
����������
�������

Citation: Chatterjee, A.; Prinz, A.

Applying Spring Security Framework

with KeyCloak-Based OAuth2 to

Protect Microservice Architecture

APIs: A Case Study. Sensors 2022, 22,

1703. https://doi.org/10.3390/

s22051703

Academic Editor: Juan M. Corchado

Received: 5 January 2022

Accepted: 20 February 2022

Published: 22 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Applying Spring Security Framework with KeyCloak-Based
OAuth2 to Protect Microservice Architecture APIs:
A Case Study
Ayan Chatterjee * and Andreas Prinz

Department of Information and Communication Technology, Centre for e-Health, University of Agder,
4630 Kristiansand, Norway; andreas.prinz@uia.no
* Correspondence: ayan.chatterjee@uia.no

Abstract: In this study, we implemented an integrated security solution with Spring Security and
Keycloak open-access platform (SSK) to secure data collection and exchange over microservice
architecture application programming interfaces (APIs). The adopted solution implemented the
following security features: open authorization, multi-factor authentication, identity brokering, and
user management to safeguard microservice APIs. Then, we extended the security solution with
a virtual private network (VPN), Blowfish and crypt (Bcrypt) hash, encryption method, API key,
network firewall, and secure socket layer (SSL) to build up a digital infrastructure. To accomplish
and describe the adopted SSK solution, we utilized a web engineering security method. As a case
study, we designed and developed an electronic health coaching (eCoach) prototype system and
hosted the system in the expanded digital secure infrastructure to collect and exchange personal
health data over microservice APIs. We further described our adopted security solution’s procedural,
technical, and practical considerations. We validated our SSK solution implementation by theoretical
evaluation and experimental testing. We have compared the test outcomes with related studies
qualitatively to determine the efficacy of the hybrid security solution in digital infrastructure. The
SSK implementation and configuration in the eCoach prototype system has effectively secured its
microservice APIs from an attack in all the considered scenarios with 100% accuracy. The developed
digital infrastructure with SSK solution efficiently sustained a load of (≈)300 concurrent users. In
addition, we have performed a qualitative comparison among the following security solutions:
Spring-based security, Keycloak-based security, and their combination (our utilized hybrid security
solution), where SSK showed a promising outcome.

Keywords: API; REST; spring-boot; Keycloak; authentication; authorization; encryption; external at-
tacks

1. Introduction
1.1. Overview and Motivation

Security in the healthcare system has been an emerging trend for the past few years. It
defines the interconnection of communication-enabled medical-grade devices (e.g., wear-
able and non-wearable), web services, software applications, and their integration with
wider-scale health systems and services to improve patients’ wellbeing [1,2]. However, the
growth and widespread adoption of the health security ecosystem has benefited sensor-
based remote monitoring (including wearable and stand-alone devices) with the manage-
ment of personal and person-generated health data [1,2].

Articles related to eHealth security research unveil the following security and pri-
vacy requirements in healthcare systems (both on-premises and cloud-based) [1,2]: data
security, user authentication, regulatory compliance, authorized access, confidentiality,
ethical consent, legal issues, the relevance of data access, data ownership, data consistency,
data separation, audits, archiving, third-party certificates (such as SAS70 Type II, Payment

Sensors 2022, 22, 1703. https://doi.org/10.3390/s22051703 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051703
https://doi.org/10.3390/s22051703
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0407-7702
https://orcid.org/0000-0002-0646-2877
https://doi.org/10.3390/s22051703
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051703?type=check_update&version=2

Sensors 2022, 22, 1703 2 of 27

Card Industry Data Security Standard (PCI DSS) Level 1, International Organization for
Standardization (ISO) 27001, and Federal Information Security Management Act (FISMA)),
protection against network security issues (such as Denial-of-Service (DoS), Distributed
DoS (DDoS), Man in the Middle (MITM) attack, Internet Protocol (IP) spoofing), poli-
cies, protocols, and database security. From the existing studies, identified vital security
terms (see Table 1) are distributed in the following four categories to use in this study:
authentication (multi-factor, form-based, bearer token, and API key), authorization (Open
Authorization (OAuth2), Open Identifier (OpenID), and Cross-Origin Resource Sharing
(CORS)), encryption (digital certificate, Hypertext Transfer Protocol Secure (HTTPS), Rivest–
Shamir–Adleman (RSA), Bcrypt, Secure Hash Algorithm (SHA)-256, and Message-Digest
algorithm (MD5)) and external security threats (Cross-Site Request Forgery (CSRF), MITM,
Cross-site scripting (XSS), brute force, DoS, DDoS, and IP spoofing).

Table 1. Selected list of core security components of Spring Security Framework.

Components Description

SecurityContextHolder It gives access to the SecurityContext.

SecurityContext It contains the Authentication class and request-specific
security information.

Authentication This class stores user information for representing the
principal in a way unique to Spring Security.

GrantedAuthority The application-wide permissions given to a principal are
to be reflected with this class.

UserDetails It gives necessary information to create an authentication
object from DAOs or other security data sources.

UserDetailsService It helps to build UserDetails when a String-based
username is passed (or certificate ID or similar).

AuthenticationManager It loads the user authentication data (credentials or user
store’s information) to verify authenticity of the users.

AuthenticationManagerBuilder

It is used to set up user information in memory, Java
Database Connection (JDBC), Lightweight Directory
Access Protocol (LDAP), or adding a custom
UserDetailsService.

AbstractSecurityInterceptor A central class of authorization helps to intercept secured
resource access.

SecurityMetedataSource It provides details about the current user and the item
being protected along with SecurityContext class.

AccessDecisionManager To decide dynamically if access can be granted to a user.

AbstractSecurityInterceptor To perform access decisions.

WebSecurityConfig

It enables http security to access the HTTP Endpoints with
basic authentication by extending
WebSecurityConfigurerAdapter and overriding configure
method.

PasswordEncoder

The PasswordEncoder interface of Spring Security is used
to convert a password in a single way to allow the
password to be securely stored. It can use any of the
following encryption algorithms—MD5, SHA-256, and
Bcrypt (recommended).

Sensors 2022, 22, 1703 3 of 27

Table 1. Cont.

Components Description

AuthenticationProvider It helps to protect application with Spring Security and
Basic Auth.

CorsRegistry To set up global support for CORS configuration for the
Spring Boot application.

HttpSecurity

It is like the Extensible Markup Language (XML) <http>
feature of Spring Protection in the namespace
configuration. It enables web-based authentication for
individual http requests to be configured. It will apply to
all requests by default.

Authentication is used to verify personal identity; authentication is about validating
credentials. The scheme decides whether the person is a legal consumer. Authorization is
the mechanism used to determine if specific services are available to the authenticated user.
It verifies users’ rights to have personal access to resources such as records, databases, and
files. Typically, authorization comes after authentication to verify user privileges. Encryp-
tion is a mechanism that encodes a document or file such that only some individuals can
read it. Encryption uses an algorithm to encrypt data at the sender side and a key to decrypt
the encrypted data into original form at the receiver side. External threats refer to attacks
from external systems using malicious software, hacking technologies, social engineering,
and attempts to exploit system vulnerabilities. Healthcare research [2–12] shows multiple
studies associated with API security, protection of Electronic Health Records (EHR), secure
Internet-of-Medical-Things (IoMT) system, security protocols and authentication scheme,
methods for healthcare security, healthcare cloud and big data security, healthcare security
compliance, security performance, challenges, and success factors.

Salibindla et al. [13] conducted a study on microservice API security focusing on the
security for communication protocols. Xie et al. [14] published a report on Spring Security
architecture and its implementation. However, these studies were performed separately
without verifying the efficacy of the Spring Framework (SF), SSF, and OAuth2 when these
technologies were used on MSA endpoint authentication and authorization. Nguyen
et al. [15] created a proof-of-concept (PoC) MSA application using SF, spring protection,
and OAuth2 to reduce the information gap on MSA and API security. They did not test
how the solution would work after integrating with a third-party IAM platform. Dikanski
et al. [16] performed a conceptual study to identify and implement authentication and
authorization patterns in the SSF to reduce the difference between design and implementa-
tion of pattern-based protection to incorporate high-quality security features in software
systems. However, the study suffered from SSF’s actual implementation to protect MSA at
the API endpoint level with integration with the IAM platform. Aloufi et al. [17] proposed
a secure and cost-effective model based on Message Queue Telemetry Transport (MQTT)
protocol to secure IoT resources with access control mechanisms over RESTful web services.
Beer et al. [18] proposed a neural network-based adaptive security architecture to protect
RESTful web services in an enterprise computing environment with the following three
functional principles: predict, prevent, and learn an intelligent approach to detect future
threats. The core of their proposed security solution was based on the public key infrastruc-
ture (PKI) and its related encryption technology to protect HTTP transactions. The results
were compared with supported network/transport layer security, and it was discovered
that the proposed security solution is suitable for REST APIs and is better than the Simple
Object Access Protocol (SOAP)-based web services. Since RESTful web services are state-
less, they usually do not have any sessions to perform challenge-response mechanisms.
Transport layer security/secure socket layer (Transport Layer Security (TLS)/Secure Socket
Layer (SSL)) provides secure peer-to-peer authentication. Still, when the authentication
request is based on delegation, this mechanism is inadequate to allow sites to authenticate

Sensors 2022, 22, 1703 4 of 27

on behalf of their users. HTTP security (HTTPS) is widely used; however, it only provides
hop-by-hop protection. A good solution that follows RESTful principles is the token-based
approach. Serme et al. [19] proposed a security model based on confidentiality and digital
signatures to protect RESTful messages. These messages carry tokens for non-repudiation
and provide data secretly by encrypting their content. They proposed a protocol to ensure
the communication security of RESTful services. They provided encryption, signature,
and their combination. They did not intend to offer an equivalent secure session for REST-
ful services because it relates to the transport layer security of HTTP, which has already
been addressed in protocols, such as SSL and TLS. Backere et al. [20] designed a security
mechanism for RESTful web services using non-RESTful elements to outperform TLS.

However, only a few studies concentrate on implementing the Spring Security Frame-
work (SSF) and Microservice Architecture (MSA) at the API endpoint level, regardless of the
vital role of API protection in MSA with an open-source Identity and access management
(IAM) platform. This has been the motivation behind conducting this study.

