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A B S T R A C T   

Increasing electric vehicle penetration leads to undesirable peaks in power if no proper coordination in charging 
is implemented. We tested the feasibility of electric vehicles acting as flexible demands responding to power 
signals to minimize the system peaks. The proposed hierarchical autonomous demand side management algo-
rithm is formulated as an optimal power tracking problem. The distribution grid operator determines a power 
signal for filling the valleys in the non-electric vehicle load profile using the electric vehicle demand flexibility 
and sends it to all electric vehicle controllers. After receiving the control signal, each electric vehicle controller 
re-scales it to the expected individual electric vehicle energy demand and determines the optimal charging 
schedule to track the re-scaled signal. No information concerning the electric vehicles are reported back to the 
utility, hence the approach can be implemented using unidirectional communication with reduced infra-
structural requirements. The achieved results show that the optimal power tracking approach has the potential to 
eliminate additional peak demands induced by electric vehicle charging and performs comparably to its central 
implementation. The reduced complexity and computational overhead permits also convenient deployment in 
practice.   

1. Introduction 

Transition towards e-mobility poses new challenges for the operation 
of electricity networks and especially for the distribution grids. The 
uncoordinated and random charging activities could significantly stress 
the distribution system causing increased peak demands, severe voltage 
fluctuations, increased losses, increased transformer and cable ageing, 
sub-optimal generation dispatch, degraded system efficiency and econ-
omy, as well as increasing the likelihood of blackouts due to network 
overloads [1–4]. These undesirable impacts can be mitigated by proper 
coordination of EV charging with demand response strategies. Electric 
vehicle (EV) loads offer high temporal flexibility since they are available 
for charging over prolonged periods of time. Therefore, the flexibility of 
the EV demand can be exploited to improve the operation of distribution 
networks through various load management strategies with the objec-
tive to provide valley filling and/or peak shaving services, reduced 
distribution network losses, reduced ageing of transformers and lines, 
and increased renewable energy penetration [5,6]. 

The integrated functions of smart grids in the domains of commu-
nication, networking, monitoring and advanced control enable auto-
mated energy management systems. These systems result in improved 
load management and energy efficiency [7]. Decentralized autonomous 
demand side management (ADSM) is one such management strategy in 
which the computations are distributed over the respective participating 
appliances. Scalability due to the reduced dimension of the associated 
optimization problems permits it to be feasible even at high EV pene-
tration. These features, in conjunction with the reduced communication 
requirement, render decentralized ADSM a cost-efficient solution for EV 
charging management compared to the centralized ADSM approaches 
[8]. In literature, ADSM strategies for EV charging are proposed to 
reduce the detrimental impacts for the grid operation, many of which 
have been focused on flattening the load curve. Although the EV 
scheduling is determined locally, existing approaches often need bi- 
directional communication between a central entity and the EVs. 

Ma et al. [9] propose a decentralized non-cooperative game theoretic 
approach for the charging management of an infinite homogeneous 
Plug-in electric vehicle (PEV) population, where the PEVs are coupled 
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through a common price signal. The method aims to minimize the 
generation cost through valley filling using the aggregated PEV demand. 
The utility collects the individual charging schedules of all the EVs and 
broadcasts the updated total demand (aggregated EV demand and non- 
EV demand). Each of the EVs determines its optimal charging schedule 
to minimize the cost and reports back to the utility. A penalty is imposed 
if the charging schedule of an EV deviates from the average changing 
schedule of the population. The process is iterated until the charging 
strategies are in Nash equilibrium. 

In contrast, an iterative optimal decentralized protocol to achieve 
valley filling for both homogeneous and heterogeneous EV fleets is 
suggested by Gan et al. [10]. The utility determines and broadcasts a 
control signal (e.g. electricity price) to incentivize the EVs to shift their 
electricity consumption to the time slots with lower demands. In 
response, the EVs update their schedules to minimize the total electricity 
cost and the penalty for deviating from the previous iteration, and report 
them back to the utility. The utility progressively guides the EVs by 
altering the control signal in response to the received EV schedules. 

Although both the methods in [9,10] achieve the objective of the 
load valley filling, they suffer from the longer execution times due to the 
iterative nature. 

