [3] and [5] propose batch solutions
using kernel and neural networks, respectively.

While the aforementioned works demonstrate promising
results in topology estimation, all assume complete data avail-
ability with no sensor failures or communication issues. A
joint linear topology identification and missing data imputation
using block coordinate descent and Kalman smoothing have
been recently proposed in [9]. Similarly, [10] proposes a com-
putationally light approach using inexact proximal gradient
descent. However, [9] and [10] assume linear causality, which
does not make sense for most real-world time series.

In this paper, we propose an online nonlinear topology
identification algorithm accounting for missing data by solving
a group lasso-based optimization framework. Considering the
well-established underlying theory and the ability to carry out
online training, kernels are used to model nonlinearity, which
are approximated using random features [11] to control the
computational complexity. To the best of our knowledge, this
is the first attempt to address jointly (i) nonlinearity, (ii) non-
stationarity, and (iii) missing data in topology identification.

II. PROBLEM FORMULATION

A. Nonlinear topology identification

A P -th order nonlinear vector autoregressive (VAR) process
with N number of nodes can be expressed as

yn[t] =

N∑
n′=1

P∑
p=1

f
(p)
n,n′(yn′ [t− p]) + un[t], (1)

where yn[t] is the observation of the n-th time series at time
t, f

(p)
n,n′(.) encodes the causal influence of p-th time-lagged

value of n′-th time series on n-th time series, and un[t] is



the observation noise. The nonlinear VAR model is a suitable
model owing to the fact that the causal dependencies in the real
world are time-lagged in nature. Moreover, the VAR model
implies the famous causality hypothesis proposed by Granger
[12], under certain assumptions [13].

1) Kernel representation: We assume that the function in
(1) belongs to a reproducing kernel Hilbert space (RKHS):

H(p)

n′ :=

{
f
(p)

n,n′ | f (p)

n,n′ (y) =

∞∑
t=p

β
(p)

n,n′,t κ
(p)

n′ (y, yn′ [t− p])

}
, (2)

where κ(p)
n′ (., .) is a positive definite function that measures the

similarity between its arguments, and is termed kernel. Every
positive definite kernel is associated with a specific RKHS
with inner product defined as ⟨κ(p)

n′ (y, x1), κ
(p)

n′ (y, x2)⟩ :=∑∞
t=0 κ

(p)

n′ (y[t], x1)κ
(p)

n′ (y[t], x2) and it satisfies the repro-
ducing property ⟨κ(p)

n′ (y, x1), κ
(p)

n′ (y, x2)⟩ = κ
(p)

n′ (x1, x2),
thus thereby inducing the RKHS norm ∥f (p)

n,n′∥2H(p)

n′
=∑∞

t=0

∑∞
t′=0 β

(p)

n,n′,t β
(p)

n,n′,t′ κ
(p)

n′ (yn[t], yn[t
′]). As any function

in the RKHS can be expressed as an infinite combinations of
kernel evaluations, f (p)

n,n′ can be expressed as (2), with β
(p)
n,n′,t

being the weight associated with each kernel evaluation. A
functional optimization problem can be formulated to obtain
the required causal dependency for a given node n:

{
f̂
(p)

n,n′

}
n′,p

= arg min{
f
(p)

n,n′∈H(p)

n′
} 1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

f
(p)

n,n′(yn′ [τ − p])

]2

+λ

N∑
n′=1

P∑
p=1

Ω

(
||f (p)

n,n′ ||H(p)

n′

)
, (3)

where
∑N

n′=1

∑P
p=1 Ω

(
||f (p)

n,n′ ||H(p)

n′

)
is the regularizer and λ is

the hyperparemter associated with it. If Ω(.) is nondecreasing,
the solution of (3) can be expressed with a finite number of
kernel evaluations using Representer Theorem [14]:

f̂
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)

κ
(p)
n′ (yn′ [τ − p], yn′ [t− p]) . (4)

Here, the number of kernel evaluations required is equal to the
number of data samples. As the number of data samples in-
creases, the number of optimization variables increases, which
is commonly known as the curse of dimensionality in kernel
formulations. We use the random feature (RF) approximation
to mitigate this problem.