1.2. Aim of the Study

This study aims to reduce the MSA and API security knowledge gap and protect
REST APIs by creating an MSA application prototype using SSK. In conjunction with open
source Keycloak software (Apache license 2.0), we perform a study on spring-based API
protection solutions with critical features, such as identity brokering, OAuth2, multi-factor
authentication, CORS, and user management against unauthorized access and external
attacks [13,14,21]. We used SHA256 hashing with ECDSA algorithm (or ES256) to create a
JWT signature, pbkdf2-sha256 for password management in Keycloak, and SHA512 for
the OTP hash algorithm in Keycloak. We focused on active sniffing with the Wireshark
network analyzer [22]. We conducted non-functional security testing, such as penetration
testing, to validate security gaps and confirm the usefulness of the open-source SSF and
Keycloak in securing REST APIs. Moreover, we performed unit testing to validate the
security performance for each module. The research questions for this study are as follows:

(RQ1) How to develop an integrated security solution with Spring Security framework
(SSF) and open-access identity and access management platform (IAM)? How to extend
the security solution to build a digital infrastructure?
(RQ2) How scalable and relevant is the adopted solution to protect Microservice Architec-
ture APIs from external vulnerabilities?

Different open-access IAM platforms are available in the market, such as Keycloak,
ADFS 2.0, Shibboleth, Open AM/OpenSSO, Ping Federate, and Okta. However, to achieve
IoMT REST-API security in this study, we used the Keycloak platform and SSF (SSK). The
Keycloak-based OAuth2 solution can be replaced with other IAM platform-based OAuth2
for mutual performance comparison; it is beyond the scope of this study. Subsequently, we
expanded the SSK solution with VPN, Bcrypt, API key, network firewall, and SSL protocol
to build a digital infrastructure to host health applications. SSK implements security
features, such as identity brokering, OAuth2, multi-factor authentication, CORS, and user
management to protect the REST APIs from illegitimate access and external attacks, such as
CSRF, XSS, Clickjacking, content sniffing, brute force, DoS, DDoS, IP spoofing, and MITM.
After deploying an electronic health coaching (eCoach) prototype system in the developed
digital infrastructure, we conducted a formal security analysis of the SSK solution scheme.
In Sections 3 and 4, we explain the RQ1, and the RQ2 has been elaborated in Sections 5
and 6.

2. Basic Preliminaries

In a digital health system [23–26], personal health data can be collected from het-
erogeneous sources over the different web and REST APIs. Therefore, maintaining the
privacy and security of EHRs has become an open challenge. In combination with open
source KeyCloak software [27], the Spring Security [14–16] paradigm may offer an oppor-
tunity to enhance security features, functionalities, identity brokering, session handling,

Sensors 2022, 22, 1703 5 of 27

CORS support, access management solutions, and security assertion markup language
(SAML) [28] for a health system’s web and REST APIs. The required security background
for understanding the SSK security solution is discussed in this section.

Spring Security Framework [14–16] is a robust, highly customizable, comprehensive,
and extensible open-source Java framework supporting authentication and authorization.
Furthermore, it provides a solution to protect common external attacks [28–37], such as
session fixation, clickjacking, CSRF, etc. For securing Spring-based applications, it is the
de-facto standard. The modules linked to spring security are core, remoting, web, config,
LDAP, Access Control List (ACL), Central Authentication Service (CAS), and OpenID. The
modular SSF consists of loosely coupled components linked to dependency injection. The
selected list of core security components (class/interface) of the SSF is described in Table 2.
SSF can be integrated with various authentication technologies and standards, such as
single-sign-on or SSO [28] (Kerberos, LDAP, and JASSO), HTTP-basic, automatic remember-
me, and form-based authentication, authentication filter, OpenID [28], OAuth [29], and
SAML. This study focused mainly on form-based authentication, OAuth 2.0, SAML 2.0,
standard spring security programming models, and configuration idioms. Spring Security
OAuth supports using spring security with OAuth (v. 1a) and OAuth2. The spring
SAML extension (SSE) enables SAML 2.0 service provider features to integrate with spring
applications. It supports SAML 2.0 in identity provider (IP) mode with Keycloak, ADFS
2.0, Shibboleth, Open AM/OpenSSO, Ping Federate, and Okta.

Table 2. Selected list of Keycloak components for spring security framework integration.

Components Description

KeycloakWebSecurity
ConfigurerAdapter

As a convenient base class, Keycloak provides a
KeycloakWebSecurityConfigurerAdapter to build a
WebSecurityConfigurer case. The execution enables
customization by overriding techniques. It greatly
simplifies context configuration for security.

KeycloakAuthenticationProvider On a KeycloakAuthenticationToken, it performs
authentication.

EnableGlobalMethodSecurity The jsr250Enabled property allows the annotation of
@RoleAllowed to be used.

KeycloakConfigResolver It resolves the configuration of Keycloak Spring Boot
Adaptor using “keycloak.json” configuration file.

sessionAuthenticationStrategy This method defines the session authentication strategy.

RolesAllowed This annotation is the JSR-250′s equivalent annotation of
the @Secured annotation.

Keycloak [27] is an open-access IAM platform that secures web applications and REST-
ful web services using standard protocols such as OAuth2, OpenID Link, and SAML 2.0. It
offers flexible login, registration, administration, CORS support, and account management
user interfaces. We configured Keycloak as a separate sever to secure our eCoach APIs
using the standard security assertion markup language 2.0 (SAML 2.0) integration with
SSF. SAML 2.0 is a variant of the SAML standard that allows security domains to share
authentication and authorization identities. SAML 2.0 is an XML-based protocol that uses
security tokens containing assertions between an SAML authority, an Identity Provider, and
an SAML client, called a Service Provider, to transfer information about a principal (usually
an end-user). SAML 2.0 allows SSO, web-based, cross-domain, and helps minimize the
administrative overhead of transmitting multiple authentication tokens to the user. These
tokens may have identity details, such as username, address, email, and other information
about the profile. They can also keep permission data so that users can make authorization
decisions. These tokens can also be used on REST-based services to render stable invoca-
tions. The following core concepts and terms are generally used in Keycloak to secure web

Sensors 2022, 22, 1703 6 of 27

application and REST APIs [23]: users, authentication, authorization, credentials, roles,
user role mapping, composite roles, groups, realms (to manage a set of users, credentials,
their functions, and groups), clients, client adapters, client role, identity token, access token,
session, user federation provider, and identity provider mappers. Table 2 describes the
selected list of components of Keycloak for SSF integration to protect our eCoach REST
APIs.

Microservice Architecture (MSA) [29–37] has arisen to describe a specific way of devel-
oping software systems for independently deployable services. The traditional monolithic
software development approach suffers from the following drawbacks: bundled deploy-
ment as a single stack, intransigent scalability, high cost of resources and refactoring efforts,
and DevOps challenges among dispersed teams [15,16]. In contrast, MSA handles such
concerns with the following measures: task decomposition into services, service commu-
nication using APIs with the smallest granularity, agility, independent deployment, and
execution of services. REST and SOAP are two HTTP-based communication protocols
used for data exchange between microservice APIs in multiple formats, such as XML
and JSON [15]. We used REST for eCoach API implementation in this study due to its
lightweight nature. There are numerous methods to secure REST APIs. Still, the following
four are the most popular:

• HTTP-based authentication scheme (basic and bearer token),
• API keys,
• OAuth2 (access token and refresh token), and
• OpenID (e.g., Keycloak OpenID, BankID).

OAuth2 is intended for authorization only, to grant access from one program to
another to data and features. OpenID Connect (OIDC) is a thin layer on top of OAuth2
that adds details about logging into the user profile. We used Keycloak generic OpenID
connect relying party and SAML service provider libraries in this study. The reliability
and credibility of eHealth scientific research and associated services rely on the health data
protection plans and guidelines regarding security, privacy, and confidentiality. For this
study, we received ethical approval from The Norwegian Centre for Research Data (NSD)
for managing data for our eHealth research in Norway.

3. System Architecture

Personal health and wellness data are generally collected through wearable sensors,
interactions, interviews, web-based interactions, mobile apps, questionnaires, and feedback
forms [23,25]. For ubiquitous tracking, high-end, time-dependent activity data collection
with wearable BLE devices has become accessible and feasible. Wearable activity sen-
sors can be connected via Bluetooth short-range communication technology (BLE) to a
smartphone. With a machine intelligence module, the computing device can calculate
and transfer high-resolution raw acceleration data and multiple operation parameters to
safe storage seamlessly to process the data further. Some activity data are questionnaire-
dependent, such as non-wear time and intense activity information. Either invasive (e.g.,
glycemic response, cholesterol level) or non-invasive physiological data (e.g., weight, blood
pressure, heart rate, body assessment data) can be collected. Food data based on the
questionnaire can be collected either regularly or on an alternating daily or weekly basis.
Baseline data (medical background, habit, preference, personal knowledge, initial weight
and height, initial blood pressure, and initial body assessment data) are being collected for
demographic statistics or population clustering or individual target assessment during the
participant’s initial recruitment or every month.

In this context, we developed a digital infrastructure after extending the SSK features
with VPN, Bcrypt hash, API key, firewall, and SSL, as depicted in Figure 1. Moreover, we
deployed an electronic health coaching (eCoach) prototype system in the developed infras-
tructure to execute a formal security testing of the SSK solution scheme, and it is depicted
in Figure 2. We maintained a modular structure for our eCoach prototype system for an
obesity case study with the following modules [25]: activity, contextual, questionnaire,

Sensors 2022, 22, 1703 7 of 27

user interface (eCoachUX), and eCoach business (for user management, performance mon-
itoring, database management, scheduling, user support, user communication, decision
support, and recommendation generation).

Sensors 2022, 22, x FOR PEER REVIEW 7 of 26

In this context, we developed a digital infrastructure after extending the SSK features
with VPN, Bcrypt hash, API key, firewall, and SSL, as depicted in Figure 1. Moreover, we
deployed an electronic health coaching (eCoach) prototype system in the developed
infrastructure to execute a formal security testing of the SSK solution scheme, and it is
depicted in Figure 2. We maintained a modular structure for our eCoach prototype system
for an obesity case study with the following modules [25]: activity, contextual,
questionnaire, user interface (eCoachUX), and eCoach business (for user management,
performance monitoring, database management, scheduling, user support, user
communication, decision support, and recommendation generation).

Figure 1. The developed digital infrastructure with extended SSK features.

Figure 2. Deployment of eCoach system in the developed digital health infrastructure with extended
SSK features.