In contrary, Binetti et al. [11] propose a decentralized non-iterative 
real-time EV charging strategy to shift the charging to night valleys. The 
algorithm sequentially determines the charging schedules of each EV 
taking into account an estimate of the non-EV load for the planning 
horizon. Each time when an EV connects, it receives the aggregated load 
profile from the Distribution system operator (DSO). With this infor-
mation, EV solves an optimization problem locally to achieve valley 
filling and reports obtained schedule to the DSO. The DSO updates the 
aggregated load profile with the newly received charging schedule and 
whenever a new EV connects, the updated aggregated load profile is 
communicated. Although the method is decentralized and requires 
limited information exchange, it necessitates a bi-directional commu-
nication channel between the grid operator and the EVs. And there exists 
the risk of forming adverse second peaks if a large number of EVs grid- 
connect at the same time [12]. 

A decentralized offline valley filling algorithm for EV charging, 
solving a joint optimum power flow (OPF)-EV problem is presented by 
Chen et al. [13]. In addition, the authors also present a decentralized 
online algorithm that dynamically tracks the valley filling characteristic. 
In the online algorithm, the utility broadcasts the valley level to all EVs 

in a given time step, and each EV computes its charging rate locally to 
track the received valley level and reports its schedule back to the utility. 
Afterwards, the utility updates the next valley level based on the 
collected charging schedules. The results indicate that the proposed 
decentralized online method achieves near optimality. However, the 
authors consider only a small set of EVs (9 EVs) in the results presented. 
But at high EV penetrations, the results may not achieve the valley filling 
due to simultaneity in charging. 

Nimalsiri et el. [14] propose a decentralized method for EV charge 
scheduling by exploiting the notion of water-filling to track a forecasted 
energy generation profile. The charge profile of each EV is determined 
one at a time at the plug-in time of the EV. Upon receiving the expected 
aggregated demand profile and the energy generation profile from the 
operator, a given EV determines its' charging profile locally to track the 
generation profile and sends it to the operator. Then the aggregated 
demand profile is updated with the received charging profile. The simple 
arithmetic operations applied to the classical water filling algorithm, 
facilitates easily integration into local controllers. 

All these decentralized approaches [9–11,13,14] achieve a flattened 
load profile through managing EV charging. Although EV scheduling is 
decentralized, all of these methods require bi-directional 
communication. 

In contrast to the decentralized methods proposed in the literature, 
we are interested in developing ADSM methods of energy storage sys-
tems (ESS) in distribution grids which only require a unidirectional 
communication channel owing to the advantages of reduced commu-
nication infrastructure and computational burden [15,16]. 

Decentralized approaches based on unidirectionally communicated 
pricing signals for EV charging management are discussed in the liter-
ature, but are analysed insufficiently. Cao et al. [17] propose an intel-
ligent method to control EV charging loads in response to a TOU price in 
a regulated market to minimize the charging cost. However, they only 
analyse the mass of energy shifted to the valley periods and do not 
examine the effects of simultaneous charging for grid operation during 
valley periods. We investigated the potential of ADSM with pricing 
signals for EVs charging with electricity market price as the signal 
communicated in our previous work [18]. The results show that it leads 
to unfavorable distribution grid operations and tends to form a new peak 
during the off-peak triggered by the low electricity prices. 

Vay and Anderson [19] describe a price-based decentralized 
approach for the ADSM of EVs. The method aims to determine the time- 

Nomenclature 

ADSM autonomous demand side management 
DSO distribution system operator 
ESS energy storage system 
EV electric vehicle 
LV low voltage 
OPF optimal power flow 
OPT optimal power tracking 
PEV plug-in electric vehicles 
SOC state of charge 
TOU time of use 
Cj

B battery capacity of the jth EV (kWh) 
E total energy requirement of the EVs for a given time frame 

for driving (kWh) 
Eavg average energy consumption of an EV during driving 

(kWh/km) 
Ej energy requirement of the jth EV for the optimization time 

window (kWh) 
Ej,s energy requirement of the jth EV at time s for driving 

(kWh) 

NEV number of EVs in the grid 
NT number of time steps 
D aggregated non-EV load profile for a given time frame 

(kW) 
Dt aggregated base load power at time t (kW) 
Pj,t charging power of the jth EV at time t (kW) 
Pj,max charging power of the jth EV at time t (kW) 
Pj, t maximum charging power of the jth EV (kW) 
Pj,min minimum charging power of the jth EV (kW) 
Rmax maximum driving range of an EV (km) 
St broadcasted power signal at time t (kW) 
St
+, St