2) RF approximation: RF approximation addresses the
curse of dimensionality by restricting the kernel evaluations
to an approximate fixed lower-dimensional Fourier space.
Furthermore, linear optimization techniques are easier to use
in random Fourier space than in infinite-dimensional RKHS.
We use shift-invariant kernels to facilitate RF approximation,
i.e., κ

(p)

n′ (yn′ [τ ], yn′ [t]) = κ
(p)

n′ (yn′ [τ ]− yn′ [t]). According to
Bochner’s theorem [15], a shift invariant kernel can be rep-
resented using an inverse Fourier transform of a probability
distribution:

κ
(p)

n′ (yn′ [τ − p], yn′ [t− p]) =

∫
π
κ
(p)

n′
(v) ejv(yn′ [τ−p]−yn′ [t−p])dv

= Ev[e
jv(yn′ [τ−p]−yn′ [t−p])], (5)

where E is the expectation operator, π
κ
(p)

n′
(v) is the kernel

specific probability density function (pdf) and v is the random
variable corresponding to the pdf. With sufficient number of
i.i.d. samples {vi}Di=1, the expectation in (5) can be replaced
with sample mean:

κ̂
(p)

n′ (yn′ [τ − p], yn′ [t− p])=
1

D

D∑
i=1

ejvi(yn′ [τ−p]−yn′ [t−p]). (6)

Note that (6) is an unbiased estimator of the kernel evaluation
with a fixed number D of terms [16]. For a Gaussian kernel
with variance σ2, the inverse Fourier transform can be shown
to be also a Gaussian with variance σ−2. Using this informa-
tion, the real part of (6), which is also an unbiased estimator
of kernel evaluation, can be expressed as

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p]) = z

(p)
v,n′ [τ ]

⊤z
(p)
v,n′ [t], (7)

where

z
(p)
v,n′ [τ ] =

1√
D

[
sin (v1yn′ [τ − p]) , . . . , sin (vDyn′ [τ − p]) ,

cos (v1yn′ [τ − p]) , . . . , cos (vDyn′ [τ − p])

]⊤
. (8)

A fixed dimensional (2D) approximation of the function f̂
(p)
n,n′

is readily obtained by substituting (7) in (4):

˜̂
f
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)z

(p)
v,n′ [τ ]

⊤z
(p)
v,n′ [t]

= α
(p)
n,n′

⊤z
(p)
v,n′ [τ ], (9)

where α
(p)
n,n′ =

∑p+T−1
t=p β

(p)
n,n′,(t−p)z

(p)
v,n′ [t]. The following

notations are introduced to simplify the formulations:

α
(p)
n,n′ = [α

(p)
n,n′,1, . . . , α

(p)
n,n′,2D]⊤ ∈ R2D, (10)

z
(p)
v,n′ [τ ] = [z

(p)
v,n′,1[τ ], . . . z

(p)
v,n′,2D[τ ]]⊤ ∈ R2D, (11)

z
(p)
v,n′,k[τ ] =

{
sin(v

k
yn′ [τ − p]), if k ≤ D

cos(v
k−D

yn′ [τ − p]), otherwise.

The functional optimization (3) is reformulated as a parametric
optimization problem using (9):{
α̂

(p)

n,n′

}
n′,p

= arg min{
α

(p)

n,n′
}Ln

(
α

(p)

n,n′

)
+ λ

N∑
n′=1

P∑
p=1

Ω(||α(p)

n,n′ ||2),

(12)

where

Ln
(
α

(p)

n,n′

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

α
(p)

n,n′
⊤ z

(p)

v,n′ [τ ]

]2

, (13)

which can be expanded in terms of RF components as

Ln
(
α
(p)

n,n′,d

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

2D∑
d=1

α
(p)

n,n′,d z
(p)

v,n′,d[τ ]

]2

.

