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ABSTRACT
Given the scarcity of COVID-19 vaccines, equitable (fair) allocation of limited vaccines across the
main administrative units of a country (e.g. municipalities) has been an important concern for public
health authorities worldwide. In this study, we address the equitable allocation of the COVID-19 vac-
cines inside countries by developing a novel, evidence-based mathematical model that accounts
for multiple priority groups (e.g. elderly, healthcare workers), multiple vaccine types, and regional
characteristics (e.g. storage capacities, infection risk levels). Our research contributes to the litera-
ture by developing and validating a model that proposes equitable vaccine allocation alternatives
in a very short time by (a) minimising deviations from the so-called ‘fair coverage’ levels that are
computed based on weighted pro-rata rations, and (b) imposing minimum coverage thresholds to
control the allocation of vaccines to higher priority groups and regions. To describe themerits of our
model, we provide several equity and effectivenessmetrics, and present insights on different alloca-
tion policies. We compare our methodology with similar models in the literature and show its better
performance in achievingequity. To illustrate theperformanceof ourmodel inpractice,weperforma
comprehensive numerical study based on actual data corresponding to the early vaccination period
in Turkey.
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1. Introduction

As of December 2021, more than 260 million cases
and 5.2 million deaths have been confirmed globally
by the World Health Organization (WHO) due to the
COVID-19 pandemic (WHO 2021). Besides causing a
health crisis, the COVID-19 pandemic has led to signif-
icant socio-economic problems (WHO 2020b). To end
the pandemic, reaching herd immunity through vac-
cination is accepted to be the most effective strategy.
Several countries have started administering COVID-19
vaccines in early 2021. While about 56% of the popula-
tion has received at least one dose in the high-income
countries, this level is 7.1% in low-income countries
(Ritchie et al. 2020) (see Appendix 1 for the cover-
age distribution). Hence, effective utilisation of avail-
able vaccine supplies is still a critical concern for many
countries.

Due to large amount of needs and insufficient supplies,
allocating vaccines within a country has been an impor-
tant problem for public health authorities (Joi 2021).
In particular, there is a need for decision support tools
for vaccine allocation planning that (i) avoid disparities
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among regions based on their needs and vulnerabili-
ties (i.e. equity), and (ii) maximise the total vaccination
coverage (i.e. ratio of the vaccinated population to total
needs) with the available supplies while prioritising the
vaccination of the most vulnerable (i.e. effectiveness)
(WHO 2020a; Toner et al. 2020; Baharmand et al. 2021).

Our research seeks to support the equitable (fair)
allocation of COVID-19 vaccines among the adminis-
trative units in a country (i.e. municipalities, provinces)
by developing an evidence-based mathematical model.
Specifically, based on the decision-making needs of
public health authorities (Baharmand et al. 2020), we
define and model the central vaccine allocation prob-
lem (CVAP), which supports determining the number of
vaccine doses to be allocated to eachmunicipality by con-
sidering the size and importance of the currently targeted
priority groups, requirements of different vaccine types
(e.g. doses, batch sizes), vaccine storage capacities and
regional differences that may affect vulnerability (such as
infection level and socio-economic development status).
While our model primarily focuses on achieving equity,
it also ensures an effective allocation by maximising total
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demand coverage and prioritising vulnerable locations
and groups. We illustrate the behaviour of the model on
synthetic and case study instances, and show the effects
of using different allocation policies and parameters on
some equity and effectiveness metrics.

The proposed methodology goes beyond available
models in the literature. The model addresses the crit-
ical challenges brought by the COVID-19 vaccination,
such as extreme scarcity of supplies, regional differences,
and different vaccine types. We contribute to the litera-
ture by presenting a new approach to model equity in
the in-country vaccine allocation problem, which can
be adapted to other settings with severe supply short-
ages and high stakes associated with the satisfaction of
demand (e.g. humanitarian aid and emergency services).
Specifically, we minimise the total deviation from a so-
called fair coverage level, which is determined based on
a weighted pro-rata allocation policy that accounts for
the size and importance of needs and available supply
for multiple types of vaccines. The merits of our pro-
posed modelling approach are as follows. First, the rela-
tive importance of different priority groups and regions
are easily incorporated in our model by using weights,
which can be set based on the experts’ judgements or
available data (e.g. infection levels). Secondly, the model
supports decision makers to unfold equitable vaccine
allocation alternatives while imposing minimum cover-
age thresholds to control the allocated vaccines to certain
priority group(s). Third, even when the fair coverage lev-
els may not be achieved for some locations due to factors
such as the restricted storage capacity, batch sizes, and the
user-defined minimum coverage thresholds, the alloca-
tions can still be made by prioritising vulnerable groups
and locations, thereby improving effectiveness. Finally,
the proposedmodel can be solved quickly, allowing deci-
sionmakers to evaluate alternative allocation policies and
solutions efficiently.

The rest of the paper is organised as follows. In
Section 2, we review related supply and vaccine allocation
problems and position our study. We describe the prob-
lem and present our modelling approach in Section 3.
In Section 4, we present numerical results. Finally, we
discuss our findings in Section 5.

2. Related literature and contribution

In this section, we first provide an overview of studies that
focus on supply allocation problems (Section 2.1). Then,
we review the relevant studies that focus on vaccine allo-
cation problems (Section 2.2). Finally, we position our
study (Section 2.3).

2.1. Supply allocation problems

Stock allocation problems are widely studied in multi-
echelon distribution systems (Chen et al. 2022). Differ-
ent approaches have been used to deal with scarcity of
supplies along the supply chains. For instance, stockpil-
ing is widely used to mitigate supply shortages (Yoon,
Narasimhan, and Kim 2018). In production settings, var-
ious policies are utilised tomanage supply shortages such
as incurring backorders and lost sales, or emergency
outsourcing (e.g. Sali and Giard 2015; Barron and Her-
mel 2017). Keeping safety stock to ensure a desired stock-
out probability or fill rate is also common (e.g. Jöns-
son and Silver 1987; Lagodimos 1992; Van der Heijden,
Diks, and De Kok 1997; Woerner, Laumanns, and Wag-
ner 2018). Despite the richness of alternative approaches,
studies that address commercial settings often involve
objectives that can be easily converted to monetary mea-
sures such as cost and profit (Van Wassenhove and
PedrazaMartinez 2012), and equity (fairness) is often not
an explicit concern in allocating stocks.

Supply allocation problems with equity concerns have
been more relevant to health care (e.g. Lane et al. 2017),
humanitarian (e.g. Habib, Lee, and Memon 2016) and
nonprofit systems (e.g. Orgut et al. 2016). In healthcare
settings, scarcity is common in managing public health
and emergency settings such as blood banks (e.g. Baş
et al. 2016) and ambulance services (e.g. McLay and
Mayorga 2013). Similarly, providing equitable access to
beneficiaries is an important concern in designing and
managing humanitarian operations. For instance, Balcik,
Beamon, and Smilowitz (2008) and Noyan, Balcik, and
Atakan (2016) present approaches for equitable distribu-
tion of scarce relief supplies after a disaster.

Despite some efforts, there is yet no consensus regard-
ing how to proxy equity. Marsh and Schilling (1994)
note that formulating an appropriate equity objective
is context-dependent. Moreover, as highlighted by De
Boeck, Decouttere, and Vandaele (2020), there is a need
to develop new approaches to study equity in vaccine
supply chains. As discussed by Lemmens et al. (2016),
there exist unique features of vaccine allocation problems
(such as different dose requirements and storage condi-
tions of vaccine types). That said, the existing models for
supply and vaccine allocation problems are not directly
applicable to address the COVID-19 vaccine allocation
problem.

2.2. Vaccine allocationmodels

Although a rich literature focuses on designing andman-
aging vaccine supply chains (e.g. De Boeck, Decouttere,
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and Vandaele 2020; Duijzer, van Jaarsveld, and Dekker
2018), COVID-19 pandemic has brought unique chal-
lenges and required the development of new approaches.
First, matching demand and supply has been challeng-
ing due to extreme scarcity of vaccines. Vaccines could
be administered long after COVID-19 pandemic started.
As such, vaccine supplies remained far behind the needs
worldwide for several months. In this situation, effec-
tive use of even a single dose has been of paramount
importance, which has put an extreme pressure on public
health authorities to make effective and equitable allo-
cation decisions. That is, although it is widely accepted
that vaccine supply chain decisions are highly sensi-
tive to the objectives specified by decision makers and
misaligned objectives may curb the benefit of vaccina-
tion (Duijzer, van Jaarsveld, and Dekker 2018), during
COVID-19, choosing appropriate objectives have gained
even more importance due to both ethical concerns
and the need to vaccinate population quickly (Forman
et al. 2021; National Academies of Sciences, Engineering,
and Medicine 2020). Additionally, since COVID-19 is a
novel disease, the public health authorities had neither
information about the spread of the disease nor histori-
cal data unlike previous outbreaks (e.g. influenza), which
caused challenges for the response. Finally, unknowns
regarding the new vaccines (e.g. efficacy, dose require-
ments) have also brought challenges in planning and
management of vaccination.

Given the challenges faced during the COVID-
19 pandemic, an increasing number of studies have
addressed problems related to COVID-19 vaccines such
as determining vaccination location sites (e.g. Bertsimas
et al. 2022), designing multi-echelon dynamic cold chain
distribution systems (e.g. Manupati et al. 2021; Sinha,
Kumar, and Chandra 2021), designing rollout processes
for multi-dose vaccines (e.g. Mak, Dai, and Tang 2021),
developing prioritisation measures (e.g. Sahinyazan and
Araz 2022), and sequencing the priority groups (e.g.
Chen et al. 2020; Foy et al. 2021; Bubar et al. 2021;
Li, Bjørnstad, and Stenseth 2021). We consider a dif-
ferent problem setting than these studies, in which
scarce amounts of COVID-19 vaccines must be allo-
cated across the regions (e.g. municipalities) of a country.
Our work is hence related to studies that focus on allo-
cation of vaccines during the previous outbreaks and
pandemics such as the influenza (e.g. Teytelman and Lar-
son 2013; Yarmand et al. 2014; Huang et al. 2017; Enay-
ati and Özaltın 2020) and the COVID-19 (e.g. Tavana
et al. 2021; Munguía-López and Ponce-Ortega 2021;
Jadidi et al. 2021; Jarumaneeroj et al. 2022; Anahideh,
Kang, and Nezami 2022; Goodarzian et al. 2022; Fadaki
et al. 2022; Walker et al. 2022; Yang et al. 2022). In
Table A3 (Appendix 2), we present a classification of the

key aspects of themost relevant studies that focus on vac-
cine allocation problems, which we briefly discuss in the
following.