− positive and negative parts of the broadcasted power signal 
respectively at time t (kW) 

Sj, t
+ tracking signal for the jth EV at time t (kW) 

SOCj, 0 initial SOC of the jth EV (%) 
SOCj, t SOC of the jth EV at time t (%) 
SOCj, max maximum SOC of the jth EV (%) 
SOCj, min minimum SOC of the jth EV (%) 
Z valley fill level (kW) 
Δt time step (s) 
ηj,c charging efficiency of the jth EV  
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of-use (TOU) tariff that minimizes the charging cost without overloading 
the assets. The individual vehicles optimize their charging based on this 
TOU tariff. Two variants of the proposed approach have been examined: 
one with a system-wide tariff and the other with different tariffs at 
different nodes. The decentralized approach with system-wide prices 
leads to high simultaneity in charging, therefore does not lead to a 
smooth load profile. Although the decentralized approach with nodal 
prices results in a load profile close to perfect valley filling, it is prob-
lematic to set different prices for different groups of EV customers. 

In previous research, we propose that with unidirectional commu-
nication, power signals are more efficient than pricing signals for 
exploiting the demand side flexibility [20]. The objective of this study is 
to control the demand side flexibility of EV loads using a unidirection-
ally communicated power signal to achieve a flattened demand curve at 
the distribution grid level. The main contributions of the paper are listed 
below.  

• We propose an autonomous decentralized, hierarchical algorithm for 
exploiting EV flexibility. The proposed method achieves valley filling 
by optimally tracking a power signal. The solution to the tracking 
problem is formulated as a convex optimization which demands 
reduced computational overhead and communication contrary to the 
methods reported. Therefore, it can be easily integrated into an 
embedded local controller attached to charging infrastructure and is 
also suitable for high EV penetrations due to its scalability.  

• A load flow simulation of a distribution grid is conducted to evaluate 
the impact of the proposed optimal power tracking (OPT) based 
ADSM method on the grid operation. Most of the relevant literature 
analyse the power balance and often lack the investigation of per-
formance indicators in relation to the grid operation. In contrast, we 
further analysed the performance indices including the grid voltage, 
line overloading and power losses to provide a better insight into the 
grid operation.  

• The evaluation is performed over a wide range of EV penetrations to 
demonstrate the impact of the method on grid operation and 
computational costs for varying EV densities.  

• A benchmark centralized solution is provided to evaluate the 
computational advantages (computational costs and scalability) of 
the proposed decentralized solution.  

• A comparison on the charging rates and the average charging times 
between the centralized and decentralized solutions is discussed. 
This illustrates the impact of the ADSM on the EV charging time, so 
far not reported in literature. 

The rest of the paper is organized as follows: In Section 2, we present 
the formulation of the optimization problem and in Section 3 we show 
the simulation framework we used including the models of different 
elements in the grid model. Section 3 includes the results representing 
the performance indicators used for the comparison followed by the 
conclusion in Section 5. 

2. Approach 

In this paper, we proposed an ADSM for EV charging management by 
tracking a power signal hence referred to as OPT. The solution to the 
tracking problem is formulated in a decentralized form to enable easy 
integration to embedded controller at the EV charging infrastructure. 
The objective of the proposed decentralized ADSM approach is to charge 
the EVs such that the aggregated non-EV load and the EV charging load 
profile is flattened as much as possible. We assume that the non-EV loads 
have no flexibility for demand response and are only interested in the 
potential of ADSM in EV load. Charging schedules of the EVs are 
determined to fill the valleys of the non-EV load profile, thereby 
achieving a load profile as flat as possible. We do not consider V2G 
within the scope of this study. 

We formulate the proposed OPT problem in a two-layer structure and 

the overall concept is presented in Fig. 1. In the first layer as depicted in 
Fig. 1(a), the power signal to be tracked is determined by a central entity 
using two estimates: 1) the forecasted non-EV load profile D 2) the 
predicted aggregated EV demand E. Forecasting aggregated EV demand 
can be justified by the multiple methods proposed in the literature, some 
of which are k-nearest neighbor, pattern sequence algorithms, lazy 
learning algorithms, auto-regressive integrated moving average 
methods, modified pattern-based sequence forecasting methods etc. 
[21]. Short-term aggregated load prediction is realized in the literature 
using statistical based methods such as linear regression, auto-regressive 
integrated moving average and seasonal decomposition or artificial in-
telligence methods such as bio-inspired/evolutionary computational 
methods, neural networks techniques, support vector regression, ma-
chine learning, deep learning, agent-based systems [22]. 

