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Abstract - Detection of anomalies based on smart meter data is crucial to

identify potential risks and unusual events at an early stage. The available

advanced information and communicating platform and computational capa-

bility renders smart grid prone to attacks with extreme social, financial and

physical effects. The smart network enables energy management of smart ap-

pliances contributing support for ancillary services. Cyber threats could affect

operation of smart appliances and hence the ancillary services, which might

lead to stability and security issues. In this work, an overview is presented

of different methods used in anomaly detection, performance evaluation of

3 models, the k-Nearest Neighbor, local outlier factor and isolated forest on

recorded smart meter data from urban area and rural region.

Keywords cybersecurity, anomaly detection, smart grid, local outlier factor, isolated

forest

E.1 Introduction

The smart electrical energy network grid requires more accurate demand and prediction

for control and managing the demand in coordination with intermittent renewable energy
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sources [1]. The smart grid will require advanced control and management, including reli-

able forecasting to anticipate the events involved in dispatching, control and management

of the operating grid. The accurate load prediction can help in managing peak demand

and to reduce overall capital cost investment [2].

From the field of Artificial Intelligence (AI) a tool to process meaningful relation of com-

plex big data by uncovering structures and patterns is learned through training with Ma-

chine Learning (ML). When presented with new data the machine can learn to perform

a task without the need of re-programming [9]. ML can provide electrical load demand

forecasting, giving information about future loads, which provides essential input to other

applications such as Demand Response, Topology Optimization and Anomaly Detection,

facilitating the integration of intermittent clean energy sources. Anomaly detection can

been used as a first step in data cleaning process and has been known to enhance any

forecasting algorithm [4][5].

The data used is of such an amount, that it is not possible to do so manually or by

visual inspection, and there is a need for an efficient, automated and accurate anomaly

detection methods [48]

An anomaly is defined as a deviation from an established normal pattern. Spotting

an anomaly depends on the ability to defy what is normal. Anomaly detection systems

aim at finding these anomalies. Anomaly detection systems are in high demand, despite

the fact that there is no clear validation approach. These systems rely on deep domain

expertise. Cyber threats could affect the ancillary services that are being delivered from

the aggregators, which might lead to stability and security issues resulting in brownout

or massive blackouts [7]. Large scale monitoring using the supervisory control and data

acquisition (SCADA) makes it vulnerable to cyber attacks. Anomaly detection can be

used for preventing possible cyber-attacks.

The buses in a power system is in normal operation in the same state, it is reasonable

that an anomaly exists if one bus deviates from the others [8] The implementation of two

way communication by the use of sensors and intelligent agents such as advanced metering

infrastructure as well as load aggregation, make these attractive objects for cyber attacks.

Sensors can be penetrated using a Trojan Horse, to manipulate the adversary inside the

control platform, and change reference inputs in controllers of components. The attacker

can here change acquisition gains, that create bias in the measurements report.

In the distributed power network the attack can disrupt the frequency regulation, voltage

stability and the power flow management [9].

It is necessary to investigate different computing methods, and their applications in

anomaly detection. In this work the performance evaluation of 3 models is analysed

on recorded smart meter data from urban area and rural region.
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This article is organised in sections: Section E.2 the literature review. Theory in Section

E.3, user scenarios in Section E.4, results in Section E.5, and conclusion in Section E.6.

E.2 Review on Anomaly Detection

Anomaly detection is done on any time series data. Various anomalies can be detected in

historic time series data, due to human error, false meter measurement, inaccuracies in

data processing and failure of delivery due to extreme weather or other failures. A two-

stage method is proposed in reference [48] combining two probabilistic anomaly detection

approaches for identifying anomalies in time series data of natural gas. Exogenous vari-

ables are known to influent the electrical load consumption [10], and loads are identified

accordingly as baseload, intermediate load and peak load [11]

An autoregressive integrated moving average with exogenous inputs (ARIMAX) model is

used to extract weather dependency to find the residuals, then through hypothesis testing

the extremities, maximum and minimums are found [49]. This procedure was reproduced,

with linear regression finding the residuals and a Bayesian maximum likelihood classifier

to identify anomalies [48].