As observed from Table A3, studies that consider vac-
cine allocation problems for previous outbreaks such as
influenza often utilise disease spread models (e.g. Teytel-
man and Larson 2013; Yarmand et al. 2014). This is barely
possible for the COVID-19 pandemic due to lack of prior
data related to the disease and vaccination efficacy. Addi-
tionally, these studies often ignore priority groups while
making regional allocations. This approach does not cap-
ture the needs of COVID-19 vaccine allocation context as
certain vulnerable groups had to be prioritised (Forman
et al. 2021). Moreover, while equitable vaccine alloca-
tion has been critical during the COVID-19 pandemic,
existing studiesmostly focus onmaximising the effective-
ness (i.e. Teytelman and Larson 2013; Jadidi et al. 2021;
Jarumaneeroj et al. 2022; Fadaki et al. 2022; Walker
et al. 2022; Yang et al. 2022) or efficiency (i.e. Yarmand
et al. 2014). In some studies, equity is considered by sim-
ply setting lower bounds on regional allocations, while
others propose more sophisticated approaches for ensur-
ing equity among regions and priority groups (e.g. Huang
et al. 2017; Tavana et al. 2021; Munguía-López and
Ponce-Ortega 2021; Anahideh, Kang, and Nezami 2022;
Goodarzian et al. 2022; Fadaki et al. 2022). However, the
latter studies do not incorporate all aspects relevant to
the COVID-19 context such as vaccine types, vial sizes,
and regional vaccination capacities. To highlight the ben-
efits of the proposed equity objective, we compare the
performance of our model with adapted objective func-
tions from several benchmark studies (i.e. Noyan, Balcik,
and Atakan 2016; Huang et al. 2017; Tavana et al. 2021)
(Section 4.2.4) and show that our model has advantages
in providingmore equitable and also effective allocations.

2.3. Positioning our study

Our review shows that existingmodels do not necessarily
address all critical features of theCOVID-19 vaccine allo-
cation problem that public health authorities commonly
deal with. Our methodology addresses this gap and has
the following features:

(i) Wepropose a new equitable allocation policy, which
minimises deviations from fair coverage levels com-
puted based on weighted pro-rata rations. The pro-
posed objective is novel and can ensure effective
allocation of vaccines if fair coverage levels cannot
be achieved due to external limitations.

(ii) Our methodology allows decision makers to
impose minimum coverage thresholds to allocate
more vaccines to higher priority groups before
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starting the vaccination of lower priority groups,
if necessary. We present a supplementary model
that can adjust high coverage thresholds in a bal-
ancedway to better serve the preferences of decision
makers.

(iii) We incorporate the relative importance of both
regions and priority groups according to a set of
prioritisationmetrics. Our prioritisationmethodol-
ogy, which assigns criteria that affect vulnerability,
is simple but practical.

(iv) We present numerical experiments and a case study
with real data to illustrate our approach and com-
pare different allocation solutions based on several
key performance indicators for effectiveness and
equity, which provide valuable insights to decision
makers.

3. Model development

In this section, we first explain our modelling approach
and define our problem. Thereafter, we present our for-
mulation and details of the proposed allocation policy.

3.1. Modeling approach

Our study aims at developing a methodology to allocate
vaccines that respect the constraints and specifics of the
COVID-19. Our approach focuses on maximising equi-
table COVID-19 vaccine allocation while accounting for
large demands in different eligible priority groups (e.g.
health workers, elderly) by a scarce amount of available
vaccine supplies with distinct requirements (e.g. doses,
batch sizes).

We followed Baharmand et al. (2022)’s exploratory
mixed method research design due to its transparent 8-
step procedure for developing optimisation models for
logistics problems in disaster settings. The design intro-
duces a step-by-step approach to translating qualitative
findings into mathematical models. Accordingly, for the
qualitative part, we conducted a series of stakeholder
workshops with experts from public health authorities
in Norway and Belgium between June 2020 and March
2021. These workshops were connected to the CON-
TRA research project: COVID-19 Network Technology
Based Responsive Action. The participants and experts
were mainly officials responsible for allocating and dis-
tributing vaccines in Norway and Belgium. The meet-
ings revealed the complexity of the decision-making pro-
cess for designing and managing the COVID-19 vac-
cine distribution network within a country (Baharmand
et al. 2020). Acknowledging contextual differences, we
think the problem aspects could be generalised to all
countries facing similar challenges in COVID-19 vaccine

distribution (e.g. see National Academies of Sciences,
Engineering, and Medicine 2020).

After some rounds of interviews, we identified criti-
cal features of the COVID-19 vaccine allocation problem
and translated them into a mathematical model. We also
ran experiments to ensure that the features are imple-
mented correctly. For experiments, we use data from
Turkey due to the access of authors to first-hand data
from this country. We focus on the initial months dur-
ing which the available supply was limited compared to
immense needs. Turkey began vaccination, free of charge,
sequentially to healthcare personnel and people above 65
years and/or who had chronic diseases. As the vaccine
supply became more available, all people above 18 years
old became eligible for vaccination.Our observations and
reports confirm that other countries have (more or less)
followed a similar approach.

3.2. Problem definition and assumptions

We describe the CVAP as the allocation of COVID-19
vaccines to major administrative units within a coun-
try (e.g. districts, provinces, municipalities) that involve
multiple eligible priority groups. Public health authorities
need to allocate the limited supply among locations upon
receiving the vaccine shipments, as illustrated in Figure 1.

Given limited supplies compared to needs, making
equitable and effective vaccine allocation plans by con-
sidering diverse concerns and limitations is the main
challenge that we focus on in CVAP.

In the following, we explain the features and assump-
tions of our model, which have been validated during
discussions with public health authorities over the course
of a national research project.

• Supply: Due to limited supplies, COVID-19 vaccines
arrive in the country in multiple waves. The arrival
frequency and amount of vaccines may highly dif-
fer depending on the supplier contracts. For instance,
while supply arrivals in Norway from different man-
ufacturers were regularly made weekly and bi-weekly
(Norwegian Institute of Public Health, March 18,
2021), sporadic arrivals occurred in Turkey during the
early stages of vaccination (Person 2021; Fahim and
DeYoung 2021): Low-income countries (e.g. Kongo
and Nepal) could receive donations from the Covax
facility once in five or six months (GAVI 2021). We
assume that the allocation decisions will be made
upon each supply arrival, and the planning horizon
covers the period between two consecutive supply
arrivals.

• Vaccine types: We focus on allocating available sup-
plies for multiple types of vaccines, which may differ
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Figure 1. An example vaccine distribution network for CVAP.

in batch sizes (i.e. the number of doses per cargo pack-
age) due to cold chain or logistical requirements. Since
a batch cannot be divided, the allocated number of
doses can be an integer multiple of the batch size,
which is denoted by bk for vaccine type k.

We also assume that the required doses for com-
plete vaccination may vary among vaccine types, and
the available supply for each vaccine type, s̄k, is defined
based on the required number of doses for fully immu-
nising one person. That is, for instance, if two doses
are required, we hold half of the arriving supplies for
the second doses and allocate the supply available for
the first doses, that is s̄k. Therefore, CVAP solutions
(i.e. the allocated amounts) represent the number of
individuals that are provided the first doses. This
approach is similar to the ‘hold back policy’ adopted
by some countries during the early phases of vaccina-
tions, which has been then changed to a ’release policy’
in later stages, which means all available vaccines are
allocated even it may be used as if a second dose (Mak,
Dai, and Tang 2021).

• Priority Groups: We consider multiple priority groups
that are eligible for vaccination. The number of unvac-
cinated people in each priority group p in eachmunic-
ipalitym represent demand dmp. The necessity of vac-
cination for each priority group can be different, and
it may be desirable to skew allocations in favour of
relatively more important priority groups. The impor-
tance of each priority group is captured by prioritisa-
tion weights, τp.

• Capacity: The capacities of municipalities to store and
administer COVID-19 vaccines may be limited due to
infrastructural and resource limitations. We assume
that the vaccines allocated to eachmunicipality is lim-
ited by the number of vaccines of each type that can

be stored and administered in themunicipality during
the planning horizon, which is denoted by cmk.

The CVAP does not consider detailed transporta-
tion planning of COVID-19 vaccines; i.e. we assume
that the allocated amounts can be delivered to the
municipalities. For instance, a third-party logistics
(3PL) company with sufficient capacity is responsi-
ble for the transportation of the COVID-19 vaccines
in Norway (Sun, Andoh, and Yu 2021). However, if
there exist logistical limitations and/or preferences of
decision makers to send certain vaccine types to dif-
ferent municipalities, capacity parameters can be used
to control shipments to different regions.

• Performance metrics: We assume that the primary
objective of CVAP is maximising equity (fairness). We
define equity in terms of the amount of deviation from
pre-determined fair coverage levels for regions and
priority groups. Fair coverage is computed based on
a weighted pro-rata allocation policy, which incorpo-
rates the demand size of each priority group in each
municipality, the relative importance of locations and
priority groups represented byweights, and total avail-
able supply (see Section 3.4.2). In CVAP, effectiveness
is considered as a secondary objective and defined in
terms of the total weighted average coverage achieved
in the network. The cost (efficiency) of the vaccine
allocation decision is not considered as a primary con-
cern in CVAP due to the preferences of the public
health authorities.

• Allocation policy: Given a number of eligible prior-
ity groups dispersed across the country, public health
authorities can consider different allocation policies in
rationing supplies. For example, the available supply of
vaccines can be divided by simply applying a pro-rata
(proportional) allocation policy to provide the same
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coverage level for all priority groups in all regions.
However, ignoring regional differences and targeting
equal vaccination coverage across different groups and
regions may not be equitable (WHO 2020c). More-
over, due to capacity limitations, achieving the same
coverage levels across regions may not even be feasi-
ble. Additionally, public health authorities may want
to control the amount of vaccines allocated to differ-
ent groups; for instance, allocating more vaccines to
higher priority groups may be desirable. CVAP aims
to generate an equitable and effective allocation plan
by prioritising vulnerable groups and regions, as well
as considering capacity limitations and the additional
requirements set by the decision maker.

In the proposed allocation policy, we skew vac-
cine rations in favour of higher priority groups and
regions by utilising composite prioritisation weights,
αmp, which capture relevant dimensions that affect risk
and vulnerability. These prioritisation weights play an
important role to determine the fair amounts, which
is explained in detail in Section 3.4.2.