The solution to the classical water filling problem [23] is used to 
determine the constant power level (fill level) Z, to optimally allocate 
the EV charging demand over the time steps of the planning horizon. The 
fill level Z is obtained by solving, 

∑NT

t=1
max{(Z − Dt), 0}Δt = E, (1)  

for Z. The power signal St which is broadcasted to all the EVs is the 
difference between the non-EV load profile and the valley fill level Z at 
each time interval, i.e., 

St = Z − Dt. (2) 

The second layer of the OPT approach includes the local control 
mechanism where each local controller attached to EVs firstly determine 
the positive part St

+ and the negative part St
− of the received power signal 

St. Then the signal Sj
+ is scaled as given in Fig. 2(b) with the purpose of 

obtaining the signal to be tracked by the jth EV using a prediction on the 
required energy demand of the jth EV, i.e., 

S+
j,t =

Ej
∑NT

t=1S+
t Δt

S+
t . (3) 

Each EV tracks Sj, t
+ with minimal deviation. Hence, we refer to the 

approach proposed as Optimal Power Tracking. When individual EVs 
track the locally scaled global signal, the aggregated effect leads to a 
flattened global load profile at the transformer. The OPT approach only 
requires the predicted non-EV load profile D at the transformer and the 
total aggregated EV demand E at the central entity. The information 
related to the EV (SOC, availability, arrival and departure times, usage, 
specifications etc.) is required locally, therefore sensitive EV informa-
tion is not communicated to a central entity unlike in the other bi- 
directional based optimization approaches. The predictions of the EV 
specific information can be realized either using traditional statistical 
models such as time series method, auto regressive integrated moving 
average, regression analysis, Kalman filtering etc. or artificial intelli-
gence methods such as artificial neural networks, support vector ma-
chines, and deep learning methods [24]. 

Within the scope of our study, we present the deterministic solution 
to the scheduling problem assuming the perfect predictions to establish 
the feasibility of the optimum power tracking based decentralized ADSM 
method. 

2.1. Decentralized OPT based EV charging 

Formulating the OPT problem as a quadratic problem is straight-
forward, but leads to a computationally expensive implementation. 
Therefore, we propose a formulation as a linear problem which can be 
easily integrated into a simple embedded hardware attached to EV 
charging infrastructure. 

The charging schedule for the jth EV is determined by solving the L1- 
Norm, non-linear optimization problem 
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min
∑NT

t=1

(⃒
⃒
⃒S+

j,t − Pj,t|
(
1+ S−

t

)
+ |Pj,t+1 − Pj,t|

)
Δt s.t. (4)  

Pj,min ≤ Pj,t ≤ Pj,max ∀t, (5)  

SOCj,min ≤ SOCj,t ≤ SOCj,max ∀t, (6)  

Pj,t = 0 for t,where the EV is not at home. (7) 

The charging rate of the EV can be varied continuously within the 
upper and lower limits given by the constraints (5). Constraints defined 
in (6) guarantee that the SOC of the EV battery always remains within 
the upper and lower operational bounds. The constraint defined in (7) is 
used to ensure that the charging of the EV occurs only when it is 
available at the point of charging, thus optimization of the charging at 
public charging infrastructure is not considered. The SOC of the jth EV at 
time step t is calculated by 

SOCj,t = SOCj,0 +
1

CB
j

{
∑t

s=1
ηj,cPj,sΔt −

∑t

s=1
Ej,s

}

. (8) 

Note that charging and discharging of a given EV do not occur 
simultaneously. 

The negative part St
− of the broadcasted signal St is merely used as a 

weighting factor and serves as a penalty for charging activities during 
high demand periods of the non-EV load profile. The term ∣Pj, t+1 − Pj, t∣ 
in (4) is included to avoid high charging rates during deep valley 

Fig. 1. OPT concept: (a) broadcast signal determination (BSD) controller for determination of the broadcasted power signal using the valley fill level Z based on the 
predicted non-EV load profile D and the total EV energy demand for the optimization horizon E (b) localized OPT controller for decentralized EV charging scheduling. 

Fig. 2. Low voltage distribution grid.  
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periods. As the aggregated effect might lead to power spikes during deep 
valley periods, the term penalizes high gradients in charging. 