3.1. Data Collection

Figure 1. The developed digital infrastructure with extended SSK features.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 26

In this context, we developed a digital infrastructure after extending the SSK features
with VPN, Bcrypt hash, API key, firewall, and SSL, as depicted in Figure 1. Moreover, we
deployed an electronic health coaching (eCoach) prototype system in the developed
infrastructure to execute a formal security testing of the SSK solution scheme, and it is
depicted in Figure 2. We maintained a modular structure for our eCoach prototype system
for an obesity case study with the following modules [25]: activity, contextual,
questionnaire, user interface (eCoachUX), and eCoach business (for user management,
performance monitoring, database management, scheduling, user support, user
communication, decision support, and recommendation generation).

Figure 1. The developed digital infrastructure with extended SSK features.

Figure 2. Deployment of eCoach system in the developed digital health infrastructure with extended
SSK features.

3.1. Data Collection

Figure 2. Deployment of eCoach system in the developed digital health infrastructure with extended
SSK features.

3.1. Data Collection

We used a wearable MOX-2 [38] activity monitor to collect personal activity data for
the following measurement parameters:

• Physical activity classification (low intensity, medium intensity, and high intensity),

Sensors 2022, 22, 1703 8 of 27

• Posture detection (sedentary, standing, and weight-bearing),
• Physical activity intensity (counts per minute),
• The activity module is responsible for activity device registration, device allocation,

seamless collection of sensor observations, and sending it back to the eCoach business
module for storing data in a PostgreSQL database.

MOX-2 is an activity monitor based on an embedded BLE accelerometer with low
power consumption. The device can seamlessly measure and transmit high-resolution raw
acceleration data and multiple activity parameters per second for seven consecutive days
(up to 60 days).

In Stage 1, data collected from the activity sensor are sent back to the MOX mobile app
to be stored temporarily in CSV format on the smartphone over BLE protocol. In Stage 2,
a schedular running at the backend of our eCoach app collects activity data periodically
from the smartphone location and sends it to the activity module using the HTTP-POST
service (see Figure 3). The contextual module periodically contains context updates from
OpenWeather REST APIs (e.g., latest and hourly) with API-Key authentication and sends
them back to eCoach business logic for stable storage. The questionnaire module consists of
six question sets: daily, alternative day, weekly, interview, baseline (monthly), and feedback
form. The participant submits the questionnaire, which is stored in the database through
the eCoach business logic.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 26

We used a wearable MOX-2 [38] activity monitor to collect personal activity data for
the following measurement parameters:
• Physical activity classification (low intensity, medium intensity, and high intensity),
• Posture detection (sedentary, standing, and weight-bearing),
• Physical activity intensity (counts per minute),
• The activity module is responsible for activity device registration, device allocation,

seamless collection of sensor observations, and sending it back to the eCoach
business module for storing data in a PostgreSQL database.
MOX-2 is an activity monitor based on an embedded BLE accelerometer with low

power consumption. The device can seamlessly measure and transmit high-resolution
raw acceleration data and multiple activity parameters per second for seven consecutive
days (up to 60 days).

In Stage 1, data collected from the activity sensor are sent back to the MOX mobile
app to be stored temporarily in CSV format on the smartphone over BLE protocol. In Stage
2, a schedular running at the backend of our eCoach app collects activity data periodically
from the smartphone location and sends it to the activity module using the HTTP-POST
service (see Figure 3). The contextual module periodically contains context updates from
OpenWeather REST APIs (e.g., latest and hourly) with API-Key authentication and sends
them back to eCoach business logic for stable storage. The questionnaire module consists
of six question sets: daily, alternative day, weekly, interview, baseline (monthly), and
feedback form. The participant submits the questionnaire, which is stored in the database
through the eCoach business logic.

Figure 3. Data collection modules of the health eCoach prototype system.

3.2. eCoach System (App. Version vs. Web Version)
The “/eCoachUX/home” API is exposed to the external user (protected with VPN

access, a firewall, and SSL). Other APIs are protected with the access-role as configured in
the Keycloak authorization server. If participants forget the password for authentication,
they need to raise a request through “/eCoachUX/complaint” REST API. The Actuator
provides secure endpoints for controlling, handling, and monitoring Spring Boot
modules, such as /metrics, /env, /beans, /health, /info, and /trace, which are protected by
role-based authorization. The user interface module is responsible for app view, web
view, and data visualization based on individual access roles. Figure 1 depicts how the
SSK security solution for the eCoach system has been implemented with the KeyCloak
third-party IAM platform. This study concentrated only on the eCoach API security and

Figure 3. Data collection modules of the health eCoach prototype system.

3.2. eCoach System (App. Version vs. Web Version)

The “/eCoachUX/home” API is exposed to the external user (protected with VPN
access, a firewall, and SSL). Other APIs are protected with the access-role as configured in
the Keycloak authorization server. If participants forget the password for authentication,
they need to raise a request through “/eCoachUX/complaint” REST API. The Actuator
provides secure endpoints for controlling, handling, and monitoring Spring Boot modules,
such as /metrics, /env, /beans, /health, /info, and /trace, which are protected by role-
based authorization. The user interface module is responsible for app view, web view, and
data visualization based on individual access roles. Figure 1 depicts how the SSK security
solution for the eCoach system has been implemented with the KeyCloak third-party IAM
platform. This study concentrated only on the eCoach API security and its implementation
with SSK. Other core eCoach concepts, such as sensor specification, decision support

Sensors 2022, 22, 1703 9 of 27

principles, AI incorporation for the analysis of EHRs, data visualization, and personalized
recommendation generation for a healthy lifestyle, are beyond this study’s scope.

The eCoach system has been hosted in a VPN-protected ubuntu infrastructure pro-
vided by The University, and the provided network (“EduNet”) is strictly firewall protected.
Its internal IP addresses are not published to external Domain Name Services (DNS). Net-
works inside EduNet should be accessible; however, they must go through the proxy for
external access from the eCoach server. We implemented an extra layer of basic (form-
based) authentication on top of KeyCloak’s two-factor (password and One-Time Password
(OTP)) authentication to authenticate participants on the eCoach mobile app to transfer
activity data from the MOX-activity smartphone app. Basic authentication consists of a
system-generated unique user ID (UUID) and a modifiable password. No personal data
(such as national id, email, mobile or phone no, or similar personal identifiers) are unveiled
in the basic user authentication step. KeyCloak’s two-factor user authentications consist of
google authenticator (auto-id generator app) and credentials. Collected data are stored in a
PostgreSQL database in JSON format for faster data processing. Furthermore, we created a
self-signed SSL certificate with Keytool to secure confidential web information using public
key (RSA) encryption. The eCoach system has five user categories: researcher, developer,
system admin, health professional (nurse), and participants. They are further grouped
into “ADMIN” (researcher, developer, system admin) and “USER” (health professional or
nurse, and participants) for role-specific access control. Researchers and developers are
responsible for the feasibility study, methodology adoption, system design, development,
system configuration, deployment, test, and performance evaluation. They have full access
to the system. System admin is accountable for infrastructure support. However, they do
not have access to the participant’s health and wellness data. Trained health professionals,
such as nurses, are responsible for interviewing (participant screening, recruitment, and
the assessment of health condition), thereby collecting initial and baseline data through a
pre-defined questionnaire set. Furthermore, they have access to a visualizing dashboard to
monitor the participant’s processed health and wellness data. Participants have access to
the personal data collection endpoints, feedback forms, and personal health and wellness
monitoring dashboard. The system is protected from disclosing any personal data, and
questionnaire forms are restricted from submitting any unique identifiers. The Secure
Shell (SSH) access to the ubuntu and database servers is protected with authentication and
authorization rules. The proposed eCoach system can be accessed through a web portal
and/or a smartphone android application.

3.3. Methods for Security Implementation and Performance Evaluation

There is no single protection method to meet all the security requirements and design
specifications for our distributed eCoach system. To implement and validate the SSK
security solution, we utilized the web engineering security methodology by Aljawarneh
et al. [39]. The software engineering principles inspire the method and build on top of the
standard waterfall software development life cycle (SDLC) (see Table 3). The methodology
helped to eliminate substantial threat exposures during all the SDLC phases by integrating
security and evaluation components at each SDLC phase. Both software engineers and
security professionals verified each stage.

To determine the performance of the hybrid security method, we evaluated the scala-
bility of the API. Throughput (S) and latency (L) are considered to measure API scalabil-
ity [39–42]. Network throughput refers to the average data rate at which data or messages
are successfully transmitted on a specific communication link. It is measured in bits per
second (bps). The maximum network throughput equals the Transmission Control Protocol
(TCP) window size divided by the communication packet’s round-trip time (RTT). This
method does not consider communication overhead, such as network receiver window size,
machine limitations, or network delay [39–42]. Network latency is the time it takes for a
packet to be captured, transmitted, processed through multiple devices, and then received
and decoded at the destination [39–42]. We use Apache open-source software JMeter (V

Sensors 2022, 22, 1703 10 of 27

5.4.1) to generate HTTP request load (l) to check API scalability as a “thread group” and
capture the corresponding throughput and latency. The following three attributes for load
testing using JMeter [39] are critical:

• The number of threads or users;
• The acceleration period in seconds;
• The loop count sets the test count.

We set the cycle count value of a single load to 5 repeated experiments and take the
average throughput and latency. Low latency and high throughput are good performance
indicators for supporting real-time critical applications.

Table 3. Importance of the SDLC processes in eCoach context.

Process Importance in eCoach context

Requirement
Specification

Defining of eCoach scope, eCoach target audiences, user needs,
functional requirements, external interface requirements (user,
hardware, software, communications), system features,
authentication, and authorization requirements to handle internal
and/or external attacks, requirements for data integrity, and
storage, and other non-functional requirements (performance,
safety, security, and quality).

Design

Sufficient attention to role creation, data federation, password
management, system modulation, API design, security
configuration to integrate SSF with KeyCloak, UML modeling,
database design, server configuration, and consideration for
security vulnerabilities.

Implementation
(development)

Development of APIs using Spring Boot Framework, coding for
UI design, data collection, data storage, password management,
authentication, and authorization.

Functional Testing
(unit testing)

In two levels, which are unit testing (unit testing) and
non-functional penetration testing, we break down security
testing of the eCoach system.

Maintenance This phase involves bug fixing, infrastructure support, support to
participants, addition/deletion of users, and upgradation.

4. Adopted Security Scheme

This section describes how we adopted the security method for our security implemen-
tation with SSF and Keycloak and, afterward, the solution validation. Then, we describe
security configuration, password management, and security testing to check the SSK secu-
rity solution’s effectiveness to protect MSA APIs only. We tested the security performance
of the system in both real-time and simulated environments.