3.3. The CVAP formulation

We present our notation and the integer programming
(IP) model for CVAP as follows.

Index sets

M: set of regions (municipalities);m ∈ {1, . . . ,M}
P : set of priority groups; p ∈ {1, . . . ,P}
K: set of vaccine types; k ∈ {1, . . . ,K}

Model parameters

dmp: size of targeted unvaccinated population in priority
group p in municipalitym

αmp: composite prioritisation weight of priority group p
in municipalitym

fmp: weighted-proportional allocation amount for prior-
ity group p in municipalitym (i.e. fair amount)

gmp: minimum coverage threshold for priority group p
in municipalitym

bk: batch size for vaccine type k
cmk: capacity of municipalitym for vaccine type k
s̄k: available total vaccine supply for vaccine type k
sk: amount of supply that will be allocated for vaccine

type k; sk = min{s̄k,
∑

m cmk}
γ : large penalty value imposed for the infeasibility of

minimum coverage threshold

Decision variables

Xmpk: number of vaccines to allocate to priority group p
in municipalitym of vaccine type k

Ymk: number of vaccine batches to allocate to each
municipalitym of vaccine type k

W−
mp: amount of deviation from the fair amount for

municipalitym andpriority group pwhen allocation
amount is less than the fair amount (i.e. negative
deviation)

W+
mp: amount of deviation from the fair amount for

municipalitym andpriority group pwhen allocation
amount is greater than the fair amount (i.e. positive
deviation)

Z−
mp: auxiliary variable that takes 1 if the allocation

amount is less than the fair amount
Z+
mp: auxiliary variable that takes 1 if the allocation

amount is greater than the fair amount
Vmp: auxiliary variable that defines the gap between

achieved coverage and the minimum coverage
threshold for priority group p in municipalitym

Objective function

min θ

M∑
m=1

P∑
p=1

αmpW−
mp

dmp
+

M∑
m=1

P∑
p=1

(1 − αmp)W+
mp

dmp

+ γ

M∑
m=1

P∑
p=1

Vmp (1)

The first and second terms of (1) minimise the weighted
sum of the deviation from the fair coverage levels for
the cases in which the allocation amount is less than the
fair amount (negative deviation) and greater than the fair
amount (positive deviation), respectively. These terms
ensure that locations and groups with high importance
are prioritised, also by considering their demand sizes.
The first term ismultiplied by θ >weight to penalise neg-
ative deviationsmore. The third term in (1) applies a large
penalty if the minimum coverage threshold set for a pri-
ority group in a municipality cannot be met, as defined
by constraints (8). In this way, the CVAP model does
not report any infeasibility in strictly constrained set-
tings. That is, our approach ensures equitable and effec-
tive solutions even if minimum coverage thresholds are
not attainable. Additionally, we propose an hierarchical
optimisation approach that can adjust infeasible coverage
threshold values so that model can find allocations close
to decision maker’s preferences (see Section 3.5).

Constraints

P∑
p=1

Xmpk = bkYmk ∀m ∈ M, k ∈ K (2)

M∑
m=1

bkYmk = sk ∀ k ∈ K (3)
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Constraints (2) calculate the total number of vaccines
sent to each municipality based on the batch size of each
vaccine type. Constraints (3) ensure that the total amount
of vaccines sent to the municipalities for each type is
equal to the total amount of supply that will be allocated.

K∑
k=1

Xmpk = fmp + W+
mp − W−

mp ∀m ∈ M, p ∈ P

(4)

fmp + W+
mp − W−

mp ≤ dmp ∀m ∈ M, p ∈ P (5)

Constraints (4) define the amount of deviation from the
fair amount for each priority group in each municipal-
ity, and constraints (5) ensure that the sum of the fair
amount and its corresponding deviation is limited with
the demand for each priority group and municipality.

Z+
mp + Z−

mp = 1 ∀m ∈ M, p ∈ P (6)

W+
mp ≤ dmpZ+

mp, W−
mp ≤ dmpZ−

mp ∀m ∈ M, p ∈ P
(7)

Constraints (6) ensure that either a positive or nega-
tive deviation from the fair amount can occur for each
priority group and municipality. Constraints (7) limit
deviations by demand size.

gmpdmp −
K∑

k=1

Xmpk ≤ Vmp ∀m ∈ M, p ∈ P (8)

bkYmk ≤ cmk ∀m ∈ M, k ∈ K (9)

Constraints (8) set the amount of deviation from themin-
imum coverage threshold for each priority group in each
municipality. Constraints (9) ensure that the capacity
constraints are respected. Finally, constraints (10)–(13)
define variable domains.

Xmpk ≥ 0 and integer ∀m ∈ M, p ∈ P , k ∈ K
(10)

Ymk ≥ 0 and integer ∀m ∈ M, k ∈ K (11)

W+
mp,W

−
mp

≥ 0 and integer;

Z+
mp,Z

−
mp ∈ {0, 1} ∀m ∈ M, p ∈ P (12)

Vmp ≥ 0 and integer ∀m ∈ M, p ∈ P (13)

The CVAP model’s primary aim is to ensure an equi-
table allocation of vaccines, rather than seeking equal
demand coverage. The fair amount specifies the num-
ber of vaccines to allocate to priority groups in munic-
ipalities considering multiple important factors (see
Section 3.4.2). Thus, minimising the total deviation from

the fair coverage levels leads to a network-level equi-
table solution. While CVAP aims to maximise equity,
it also yields an effective allocation as follows. First, all
supply is allocated through constraints (3). If the whole
supply was not enforced to be distributed, due to vari-
ous factors that cause deviations from the fair amounts
(e.g. capacity limitations, batch sizes), therewould be sur-
plus (un–allocated) vaccines, which would lead to lower
total vaccine coverage. In cases where fair amounts can-
not be achieved, the CVAP model can still allocate all of
the vaccines by favouring critical groups and locations
through the first and the second term of the objective
function (1). Secondly, since objective function penalises
the weighted deviations from the fair coverage levels,
avoiding shortages for critical groups and regions are
more important and hence negative deviations from the
fair coverage occur for less important groups. Besides,
positive deviations from the fair coverage are realised
for critical groups and regions to improve effectiveness.
The advantage of this proposed approach compared to
alternative benchmarks is illustrated in Section 4.2.4.

We solve the proposed IP model for CVAP by using
an off-the-shelf optimisation solver. In our numerical
experiments, we solve both small and large (case study)
instances. Although themodel includes integer variables,
it can be solved quickly (within a minute).

3.4. Equitable weighted pro-rata allocation policy

We explain the details of the proposed allocation policy
in CVAP in this section. Given the number of eligible
population groups dispersed across a country, a tradi-
tional pro-rata allocation policy would allocate vaccines
to each municipality based on proportional amounts
based on the available supplies and the needs. However,
as explained before, skewing the proportional allocation
amounts in favour of critical groups and locations would
be desirable for more equitable solutions. The proposed
allocation policy targets to provide vaccines to each pri-
ority group in each municipality in the amount propor-
tional to the weighted pro-rata amounts by accounting
for multiple constraints that may necessitate deviating
from the fair amounts. Below, we explain the methodol-
ogy followed to set important parameters of this policy to
achieve equitable solutions, namely the composite priori-
tisation weights, the fair amount and fair coverage level,
and the minimum coverage thresholds.

3.4.1. Composite prioritisation weights
We calculate the composite prioritisation weights for
municipality m and priority group p as follows. We con-
sider (i) weights associated with priority groups that
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reflect the importance of vaccination for population sub-
groups, τp and (ii) weights associated with municipalities
that reflect regional differences in each relevant dimen-
sion l, λlm. Public health authorities can specify important
contextual dimensions and assign initial scores based
on their expert judgment or available data. The initial
scores are then scaled between 0 and 1 by subtracting
the minimum score from each score, and then divid-
ing it by the range of the scores (i.e. maximum score –
minimum score). We take the geometric average of the
resultant weights (i.e. τp and λlm) and compute a priori-
tisation weight for each priority group and municipality.
Finally, we divide each resultant value to the sum of val-
ues, which yields the composite prioritisation weights,
αmp, that add up to one. Figure A2 (Appendix 1) sum-
marises the framework followed to set composite priori-
tisation weights. Note that different vaccine allocations
can result from using different αmp values. In our case
study (Section 4.3), we compare four different vacci-
nation plans that are obtained by considering different
dimensions (e.g. infection level, socio-economic status).

Assigning importance weights to certain regions
and/or population groups is a common prioritisation
approach in allocation problems with severe resource
shortages. In Miura et al. (2021) and Bubar et al. (2021),
importance weights with respect to age groups are used
to prioritise allocation of COVID-19 vaccines. Qazi, Sim-
sekler, andGaudenzi (2021) and Shahparvari et al. (2022)
focus on the identification of critical factors influencing
COVID-19 risk and their relative importance. Anahideh,
Kang, and Nezami (2022) calculate the exposure rates of
groups based on their attributes and make the prioritisa-
tion accordingly. There exist other methods in the liter-
ature that are used to prioritise delivery of services and
goods including deprivation costs, which have been used
in humanitarian (e.g. Gutjahr and Fischer 2018; Zhu,
Xu, and Gu 2019), healthcare (e.g. Donmez et al. 2011),
and vaccine allocation (e.g. Taha et al. 2022) settings. In
our study, assigning importance weights was found to be
flexible and practical by the decision makers during the
validation test processes, since there may be a multitude
of factors to consider while prioritising groups and/or
regions.

3.4.2. Fair amount and fair coverage
The CVAP model incorporates equity through so-called
‘fair amount’ and ‘fair coverage level’ values, which are
calculated based on the size and the importance of mul-
tiple regions and eligible population groups. Given the
composite prioritisation weights, αmp, and demands for
each priority group in each municipality, dmp, and the
supply available for allocation for each vaccine type,
sk, the fair amount, fmp, is obtained by calculating the

weighted pro-rata allocation amounts as follows:

fmp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑K
k=1 skdmpαmp∑M
m=1

∑P
p=1

dmpαmp

, if
∑K

k=1 skdmpαmp∑M
m=1

∑P
p=1

dmpαmp

≤ dmp

dmp, otherwise

∀m, p (14)

In the fair amount calculation (14), if the pro-rata
weighted allocation amount for a priority group at a
municipality is greater than its demand, then its demand
becomes the fair amount. This leads to a surplus vac-
cine supply that is not considered in assessing the fair
amounts. To ensure utilising the entire supply in deter-
mining fair amounts, we devise and implement an iter-
ative algorithm, which is presented in Appendix 3.
Accordingly, if fair amounts can be achieved for all pri-
ority groups and locations, the total deviation from fair
coverage (i.e. the ratio of the fair amount to demand)
would be zero. However, vaccines allocated tomunicipal-
ities can deviate from their pre-computed fair amounts
for several reasons such as the limited storage capacity
and vaccine batch sizes. The CVAP seeks an equitable
solution by minimising the total deviation from the fair
coverage levels under such constraints.