The optimization problem (4) is non-linear in its original form but 
can be reformulated to an equivalent linear form by adding the auxiliary 
variables aj,t, bj,t rewriting the objective function as in (9), and adding 
the constraints (10)–(13). 

min
∑NT

t=1

[
aj,t
(
1 + S−

t

)
+ bj,t

]
Δt s.t. (9)  

− aj,t ≤ S+
j,t − Pj,t ≤ aj,t ∀j, ∀t, (10)  

− bj,t ≤ Pj,t+1 − Pj,t ≤ bj,t ∀j, ∀t, (11)  

aj,t ≥ 0 ∀j, ∀t, (12)  

bj,t ≥ 0 ∀j, ∀t. (13)  

2.2. Centralized OPT based EV charging 

The centralized implementation of the problem for scheduling EVs to 
achieve valley filling by tracking a power signal defined in Section 2.1, is 
performed to provide a comparative assessment to the decentralized 
implementation. In the centralized solution, the aggregated charging 
power of all the EVs available for charging should track the power signal 
St
+. The objective function of the centralized solution is given by, 

min
∑NT

t=1

(⃒
⃒
⃒
⃒
⃒
St + −

∑NEV

j=1
Pj,t|
(
1+ S−

t

)
+
∑NEV

j=1
Pj,t+1 −

∑NEV

j=1
Pj,t |

)

Δt (14)  

subjected to the constraints (5)–(7). 

2.3. Uncontrolled EV charging 

As a benchmark, we simulate the uncontrolled EV charging scenario 
where the EVs start charging at maximum charging rate as soon as they 
arrive at the point of charging until fully charged. This case gives a 
general understanding of the effects of increasing EV penetration levels 
in the distribution grids. It also serves as a benchmark to understand the 
potential improvements in the distribution grid operation with the 
proposed OPT algorithm. 

3. Case study 

Most of the related research in literature having the objective of 
valley filling focuses only on the power balance and the impact on the 
peak demand. Other performance indicators related to grid operations 
such as line load, power losses and voltage drops are equally important, 
yet often left non-assessed. We performed load flow simulations of a 
distribution grid in our study to assess these indicators. This section 
describes the framework including different grid elements which we 
used for the load flow. The load flow simulation uses the backward 
forward sweep flow method as proposed by Ghatak and Mukherjee [25]. 
The simulation tool is implemented in MATLAB® [26] and it serves as an 
interface to test different optimization algorithms for different demand 
response devices, in our case EVs [27]. The OPT linear optimization 
problem is solved using the MATLAB® optimization toolbox. We con-
ducted simulations over a week with a time resolution of 15 min. The 
selected week was chosen from the winter season as it exhibits a higher 
demand with respect to other seasons. The optimization problem is 
solved every 24 h at noon, taking into account the forecasts for the next 
36 h. We consider overlapping time windows for the optimization, to 
ensure that the SOC of the vehicle is always within the limits guaran-
teeing the energy required for the driving is delivered without failure. 

3.1. Distribution grid 

Fig. 2 shows the geographical representation of the low voltage (LV) 
grid located in Austria which is used in this study. The data used to 
model the grid including information of the distribution transformer, 
loads (location, load type, annual energy consumption), topology 
(connectivity, cable type, length), were provided by the local DSO, 
Vorarlberger Energienetze GmbH [28]. The simulated LV distribution 
grid comprises a 800 kVA, 10/0.42 kV step down 3-phase transformer 
with 52 load nodes and 103 distribution lines. The grid supplies 490 
residential consumers, 9 business units and 77 other consumer units 
which include heat pumps, public facilities, etc. Data related to the 
annual energy consumption for each consumer was also made available 
by the local DSO. The grid simulation was conducted considering the LV 
side of the transformer as the slack node with a reference voltage of 1 p. 
u. 

3.2. Non-EV load profiles 

The load profiles for the residential consumers were represented by 
real smart meter data from a field test of the local energy provider ill-
werke vkw AG (VKW) [29] with a temporal resolution of 15 min. The 
smart meter data of 351 households over one year was used. A database 
for the residential power profiles was set after pre-processing the data. 
Then, the smart meter data were assigned to residential consumers by 
mapping the annual energy demand. For the non-residential loads, the 
standard load profiles of the Austrian clearing and settlement agency 
[30] were used. These standard profiles were scaled according to the 
annual energy consumption of the particular consumer unit. A power 
factor of 0.96 was selected. 