4.1. Hybrid Security Scheme—SSK

In this study, we built a Spring Boot application and integrated it with Keycloak [27]
to protect the REST APIs from unauthorized calls. We created users in Keycloak, login and
generated a JWT token [43] to access the secured REST APIs. We configured the KeyCloak
server with the following steps: a. download and run the KeyCloak server in stand-alone
mode; b. configure the server with the master realm, new eCoach specific realm, login
configuration, email settings, theme and internationalization, creation and management
of clients, and realm level roles; c. add Keycloak Spring maven dependencies (keycloak-
spring-boot-starter) and configuration of respective key-value pairs; and d. create and
configure Java class with the Spring security (@EnableWebSecurity), Spring Security global
method security (@EnableGlobalMethodSecurity), and extension of Keycloak web security
configuring adapter class.

Sensors 2022, 22, 1703 11 of 27

Clients are services and applications that can request the authentication of users
through Keycloak. There are two types of clients [27]. The first kind of client is Keycloak
applications that want to encrypt themselves and use SSO. The second category of clients
are applications that request an access token to use that access token to access protected
resources. Client ID is used in the request to identify the client. We used OpenID Connect
(OIDC) as a client protocol in KeyCloak to secure eCoach APIs. There are three access
types [27]: public, confidential, and bearer-only under the OIDC client to grant access.
Here, we set access type confidential to obtain client secret and turned-on features, such
as Standard Flow Enabled, Direct Access Grants Enabled, Service Accounts Enabled,
Authorization Enabled options [27]. Confidential access type is used for server-side clients
to perform login using a client secret and request access tokens to access resources. A
service that can authenticate a user is an identity provider (IDP). Keycloak is an IDP [27]
and acts as an authorization server (AS) (@EnableAuthorizationServer) in the OAuth2
workflow. An authorization point works on the AS, allowing our applications and HTTP
endpoints to define our system’s features. In our eCoach system, two actors who interact
with the AS are—ADMIN (resource owner) and USER (client registered with AS) as the
fundamental use cases depicted in Figure 4. The resource server (@EnableResourceServer)
is an application that provides clients with an access token to access the HTTP endpoint
resource server. It is a library set that includes HTTP endpoints, static tools, and interactive
web pages. Our implemented microservices are depicted in Figure 5 as use cases of resource
servers. OAuth2 is a mechanism for authorization to allow access to the client resources.
We focused on the grant form (authorization code), client ID, and client secret to creating
an OAuth2 application.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 26

(keycloak-spring-boot-starter) and configuration of respective key-value pairs; and d.
create and configure Java class with the Spring security (@EnableWebSecurity), Spring
Security global method security (@EnableGlobalMethodSecurity), and extension of
Keycloak web security configuring adapter class.

Clients are services and applications that can request the authentication of users
through Keycloak. There are two types of clients [27]. The first kind of client is Keycloak
applications that want to encrypt themselves and use SSO. The second category of clients
are applications that request an access token to use that access token to access protected
resources. Client ID is used in the request to identify the client. We used OpenID Connect
(OIDC) as a client protocol in KeyCloak to secure eCoach APIs. There are three access
types [27]: public, confidential, and bearer-only under the OIDC client to grant access.
Here, we set access type confidential to obtain client secret and turned-on features, such
as Standard Flow Enabled, Direct Access Grants Enabled, Service Accounts Enabled,
Authorization Enabled options [27]. Confidential access type is used for server-side clients
to perform login using a client secret and request access tokens to access resources. A
service that can authenticate a user is an identity provider (IDP). Keycloak is an IDP [27]
and acts as an authorization server (AS) (@EnableAuthorizationServer) in the OAuth2
workflow. An authorization point works on the AS, allowing our applications and HTTP
endpoints to define our system’s features. In our eCoach system, two actors who interact
with the AS are—ADMIN (resource owner) and USER (client registered with AS) as the
fundamental use cases depicted in Figure 4. The resource server (@EnableResourceServer)
is an application that provides clients with an access token to access the HTTP endpoint
resource server. It is a library set that includes HTTP endpoints, static tools, and
interactive web pages. Our implemented microservices are depicted in Figure 5 as use
cases of resource servers. OAuth2 is a mechanism for authorization to allow access to the
client resources. We focused on the grant form (authorization code), client ID, and client
secret to creating an OAuth2 application.

Figure 4. Authorization Server (AS) use-case for eCoach prototype system. Figure 4. Authorization Server (AS) use-case for eCoach prototype system.

Sensors 2022, 22, 1703 12 of 27
Sensors 2022, 22, x FOR PEER REVIEW 12 of 26

Figure 5. Resource Server (RS) use-case for eCoach prototype system.

JavaScript Object Notation Web Token (JWT) represents the claims between two
parties in a JSON Web Token [14–16]. Such tokens are of two types: identity token (part
of the OpenID Connect specification that is a client-dedicated function namespace) and
access token (part of the OpenID Connect and OAuth2 specification and allows HTTP
request that grants access to the service). We used ES256 to create a JWT signature. Access
tokens are typically short-lived and frequently expire after only minutes. The additional
refresh token sent by the login protocol allows a new access token to be accessed by the
application after it expires (see Figure 6). Our Spring application security configuration
expands the KeyCloak’s built-in KeycloakWebSecurityConfigurerAdapter, to include the
following features: configure and configureGlobal methods with HttpSecurity to protect
application APIs from external attack, authorization, and authentication of an HTTP
request, password management with the pbkdf2-sha256 algorithm, session authentication
strategy, filter registration, and Keycloak-Springboot configuration resolver. eCoach’s
OAuth configuration extends the core classes of the KeyCloak library in SSF for user
creation, authentication, and retrieval of role-specific access tokens based on authorization
server Uniform Resource Locator (URL), realm, client ID, role, and client secret. The user
details and their tokens are stored in the in-memory H2 database [27].

Figure 5. Resource Server (RS) use-case for eCoach prototype system.

JavaScript Object Notation Web Token (JWT) represents the claims between two parties
in a JSON Web Token [14–16]. Such tokens are of two types: identity token (part of the
OpenID Connect specification that is a client-dedicated function namespace) and access
token (part of the OpenID Connect and OAuth2 specification and allows HTTP request
that grants access to the service). We used ES256 to create a JWT signature. Access tokens
are typically short-lived and frequently expire after only minutes. The additional refresh
token sent by the login protocol allows a new access token to be accessed by the application
after it expires (see Figure 6). Our Spring application security configuration expands the
KeyCloak’s built-in KeycloakWebSecurityConfigurerAdapter, to include the following
features: configure and configureGlobal methods with HttpSecurity to protect application
APIs from external attack, authorization, and authentication of an HTTP request, password
management with the pbkdf2-sha256 algorithm, session authentication strategy, filter regis-
tration, and Keycloak-Springboot configuration resolver. eCoach’s OAuth configuration
extends the core classes of the KeyCloak library in SSF for user creation, authentication,
and retrieval of role-specific access tokens based on authorization server Uniform Resource
Locator (URL), realm, client ID, role, and client secret. The user details and their tokens are
stored in the in-memory H2 database [27].

Sensors 2022, 22, 1703 13 of 27
Sensors 2022, 22, x FOR PEER REVIEW 13 of 26

Figure 6. Access-token generation from the existing refresh-token.

4.2. Developing SSK in an Architecture
We deployed the SSK security scheme in our digital architecture with extended

security features (see Figure 2). Cross-Origin Resource Sharing (CORS) is a protection
principle that enables resources implemented in web browsers to be restricted. It keeps
the external code from creating or consuming requests from unwanted sources. Our
eCoach’s RESTful APIs support the CORS on SSL-enabled tomcat port 8443 with
@CrossOrigin annotation. By design, the Spring Boot application uses the HTTP 8080 port
when the application begins. However, we created a self-signed SSL certificate to enable
HTTPS and port 8443 with the code—keytool-genkey-alias apachetomcat-storetype
PKCS12-keyalg RSA-keysize 2048-keystore eCoachKey.p12-validity 3650. The Keystore
file path was then added to the configuration file of the Apache-tomcat webserver to
change the application startup port from 8080 to 8443. Port 8443 is the default
configuration in the Apache-tomcat webserver to allow HTTPS traffic. Moreover, the port
number can be customized.

Passay [44] is a password generation and validation library based on the Java
programming language. It offers a comprehensive list of features for
validating/generating passwords and is highly configurable. Its API has the following
three core components: Rule (defines password generation policy), PasswordGenerator
(password generation with defined ruleset), and PasswordValidator (validates password
against a defined rule). We used Passay to generate an initial (system-generated)
alphanumeric password of 10-letters and Bcrypt [45] for form-based authentication on the
eCoach mobile application to upload activity data from the mobile to the eCoach server.
In the sign-up process, the user will enter email, mobile, and role as input, and the system
will create their UUID, default encrypted password for basic and Keycloak authentication.
The user must change their default password after successful account creation and enable
the google authenticator on their mobile phone for 6-digit OTP generation with the
SHA512 algorithm for the two-factor authentication process at Keycloak.

Figure 7 illustrates the sequence diagram of the SSK-based authentication and
authorization process flow on the eCoach prototype system. The scoped software,
libraries, respective versions, and their purpose of usage are described in Tables 4 and 5.

Figure 6. Access-token generation from the existing refresh-token.

4.2. Developing SSK in an Architecture

We deployed the SSK security scheme in our digital architecture with extended security
features (see Figure 2). Cross-Origin Resource Sharing (CORS) is a protection principle
that enables resources implemented in web browsers to be restricted. It keeps the external
code from creating or consuming requests from unwanted sources. Our eCoach’s RESTful
APIs support the CORS on SSL-enabled tomcat port 8443 with @CrossOrigin annotation.
By design, the Spring Boot application uses the HTTP 8080 port when the application
begins. However, we created a self-signed SSL certificate to enable HTTPS and port 8443
with the code—keytool-genkey-alias apachetomcat-storetype PKCS12-keyalg RSA-keysize
2048-keystore eCoachKey.p12-validity 3650. The Keystore file path was then added to the
configuration file of the Apache-tomcat webserver to change the application startup port
from 8080 to 8443. Port 8443 is the default configuration in the Apache-tomcat webserver
to allow HTTPS traffic. Moreover, the port number can be customized.

Passay [44] is a password generation and validation library based on the Java pro-
gramming language. It offers a comprehensive list of features for validating/generating
passwords and is highly configurable. Its API has the following three core components:
Rule (defines password generation policy), PasswordGenerator (password generation with
defined ruleset), and PasswordValidator (validates password against a defined rule). We
used Passay to generate an initial (system-generated) alphanumeric password of 10-letters
and Bcrypt [45] for form-based authentication on the eCoach mobile application to upload
activity data from the mobile to the eCoach server. In the sign-up process, the user will
enter email, mobile, and role as input, and the system will create their UUID, default
encrypted password for basic and Keycloak authentication. The user must change their
default password after successful account creation and enable the google authenticator on
their mobile phone for 6-digit OTP generation with the SHA512 algorithm for the two-factor
authentication process at Keycloak.