A data-mining based framework using DBSCAN was used to detect anomalies in of-

fice buildings. The framework is aimed to identify typical electricity load patterns and

gain knowledge hidden in the patterns and to potentially be used in an early fault de-

tection of anomalous electricity load profiles[50]. Also to detect anomalies of electricity

consumption in office buildings an improved kNN is proposed, ikNN, to automatically

classify consumption footprints as normal or abnormal [51].

Dynamic Bayesian Networks and Restricted Boltzman Machine has been proposed for

anomaly detection in large-scale smart grids. Simulated on the IEEE 39, 118, and 2848

bus systems the results were verified [52]. Real-Time Mechanism for detecting FDIA

analyzed the change of correlation between two phasor measurement units parameters

using Pearson correlation coefficient on IEEE 118 and 300-bus sytems [53]. Machine

learning techniques have been highlighted for theire ability to differentiate between cy-

berattacks and natural disturbances. By a simulating a variety of scenarios the ability for

One R, Random Forest, Naive Bayes and J-Ripper to recoginze attacks was investigated:

Short Circuit faults; location is represented by the percentage range, Line maintenance;

identified through remote relay trip command, Remote tripping command injection; the

attacker operates the relay remotely that causes a breaker to open, Relay setting change;

the attacker misconfigures the relay settings to cause maloperation of relays, FDIA; at-

tacker manipulates measurements sensors. The simulated scenarios was grouped into

classes; natural events, attack events, and no events [54].

In concept drift, models are inaccurate due to change in the underlying data [56]. Thus

the observation can be a result of an improved energy system, and not anomaly[57].
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E.3 Anomaly Detection using Machine Learning Al-

gorithms

3 different models is compared for anomaly detection in the different grid scenarios:

E.3.0.1 k-Nearest Neighbor

The k-nearest neighbor (kNN) regressor, which is non-paramteric, relying on its own table

look-up and mathematical foundation, and highly non-linear.

yknn(x) =
1

K

K∑

k=1

yk for K nearest neighbours of x (E.1)

The kNN-classifier is illustrated in Fig. E.1, where the left diagram with a small en-

circlement options for k = 1, where simply the nearest neighbor decides the class of

prediction, whilst in the right diagram in Fig. E.1, the number of k is increased to more

then one [70].

Using k = 1 can lead to false prediction, and a set of kNNs is often used. When classify-

ing the dependent variable is categorical, it can easily be made numerical by regression.

The kNN regressor makes a regression based on the number of kNNs to minimize false

predictions. The model considers a range of different kvalues to find the optimal value.

The kNN regressor needs thorough pre-processing and feature engineering to limit the

effect of noise caused by irrelevant features, and is, therefore, dependent on finding the

appropriate distance model [71].

E.3.0.2 Isolation Forest

The Isolation Forest algorithm is composed of several isolation trees (iTres) Isolation

forest takes advantage of the nature of anomalies which are less frequent than regular

observations and different from those in terms of values to isolate those. Iforest can deal

with large scale data quickly in a simplified way. It builds an ensemble of decision trees

(iTrees) for a given data set. Clustering is done using binary tree clustering. Anomalies

tend to be isolated closer to the root of the binary tree. Partitions are created using a split

value between the minima and maxima of a randomly selected feature. The algorithm

then tries to separate each point in the data [82] [83] [84] [85].