3.3. EV model 

In this study, the dynamic behaviour of the EV battery is considered 
to be linear as expressed in (8). In modelling the electric vehicle, we used 
the specifications for the Nissan Leaf as summarized in Table 1. 

We assume that the charging infrastructure is equipped with a 3- 
phase 400V/16 A semi fast charger with a maximum charging power 
of 11 kW having a charging efficiency ηc of 0.9. 

3.4. Mobility profiles 

We used the Austrian mobility survey “Österreich unterwegs 2013/ 
2014” [31] to simulate the usage behaviour of the EVs. It contains the 
travel details of different modes of transport including the arrival and 
departure time, distance driven, the purpose of the journey and the day 
of the week. Only the motor vehicles having private related journeys 
were considered. Statistical filtering techniques were used to remove 
inconsistencies. The journeys with distances exceeding the maximum 
range Rmax of the selected type of the EV were excluded. The specific 
energy consumption for a unit time step was calculated using the driving 
distance and duration, assuming an average energy consumption Eavg of 
0.15 kWh/km. The generated driving profiles contain the energy con-
sumption of the given vehicle at each time step and the availability at 
the point of charging. Only the charging of the vehicles at the private 
charging infrastructure was considered. The difference between week-
day and weekend trips was also taken into account in generating the EV 

Table 1 
EV model specifications.  

ηc 0.9 
CB 24 kWh 
Eavg 0.15 kWh/km 
SOCmax 90% 
SOCmin 30% 
Rmax 160 km  
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usage profiles. A total of 15,320 profiles for weekday travels and 6460 
profiles weekend travels were generated for the EV user behaviour 
database. A summary of the mobility profiles including the arrival times, 
departure times and the daily travelled distances are shown in Fig. 3. 
The selected mobility profiles have a mean departure time of 09:20 and a 
mean arrival time of 16:15. The mean distance travelled by a vehicle is 
34 km. 

We defined the penetration rate as the number of EVs per total 
number of consumer units. With a penetration rate of 100%, 490 private 
EVs are considered to be grid-connected. We considered ten different 
progressively increasing penetrations. The assignment of the EVs to 
nodes at a given penetration rate was random and EVs were added 
progressively to maintain consistency. The geographical representation 
of the locational details for the range of EV penetrations is shown in 
Fig. A1, in the Appendix A. 

4. Results 

All the Matlab simulations were run on a server with an Intel(R) Xeon 
(R) CPU E5-2630 v3 @2.40 GHz processor and 31 Virtual CPUs. Load 
flow simulations for the considered distribution grid over a week were 
conducted for ten different EV penetrations (10%–100%, in steps of 
10%) for the three scenarios; uncontrolled, centralized OPT and 
decentralized OPT. In addition, a benchmark case with no EVs is 
considered which is represented as 0% penetration case. This section 
includes a comparison of the outcomes for the above three scenarios and 
the benchmark scenario with no EVS. We used the minimum voltage of 
the nodes, maximum loading of the lines, total power losses in the lines, 
peak power at the grid transformer and peak to average power ratio as 
the indicators to evaluate the impacts on grid operation. As EV pene-
tration increases, the dimension of the state variables in the central OPT 
becomes very high, making the memory requirements of the optimiza-
tion problem prohibitive. Given the limited computational capacity, the 
centralized OPT solution to the scheduling problem is implemented only 
up to an EV penetration of 40%. A comparison of the execution times for 
the centralized and decentralized implementations is also presented. 

We compared the valley filling capability of the proposed decen-
tralized OPT algorithm against its central implementation. Fig. 4 shows 

the power profile at the distribution transformer at 40% EV penetration 
on an example winter day, where the two OPT scenarios and the un-
controlled scenario are compared. In the event of uncontrolled charging, 
the charging time of the EVs coincides with the peak demand period of 
the non-EV load profile. Caused by the high simultaneity of the charging 
events in the uncontrolled scenario, the peak demand in this example 
case increases from 380 kW to 515 kW. Both the OPT algorithms shift 
the charging of the EVs to valley hours as they try to follow the reference 
signal as much as possible. With the decentralized OPT solution, indi-
vidual EVs track the scaled reference power signal locally, and the 
aggregated result eventually leads to a flattened load curve. During the 
daytime and the early morning hours, OPT fails to follow the tracking 
signal, mostly due to the absence of the EVs at the point of charging. 
Nevertheless, the constraints defined in the optimization problem al-
ways guarantee that the SOC of the EVs remain within the specified 
limits and fulfil the driving requirements. To benchmark the effective-
ness of tracking the reference signal, we computed the mean absolute 
deviation (MAD) between the valley fill level Z and the total demand 