Figure 7 illustrates the sequence diagram of the SSK-based authentication and au-
thorization process flow on the eCoach prototype system. The scoped software, libraries,
respective versions, and their purpose of usage are described in Tables 4 and 5.

Sensors 2022, 22, 1703 14 of 27Sensors 2022, 22, x FOR PEER REVIEW 14 of 26

Figure 7. Sequence diagram of the login process for accessing web resources following the SSK
security solution.

Table 4. Scoped software, respective version, and usage.

Software Version Purpose

Spring Boot Framework 2.5.x A framework for system development following
the design pattern

Java compiler JDK 15.x+ To compile java codes
Mongo DB 5.0.2 To store and query PGDs

Mavens build tool 3.8.2 To build application and resolve dependencies
Spring Tool Suite 4.7.0 To Code in Java programming language

KeyCloak 13.x To work as identity provider server
Java Passay 1.6.1 To create initial systems generated password

Mockito 3.12.x To perform unit testing
Apache Tomcat 10.x To deploy eCoach modules
Microsoft Visio Office16 For UML modeling and drawing

Notepad ++ 7.8.4 For editing text, viewing log, and html coding
Bootstrap, Thymeleaf 4.x User interface design with HTML5 and CSS

Wireshark 3.4.8 To analyze network traffic or packets
Postman 9.0.7 To Perform manual testing for REST APIs
JMeter 5.4.1 To perform API scalability testing

Apache Log4j 2.17.1 To perform logging

Figure 7. Sequence diagram of the login process for accessing web resources following the SSK
security solution.

Table 4. Scoped software, respective version, and usage.

Software Version Purpose

Spring Boot Framework 2.5.x A framework for system development
following the design pattern

Java compiler JDK 15.x+ To compile java codes
Mongo DB 5.0.2 To store and query PGDs

Mavens build tool 3.8.2 To build application and resolve
dependencies

Spring Tool Suite 4.7.0 To Code in Java programming language
KeyCloak 13.x To work as identity provider server

Java Passay 1.6.1 To create initial systems generated
password

Mockito 3.12.x To perform unit testing
Apache Tomcat 10.x To deploy eCoach modules
Microsoft Visio Office16 For UML modeling and drawing

Notepad ++ 7.8.4 For editing text, viewing log, and html
coding

Bootstrap, Thymeleaf 4.x User interface design with HTML5 and CSS
Wireshark 3.4.8 To analyze network traffic or packets
Postman 9.0.7 To Perform manual testing for REST APIs
JMeter 5.4.1 To perform API scalability testing

Apache Log4j 2.17.1 To perform logging

Sensors 2022, 22, 1703 15 of 27

Table 5. Scoped libraries and respective version.

groupId artifactId Version

org.springframework.boot spring-boot-starter-parent 2.5.x
org.springframework.boot spring-boot-starter-security
org.springframework.boot spring-boot-starter-web
org.springframework.boot spring-boot-devtools
org.springframework.boot spring-boot-starter-test

org.springframework.security spring-security-test
org.keycloak keycloak-spring-boot-starter 13.x
org.keycloak keycloak-admin-client 13.x

org.bouncycastle bcprov-jdk15on 1.69
org.springframework.boot spring-boot-maven-plugin

com.google.code.gson gson 2.8.7
org.apache.commons commons-csv 1.8

org.apache.maven.plugins maven-compiler-plugin 3.5.1
org.apache.maven.plugins maven-project-info-reports-plugin 2.5.2

commons-lang commons-lang 2.2
org.apache.commons commons-lang3 3.9

org.springframework.boot spring-boot-starter-thymeleaf
org.springframework.boot spring-boot-starter-mail

com.twilio.sdk twilio 7.16.1
javax.servlet jstl 1.2

org.apache.tomcat tomcat 10.0.11
org.springframework.boot spring-boot-starter-actuator

org.mockito mockito-core 3.12.4

5. Experimental Results and Discussion
5.1. Experimental Setup

A security testing method is designed to expose weaknesses in an information sys-
tem’s security mechanisms that safeguard data and preserve functionality as expected. It
can normally be broken down into measures that are functional and non-functional [46].
Security checks are carried out in many ways, each of which is intended to verify the secu-
rity principles [46,47]. We used unit testing and non-functional penetration (pen) testing as
security testing methods. Unit testing was performed with Postman, web-browser, and
Mock MVC (Mockito) [48] to check security intended functionalities. Penetration testing fa-
cilitates finding out the weaknesses of a computer system, a web application, or a network.
It can be of three types—black box testing, white box testing, and gray box testing. The
most common penetration testing method is to scan the target for vulnerabilities. The target
of penetration testing can be an operating system, database system, application, or network
environment. This study has focused on the security of the MSA APIs and concentrated
on penetration testing for network environments. Therefore, we used Wireshark software
only for gray box penetration testing for web application tests that checked the security
vulnerabilities (e.g., DoS, DDoS, IP spoofing, port scan) at the network side.

We implemented the SSK security solution first in an unprotected windows environ-
ment. We then deployed the codebase in a Linux environment (see Table 6), protected with
VPN and network firewall to compare pen testing’s [47,48] performance in two scenarios. In
addition, we set up Apache JMeter to perform a scalability testing of the adopted approach.

Table 6. Specification of the experimental environment.

Specification Windows System Linux System

Memory 8 GB 15 GB
Operating System Windows 10 GNU/Linux

Disk (HDD) 235 GB 1023.9 GB

Socket endpoint 127.0.0.1:8081 (localhost) 10.225.147.186:8443 (Class A
private IPV4)

Sensors 2022, 22, 1703 16 of 27

5.2. Experimental Results

All the simulated attacking parameters, outcomes, and network protocol analysis
report results are described and discussed in this section. Experiments related to CSRF,
XSS, Clickjacking, content sniffing, and brute force were conducted with Mockito, Keycloak
UI, and Postman. DoS, DDoS, IP spoofing, MITM, and port scanning were performed with
simulated code, Wireshark network analyzer, based on explicit filter patterns (see Table 7),
system commands in Windows and Linux (Ubuntu) environments. In the Spring codebase,
we created eight unit-test cases with Mockito for test user creation with role assignment,
basic (HTTP form-based) user authentication, two-factor user authentication (password +
OTP), and role-based authorization (OAuth2) with an access token. We executed a negative
test scenario where the user received an expected error response code (HTTP 401) due to
prohibited access to an unauthorized resource API endpoint. Table 8 defines the combined
result of Mockito test performance in a vanilla test setting where we compared our API
response time with preferred, acceptable, and delayed response time. The response metrics
can be classified into the following categories—mean response time, peak response time,
and error rate. We have considered the mean response time in this study.

Table 7. Explicit filter pattern to analyze network traffic.

Filter Purpose

ip.addr == xxxx/ip.dst == xxxx/ip.src == xxxx To authorize API access based on bearer token

tcp.port == xxx/tcp.flags.reset == 1/tcp.stream
eq X/tcp.seq == x/tcp.flags.push ==
1/http.request/!(arp or icmp or dns)/(arp or
icmp or dns)/udp contains
xx:xx:xx/dns.flags.rcode ! = 0/http or dns/host
xxx and not (port xx or port xx)/not broadcast
and not multicast/broadcast and multicast/net
xxx/port xx/ip.addr == x.x.x.x && ip.addr ==
x.x.x.x/tcp.stream eq xx/tcp.flags ==
0x012/tcp.time_delta > .xx/tcp.analysis.flags
&& !tcp.analysis.window_update/
tcp dst port xx/ip.src ! = xxxx or ip.dst ! = xxxx

To define MIME type (ex. application/json)

dst port 135 and tcp port 135 and ip[2:2] == 48 To define the length of the request body

icmp[icmptype] == icmp-echo and ip[2:2] ==
92 and icmp[8:4] == 0xAAAAAAAA

To define domain name for which the request is
being sent

udp.srcport == 53 or udp.srcport == 123 To define the form of response content type

tcp.flags.syn == 1 and tcp.flags.ack == 0 To define compression algorithm as response

tcp.flags.syn == 1 and tcp.flags.ack == 1 To keep underlying network connection (e.g.,
alive or close)

Table 8. Performance of unit-testing with Mockito framework.

Scenario Input Mean Response

Category

Preferred
Response Time

(0.1 s)

Acceptable
Response Time

(<2 s)

Delayed
Response Time

(10 s)

User creation with
a valid role Email, mobile, role 1–2 s Yes Yes No

Retrieval of access
token and refresh

token

ClientID, client
secret, grant type,
UUID, password

0.1–1 s Yes Yes No

Sensors 2022, 22, 1703 17 of 27

Table 8. Cont.

Scenario Input Mean Response

Category

Preferred
Response Time

(0.1 s)

Acceptable
Response Time

(<2 s)

Delayed
Response Time

(10 s)

HTTP basic
authentication UUID, Password 0.01–0.03 s Yes Yes No

KeyCloak
two-factor

authentication

UUID, Password +
OTP 0.1–1 s Yes Yes No

Authorized access Valid access token 0.1–1 s Yes Yes No

Unauthorized
access

Invalid access
token 0.01–0.05 s Yes Yes No

Spring boot application extends default spring security class WebSecurityConfig to
allow protection against CSRF attacks. CSRF tokens are powerful and unpredictable,
created as session tokens with specific properties that the attacker cannot calculate or
predict. Both post forms in the “Java Server Page (JSP)” or template files need to include
the CSRF token. If it is a JSON call, the token must be added to the header. Initially,
we disabled KeyCloak token-based security setup and extended Spring’s default web
security configuration. Subsequently, we executed the following four test cases for CSRF
attack with Postman—CSRF disabled (valid credential, invalid credential), and CSRF
enabled (valid credential and valid _csrf token, valid credential, and invalid _csrf token).
Successful authentication resulted in an HTTP status code 200 or 201. However, we
disabled the CSRF token generation in actual security solution implementation. The reason
for disabling CSRF is that our developed spring boot application is available to the public.
Therefore, we replicated similar and more robust web security measures with KeyCloak’s
two-factor authentication and access token-based authorization. The successful test results
are captured in Table 9. To ensure protection against XSS, Clickjacking, and content sniffing,
we facilitated KeyCloak’s configurable security defense. We tested the attack with a client’s
HTTP POST request with Postman for new user creation and investigated whether XSS,
Clickjacking, and content sniffing securities are allowed in the response header. Setup data
and documented response headers as shown in Table 9.