E.3.0.3 Local Outlier Factor

Local Outlier Factor (LOF) is a density based anomaly detection algorithm introduced

in 2000 [26]. LOF compares the local density of a point to the local density of k of its

neighbors. By comparing the local density of a point to the local density of its neighbors

one can identify point that have substantially lower density than its neighbors. These
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Figure E.1: k-Nearest Neighbour classifying based on the k’th observa-

tion.

points are considered outliers. LOF uses the k-distance to a point as in kNN, to find the

Local Reachability Density (LRD), where a point is most likely to be found. The sum of

LRD is then used to find LOF for the point z, as in Equation (E.2):

LOFk(z
′) =

∑

z∈Nk(z′)

lrdk(z)

lrdk(z′)
/ ‖Nk(z

′)‖ (E.2)

[86]

E.4 User case scenarios

In this work 3 different models is used to detect anomalies in two different grid scenarios:

E.4.1 Scenario 1

New South Wales, Sydney region electrical load profile data set [105] includes meteoro-

logical parameters (e.g. DryBulb and WetBulb Temperature, Humidity, Electricity price

and time of use) [106]. Data is gathered from 2006-2011. The overall energy mix in New

South Wales consists mainly of Coal, Natural Gas, Hydro and other renewable energy

sources. Fig. E.2 illustrates the New South Wales distribution network.

167



142.5 145.0 147.5 150.0 152.5 155.0 157.5 160.0

−36

−34

−32

−30

−28

120 130 140 150 160

−45

−40

−35

−30

−25

−20

−15

−10

Figure E.2: New South Wales Power system, indicating transmission

lines, power stations, and substations

E.4.2 Scenario 2

From rural cabin area in Bjønntjønn, Telemark, Norway, the electrical load demand con-

sumption profile is collected from smart meters. Weather data is collected from surround-

ing weather information statins in the surrounding area. The land owner of the area wants

to realize the project ’Bjønntjønn Grønn’ (Bjønntjønn Green). The project seeks through

different initiatives to make the cabin area ’green’, with power from local hydro power

stations, possibility of electric vehicle charging and operation of the load consumption

related to the power intensive usages. The land owner has currently an application to

get license from The Norwegian Energy Regulatory Authority (NVE) to run hydro power

stations in the area, with a total production of 10,08 GWh [108]. In the fall of 2021 NVE

approved an appplication for a Tesla Supercharger from Tesla Norway, situated in the

center of Treungen, an 8 km drive from the planned Bjønntjønn hydro power station [109]

[110].

The rural area network of a typical Norwegian holiday resort cabin area, Bjønntjønn

Cabin Area. It comprises 125 cottages with a peak demand of 478 kW. As for today,

this cabin area is grid connected, but a microgrid solution involving photovoltaics and

energy storage is also considered. In the summer of 2020 the land owner presented plan

of building 445 new cabins in the area [111].
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Rural electrification is very different from the urban area electrical consumption, due

to diversified energy mix and overall conditions. A variety of case studies is necessary for

a generic approach, although each system requires an independent approach. The Nordic

market is much reliant on hydropower, as Norway’s share of hydropower is 95.8 % [112].

Norway also has the highest integration of Electric Vehicles, and this faces challenges to

the grid. This is especially a case in the rural area, where capacity is low, and the electrical

vehicle charging poses a liability to the grid. In these cases, a micro-grid solution can aid

the low-capacity network, with implementation of distributed generators, in combination

with energy storage.

When examining the general load profile of all Norwegian Holiday Cabins, a clear trend

is observed in the user behaviour. The load demand for Norwegian Cabins has increased

their total consumption from 0.7 TWh in 1993 to 2.3 TWh in 2016. Although the con-

sumption tripled and has been only 1.8 % of the total Norwegian load demand in 2016

[35]. Statistics Norway concludes in the 2018 report, that the increasing trend is due to

the general development, and that more Norwegians have bought cottages in rural areas,

such as mountains and seaside. Also, more cottages have been electrified in this period

[112].