MAD =
1

NT

∑NT

t=1
∣Zt −

(

Dt +
∑NEV

j=1
Pj,t

)

∣, (15)  

Fig. 3. A summary of the mobility profile statistics representing arrival times, 
departure times and daily travel distance. (a) The box plots representing the 
arrival and departure times for the EV profiles used in the simulation. (b) The 
box plot representing the daily travel distances of the EV profiles used in 
the simulation. 

Fig. 4. Power variation at the distribution grid transformer at 40% EV pene-
tration on an example winter day for centralized OPT, decentralized OPT and 
uncontrolled charging scenarios. 

Fig. 5. Mean absolute deviation between the valley fill level Z and the total 
demand for the centralized and decentralized OPT scenarios. 
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for the centralized and decentralized OPT scenarios which are shown in 
Fig. 5. As depicted in Fig. 5, the centralized OPT performs better in 
realizing the objective of tracking the reference power signal. However, 
the insignificant discrepancy between the two confirms that the 
decentralized OPT even with less information exchange is capable of 
yielding a comparable result to the centralized OPT, offering a 
compelling alternative to centralized OPT. 

To provide a more concise summary of the results, we compare the 
impact of the two OPT algorithms on the aggregated demand profile for 
the different penetrations considered in Fig. 6(a). The peak load in the 
uncontrolled scenario increases with increasing penetration and exceeds 
the rated capacity of the transformer at an EV penetration of 90%. The 
peak load in both the OPT scenarios always stays well below the 
transformer capacity and remains almost the same for all the penetra-
tions considered. OPT achieves this by avoiding EV charging during 
peak hours and by regulating the charging rates during the valley hours 
to stay below the valley fill level Z. In this manner, both OPT scenarios 
are capable of reducing the stress on the distribution grid transformers 
that could be caused by random charging. Most interestingly, decen-
tralized OPT solution with lower computation complexity is also capable 
of realizing comparable results as the centralized solution at all the EV 
penetration ranges. These results are also reflected in the peak to 
average power ratio(PAPR) as depicted in Fig. 6(b). 

Uncontrolled charging can lead to high current flows in the distri-
bution cables and may even exceed their rated current limits. To assess 
the impact of different scenarios considered towards the current flow of 
the cables, we analysed the degree of the loading on the cables; defined 
as the percentage ratio between the current flow and the rated current of 
a cable. Fig. 7 shows the comparison on the maximum loading of the grid 
cables over a week for the three scenarios at different penetrations. The 
cable loading exceeds the permissible limits even at 10% penetration in 
case of uncontrolled charging. However, with both OPT scenarios, the 
observed maximum cable loading remains the same and does not exceed 
the permissible limits even at high penetrations. Therefore, OPT sup-
ports the integration of EVs into distribution grids and reduces the 
requirement of cable enhancements. Table 2 provides an overview 
related to the number of cables exceeding the rated capacity in the 
simulated week for the uncontrolled charging scenario. For both OPT 
scenarios, no violations in the cable overloading are observed over all 
the penetrations. 

Compliance of the permissible voltage ranges specified in the stan-
dards such as ANSI C84.1 is a mandatory requirement for the operation 
of the distribution grids. The uncontrolled charging can lead to unac-
ceptable voltage drops and cause violation of the specified standards. As 
shown in Fig. 8, at penetrations above 80%, the minimum voltage of the 
grid nodes over the simulated week falls below 0.9 p.u. and cause 
violation in the voltage standards. In OPT scenarios, the minimum nodal 
voltages do not fall below the standard limits even at high EV penetra-
tions. Therefore it is evident that OPT not only mitigates the peak power 
problems but also any probable voltage quality problems. A summary of 
the voltage violations in the uncontrolled scenario is given in Table 2. 

Fig. 9 presents the total power losses in the distribution cables over 
the selected week. The OPT scenarios result in lower total power losses 

Fig. 6. (a) Bar chart indicating peak, mean and the minimum power at the 
distribution grid transformer for the decentralized OPT, centralized OPT and 
uncontrolled charging scenarios over a period of a week in winter season. (b) 
The peak to average power ratio (PAPR) for the decentralized OPT, centralized 
OPT and uncontrolled charging scenarios over a period of a week in 
winter season. 