3.5. A hierarchical optimisation approach for
adjusting theminimum coverage threshold for
feasibility

As discussed before, decisionmakers may want to ensure
certain coverage levels for certain groups and/or loca-
tions, which are represented by gmp in CVAP. For
instance, it may be desirable to cover a certain propor-
tion of higher priority groups before starting to vaccinate
lower groups. If such thresholds exist, the CVAP model
would first satisfy the specified minimum coverage levels
due to the large infeasibility penalty term in the objective
function, and the remaining supply amount is allocated
by minimising deviations from the fair coverage levels.

While setting gmp values allows the decision maker
to control allocations more closely, setting reasonable
thresholds may be difficult given the complexity of the
problem in large settings with many municipalities, pri-
ority groups, and vaccine types. A possible trial-and-
error process to set reasonable bounds may be cumber-
some for the decision maker. Moreover, as illustrated in
Section 4.2.3, arbitrary coverage values may be obtained
when theminimum thresholds cannot bemet. To set fea-
sibleminimum coverage thresholds that are close to deci-
sion maker’s preferences, we make use of a hierarchical
optimisation method, in which a mathematical model,
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called the equitable coverage feasibility (ECF) model, is
solved in advance of CVAP. Specifically, the ECF adjusts
the given gmp to feasible values while deviating as little as
possible from the original values, that is, it adjusts thresh-
olds in a balanced way to satisfy the preferences of the
decision maker as closely as possible.

The additional variables defined for developing the
ECF model are as follows:

Ĝmp: adjusted minimum coverage threshold for each
priority group p in municipalitym

Emp: difference between Ĝmp and gmp for each priority
group p in municipalitym

A: auxiliary variable that represents the largest weighted
difference between Ĝmp and gmp

The ECF model is presented below.

min A + ε

M∑
m=1

P∑
p=1

αmpEmp (15)

s.t. (2), (3), (9), (10), (11)
K∑

k=1

Xmpk ≤ dmp ∀m ∈ M, p ∈ P (16)

dmpĜmp ≤
K∑

k=1

Xmpk ∀m ∈ M, p ∈ P (17)

Ĝmp = gmp − Emp ∀m ∈ M, p ∈ P (18)

αmpEmp ≤ A ∀m ∈ M, p ∈ P (19)

Ĝmp,Emp ≥ 0 ∀m ∈ M, p ∈ P (20)

The objective function (15) minimises the maximum
deviation from the initially set minimum coverage
threshold values, as defined by constraints (19). The sec-
ond term,multiplied by a small coefficient,minimises the
weighted total deviation and eliminates alternative solu-
tions. Deviations from gmp values for groups and munic-
ipalities with higher αmp values are penalised more. Con-
straints (16) are demand-related constraints, modified
from the CVAP model. Constraints (17) determine the
feasible minimum coverage threshold for each group in
eachmunicipality. Constraints (18) specify the difference
between the original and the adjusted thresholds. Con-
straints (19) identify the maximum deviation from the
original gmp values. Constraints (20) specify the domains
of the variables.

The binding Ĝmp values from an ECF solution imply
that the supply is just enough to cover the adjusted mini-
mum coverage levels and no surplus exist after satisfying
these levels. In such a case, applying CVAP model after
the ECF model will not change the resulting allocation.

However, if the given gmp cannot be met due to a rea-
son other than the insufficient supply level (e.g. restricted
capacity), the resulting Ĝmp values will not be binding.
Then, the CVAP model will allocate the remaining vac-
cines equitably. In this case, since feasibility is ensured
with the ECFmodel, the value of theVmp ∀m, p are set to
zero in (8) in the CVAP model. As a result, the objective
function of CVAP (1) would only consider the first two
terms that focus on equity.

4. Numerical study

We conduct numerical analysis to gain insights into how
different parameter settings might induce a change in
the allocation decisions and key performance indicators
(KPIs). We first present the set of KPIs used to evalu-
ate the performance of the solution (Section 4.1). We
then provide the analysis of the proposed method on a
small instance (Section 4.2) and present our case study
(Section 4.3).

In our numerical experiments, we solve the CVAP
and ECF models by using CPLEX with default solver
parameters. Our model is coded with Java and Concert
Technology and solved on a computer with Intel Core
i7-7700HQ CPU 2.8 GHz and 16 GB of RAM.

4.1. Key performance indicators (KPIs)

We propose several KPIs for decision makers to evaluate
the equity and effectiveness of allocation solutions. The
list and descriptions of the KPIs are provided in Table 1.

We evaluate the performance of allocation solutions
both at the municipality (aggregate) level and prior-
ity group level. That is, KPIs are defined based on the
total coverage (i.e. amount allocated respect to demand)
achieved at the municipality level, Ẑm, at the priority
group level, Ẑp, and also for each priority group across
municipalities, Zmp.

Equity metrics. To measure equity, we consider several
attributes such as the dispersion of priority group cov-
erage, Zmp and the total coverage, Ẑm. We also define
KPIs based on the difference between the fair cover-
age and the achieved coverage for each priority group,
�mp = fmp/dmp − Zmp, and the difference between the
fair total coverage and the achieved total coverage, �̂m =∑P

p=1 fmp/
∑P

p=1 dmp − Ẑm. The negative values of the
last two attributes are specified by �̂m− and �mp−.

KPIs 1a-4a and 1b-4b evaluate the dispersion of vacci-
nation coverage in the network at aggregate and priority
group levels, respectively. Specifically, KPIs 1a-3a and
1b-3b measure the dispersion of coverage based on stan-
dard deviation, range and the worst value. In KPI 4a
and 4b, the Gini coefficient is computed, which is equal
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Table 1. KPIs for evaluating equity and effectiveness of CVAP solutions.

KPI No. KPI description KPI notation

Equity KPI 1a Standard deviation of total coverage (among municipalities) StDev [Ẑm]
KPI 2a Range of total coverage (among municipalities) Range [Ẑm]
KPI 3a Minimum total coverage (among municipalities) Min [Ẑm]
KPI 4a Gini coefficient for the total coverage (among municipalities) Gini [Ẑm]
KPI 5a Average of the absolute value of difference between total fair coverage and total achieved coverage

(among municipalities)
Avg [|�̂m|]

KPI 6a Maximumdifference between total fair coverage and total achieved coverage (amongmunicipalities) Min [�̂m−]
KPI 1b Standard deviation of coverage for each priority group (among municipalities) StDevP [Zmp]
KPI 2b Range of coverage for each priority group (among municipalities) RangeP [Zmp]
KPI 3b Minimum coverage for each priority group (among municipalities) MinP [Zmp]
KPI 4b Gini coefficient for the coverage for each priority group (among municipalities) GiniP [Zmp]
KPI 5b Average of the absolute value of difference between fair coverage and achieved coverage for each

priority group (among municipalities)
AvgP [|�mp|]

KPI 6b Maximum difference between fair coverage and achieved coverage for each priority group (among
municipalities)

MinP [�mp−]

Effectiveness KPI 7 Total αmp-weighted average coverage (αmp) Wavg [Zmp]
KPI 8.d Total λdm-weighted average coverage (λdm) Wavg [Ẑm]
KPI 9 Total τp-weighted average coverage (τp) Wavg [Ẑp]

to
∑n

i
∑n

j |xi−xj|
2n2x̄ , where xi and xj represents the relevant

attribute values for municipality i and j, respectively, and
x̄ is the average value of the attribute over n municipal-
ities. The Gini coefficient takes values between 0 and 1,
where 0 indicates the perfect equity.

KPIs 5a-6a and 5b-6b are our main equity metrics,
which are based on the deviations from the fair amount
values. KPIs 5a and 5bmeasure the overall deviation from
the fair coverage levels, whereas KPIs 6a and 6b focus on
only the negative values of the deviations to identify the
regions and groups that have received fewer vaccines than
their calculated fair amounts.

Effectiveness metrics. We evaluate the effectiveness
of the allocation decisions based on weighted average
total coverage achieved across municipalities and prior-
ity groups. KPI 7 is the main indicator that measures the
overall weighted average coverage in the network, and
shows how well the prioritised groups and regions are
covered. However, it may be important for the decision
maker to evaluate effectiveness separately based on each
score component included in αmp. Thus, KPIs 8.d and 9
are presented as the breakdownmetrics of KPI 7. Specifi-
cally, KPI 8.d is calculated based on the dth regional score
(λdm). For instance, in the case study, we consider regional
infection risk level (λ1m), and socio-economic status (λ2m).
KPI 9 is calculated based on the importance score for
priority groups (τp).

4.2. CVAP results on small instances

We test our approach on small instances (Table A1 in
Appendix 1) and illustrate model behaviour.

We consider eight municipalities (M1–M8) with dif-
ferent population sizes and infection rates. We assume
one type of vaccine. The capacities of the municipalities

are initially assumed to be enough to store the allocated
supplies (Section 4.2.1), but the effects of stricter capacity
limitations are also explored (Section 4.2.2). Further-
more, we include multiple priority groups in our analy-
sis (Section 4.2.3). We consider a moderate supply level
which can cover 60%of the total demand in Sections 4.2.1
and 4.2.2, scarce supply level, which can cover 30% of
total demand, is considered in Sections 4.2.3 and 4.2.4.

We consider different allocation solutions obtained
by different composite prioritisation weights (αmp). Each
solution is called a ‘plan’. Accordingly, Plan 1 represents
the solution obtained from a pro-rata allocation policy, as
the fair amounts only depend on demand sizes. In Plan
2 and Plan 3, besides demand sizes, infection levels at
themunicipalities are also important. Specifically, we give
scores of 1, 2, and 3 for locations with low, medium, and
high infection levels, and scale these scores to obtain the
composite prioritisation weights. Additionally, in Plan 3,
the decision maker sets a minimum coverage threshold
of 40% for each municipality.