(14)

For convenience, the parameters {α(p)

n,n′,d} and {z(p)v,n′,d[τ ]} are
stacked in the lexicographic order of the indices p, n′, and



d to obtain the vectors αn ∈ R2PND and zv[τ ] ∈ R2PND,
respectively, which allows to rewrite the loss function as

Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α⊤

n zv[τ ]

]2
. (15)

B. Missing data

To formulate the topology identification problem with miss-
ing data and noisy observation, we assume that only a subset of
the nodes is observed. The motif of missing data is represented
by the masking vector m[t] ∈ RN , where mn[t], n = 1, ..., N ,
are i.i.d Bernoulli random variables. The observed vector
signal ỹ[t] at time t is given by

ỹ[t] = m[t]⊙ (y[t] + e[t]), (16)

where y[t] = [y1[t], ..., yn[τ ]]⊤ ∈ RN and e[t] ∈ RN are the
original signal and observation noise in vector form and ⊙
represents the element wise multiplication.

C. Nonlinear topology identification with missing data

A batch formulation for the joint topology identification and
missing data imputation can be formulated similarly to [9] and
[10] as follows:

{α̂, ŷ[τ ]}τ=T−1
τ=P = arg min

α,y[τ ]

T−1∑
τ=P

1

2
∥y[τ ]−α⊤zv[τ ]∥22

+ λ

N∑
n′=1

2D∑
d=1

∥αn,n′,d∥2+
T−1∑
τ=P

ν

2Mτ
∥ỹ[τ ]−m[τ ]⊙ y[τ ]∥22, (17)

where α = [α⊤
1 , . . . ,α

⊤
N ] ∈ R2PND × RN , Mτ is cardinality

of m[τ ], and ν is a hyperparameter that regulates the signal
reconstruction part.

III. JOINT ONLINE ESTIMATION OF NONLINEAR TOPOLOGY
AND MISSING DATA

Note that zν depends on P previous values of all the N time
series. Hence the required online estimation strategy should
estimate P previous values of the time series along with the
instantaneous values:

{α̂, ŷ[t], {ŷ[τ ]}t−1
τ=t−P } =

argmin
α,y[t]

{y[τ]}t−1
τ=t−P

ℓt

(
α,y[t], {y[τ ]}t−1

τ=t−P

)
+λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2, (18)

where the non decreasing function Ω(.) = |.| and the loss
function is defined as

ℓt

(
α,y[t], {y[τ ]}t−1

τ=t−P

)
=

1

2
∥y[t]−α⊤zv[t]∥22 +

ν

2Mt
∥ỹ[t]−m[t]⊙ y[t]∥22. (19)

We relax the formulation (18) since it is computationally
expensive as well as nonconvex. We assume that {ŷ[τ ]}t−1

τ=t−P

are independent realizations of random variables {y[τ ]}t−1
τ=t−P

[10] and obtain a new loss function:

ℓ̃t (α,y[t]) =
1

2
∥y[t]−α⊤zv[t]∥22

+
ν

2Mt
∥ỹ[t]−m[t]⊙ y[t]∥22. (20)

Now the loss function is convex and separable across n. Hence
the optimization problem for a node can be expressed as

{α̂n, ŷn[t]}=arg min
αn,yn[t]

ℓnt (αn, yn[t])+λ

N∑
n′=1

P∑
p=1

∥α(p)

n,n′∥2, (21)

where

ℓnt (αn, yn[t])=
1

2

[
yn[t]−α⊤

n zv[t]

]2

+
ν

2Mt
(ỹn[t]−mn[t]yn[t])

2.

(22)

We use the alternating minimization method in which (21)
is solved by alternating between two sub-problems that are
convex and have closed-form solutions. Since the optimiza-
tion problem with respect to yn[t] (the signal reconstruction
problem) is quadratic, a closed-form solution can be obtained.
The second optimization problem with respect to αn (topology
identification) is in a form similar to the one discussed in [6],
where it is solved in a closed form using composite objective
mirror descent (COMID) method.