In the Bjønntjønn Cabin Area, to deal with the ever-increasing penetration of electric

vehicles, photovoltaic system together with energy storage could be a scenario for the

future rural electrification. For the Nordic rural area network, a microgrid solution can

improve the electrical network capacity of the rural area, despite challenges from power

demanding operations as electric vehicle charging. Since the electric vehicle will not be

used mostly of the holiday resort area, the battery pack of the vehicle is be considered

as the battery bank for the microgrid. When the state of charge (SOC) of the battery

reaches a certain threshold level, it will be considered as a prosumer for the micro grid

and be able to contribute to electrical supply and stability.

E.5 Results and Discussion

The results of kNN, iforest and LOF on urban area data, are shown in Fig. E.4, E.5 and

E.6, and from rural region data in Fig. E.7, E.8 and E.9. The results are depicted with a

0.0005 amount of contamination of the data set, this is the proportion of outliers in the

data set. Used when fitting to define the threshold on the decision function [36].

It is observed that the anomaly detection for the two grid scenarios are different, for

the rural region most of the anomalies where observed in the latter timeline of the data

concentrated in the last year of the collected data. For the urban area data the anomalies

are spread out over the entire timeline. In Table E.1, it is shown that the frequency of

detected anomalies where considerably higher for the rural area load demand than for the

urban area load demand. When observing the anomalies detected based on the algorithm

the results in Table E.1 are consistent.
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algorithm urban rural

kNN 44 10

iforest 35 25*

lof 44 21

Table E.1: Results using fraction 0.0005, except * =

0.0006

Observing from these case scenarios the incidents of detected anomalies are more data

driven, then exceptions in the algorithms. It is observed that there are 3 anomalies, where

the recorded electrial load demand is zero, in the rural region dataset that the iforest and

LOF did not detect. This was only detected by kNN, see Fig. E.7.

When comparing the 3 algorithms tested on the urban area data it is observed that

kNN and isolated forest finds a threshold value, based in the mentioned fraction of con-

tamination, and separates a lower and upper bound, whilst the density based LOF finds

anomalies at several ranges of the dataset, see Fig. E.4, E.5 and E.6.

When visually inspecting results in Fig. E.4, E.5, E.6, E.7, E.8 and E.9, it is observed

that from the domain knowledge of smart energy systems the LOF is able to detect ob-

servations that could not have detected by visual inspection alone, in contrast to kNN

and iforest. Whereas kNN and iforest excludes an upper and lower bound, the LOF is

density based and separates out anomalies amidst in the data. The capability that LOF

has to identify anomalies amidst the data will together with the deep domain knowledge

is an advantage when detecting anomalies in smart meter data.

E.6 Conclusion

Detection of anomalies based on smart meter data is crucial to identify potential risks

and unusual events at an early stage. An anomaly is defined as a deviation from an

established normal pattern. Spotting an anomaly depends on the ability to defy what is

normal.Cyber threats could affect operation of smart appliances and hence the ancillary

services, which might lead to stability and security issues. In this work is evaluated the

performance of 3 models, the k-Nearest Neighbor, local outlier factor and isolated forest

on recorded smart meter data from urban area and rural region. Observed that from

the domain knowledge of smart energy systems the LOF is able to detect observations

that could not have detected by visual inspection alone, in contrast to kNN and iforest.

Whereas kNN and iforest excludes an upper and lower bound, the LOF is density based

and separates out anomalies amidst in the data. The capability that LOF has to identify

anomalies amidst the data will together with the deep domain knowledge is an advantage

when detecting anomalies in smart meter data. The anomaly detection based on machine

learning algorithms gives a fast response to potential anomalies.
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Figure E.4: Anomaly detected outliers marked in red using kNN, frac-

tion = 0.0005
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Figure E.5: Anomaly detected outliers marked in red using iforest, f =

0.0005
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Figure E.6: Anomaly detected outliers marked in red using LOF, f=

0.0005
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Figure E.7: Anomaly detected outliers marked in red using kNN, frac-

tion = 0.0005
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Figure E.8: Anomaly detected outliers marked in red using iforest, f =

0.0006
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Figure E.9: Anomaly detected outliers marked in red using LOF, f=

0.0005
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