4.2.1. Performance comparison of different vaccine
allocation plans
The coverage levels obtained for the three allocation
plans with respect to the corresponding fair coverage
levels are presented in Figure 2. In Plan 1, each munic-
ipality receives 60% of its demand, as expected. Under
Plan 2, municipalities with higher infection levels receive
a higher number of vaccines since their fair amounts
are larger. In Plan 3, each municipality is delivered at
least 40% of their demand due to minimum cover-
age thresholds, which leads to some municipalities with
moderate infection rates (e.g. M6) receiving less than
their fair amounts. In Plan 3, the fair amounts could
be achieved for the municipalities with high infection
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Figure 2. Attained and fair coverage levels for Plans 1, 2 and 3.

Table 2. Equity and effectiveness KPIs for the three allocation
plans.

KPI No. KPI Plan 1 Plan 2 Plan 3

KPI 1a StDev [Ẑm] 0.0% 21.2% 18.5%
KPI 2a Range [Ẑm] 0.0% 60.0% 50.0%
KPI 3a Min [Ẑm] 60.0% 30.0% 40.0%
KPI 4a Gini [Ẑm] 0.00 0.19 0.16
KPI 5a Avg [|�̂m|] 0.0% 0.0% 4.1%
KPI 6a Min [�̂m−] 0.0% 0.0% −12.5%
KPI 7 (αmp) Wavg [Zmp] 60.0% 67.5% 67.2%
KPI 8.1 (λ1m) WAvg [Ẑm] 60.0% 67.5% 67.2%

risk levels, and some municipalities with low infection
rates (e.g. M4 and M8) receive higher than their fair
amounts.

Table 2 presents the KPI values for each plan. Plan 1,
which is a pro-rata policy, achieves equal coverage levels.
While Plan 2 causes variations among coverage levels of
municipalities, Avg [|�̂m|] andMin [�̂m−] indicate that
the allocation is equitable since all municipalities reach
their fair coverage levels. Furthermore, Plan 2 can skew
allocations in favour of locations with higher infection
risk levels, leading to a more effective solution as indi-
cated by a higher (α1

m) WAvg [Ẑm] value. In Plan 3, Min
[Ẑm] is 40% due to the minimum coverage thresholds.
However, Avg [|�̂m|] and Min [�̂m−] are worse under
Plan 3 since fair coverage levels cannot be achieved in
some municipalities, leading to less equitable solutions.
Nevertheless, under Plan 3, (α1

m) WAvg [Ẑm] is slightly
lower compared to Plan 2, indicating that Plan 3 could
achieve effective solutions compared to Plan 1.

4.2.2. Effects of capacity
The vaccine storage capacity at the municipalities may
prevent municipalities from receiving their fair amounts.
The CVAP allocates vaccines that could not be delivered
due to locations with low capacity to other locations with
high demand and importance. Therefore, while equity
may be compromised due to capacity constraints, vac-
cines would still be distributed by considering effective-
ness measures.

Table 3. KPIs of solutionwith sufficient and restricted capacity for
municipality M5.

KPI No. KPI Sufficient capacity Restricted capacity

KPI 1a StDev [Ẑm] 21.2% 19.8%
KPI 2a Range [Ẑm] 60.0% 60.0%
KPI 3a Min [Ẑm] 30.0% 30.0%
KPI 4a Gini [Ẑm] 0.19 0.18
KPI 5a Avg [|�̂m|] 0.0% 3.8%
KPI 6a Min [�̂m−] 0.0% −15.0%
KPI 7 (αmp) Wavg [Zmp] 67.5% 66.6%
KPI 8.1 (λ1m) Wavg [Zmp] 67.5% 66.6%

We illustrate these effects by an example. The capac-
ity of municipality M5, which has a comparatively high
infection rate and demand than other municipalities, is
set at 300 units, while its fair amount is 360 units. Table 3
presents KPI values for the two solutions obtained for
Plan 2 when M5 has sufficient versus restricted capac-
ity. When capacity is restricted, since fair coverage can-
not be achieved for M5, Avg [|�̂m|] is larger. Moreover,
the effectiveness metrics (see KPI 7 and 8.1) worsen
since a risky municipality, M5, could not be served suf-
ficiently. However, the remaining vaccines that could not
be received by M5, are now allocated to M7, which has
large demand andmedium infection level. Therefore, the
most equitable and effective solution could be achieved
under the given limitations.

4.2.3. Effects of minimum coverage threshold and the
ECFmodel
We next illustrate benefit of using the ECFmodel and the
proposed hierarchical optimisation approach. We con-
sider an instancewithmultiple priority groups by extend-
ing the instance in Section 4.2.1. We consider two pri-
ority groups (P1 and P2), whose demand, prioritisation
weights, and the fair amounts are provided in Table A2
(Appendix 1). Group P1 has higher priority than P2. In
addition, we set gm1 =90% and gm2 =10% ∀m. Figure 3
presents results of the CVAP attained with and without
implementing the ECFmodel a priori. Table 4 present the
values of KPIs associated with these solutions.

As observed from Figure 3, the minimum coverage
thresholds set by the decision maker, gmp, cannot be
achieved. Without the ECF model, the CVAP model
yields coverage levels that can highly deviate from the
desired gmp values. That is, while the minimum thresh-
old is satisfied for priority group P2, these values could
not be satisfied for P1 with the supply at hand, except
for one municipality (i.e. M5). As a result, a large infea-
sibility penalty is avoided for this municipality and pri-
ority group. However, other municipalities receive vac-
cines which are away from the desired threshold; the
gap between achieved coverage and the given thresh-
olds range between 27.0% and 64.5%, and is 51.9% on
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Figure 3. Coverage values with and without ECF model.

Table 4. KPIs of CVAP solutions with and without ECF model.

KPI No. KPI Without ECF With ECF

KPI 1a StDev [Ẑm] 10.21% 3.24%
KPI 2a Range [Ẑm] 32.25% 9.25%
KPI 3a Min [Ẑm] 17.75% 24.75%
KPI 4a Gini [Ẑm] 0.19 0.06
KPI 5a Avg [|�̂m|] 11.66% 24.47%
KPI 6a Min [�̂m−] −10.00% −4.00%

P1 P2 P1 P2
KPI 1b StDevP [Zmp] 20.41% 0.00% 6.48% 0.00%
KPI 2b RangeP [Zmp] 64.50% 0.00% 18.50% 0.00%
KPI 3b MinP [Zmp] 25.50% 1.00% 49.50% 0.00%
KPI 4b GiniP [Zmp] 0.23 0.00 0.06 0.00
KPI 5b AvgP [|�mp|] 1.46% 0.18% 3.06% 0.38%
KPI 6b MinP [�mp−] 0.00% −10.50% 0.00% −15.50%
KPI 7 (αmp) Wavg [Zmp] 29.86% 31.20%
KPI 8.1 (λ1m) Wavg [Ẑm] 31.82% 35.96%
KPI 9 (τp) Wavg [Ẑp] 36.67% 40.00%

average for P1. As observed from Table 4, this solu-
tion also causes highly varying coverage levels among
priority groups in municipalities (e.g. see StDevP [Zmp]
and RangeP [Zmp]). When the ECF model is utilised,
the preferences of the decision maker in satisfying the
minimum coverage thresholds are captured better. The
adjusted thresholds are set by considering αmp weight
for each group in each municipality (see Table A2 in
Appendix 1), which can be achieved by the CVAP model
as shown in Figure 3. The distance to the original thresh-
olds decreases, ranging from 22.0% to 40.5% and is 29.8%
on average for P1.

In summary, if gmp values that cannot be achieved are
set, the CVAP model produces a solution in which some
thresholds may be met, and the remaining vaccines are

allocated based on the fair coverage levels. This alloca-
tion may lead to high deviations from the preferences
of the decision maker. Applying the ECF model would
provide guidance with the decision maker for adjusting
gmp values by considering the importance of regions and
priority groups, and produce a solution that can capture
the decision maker’s preferences in covering higher pri-
ority groups. That is, this approach achieves a solution
that gets close to the decision maker’s pre-set thresholds,
while maintaining equity and effectiveness.

4.2.4. Benchmarkingwith similar equity objectives
As discussed in Section 2, equitable supply allocation
problems have been studied in different contexts. Here,
we evaluate the value of our proposed equity objective
by comparing CVAP solutions with alternative equity
objectives adapted from the literature. Our first bench-
mark model, CVAPHNG, is developed by adapting the
objective function of Huang et al. (2017), which allo-
cates H1N1 vaccines by minimising the sum of weighted
unsatisfied demands.Our second benchmark,CVAPNYN ,
is based on the equity objective of Noyan, Balcik, and
Atakan (2016), which focuses on allocating humanitar-
ian relief supplies in a distribution network in a post-
disaster setting. In CVAPNYN , we minimise the sum of
weighted negative deviations from fair coverage. Finally,
we consider maxmin objectives, adapted from Tavana
et al. (2021), which allocate COVID-19 vaccines among
multiple states and equally important groups by max-
imising the minimum coverage of a group in a state.
We consider the original unweighted version (CVAPTVN)
and also adapt a weighted version (CVAPTVN′), in which
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Figure 4. Coverage values with and without capacity restriction.

we maximise the minimum priority-weighted coverage
across groups and regions. The formulation of objec-
tive functions adapted from these studies for CVAP are
presented in Online Appendix B.

We solve different CVAP models on a synthetic
instance with eight municipalities and two priority
groups, where the first group has higher priority than
the second. The demand and weight parameters are in
Table A2 (Appendix 1). We set a total supply level that
can cover 30% of total demand. For simplification, we
set gmp = 0 for each group. Moreover, we solve instances
with and without capacity restrictions. In the capacitated
setting, the capacity of M5, which has a comparatively
higher infection rate and/or demand than other munici-
palities, is set at 100 units.

Figure 4 presents coverage values attained by different
models. In the setting without capacity restrictions, the
proposed CVAP yields an allocation in which all munic-
ipalities reach their fair coverage levels. However, when
capacity is restricted, deviations from the fair coverage
levels occur. In particular, since the demanded amount
cannot be delivered to M5 due to capacity restrictions,
CVAP first aims to satisfy the demand of the higher
prioritised group (P1) in the municipality, and if the
limited capacity permits, vaccines are allocated to the
lower prioritised group (P2). For this reason, the capacity

restriction causes a low coverage level for M5P2. The
excess vaccine then needs to be distributed within the
network, since we enforce in CVAP model to deliver the
whole supply at hand for a more effective solution. With
the CVAP solution, we observe that population group
M7P1 received the excess vaccine, which carries the char-
acteristics of a highly populated and moderately risky
region, and being a prioritised group. That is, when devi-
ations from fair coverage levels are unavoidable, degrad-
ing the equity, CVAP allocates vaccines effectively by
favouring high priority groups and locations. The aggre-
gate KPI values and the illustration of these values with
and without capacity restrictions that highlights the bal-
anced effective and equitable solution obtained by CVAP
model is presented in Online Appendix C.