A. Signal reconstruction

The signal reconstruction problem can be formulated as

ŷn[t] = argmin
yn[t]

ℓnt (αn, yn[t]) . (23)

The solution of (23) is obtained by finding the zero derivative
point of the objective function:

ŷn[t] =
νmn[t]ỹn[t]

Mt + νmn[t]
+

kn[t]Mt

νmn[t] +Mt
, (24)

where kn[t] = α⊤
n zv[t]. Let νmn[t]

Mt+νmn[t]
= qn[t], then,

ŷn[t] = qn[t]ỹn[t] + [1− qn[t]]kn[t]. (25)

B. Topology identification

We use the estimates {ŷn[τ ]}tτ=t−P obtained using (25) to
find the topology. This sub-problem can be formulated as

α̂n = arg min
αn

ℓnt (αn) + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (26)

where ℓnt (αn) = 1
2 [ŷn[t] − α⊤

n zv[t]]
2. The convex objective

function in (26) contains two terms: a smooth loss function
and a non-smooth regularizer. Such problems can be solved
efficiently using COMID methods [6]. The online COMID
update is given by

αn[t+ 1] = argmin
αn

J
(n)
t (αn), (27)

where J
(n)
t (αn) ≜ ∇ℓnt (αn[t])

⊤[αn −αn[t]]

+
1

2γt
∥αn −αn[t]∥22 + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (28)
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Fig. 1: Results: Experiment using synthetic data

In (28), αn[t] ∈ R2PND is the estimate of αn at time
t. The objective function J

(n)
t (.) consists of three terms:

(i) gradient of the loss function, (ii) Bregman divergence
∥αn − αn[t]∥22 chosen such that the optimization problem
(28) has a closed-form solution (γt is the step size associated
with the divergence), and (iii) a sparsity promoting group lasso
regularizer. Note that the Bregman divergence term increases
stability of the online algorithm by enforcing the next iterate
αn[t+1] to be closer to current iterate αn[t]. The gradient in
(28) is evaluated as

vn[t] := ∇ℓnt (αn[t]) = zv[t][α
⊤
n zv[t]− ŷn[t]]. (29)

A closed-form solution for (27) is obtained via the multidi-
mensional shrinkage-thresholding operator:

α
(p)
n,n′ [t+ 1] = [α

(p)
n,n′ [t]− γtv

(p)
n,n′ [t]]×[

1− γtλ

∥α(p)
n,n′ [t]− γtv

(p)
n,n′ [t]∥2

]
+

, (30)

where [x]+ = max {0, x}. The above solution is a product of
two terms: first term minimizes the loss function ℓnt (αn) and
the second term enforces sparsity on the updates. The proposed
algorithm for jointly estimating the topology and the missing
data is summarized in Algorithm 1.

Algorithm 1:
Result:

{
α

(p)
n,n′ [t+ 1]

}
n,n′,p

, ŷ[t]

Initialize {yn[t]}Pt=1,
{
α

(p)
n,n′ [P ]

}
n,n′,p

as all-ones vector, λ,

kernel parameters, γ, D, ν (heuristically chosen)
for t = P, P + 1, . . . do

Get data observation vector ỹn[t] and masking vector m[t],
compute zv [t]

for n = 1, . . . , N do
compute ŷn[t] using (25)
compute vn[t] using (29)
for n′ = 1, . . . , N do

compute α
(p)
n,n′ [t+ 1] using (30)

end
end

end

IV. EXPERIMENT

In this section, we test the capability of our algorithm using
both synthetic and real data. We generate graph-connected

time series with known topologies and varying levels of
missing data for synthetic data experiments, whereas, in the
second part, we use real data from Lundin’s offshore oil
and gas platform1. The ℓ2 norms of the estimated weights
(̂b(p)n,n′ [t] := ∥α(p)

n,n′ [t]∥2) are used to visualize the dependen-
cies among the time series. For all the experiments, we used
Gaussian reproducing kernel k with variance σ2

k = 5.