Table 9. Mockito unit testing performance.

Scenario Parameters Value

Input Parameters for
HTTP POST

Endpoint /eCoachUX/createParticipant

Port 8443

HTTP Verb POST

Information Email, mobile, role

Data collection—1 Response Header:
X-XSS-Protection 1

Response Header: mode block

Data collection—2 Response Header:
X-Content-Type-Options nosniff

Data collection—3 Response Header:
X-Frame-Options DENY

Sensors 2022, 22, 1703 18 of 27

To ensure protection against brute force attacks, we enabled KeyCloak’s configurable
security defense. According to our Keycloak security configuration, the user will get a
chance of a maximum of six login failures before their account gets locked. The failure
reset time is 12 h. Our analysis uses Spring Security with KeyCloak to model the case
attacker using the password dictionary to execute the brute force attack. We set up the
data in Postman and recorded the response headers. The brute force attack’s unit test with
Postman is presented in Table 10.

Table 10. Brute force attack’s unit testing with Postman.

Scenario Comment

Normal successful login No brute force detected

Normal login failure
(< 6 times continuously) No brute force detected

Normal login failure
(6 times continuously)

Exceeded maximum attempts allowed. Brute
force attack detected and account locked.

We first tested the DoS and DDoS attack in an unprotected windows server, where
we configured the KeyCloak server and Apache-tomcat web server to deploy the eCoach
prototype system. Then, we wrote a Java multi-threading code [49] to create parallel HTTP
calls to an example exposed API. For checking the DoS attack, we executed the java code
from a single JVM, and for simulating DDoS, we executed the code from multiple JVMs
in parallel. After an average of 3–5 min of parallel URL connection request traffic, the
server produced high utilization of CPU and memory high network throughput, and thus,
resulting in unresponsive API.

We used tcp.flags.syn == 1 and tcp.flags.ack == 1 and tcp.flags.syn == 1 and tcp.flags.ack
== 0 filter in Wireshark to detect TCP SYN floods due to DoS attack and found how the
windows server IP was flooded with incoming packets. We replicated the experiment in
the Linux server protected with VPN and network firewall. We observed that packets
outside of the VPN were blocked. We utilized other filters specified in Table 7 to analyze
incoming network packets to detect attacks, such as IP spoofing and MITM with Wireshark.
To detect network packet sniffing with Wireshark, we studied source and destination IP,
ports, and protocols, such as Media Access Control (MAC), Dynamic Host Configuration
Protocol (DHCP), DNS, TCP, User Datagram Protocol (UDP), and Address Resolution
Protocol (ARP) with the following metrics: packet count, rate (milliseconds or Milli sec.),
percent, burst rate, and burst start. We found that VPN protects the eCoach E-2-E network
communication. A network firewall, and an SSL certificate on top of the API endpoint
access security, made the eCoach API endpoint safe from major external vulnerabilities,
such as DoS, DDoS, IP spoofing, and MITM. API endpoint security indirectly ensures the
privacy of personal health data inside of our eCoach prototype system.

To perform scalability testing in JMeter, we selected an eCoach REST service with an
approximated 257 Bytes of a request body, 43.42 Kilobytes of the response body, and a
response time of 141 msec. (see Figure 8). Using JMeter “Thread Group” feature, concurrent
threads, or loads (X) had been created with three different values of ramp-up seconds (Y)
and a loop count value of five (Z). At each iteration, X × Z number of loads were created to
capture mean throughput and mean latency time. The results are described in Tables 11–13.
The result shows a direct proportion between throughput and load (S α l) and latency
time and load (L α l). However, achieving a certain threshold, the throughput sinks with
increased load (S α 1

l). We have considered the following values for scalability testing;
however, the range can be increased for the upcoming studies.

Sensors 2022, 22, 1703 19 of 27

X = {1, 10, 25, 50, 75, 100, 200, 300, 500}

Y = {1, 5, 10}

Z = {5}

Sensors 2022, 22, x FOR PEER REVIEW 19 of 26

Figure 8. Break-up of a response time in our proposed solution for a single authorized HTTP
request.

X = {1, 10, 25, 50, 75, 100, 200, 300, 500}

Y = {1, 5, 10}

Z = {5}

Table 11. Scalability testing results with Y = 1, Z = 5, and variable loads (X).

Y = 1, Z = 5
Mean Throughput Error % Received KB/s Delivered KB/s Mean Latency (s)

Load (X)
1 6.4 0 265.5 6.8 165

10 34.7 0 1496 5.1 112
25 55.7 0 2410 8.04 260
50 78.5 0 3398.5 11.35 440
75 95.3 0 4130.5 13.77 550

100 112.8 0 4891 16.27 674
200 104.5 0 4529 15.1 1597
300 169.3 0 7347.3 24.46 1365
500 139.5 0 6048 20.4 2900

Table 12. Scalability testing results with Y = 5, Z = 5, and variable loads (X).

Y = 5, Z = 5
Mean Throughput Error % Received KB/s Delivered KB/s Mean Latency (s)

Load (X)
1 18.7 0 799.39 2.9 55

10 10 0 423.5 1.45 39
25 24.6 0 1062.33 3.8 24
50 49.2 0 2135.3 7.4 23
75 73.6 0 3194.8 10.65 24

100 98.2 0 4263 14.5 23
200 195 0 8479 28.5 26
300 258 0 11200 37.5 126
500 224 0 9729 32.6 796

Figure 8. Break-up of a response time in our proposed solution for a single authorized HTTP request.

Table 11. Scalability testing results with Y = 1, Z = 5, and variable loads (X).

Y = 1, Z = 5
Mean Throughput Error % Received KB/s Delivered KB/s Mean Latency (s)

Load (X)

1 6.4 0 265.5 6.8 165
10 34.7 0 1496 5.1 112
25 55.7 0 2410 8.04 260
50 78.5 0 3398.5 11.35 440
75 95.3 0 4130.5 13.77 550
100 112.8 0 4891 16.27 674
200 104.5 0 4529 15.1 1597
300 169.3 0 7347.3 24.46 1365
500 139.5 0 6048 20.4 2900

Table 12. Scalability testing results with Y = 5, Z = 5, and variable loads (X).

Y = 5, Z = 5
Mean Throughput Error % Received KB/s Delivered KB/s Mean Latency (s)

Load (X)

1 18.7 0 799.39 2.9 55
10 10 0 423.5 1.45 39
25 24.6 0 1062.33 3.8 24
50 49.2 0 2135.3 7.4 23
75 73.6 0 3194.8 10.65 24
100 98.2 0 4263 14.5 23
200 195 0 8479 28.5 26
300 258 0 11200 37.5 126
500 224 0 9729 32.6 796

Sensors 2022, 22, 1703 20 of 27

Table 13. Scalability testing results with Y = 10, Z = 5, and variable loads (X).

Y = 10, Z = 5
Mean Throughput Error % Received KB/s Delivered KB/s Mean Latency (s)

Load (X)

1 31.3 0 1358.5 4.8 34
10 6.5 0 279.5 1 24
25 12.5 0 537.5 2 25
50 25 0 1075 4 23
75 37.4 0 1611 5.8 23
100 49.6 0 2153.8 7.4 23
200 99.3 0 4307 14.6 23
300 148.6 0 6457 22 22
500 143.6 0 10586.5 35.5 47

6. Discussion

Using the SSK security solution, personal health data governance has fulfilled the
General Data Protection Regulation (GDPR) compliance checklist as specified in Table 14.
It is three-fold research:

• First, we implemented a security solution with SSF, basic authentication, two-factor
authentication, and authorization (OAuth2) with an open-source KeyCloak server
(IDP), VPN, network firewall, and SSL.

• Second, we implemented the solution for developing a digital infrastructure where
we deployed an eCoach prototype system.

• Third, we performed testing of the prototype APIs against the common external
vulnerabilities, as described in Table 15.

Table 14. GDPR compliance checklist for SSK.

GDPR Checklist [50,51] Addressed

Lawful basis and transparency Yes
Data security Yes

Accountability and governance Yes
Privacy rights Yes

Table 15. Summary of the adopted functional and non-functional testing.

Test Case Scenario Test Case Passed (Yes/No)

Basic authentication
Access with a valid credential Yes

Access with an invalid credential Yes

Two-factor authentication

Access with a valid credential + OTP Yes

Access with an invalid credential/an
incorrect OTP Yes

New user creation and role
assignment

Creation request with a valid role
assignment Yes

Role-based API access
Access with a valid access key Yes

Access with an invalid access key Yes

CSRF disabled Access with a valid credential Yes

Sensors 2022, 22, 1703 21 of 27

Table 15. Cont.

Test Case Scenario Test Case Passed (Yes/No)

CSRF Enabled

Access with an invalid credential Yes

Access with a valid credential and valid
“_csrf” token Yes

Access with a valid credential and
invalid “_csrf” token Yes

CSRF Disabled but Access
Token enabled

KeyCloak-based authentication and
authorization Yes

XSS Attack Validate with response header if XSS
attack protection is enabled Yes

Brute Force Attack General login failure Yes

Multiple (=6) login failure Yes

Content sniffing Validate with response header if attack
protection is enabled Yes

DoS Attack Analysis of network statistics and
packet information Yes

DDoS Attack Analysis of network statistics and
packet information Yes

MITM Attack (sniffing) Enabling HTTPS (SSL) and the analysis
of network statistics Yes

IP Spoofing Analysis of network IP statistics and
packet information Yes

Port Scanning Analysis of network port statistics and
packet information Yes

Clickjacking Attack Validate with response header if attack
protection is enabled Yes

Total Test Pass Rate - 100%

We created 22 test cases for 16 test scenarios to replicate external attacks as our SSK
security solution. SSK security implementation and configuration in the prototype system
successfully secured the eCoach APIs from an attack in all scenarios with 100% test accuracy.
Furthermore, we performed a qualitative analysis on the effectiveness of SSK in Table 16
after comparing SSK with Spring Security and Keycloak against certain security features.

Table 16. Qualitative analysis on the effectiveness of SSK with three flags—No (0), Limited (1), and
Yes (2).

Features Spring Security KeyCloak SSK

OAuth2 Yes Yes Yes

SAML2.0 No Yes Yes

OpenID No Yes Yes

WebFlux Yes Yes Yes

Access control Yes Yes Yes

Identity and Access
Management—Single-Sign-On (SSO), Identity
Brokering and Login, User Federation, Client

Adapters

No Yes Yes

Sensors 2022, 22, 1703 22 of 27

Table 16. Cont.