As observed from Figure 4, CVAPHNG, which focuses
on serving high priority weighted population groups, can
disregard lower priority groups or municipalities with
lower risks and hence may lead to an inequitable alloca-
tion. Similarly, CVAPTVN leads to equal coverage values,
which may be inequitable since the importance of cov-
ering certain regions and groups cannot be captured.
When there is no capacity restriction, CVAPTVN′

pro-
vides similar and CVAPNYN result in the same allocation
with CVAP. However, in the capacitated setting, both
models allocate the vaccines that cannot be delivered
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to municipality M5 to low risk regions and groups (i.e.
priority group 2 inmunicipalityM8), leading to less effec-
tive solutions. This highlights the benefit of the CVAP
objective, which minimises both positive and negative
deviations, thereby allocating each vaccine dose equitably
and effectively. That is, CVAP model allocates the excess
vaccine to a more prioritised group and risky munici-
pality, where the most similar two benchmark objectives,
CVAPTVN′

and CVAPNYN , both provide a higher cover-
age level for the lower prioritised group in a less risky
municipality, leading to less effective solutions. As for
the other benchmarks, CVAPTVN result in an alloca-
tion plan that is less effective, and that deviates more
from the fair coverage level for the higher prioritised
group. Although CVAPHNG performs better according
to the effectiveness KPIs, the equity KPI values are sig-
nificantly worse compared to the CVAP solution. Since
regions may have different capacity restrictions due to
cold chain requirements of vaccines and decision makers
may impose additional contextual constraints, it may be
beneficial and practical to use the proposed CVAPmodel
to achieve equitable and effective solutions.

4.3. Case study

We present a case study based on Turkey’s vaccination
data to illustrate the implementation of the proposed
approach. In the following, we first describe our case con-
text and explain how the case data set is generated. Then,
we present numerical results and analysis.

4.3.1. Case description and data set
In Turkey, COVID-19 vaccine administration started in
early January 2021, and the healthcare personnel, the
elderly, people with chronic diseases, and the essential
workers were among the first eligible priority groups.
During the initial months, once eligible groups are
announced, vaccination appointments could be made
online or via telephone. Vaccines have been adminis-
tered both at family health centres and hospitals. During
the first two months, only Sinovac vaccine was available;
later, eligible groups have been given the opportunity to
choose either Sinovac or Pfizer-BionTech vaccines.

We consider the within-country allocation of vaccines
by focussing on the vaccination coverage levels, eligible
groups, and available supply on 29th March 2021. On
this date, the Pfizer-BioNTech vaccine has started to be
used for the first time in the country, in addition to Sino-
vac vaccine. Moreover, the attained vaccination coverage
and supply availability were still low at that period, and
the allocation of vaccines was a critical decision for pub-
lic health authorities. Specifically, only 9.75% of the total
population was given the first dose, and 7.15% of the total

population was given both doses of Sinovac in the coun-
try Ucar et al. (2021) (see the Online Appendix for the
coverage data).

To implement our model, we have obtained a signif-
icant portion of the necessary data from publicly avail-
able sources. We next briefly explain how we processed
data to estimate model parameters. The raw data and
obtained input values are presented in detail in theOnline
Appendix.

• Demand (dmp): To obtain the eligible population in
eachmunicipality, we excluded the infected, deceased,
and recovered population from the total population.
The demand in our case study represents the popula-
tion in the eligible groups that have not yet received
the first dose vaccines. We consider three priority
groups following the national vaccination calendar
and set the demand size for each eligible group based
on the available data. We set τp as 1, 0.5, and 0.1 for
priority groups P1, P2 and P3, respectively.

Wenote that during the dateswe are considering for
the case study, there was high interest in vaccination,
and vaccine hesitancy was not a major issue. There-
fore, we consider the entire unvaccinated population
in each priority group while estimating demands.
However, at later stages, as the vaccination of younger
groups has started, hesitancy levels have increased.
Estimating demands by considering hesitancy rates
would require further research and data.

• Available supply: By 28 March 2021, Turkey received
28 million doses of Sinovac and 4.5 million doses of
Pfizer-BionTech vaccines. We consider half of these
amounts for the first dose allocation, and subtract
the already administered amounts. Approximately 8.2
million Sinovac vaccines were already administered,
therefore, 5.8 million doses of Sinovac are available
for allocation. The Pfizer-BionTech vaccines were not
administered yet, thus, 2.25 million doses can be allo-
cated. The total supply is enough to cover 74.93% of
the targeted eligible population.

• Vaccine batch size:We assume that 40 units of Sinovac
and 150 units of Pfizer-BionTech vaccines are available
in the smallest non-divisible batch that can be shipped
to municipalities.

• Vaccination capacity: We analysed the data for daily
vaccinations in each municipality between 26th Jan-
uary and 28th March 2021 and compute the aver-
age daily administered vaccines, which are used to
set the total daily vaccination capacity. We divide the
total daily capacity between different vaccine types
by assuming that the daily capacity for each vaccine
type will be proportional to its available supply. We
assume that the storage capacity of each municipality



7516 B. BALCIK ET AL.

for each vaccine type, cmk is equal to 30 times the daily
capacity.

• Vulnerability weights (λ1m, λ2m): We specify the vulner-
ability of municipalities based on the infection level
and socio-economic status. We assign an infection
risk weight to each municipality (λ1m) based on the
number of active cases in municipalities in 100,000
people for the last week of March 2021, which range
between [13.57, 586.84].We normalise these values by
subtracting the minimum risk score from each score,
and dividing the term by (maximum score – mini-
mum score) to obtain λ1m values for eachmunicipality.
We use the human development indices provided by
TEPAV (2020), which is based on health, education
and income indicators, to set socio-economic devel-
opment weights (λ2m) for eachmunicipality. The avail-
able indices, which range between [0.695, 0.875], are
scaled to calculate λ2m values. The resulting values are
subtracted from 1 so that the municipality with the
lowest socio-economic status has the highest λ2m value.

Our preliminary analysis does not indicate any
strong relationship between the human development
indices (TEPAV 2020) and the number of cases (Ucar
et al. 2021). However, this may be due to the low num-
ber of conducted tests in the municipalities with low
socio-economic development levels (Birgun 2021).
That is, the number of infections may be much higher
and the lack of health services may result in higher
mortality rates for the infected people. Therefore, vac-
cination in these regions gains evenmore importance.
That is why we consider the socio-economic develop-
ment status of the regions as a prioritisation aspect in
our case study.

4.3.2. CVAP results on case instances
We evaluate the following four vaccination plans in our
case study to gain more insights on CVAP solutions.
Note that these plans are mostly different from the ones
introduced in Section 4.2.

• Plan 1: Pro-rata allocation. The vaccines are dis-
tributed to municipalities proportional to their
demand (i.e. equal αmp).

• Plan 2: On top of Plan 1, the importance of priority
groups in each municipality are incorporated (i.e. αmp
is based on τp).

• Plan 3: On top of Plan 2, the infection risk weights of
municipalities are considered (i.e. αmp is based on τp
and λ1m).

• Plan 4: On top of Plan 3, regional differences in socio-
economic status are considered (i.e. αmp is based on
τp, λ1m and λ2m).

Plan 1, which allocates vaccines proportional to
demand sizes of municipalities, can be considered as a
benchmark policy. This plan ignores regional differences
(in terms of infection risk and socio-economic status)
and the relative importance of priority groups. Under
Plan 2, we consider the relative importance of the pri-
ority groups but still continue to disregard the regional
differences. Under Plan 3, in addition to the relative
importance of priority groups, we also take into account
the infection risk of the municipalities. Finally, under
Plan 4, we also consider the socio-economic status of
the municipalities in setting the composite prioritisation
weight.

In our case analysis, we set gmp = 10% for all munic-
ipalities and priority groups to ensure a certain coverage
for each population group. However, gmp = 10% is not
feasible for all municipalities and priority groups, thus,
we first apply the ECFmodel to obtain feasible thresholds.

In Figure 5, we present the coverage levels of 81munic-
ipalities for each allocation plan obtained by the CVAP
model. In the figure, histograms for each plan show
the number of municipalities covered at different levels.
Moreover, Figure 6 shows the achieved coverage levels for
priority groups andmunicipalities in detail, as well as the
total fair coverage levels for municipalities under differ-
ent plans (for brevity, we omit presenting the fair coverage
level for each priority group).

According to the results, under Plan 1 and Plan 2 we
observe nearly the same coverage levels for all munici-
palities as we ignore the regional differences. However,
different than Plan 1, under Plan 2, some municipalities
receive higher number of vaccines due to the consider-
ation of priority groups. Under Plan 3 and Plan 4, we
also observe the effect of considering regional differences.
According to Plan 3, municipalities with higher infection
risks are prioritised; that is, the Eastern parts of the coun-
try received fewer number of vaccines, whereas coverage
levels become higher especially in the Northern, North-
eastern, and Western parts of the country. Under Plan 4,
we observe that more importance is given to the inter-
nal and Eastern parts of the country due to the inclusion
of socio-economic development scores as an indicator of
vulnerability.

Table 5 presents the KPI values for different solutions,
and an illustration of the aggregate KPI values to sup-
port the comparison of plans can be found in Online
Appendix C. In the following, we evaluate the equity and
effectiveness of each vaccine allocation plan.

Plan 1. We observe that similar coverage levels are
achieved across municipalities. Low values of StDev
[Ẑm], Range [Ẑm], and Gini [Ẑm] and the high value of
MinP [Zmp] (compared to other plans) indicate similar
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Figure 5. Coverage levels of municipalities under different plans for the case study instance.

Figure 6. Coverage values for each municipality and priority group for different plans for the case study.
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Table 5. KPIs for different plans for the case study.