A. Experiments using Synthetic data

The data used in this experiment are generated us-
ing nonlinear VAR model described in (1) with N =

10, P = 4 and random Gaussian noise with mean 0 and
variance 0.01. The nonliner function in (1) is taken as
f
(p)

n,n′(x) = a
(p)

n,n′(x)g(x), ∀n, n′, p, where g(x) = 0.25 sin(x2) +

0.25 sin(2x) + 0.5 sin(x) and a
(p)

n,n′(x) ∈ {0, 1}. We term a
(p)
n,n′

as edge and when a
(p)
n,n′ = 0, it disables the dependencies

between the nodes n and n′ for the time lag p. Furthermore,
a
(p)
n,n′(x) = 0, when g(x) = 0. The time series are initialized

randomly using samples drawn from uniform distribution
U(0, 1). To bring time variance in the topology, 30% of
the active edges are made to disappear after every 1000
time stamps, and new equal number of different edges are
made active. To simulate various missing data scenarios, we
generate different masks m[t] ∀ t, whose samples are drawn
from Bernoulli distribution with probabilities 0.95, 0.75, 0.65,
corresponds to 5%, 25%, 35% of missing data respectively.

In Fig. 1a, we compare the true edges a
(p)
n,n′ and esti-

mated causal weights b̂
(p)
n,n′ at three different time instants

having different edge patterns. The edges and the estimated
weights are arranged in a matrix form of size N × N for
p = 1, 2, . . . , P and are stacked in Fig. 1a, such that the
resulting matrices are of size NP ×N . The estimated weights
are normalized and hard-thresholded to 0 or 1 to have the
best match with the edges. It can be observed in Fig. 1a
that for 5% of missing data, the proposed algorithm estimates
most of the edges accurately, and as the number of missing
data increases, the estimation accuracy decreases. The ROC
curve corresponding to the time stamp t = 990 is plotted in
Fig. 1b by computing the probability of detection (PD) and
the probability of false alarm (PFA). Figure 1b shows that the

1https://www.lundin-energy.com/
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Fig. 2: Results: Experiment using real data

areas under all the three curves are close to 1, indicating the
characteristics of a good ROC curve. It can also be observed
that the area under the curve deviates more from 1 as the
number of missing data increases. Also, the ROC curve for
a recent online linear topology estimation algorithm termed
TIRSO [1] is included in Fig. 1b. Note that TIRSO’s ROC
is computed based on full data; even then, its performance
significantly lags behind the proposed algorithm. Intuitively,
JSTIRSO [10], the extension to TIRSO that accounts for
missing data, should also perform inferiorly to the proposed
algorithm. These observations illustrate how effectively the
proposed algorithm identifies nonlinear topologies compared
to its linear counterparts.
B. Experiments using Real data

We use real data from Lundin’s oil and gas plant, consisting
of time series recorded from multiple pressure (P), temperature
(T), and oil level (L) sensors from system20 of the plant.
The system20 is a plant section where oil, gas, and water are
separated from the well extracts. There are 24 sensors in total
recording 24 time series, sampled at intervals of 5s. Below,
we examine two different missing data scenarios.

1) Missing data due to limited communication capacity:
Assume that only a subset of the sensor values can be
transmitted at each timestamp due to the limited capacity
of the communication channel. We randomly select 8 out of
the 24 sensors (∼ 33.33%) at each time stamp and jointly
estimate the topologies and the missing data. The true and
observed time series of a sensor, along with the reconstructed
values, are shown in Fig. 2a, which shows that the proposed
algorithm reconstructs the signal even with a high amount
of missing data. Since the ground truth dependencies are
unavailable, we compare the dependencies estimated from the
partial observations with that from a full observation in
Fig. 2b, which shows that the algorithm can estimate most
of the dependencies from the partial observations.

2) Missing data due to sensor failure : Here we consider
the case where the recording from a particular sensor is
missing for a certain period of time due to a sensor failure.
In the experiment, time series from sensor-2 are masked from
time instant t = 4000 to t = 4200, which constitutes about 16
minutes of data. Figure 2c shows that the proposed algorithm
reconstructs sensor-2 signals accurately during the missing
data interval without having access to any information from

sensor-2. This clearly showcases the advantage of exploiting
causal dependencies in missing data imputations.

CONCLUSION
This paper presents a novel algorithm for joint nonlin-

ear topology identification and missing data imputation. The
nonlinear causal dependencies are modeled using a compu-
tationally light kernel formulation based on random feature
approximations. Experiments on real and synthetic data have
demonstrated the effectiveness of the proposed algorithm
under various missing data scenarios.
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