Features Spring Security KeyCloak SSK

Entire process of seamless calling the Keycloak
Authorization Server from Spring-boot Yes No Yes

Robustness Limited Limited Yes

Powerful and customizable Limited Limited Yes

Handling of Java EE security constraints Limited Limited Yes

Multi-factor authentication No Yes Yes

Easy to use Yes No Yes

JSON web token No Yes Yes

Due to licensing and subscription constraints, we could not create a similar environ-
ment and deploy other solutions (e.g., SF + Okta or solutions identified in literature) to
test scalability against throughput and latency. Therefore, we only performed scalability
testing for our adopted work under defined settings and obtained a promising result, as
described in Tables 11–13. The result shows that the increased value of the ramp-up period
has a positive impact on the mean throughput and mean latency. Moreover, we performed
a comparative analysis of our adopted security solution with existing MSSA as described
in Tables 17 and 18. The solution is safe from the typical external illegitimate flooding
requests as the external or exposed eCoach services are protected by a VPN and a firewall.

Table 17. Comparative analysis of our security solution with existing MSSA with respect to the key
attributes of a secure web application architecture.

Research Inter-Tier Au-
thentication

Server-Side
Validation

Secure Com-
munication

Data
Encryption Logging

Chatterjee et al.
(our work) Yes Yes Yes Yes Yes

Salibindla et al. No No No No No
Xie et al. Yes No No No No

Nguyen et al. Yes Yes No No No
Dikanski et al. Yes No No No No

Aloufi et al. No No No No No
Beer et al. No Yes No Yes No

Serme et al. No No No Yes No
Backere et al. No No Yes No No

Table 18. Comparative analysis of our security solution with existing MSSA with respect to the
implemented security features.

Research
Multi-
Factor

Authenti-
cation

OAuth2
(Token

and
Identity
Broker-

ing)

SSL/TLS Bcrypt
Hash

API
Key

Spring
Security

Third-
party

IAM (e.g.,
Key-

Cloak)

Protection
against CSRF,

XSS,
Clickjacking,

Content
Sniffing, BF,

DoS, DDoS, IP
Spoofing, and

MITM

CORS
Multi-
Factor

Authenti-
cation

Chatterjee
et al. (our

work)
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Salibindla
et al. No No No No No No No No No No

Xie et al. No Yes No No No Yes No No No No

Sensors 2022, 22, 1703 23 of 27

Table 18. Cont.

Research
Multi-
Factor

Authenti-
cation

OAuth2
(Token

and
Identity
Broker-

ing)

SSL/TLS Bcrypt
Hash

API
Key

Spring
Security

Third-
party

IAM (e.g.,
Key-

Cloak)

Protection
against CSRF,

XSS,
Clickjacking,

Content
Sniffing, BF,

DoS, DDoS, IP
Spoofing, and

MITM

CORS
Multi-
Factor

Authenti-
cation

Nguyen et al. No Yes No No No Yes No CSRF, BF, XSS No No

Dikanski et al. No Yes No No No Yes No No No No

Aloufi et al. No No No No No No No No No No

Beer et al. No No No No No No No DoS, DDoS, BF No No

Serme et al. No No No No No No No No No No

Backere et al. No No TLS No No No No No No No

This study has consolidated the security implementation with Keycloak third-party
IAM combined with SF and its performance evaluation in digital infrastructure. In future
research, we will connect other third-party IAM (e.g., Okta, TSD) with SF to implement
different security solutions and compare their performance evaluation against SSK. This
study strictly focuses on SSK implementation and its performance analysis in an “on-
premises” digital setup. In the future, we will extend our study in a cloud setup for SSK
solution implementation, performance analysis, and comparing the performance outcome
with the “on-premises” SSK performance results.

7. Conclusions

The literature review reveals that existing frameworks and security standards to
secure the API endpoints in an MSA architecture have minimal experimental outcomes
of confirming the integrated effectiveness of SF, SSF, third-party OAuth2, Bcrypt hash,
VPN, firewall, and SSL. A prototype eCoach system has been implemented in this study
using MSA as a prototype to assess the integration between the technologies. The research
findings show that the SSK solution effectively protected the APIs from the vulnerabilities,
such as CSRF, XSS, Clickjacking, content sniffing, brute force, DoS, DDoS, IP spoofing,
and MITM. Integration of SSF with Keycloak has made the solution powerful and highly
customizable. The overall solution is scalable, with approximately 300 concurrent requests.
We can extend the study with other different penetration testing methods in the future.

Author Contributions: Conceptualization, A.C.; Formal analysis, A.C.; Funding acquisition, A.P.;
Investigation, A.C.; Methodology, A.C.; Resources, A.C.; Writing—original draft, A.C. and A.P. All
authors have read and agreed to the published version of the manuscript.

Funding: The research is funded by University of Agder, Norway.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Thanks to the University of Agder and co-author for supervising and supporting
me to perform this research.

Conflicts of Interest: The authors declare no conflict of interest. This research is unique, original and
has not been published or submitted anywhere else.

Sensors 2022, 22, 1703 24 of 27

Abbreviations

APIs Application Programming Interfaces
VPN Virtual Private Network
SSL Secure Socket Layer
eCoach Electronic Coach
SF Spring Framework
SSF Spring Security Framework
DoS Denial-of-Service
DDoS Distributed Denial-of-Service
MITM Man in the Middle
IP Internet Protocol
OAuth Open Authorization
OpenID Open Identifier
CORS Cross-Origin Resource Sharing
HTTPS Hypertext Transfer Protocol Secure
RSA Rivest–Shamir–Adleman
Bcrypt Blowfish and crypt
SHA Secure Hash Algorithm
MD5 Message-Digest algorithm
CSRF Cross-Site Request Forgery
XSS Cross-site scripting
IAM Identity and access management
IoMT Internet-of-Medical-Things
MSA Microservice Architecture
PoC Proof of Concept
MQTT Message Queue Telemetry Transport
PKI Public Key Infrastructure
TLS Transport Layer Security
SSL Secure Socket Layer
REST Representational State Transfer
EHR Electronic Health Record
SAML Security Assertion Markup Language
JDBC Java Database Connection
LDAP Lightweight Directory Access Protocol
ACL Access Control List
CAS Central Authentication Service
SSE Spring SAML Extension
SOAP Simple Object Access Protocol
XML Extensible Markup Language
OIDC OpenID Connect
NSD Norwegian Centre for Research Data
BLE Bluetooth Short-Range Communication Technology
UUID Unique User ID
DNS Domain Name Service
OTP One-Time Password
SSH Secure Shell
SDLC Software Development Life Cycle
BPS Bits per Seconds
TCP Transmission Control Protocol
RTT Round Trip Time
IDP Identity Provider
JSP Java Server Page

Sensors 2022, 22, 1703 25 of 27

AS Authorization Server
JWT JavaScript Object Notation Web Token
JSON JavaScript Object Notation
URL Uniform Resource Locator
MAC Media Access Control
DHCP Dynamic Host Configuration Protocol
UDP User Datagram Protocol
ARP Address Resolution Protocol
GDPR General Data Protection Regulation
FISMA Federal Information Security Management Act
ISO International Organization for Standardization
PCI DSS Payment Card Industry Data Security Standard

References
1. Rodrigues, J.J.; De la Torre, I.; Fernández, G.; López-Coronado, M. Analysis of the security and privacy requirements of

cloud-based electronic health records systems. J. Med. Internet Res. 2013, 15, e186. [CrossRef] [PubMed]
2. Bennett, K.; Bennett, A.J.; Griffiths, K.M. Security considerations for e-mental health interventions. J. Med. Internet Res. 2010, 12,

e61. [CrossRef] [PubMed]
3. Yang, G.; Xie, L.; Mäntysalo, M.; Zhou, X.; Pang, Z.; Xu, L.D.; Kao-Walter, S.; Chen, Q.; Zheng, L.R. A health-IoT platform based

on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans. Ind. Inform. 2014, 10,
2180–2191. [CrossRef]

4. Gope, P.; Hwang, T. BSN-Care: A secure IoT-based modern healthcare system using body sensor network. IEEE Sens. J. 2015, 16,
1368–1376. [CrossRef]

5. Tejero, A.; de la Torre, I. Advances and current state of the security and privacy in electronic health records: Survey from a social
perspective. J. Med. Syst. 2012, 36, 3019–3027. [CrossRef]

6. Papoutsi, C.; Reed, J.E.; Marston, C.; Lewis, R.; Majeed, A.; Bell, D. Patient and public views about the security and privacy of
Electronic Health Records (EHRs) in the UK: Results from a mixed methods study. BMC Med. Inform. Decis. Mak. 2015, 15, 86.
[CrossRef]

7. Al Ameen, M.; Liu, J.; Kwak, K. Security and privacy issues in wireless sensor networks for healthcare applications. J. Med. Syst.
2012, 36, 93–101. [CrossRef]

8. Hsiao, T.-C.; Liao, Y.-T.; Huang, J.-Y.; Chen, T.-S.; Horng, G.-B. An authentication scheme to healthcare security under wireless
sensor networks. J. Med. Syst. 2012, 36, 3649–3664. [CrossRef]

9. Kwon, J.; Johnson, M.E. Meaningful Healthcare Security: Does “Meaningful-Use” Attestation Improve Information Security
Performance? MIS Q. 2018, 42, 1043–1067.

10. Abouelmehdi, K.; Beni-Hessane, A.; Khaloufi, H. Big healthcare data: Preserving security and privacy. J. Big Data 2018, 5, 1.
[CrossRef]

11. Sun, W.; Cai, Z.; Li, Y.; Liu, F.; Fang, S.; Wang, G. Security and privacy in the medical internet of things: A review. Secur. Commun.
Netw. 2018, 2018, 5978636. [CrossRef]

12. Kruse, C.S.; Smith, B.; Vanderlinden, H.; Nealand, A. Security techniques for the electronic health records. J. Med. Syst. 2017, 41,
127. [CrossRef] [PubMed]

13. Salibindla, J. Microservices API security. Int. J. Eng. Res. Technol. 2018, 7, 277–281. [CrossRef]
14. Xie, L.; Han, L.; Li, M.H.; Dong, X.L. Design and implement of spring security-based T-RBAC. In Proceedings of the 2017

International Conference on Wireless Communications, Networking and Applications, Shenzhen, China, 20–22 October 2017; pp.
183–188.