KPI No. KPI Plan 1 Plan 2 Plan 3 Plan 4

KPI 1a StDev [Ẑm] 4.5% 5.5% 21.3% 17.5%
KPI 2a Range [Ẑm] 35.6% 41.4% 90.0% 83.2%
KPI 3a Min [Ẑm] 41.2% 41.2% 10.0% 8.6%
KPI 4a Gini [Ẑm] 0.01 0.03 0.17 0.13
KPI 5a Avg [|�̂m|] 0.9% 0.9% 0.1% 0.0%
KPI 6a Min [�̂m−] −33.7% −32.0% −0.2% −0.1%

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3
KPI 1b StDevP [Zmp] 0.0% 1.1% 9.0% 0.0% 5.2% 7.0% 21.3% 22.7% 19.8% 18.2% 19.9% 14.2%
KPI 2b RangeP [Zmp] 0.1% 10.0% 69.0% 0.1% 46.7% 44.3% 90.0% 90.0% 90.0% 91.7% 93.6% 65.0%
KPI 3b MinP [Zmp] 74.8% 64.9% 10.0% 99.9% 42.7% 10.0% 10.0% 10.0% 10.0% 8.3% 6.4% 10.0%
KPI 4b GiniP [Zmp] 0.00 0.00 0.03 0.00 0.01 0.03 0.13 0.17 0.20 0.09 0.13 0.16
KPI 5b AvgP [|�mp|] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
KPI 6b MinP [�mp−] 0.0% −2.8% −30.9% 0.0% −13.0% −19.0% 0.0% −0.2% −0.2% 0.0% −0.1% −0.1%
KPI 7 (αmp) Wavg [Zmp] 74.3% 87.6% 81.8% 83.1%
KPI 8.1 (λ1m) Wavg [Ẑm] 74.9% 77.0% 83.2% 80.1%
KPI 8.2 (λ2m) Wavg [Ẑm] 73.6% 75.5% 66.0% 68.2%
KPI 9 (τp) Wavg [Ẑp] 74.9% 93.5% 82.1% 87.2%

municipality-wise coverage levels. While Avg [|�̂m|] is
also low, Min [�̂m−] value indicates that there is at least
one municipality that could not receive enough vaccines
to achieve its fair coverage level. Specifically, six munici-
palities (e.g. M4 (Ağrı), M36 (Hakkari), M57 (Mardin),
M67 (Samsun), M68 (Siirt), M72 (Şırnak)) could not
receive their fair shares due to insufficient capacity. The
surplus vaccines are then allocated based on demand
sizes since all priority groups andmunicipalities have the
same αmp values in Plan 1.

From Table 5, we also observe different values of
StDevP [Zmp], RangeP [Zmp], MinP [Zmp] and GiniP
[Zmp] for different priority groups. This difference is
mostly caused by the different demand sizes of groups.
For instance, since P3 demand is the highest, more vari-
ation in coverage levels is realised among municipalities.
Effectivenessmetrics indicate about 74% coverage, which
is close to the ratio of total supply to total demand, that is
74.93%.

Plan 2. For Plan 2, StDev [Ẑm], Range [Ẑm], and Gini
[Ẑm] values are slightly higher than those of Plan 1, indi-
cating that total coverage levels are still similar among
municipalities. On the priority group level, we observe
that P1 is now almost fully covered (see MinP [Zmp]).
Figure 6 also shows that priority groups are covered based
on their importance values. Moreover, low StDevP [Zmp]
and GiniP [Zmp] values indicate similar coverage levels
for each priority group across municipalities.

Similar to Plan 1, some municipalities and groups
could not get their fair shares as indicated by Min
[�̂m−] and MinP [�mp−]. Specifically, negative devia-
tion occurred for only five municipalities (same munic-
ipalities with Plan 1, except M67) due to insufficient
capacity. However, Avg [|�̂m|] and AvgP [|�mp|] indi-
cate an equitable solution. Finally, effectiveness KPIs
improve under Plan 2 (e.g. (αmp) Wavg [Zmp], (τp) Wavg

[Ẑp]) since important priority groups could be covered
more.

Plan 3. Since we consider regional characteristics in
Plan 3, the difference in coverage levels among munici-
palities and priority groups are higher (e.g. StDev [Ẑm],
Range [Ẑm], Min [Ẑm], and Gini [Ẑm]). Nevertheless,
the solution is equitable with respect to fair amounts, as
evident from low values of Min [�̂m−], MinP [�mp−],
Avg [|�̂m|] and AvgP [|�mp|]. The reason for achieving
better values for these metrics compared to the previ-
ous two plans is that in certain municipalities (i.e. M4
(Ağrı), M36 (Hakkari), M57 (Mardin), M72 (Şırnak)),
capacity restrictions prevent allocation of enough num-
ber of vaccines to these regions. However, under Plan
3, fair coverage levels are lower for these municipalities
that have lower infection risk scores, and hence satisfying
the fair coverage level in these regions becomes possible.
That is, under this plan, capacity restrictions become a
less important factor resulting in small deviations from
the fair coverage levels. As a result, the surplus vaccine to
allocate is also much less compared to the previous two
plans, leading to improved equity.

We observe that the average coverage of 10 munici-
palities with the highest infection levels (i.e. M67 (Sam-
sun), M40 (İstanbul), M79 (Yalova), M34 (Giresun),
M69 (Sinop), M22 (Çanakkale), M12 (Balıkesir), M53
(Konya), M46 (Kastamonu), M51 (Kilis)) has increased
significantly from 77.68% in Plan 2 to 95.50% in Plan 3.
As for the effectiveness of the allocation, we observe that
the value of (αmp) Wavg [Zmp] is lower compared to the
previous two plans. However, municipalities with higher
infection levels are now covered more as indicated by the
(λ1m) Wavg [Ẑm] value.

Plan 4. Similar to Plan 3, the KPIs reflect the effects of
considering different regional characteristics on coverage
levels among municipalities and priority groups. Plan
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4 solutions are equitable given the small values of Min
[�̂m−], MinP [�mp−], Avg [|�̂m|] and AvgP [|�mp|].
Moreover, with the consideration of socio-economic
development score as an indicator, we observe an increase
in the (λ2m) Wavg [Ẑm] value compared to Plan 3, while
conserving favourable (λ1m) Wavg [Ẑm] values.

Although the increase in (λ2m) Wavg [Ẑm] is not sig-
nificant from Plan 3 to Plan 4, we observe the effects
of considering λ2m weights from the coverage of the 10
municipalities with the lowest socio-economic status (i.e.
M4 (Augrı), M60 (Muş), M35 (Gümüşhane), M78 (Van),
M71 (Şanlıurfa), M36 (Hakkari), M72 (Şırnak), M18
(Bitlis), M68 (Siirt), M45 (Kars)). The average coverage
for these municipalities has increased from 34.93% to
48.7% under Plan 4.

These results show that the proposed approach is
effective and can capture different contextual parame-
ters and the decision maker’s preferences. The CVAP
model can achieve equitable solutions under different set-
tings with varying concerns and parameters. Since the
model runs quickly, the decision maker may test the
instance with different components that are included in
the composite prioritisation weights, and easily observe
the effects of including different factors and compare the
allocation plans based on the proposed KPIs.

5. Discussion and concluding remarks

Our study seeks to support public health authorities in
making effective and equitable COVID-19 vaccine allo-
cation decisions. To this end, we present a novel method-
ology that is tailored to decisions makers’ needs. The
model investigates equity through ‘fair coverage level’,
which is calculated based on the size and the impor-
tance of multiple regions and eligible population groups.
For the analysis, we work on both a hypothetical small
instance and a case study of Turkey. We show that our
approach to model equity can easily handle specific lim-
itations and can give superior solutions than alterna-
tive approaches. Despite the specific characteristics of
COVID-19, we argue that our approach to model equity
can be adapted to the contexts of other pandemics and
humanitarian situations where supply shortage is a crit-
ical concern for saving lives. Overall, we think that this
study provides an effective methodology for the decision
makers that wonder how the limited number of scarce
supplies can be assigned to different regions and demand
groups equitably and effectively.

We analysed and evaluated several allocation plans,
which address different concerns of public health author-
ities in allocating COVID-19 vaccines within a country.
Our numerical results indicate that the factors used for

the prioritisation of regions may result in significantly
different allocation decisions. While we consider priori-
tisation of regions according to their infection rates and
socio-economic development levels in our case study,
our proposed prioritisation framework is general and
can be extended to incorporate other relevant contextual
factors. Our results also show that the limited capac-
ity of municipalities can significantly hamper equity. We
also show that our approach can effectively guide the
decision makers to set minimum coverage thresholds
and achieve equitable solutions in a highly constrained
environment.

We proposed a set of equity and effectiveness KPIs to
evaluate different vaccine plans, which are defined based
on the vaccine coverage levels achieved in the region for
different priority groups. Note that it may be also crucial
to evaluate the potential impact of the proposed vacci-
nation plans by considering disease propagation effects
(e.g. the number of infected and death after vaccination).
Such evaluations can bemade by implementing compart-
mental epidemiological models (e.g. SIR). We illustrate
the adaptation of a SIR model on our synthetic instances
(Online Appendix D). Specifically, we simulate the pro-
gression of COVID-19 disease through an adapted SIR
model and analyse the effects of the provided vaccina-
tion coverage on the total number of infected people and
deaths. Our results show that vaccination reduces the
mortality rate significantly in all regions as the overall
death percentages decrease nearly 70% with any vacci-
nation plan compared to a no vaccination setting, and
prioritising vaccinations based on infection risks can
further reduce the total number of deaths. Moreover,
our SIR-based analysis shows that both the daily vac-
cine administration capacity limitations and the limited
storage capacities can significantly increase the number
of infected people and deaths due to extended vacci-
nation periods. Our results highlight the importance of
setting enough daily storage and administrative capacity
in each location for a fast, equitable, and effective vaccine
rollout.

Besides presenting a new vaccine allocation problem
andmodel, we believe this paper has also important prac-
tical importance. Although COVID-19 vaccination has
started about a year ago, the in-country vaccine alloca-
tion problem is still up-to-date globally, especially for
low-income countries, due to ongoing scarcity of sup-
plies, new virus variants, and additional vaccination (i.e.
booster) requirements. Hence, our proposed allocation
policies, models, and results from our case study provide
insights to public health authorities for making vaccine
allocation decisions during both the ongoing COVID-19
pandemic and future possible pandemics.
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Future research can enhance the proposed model in a
few directions. For instance, we assume that the vaccine
demands are known and deterministic, since public
health authorities relied on national population registry
in allocating vaccines. However, the actual demand may
be affected by several factors such as mobility of people
(e.g. education, vacation) leading them to receive vac-
cines away from their residencies, vaccine hesitancy and
uptake rate. During the early stages of vaccination, these
factors may not be critical due to sheer size of initial
demands with respect to available supplies. Moreover,
the proposed model can be solved quickly, which would
allow decision makers to test the effects of uncertain
parameters through sensitivity analysis efficiently. Never-
theless, it would be valuable if methods that can forecast
demand for vaccination during a pandemic are available,
as addressed by some recent studies (e.g. WHO 2022;
Zhou and Li 2022). If data for measuring demand uncer-
tainty at national level are available, scenario-based opti-
misation models can also be used to make vaccine allo-
cation decisions. Moreover, in this study, we consider
a policy that reserves full amounts required for second
dose vaccinations since supply arrivals were sporadic
during initial stages and guaranteeing the follow up doses
for people who received the first dose was important
(Mak, Dai, and Tang 2021). Future research can focus
on different policies to reserve supplies and extending
the current model to analyse how much inventory to
reserve for the second doses under demand and supply
uncertainty.

Furthermore, comparing the model outcomes with
actual allocation decisions of policy makers in practice
and investigating potential gaps could be another future
research direction of our study. We argue that as we
progress towards the end of the pandemic in the follow-
ing years, more reliable information about grounds for
allocation decisions (e.g. what the exact supply was, when
they arrived, and what political considerations were nec-
essary?) would become publicly available. Furthermore,
it is more likely that policy makers would have more
freedom for participating in research than their current
time with heavy workload for COVID-19 vaccination. As
such, collecting reliable and complete data could be easier
for further investigation of decisions.
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Appendices

Figure A1. Worldwide vaccination coverages by December 9,
2021 (Ritchie et al. 2020).

Appendix 1. Supporting information and data

Table A1. Small instance parameters.

Municipality
Demand

(Susceptible) Infected
Infected/
Population αm1 (Plan 1) αm1 (Plan 2&3) fm1 (Plan 1) fm1 (Plan 2&3)

M1 100 12 10.71% 0.125 0.187 60 90
M2 100 6 5.66% 0.125 0.125 60 60
M3 100 3 5.66% 0.125 0.125 60 60
M4 100 3 2.91% 0.125 0.063 60 30
M5 400 48 10.71% 0.125 0.187 240 360
M6 400 24 5.66% 0.125 0.125 240 240
M7 400 24 5.66% 0.125 0.125 240 240
M8 400 12 2.91% 0.125 0.063 240 120

Appendix 2. Features of vaccine allocation studies

Table A2. Parameters for small instance with priority groups.

Municipality Priority Group Demand τp λ1m αmp fmp Initial gmp Adjusted gmp

1 1 50 1 1.00 0.09 22 90.0% 68.0%
2 50 0.5 1.00 0.06 15 10.0% 0.0%

2 1 50 1 0.67 0.07 18 90.0% 62.0%
2 50 0.5 0.67 0.05 12 10.0% 0.0%

3 1 50 1 0.67 0.07 18 90.0% 62.0%
2 50 0.5 0.67 0.05 12 10.0% 0.0%

4 1 50 1 0.33 0.05 13 90.0% 50.0%
2 50 0.5 0.33 0.04 8 10.0% 0.0%

5 1 200 1 1.00 0.09 88 90.0% 67.0%
2 200 0.5 1.00 0.06 62 10.0% 0.0%

6 1 200 1 0.67 0.07 72 90.0% 61.5%
2 200 0.5 0.67 0.05 51 10.0% 0.0%

7 1 200 1 0.67 0.07 72 90.0% 61.5%
2 200 0.5 0.67 0.05 51 10.0% 0.0%

8 1 200 1 0.33 0.05 51 90.0% 49.5%
2 200 0.5 0.33 0.04 35 10.0% 0.0%

Figure A2. The framework for calculation of the composite prior-
itization weight αmp.
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Table A3. Summary of relevant vaccine allocation studies.

Allocations among: Problem setting

Article Context Regions
Priority
groups Vaccine types

Vial
Sizes Dose regimen

Regional
capacity

differences
Equity
concern Equity metric Methodology Objective

Teytelman and
Larson (2013)

Influenza � x One type x Single dose x � • regional lower bounds for vaccine
allocations

Disease spread model Maximize the infections averted by
a single vaccine

Yarmand et al. (2014) Influenza � x One type x Single dose x � • regional lower bounds for vaccine
allocations

Stochastic optimisation model +
Disease spread model

Minimize the total vaccination cost

Huang et al. (2017) Influenza � � Multiple types � Single dose x � • (minimize) location, priority group
wise weighted unsatisfied demand
• ensure similar allocation
proportions across regions

Mathematical optimisation models
(Primary-secondary)

Primary model (proportional
fairness) Secondary model (policy
simplicity + geographic equity)

Enayati and
Özaltın (2020)

Influenza � � One type x Single dose x � • Gini coefficient (coverage equity
among subpopulations)

Disease spread model +
Mathematical optimisation
models

Minimize the amount of vaccines
distributed to contain the
outbreak

Tavana et al. (2021) COVID-19 � � Multiple types x Single/multiple
dose

� � • maximise the minimum coverage
for each priority group and region
• set a lower coverage thresheold
level for each priority group in
each region

Mathematical optimisation model Maximize the minimum delivery-
to-demand ratio

Munguía-López and
Ponce-Ortega (2021)

COVID-19 � � One type x Single dose x � • regional lower bounds for vaccine
allocations • maximise the lower
bound (Rawlsian justice scheme)

Mathematical optimisation models Different objectives analysed (social
welfare, Rawlsian justice scheme,
Nash scheme)

Jadidi et al. (2021) COVID-19 x � One type x Single dose x x Mathematical optimisation model
+Disease spread model

Minimize the total number of
infections

Jarumaneeroj et al. (2022) COVID-19 � � Multiple types x Single dose � � • regional lower bounds for vaccine
allocations

Mathematical optimisation model
+ Disease spread model

Minimize the total weighted strain
on the healthcare system

Anahideh, Kang, and
Nezami (2022)

COVID-19 � � One type x Single dose x � • minimise the allocation differences
that are made based on group
attributes and regardless of group
attributes

Multi-objective optimisation
model

Provide social fairness + geographic
equity

Goodarzian et al. (2022) COVID-19 � � Multiple types x Single dose � � • minimise the maximum unmet
demand

Multi-objective optimisation
model

Minimize the total vaccination
cost, maximum unmet demand,
delivery time of vaccines and
environmental impacts

Fadaki et al. (2022) COVID-19 � � One type � Single dose � � • minimise the weighted risk of
unvaccinated population

Multi-objective optimisation
model

Minimize the weighted risk
of unvaccinated population
considering the direct shipment
of vaccines from distribution
centres to vaccination sites,
transshipment among sites, the
return of remaining vaccines to
the distribution centres

Walker et al. (2022) COVID-19 x � One type x Multiple dose x x Disease spread model Observe the number of deaths,
infections, hospitalisations
averted according to different
allocation schemes

Yang et al. (2022) COVID-19 � x One type x Multiple dose x x Disease spread model + Particle
swarm optimisation algorithm

Minimize the total number of
confirmed cases

Our Study COVID-19 � � Multiple types � Multiple dose � � • propose a fair coverage level which
is based relative importance of
regions and priority groups • set a
lower coverage threshold level for
each priority group in each region

Integer Programming Minimize the weighted sum of
deviations from fair coverage
levels (primary objective)
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Table A4. Example fmp calculation.

Population
group dmp αmp

fmp
by (14)

Fair
coverage

Final fmp by
Algorithm 1

Fair
coverage

M1P1 100 0.4 100 100.0% 100 100.0%
M2P1 50 0.4 50 100.0% 50 100.0%
M1P2 100 0.1 26 26.0% 34 34.0%
M2P2 50 0.1 13 26.0% 16 32.0%

Appendix 3. Algorithm for setting the fair
amounts

We use Algorithm 1 to use the entire supply in determining fair
amounts.We illustrate the calculation of fmp on a small example
with the parameters presented in Table A4 and a supply level of
200 to provide a better understanding.

Here, the fair amounts calculated according to (14), would
lead to nine units of surplus vaccines that can not be allocated
since pro-rata weighted allocation values for the first two pop-
ulation groups would be more than their demand. Algorithm 1
eliminates this situation by distributing the excess vaccines to
the population groups that can still receive vaccines iteratively,
considering their demands and prioritizationweights, resulting
in the fair amounts and coverages presented Table A4.

Algorithm 1: Iterative Calculation of the Fair Amounts

Step 0. Initialization of parameters:
Set the fair amount, composite prioritization weights, and remaining demand for each priority group in each municipality as fmp :=0;

ᾱmp :=αmp ; d̄mp :=dmp ; respectively

Set the vaccine amount to distribute as V :=
K∑

k=1

sk ; total weighted eligible demand asW :=0

Set the additional allocation amount in iteration t for each priority group and municipality as f tmp :=0
Step 1. If V ≥ 0, go to Step 1.1. If not, end the algorithm.

Step 1.1. Set f tmp :=0 for each priority group in each municipality.
Step 1.2. Specify the eligible priority groups in municipalities that can receive vaccine at this iteration, where fmp < dmp .

Step 1.3. Normalize the composite prioritization weights of the eligible priority groups in municipalities as ᾱmp := ᾱmp/

M∑
m=1

P∑
p=1

ᾱmp .

Step 1.4. CalculateW :=
M∑

m=1

P∑
p=1

d̄mpᾱmp .

Step 1.5. Calculate f tmp := �(d̄mp ∗ ᾱmp ∗ V)/W	 for the eligible priority groups in municipalities.
Step 1.6. Set f tmp := min{dmp , f tmp} for the eligible priority groups in municipalities.
Step 1.7. Update fmp := fmp + f tmp for the eligible priority groups in municipalities.
Step 1.8. Update d̄mp := d̄mp − f tmp for the eligible priority groups in municipalities.

Step 2. Update V := V −
M∑

m=1

P∑
p=1

f tmp .

Step 3. Set t: = t+ 1.
Step 4. If f tmp = 0 for all priority groups in all municipalities due to rounding, and V ≥ 0, go to Step 4.1. If not, go to Step 1.
Step 4.1. Starting from the highest prioritised group in the first municipality, choose the next priority group and municipality.
Step 4.2. Update fmp := fmp + 1 for the specified priority group and municipality (to ensure the allocation amounts for the same priority group among

municipalities are similar).
Step 5. If V ≥ 0, go to Step 4.1. If not, end the algorithm.
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