15. Nguyen, Q.; Baker, O. Applying Spring Security Framework and OAuth2 To Protect Microservice Architecture API. J. Softw. 2019,
14, 257–264. [CrossRef]

16. Dikanski, A.; Steinegger, R.; Abeck, S. Identification and implementation of authentication and authorization patterns in the
spring security framework. In Proceedings of the Sixth International Conference on Emerging Security Information, Systems and
Technologies (SECURWARE), Rome, Italy, 19–24 August 2012; pp. 14–30.

17. Aloufi, K.; Alhazmi, O. Secure iot resources with access control over restful web services. Jordan J. Electr. Eng. 2020, 6, 64.
[CrossRef]

18. Beer, M.I.; Hassan, M.F. Adaptive security architecture for protecting RESTful web services in enterprise computing environment.
Serv. Oriented Comput. Appl. 2018, 12, 111–121. [CrossRef]

19. Serme, G.; de Oliveira, A.S.; Massiera, J.; Roudier, Y. Enabling message security for RESTful services. In Proceedings of the 2012
IEEE 19th International Conference on Web Services, Honolulu, HI, USA, 24–29 June 2012; pp. 114–121.

20. de Backere, F.; Hanssens, B.; Heynssens, R.; Houthooft, R.; Zuliani, A.; Verstichel, S.; de Turck, F. Design of a security mechanism
for RESTful Web Service communication through mobile clients. In Proceedings of the 2014 IEEE Network Operations and
Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–6.

http://doi.org/10.2196/jmir.2494
http://www.ncbi.nlm.nih.gov/pubmed/23965254
http://doi.org/10.2196/jmir.1468
http://www.ncbi.nlm.nih.gov/pubmed/21169173
http://doi.org/10.1109/TII.2014.2307795
http://doi.org/10.1109/JSEN.2015.2502401
http://doi.org/10.1007/s10916-011-9779-x
http://doi.org/10.1186/s12911-015-0202-2
http://doi.org/10.1007/s10916-010-9449-4
http://doi.org/10.1007/s10916-012-9839-x
http://doi.org/10.1186/s40537-017-0110-7
http://doi.org/10.1155/2018/5978636
http://doi.org/10.1007/s10916-017-0778-4
http://www.ncbi.nlm.nih.gov/pubmed/28733949
http://doi.org/10.17577/IJERTV7IS010137
http://doi.org/10.17706/jsw.14.6.257-264
http://doi.org/10.5455/jjee.204-1581015531
http://doi.org/10.1007/s11761-017-0221-1

Sensors 2022, 22, 1703 26 of 27

21. Mularien, P. Spring Security 3; Packt Publishing: Birmingham, UK, 2010; p. 18.
22. Sanders, C. Practical Packet Analysis: Using Wireshark to Solve Real-World Network Problems; No Starch Press: San Francisco, CA,

USA, 2017.
23. Chatterjee, A.; Gerdes, M.; Prinz, A.; Martinez, S. Human Coaching Methodologies for Automatic Electronic Coaching (eCoaching)

as Behavioral Interventions with Information and Communication Technology: Systematic Review. J. Med. Internet Res. 2021, 23,
e23533. [CrossRef]

24. Chatterjee, A.; Prinz, A.; Gerdes, M.; Martinez, S. An Automatic Ontology-Based Approach to Support Logical Representation
of Observable and Measurable Data for Healthy Lifestyle Management: Proof-of-Concept Study. J. Med. Internet Res. 2021, 23,
e24656. [CrossRef]

25. Chatterjee, A.; Gerdes, M.W.; Martinez, S. eHealth Initiatives for The Promotion of Healthy Lifestyle and Allied Implementation
Difficulties. In Proceedings of the 2019 IEEE International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), Barcelona, Spain, 21–23 October 2019; pp. 1–8.

26. Chatterjee, A.; Gerdes, M.; Prinz, A.; Martinez, S.; Medin, A.C. Reference Design Model for a Smart e-Coach Recommendation
System for Lifestyle Support based on ICT Technologies. In Proceedings of the Twelfth International Conference on eHealth,
Telemedicine, and Social Medicine (eTELEMED), Valencia, Spain, 21–25 November 2020; pp. 52–58, ISBN 978-1-61208-763-4.

27. Keycloak Server Administration. Available online: https://www.keycloak.org/docs/latest/server_admin/ (accessed on 27
December 2021).

28. Recordon, D.; Reed, D. OpenID 2.0: A platform for user-centric identity management. In Proceedings of the Second ACM
Workshop on Digital Identity Management, Alexandria, VA, USA, 3 November 2006; pp. 11–16.

29. Goel, J.N.; Mehtre, B. Vulnerability assessment & penetration testing as a cyber defence technology. Procedia Comput. Sci. 2015, 57,
710–715.

30. Hannousse, A.; Yahiouche, S. Securing microservices and microservice architectures: A systematic mapping study. Comput. Sci.
Rev. 2021, 41, 100415. [CrossRef]

31. Hussain, F.; Li, W.; Noye, B.; Sharieh, S.; Ferworn, A. Intelligent service mesh framework for api security and management.
In Proceedings of the 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), Vancouver, BC, Canada, 17–19 October 2019; pp. 0735–0742.

32. Nehme, A.; Jesus, V.; Mahbub, K.; Abdallah, A. Securing microservices. IT Prof. 2019, 21, 42–49. [CrossRef]
33. Pahl, M.O.; Donini, L. April. Securing IoT microservices with certificates. In Proceedings of the NOMS 2018-2018 IEEE/IFIP

Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–5.
34. Mateus-Coelho, N.; Cruz-Cunha, M.; Ferreira, L.G. Security in Microservices Architectures. Procedia Comput. Sci. 2021, 181,

1225–1236. [CrossRef]
35. Pereira-Vale, A.; Márquez, G.; Astudillo, H.; Fernandez, E.B. Security mechanisms used in microservices-based systems: A

systematic mapping. In Proceedings of the 2019 XLV Latin American Computing Conference (CLEI), Panama City, Panama, 30
September–4 October 2019; pp. 01–10.

36. Building Secure Microservices-Based Applications Using Service-Mesh Architecture. Available online: https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-204A.pdf (accessed on 27 December 2021).

37. Alshuqayran, N.; Ali, N.; Evans, R. A systematic mapping study in microservice architecture. In Proceedings of the 9th
International Conference on Service-Oriented Computing and Applications (SOCA), Macau, China, 4–6 November 2016; pp.
44–51.

38. van der Weegen, S.; Essers, H.; Spreeuwenberg, M.; Verwey, R.; Tange, H.; de Witte, L.; Meijer, K. Concurrent validity of the MOX
activity monitor compared to the ActiGraph GT3X. Telemed. e-Health 2015, 21, 259–266. [CrossRef] [PubMed]

39. Aljawarneh, S. A web engineering security methodology for e-learning systems. Netw. Secur. 2011, 2011, 12–15. [CrossRef]
40. Ismail, A.A.; Hamza, H.S.; Kotb, A.M. Performance evaluation of open source iot platforms. In Proceedings of the 2018 IEEE

Global Conference on Internet of Things (GCIoT), Alexandria, Egypt, 5–7 December 2018; pp. 1–5.
41. Priyadarsini, M.; Bera, P. Software defined networking architecture, traffic management, security, and placement: A survey.

Comput. Netw. 2021, 192, 108047. [CrossRef]
42. Arkhipkin, D.; Lauret, J.; Shanmuganathan, P.V. Modular and scalable RESTful API to sustain STAR collaboration’s record

keeping. J. Phys. Conf. Ser. 2015, 664, 052021. [CrossRef]
43. JWT Web Token. Available online: https://jwt.io/ (accessed on 27 December 2021).
44. Java Passay. Available online: https://www.baeldung.com/java-passay (accessed on 27 December 2021).
45. Provos, N.; Mazieres, D. Bcrypt Algorithm. USENIX. 1999. Available online: https://www.usenix.org/legacy/publications/

library/proceedings/usenix99/full_papers/provos/provos_html/node5.html (accessed on 27 December 2021).
46. Khatiwada, P.; Bhusal, H.; Chatterjee, A.; Gerdes, M.W. A Proposed Access Control-Based Privacy Preservation Model to

Share Healthcare Data in Cloud. In Proceedings of the 2020 16th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Thessaloniki, Greece, 12–14 October 2020; pp. 40–47.

47. Tanenbaum, A.S. Computer Networks; Prentice-Hall International Editions: Hoboken, NJ, USA, 1996; pp. I–XVII.
48. Acharya, S. Mastering Unit Testing Using Mockito and JUnit; Packt Publishing Ltd.: Birmingham, UK, 2014.

http://doi.org/10.2196/23533
http://doi.org/10.2196/24656
https://www.keycloak.org/docs/latest/server_admin/
http://doi.org/10.1016/j.cosrev.2021.100415
http://doi.org/10.1109/MITP.2018.2876987
http://doi.org/10.1016/j.procs.2021.01.320
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204A.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204A.pdf
http://doi.org/10.1089/tmj.2014.0097
http://www.ncbi.nlm.nih.gov/pubmed/25614938
http://doi.org/10.1016/S1353-4858(11)70026-5
http://doi.org/10.1016/j.comnet.2021.108047
http://doi.org/10.1088/1742-6596/664/5/052021
https://jwt.io/
https://www.baeldung.com/java-passay
https://www.usenix.org/legacy/publications/library/proceedings/usenix99/full_papers/provos/provos_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix99/full_papers/provos/provos_html/node5.html

Sensors 2022, 22, 1703 27 of 27

49. Arnold, K.; Gosling, J.; Holmes, D. The Java Programming Language; Addison Wesley Professional: Boston, MA, USA, 2005.
50. GDPR Checklist for Data Controllers. Available online: https://gdpr.eu/checklist/ (accessed on 27 December 2021).
51. Hussain, F.; Hussain, R.; Noye, B.; Sharieh, S. Enterprise API security and GDPR compliance: Design and implementation

perspective. IT Prof. 2020, 22, 81–89. [CrossRef]

https://gdpr.eu/checklist/
http://doi.org/10.1109/MITP.2020.2973852

	Introduction
	Overview and Motivation
	Aim of the Study

	Basic Preliminaries
	System Architecture
	Data Collection
	eCoach System (App. Version vs. Web Version)
	Methods for Security Implementation and Performance Evaluation

	Adopted Security Scheme
	Hybrid Security Scheme—SSK
	Developing SSK in an Architecture

	Experimental Results and Discussion
	Experimental Setup
	Experimental Results

	Discussion
	Conclusions
	References