Fig. 7. Maximum resulting cable loading of the distribution cables for the 
decentralized OPT, centralized OPT and uncontrolled charging scenarios over a 
period of a week in winter season. 

Table 2 
Voltage violations and line overloading for uncontrolled charging, eliminated in 
OPT scenarios.  

Penetration NV<0.9
Nodes Nloading>100 %

Lines  

10 –  2  
20 –  2  
30 –  2  
40 –  5  
50 –  8  
60 –  8  
70 –  8  
80 –  10  
90 2  10  
100 3  13  
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compared to the uncontrolled scenario due to the distribution of the 
charging events over time which in turn leads to distribution of currents 
over time. At 100% penetration, the decentralize OPT limits power 
losses nearly to half from that of the uncontrolled scenario. As such OPT 
also contribute to improve the efficiency of the grid operation. 

The key indicators presented above concerning the grid operation, 
clearly indicate that the decentralized method performs as good as the 
centralized equivalent, despite the reduced information exchange. 
Furthermore, the execution time between the two methods exhibits a 
clear difference as depicted in Fig. 10. As can be seen in the plot, even at 
40% penetration the simulation time for the centralized implementation 
is around 400 min. The memory requirement for the optimization of the 
central OPT is very high due to the increasing number of state variables 
at high penetrations making it debatable for practical implementations. 
In our simulation, the optimization of the individual EVs are performed 
sequentially, but in practice this process will be performed in parallel. 
Hence, the simulation time will be even lower than the values indicated 
in Fig. 10. Fig. 8. Minimum nodal voltage in the distribution grid transformer for the 

decentralized OPT, centralized OPT and uncontrolled charging scenarios for a 
period of a week in winter season. The dotted straight line represents the lower 
tolerance boundary of voltage. 

Fig. 9. Total power losses in the distribution cables for the decentralized OPT, 
centralized OPT and uncontrolled charging scenarios over a period of a week in 
winter season. 

Fig. 10. Computational costs to solve the load management problem for the 
decentralized OPT and centralized OPT scenarios for a period of a week. 

Fig. 11. Comparison of the charging rate and the average charging time be-
tween the centralized and decentralized OPT implementations over the range of 
penetrations (a) charging rate for the decentralized OPT and centralized OPT 
scenarios for a period of a week. (b) Average charging time per day for the 
decentralized OPT and centralized OPT scenarios for a period of a week. 
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Fig. 11 shows a comparison of the charging rates and the average 
charging time per day over the simulated week for the centralized and 
decentralized OPT implementations over the range of penetrations 
considered. The charging rate of the decentralized implementation is 
lower compared to that of the centralized implementation. This is 
attributed to the loss of global information on the EV data in the 
decentralized implementation. Consequently, average charging time is 
higher in the decentralized OPT compared to central OPT as can be seen 
in Fig. 11(b). Despite the lower charging rates, the decentralized OPT 
complies with the demanded energy delivery to all the EVs as in the 
decentralized OPT. 

The results reveal that the uncontrolled charging of EVs leads to 
increased peak demands, voltage violations, cable overloading and 
higher power losses, hindering the healthy operation of the distribution 
grids. Both the centralized and decentralized OPT algorithms improve 
the distribution grid operation by reducing the peak demand. In addi-
tion, these two methods reduce power losses and eliminate voltage vi-
olations and cable overloading. Furthermore, the decentralized OPT 
with local controllers performs equally well as the central OPT. The 
reduced execution time together with the reduced computational load 
makes the decentralized OPT a more viable load management strategy 
especially for high EV penetrations expected in future mobility systems. 

5. Conclusions 

We proposed a decentralized hierarchical ADSM algorithm for the 
charging management of EVs where the communication requirement is 
only unidirectional. We formulated the charging scheduling problem as 
an optimal power tracking algorithm that aims to reduce the peak de-
mand in distribution grids induced by EV charging. In the first layer, the 
power signal to be broadcasted is determined using only two pre-
dictions: the aggregated time-varying non-EV load profile and the total 
EV demand in the grid. Then in the second layer, the individual EV 
controllers solve a localized optimization to realize the charging 
schedule by optimally tracking the re-scaled broadcasted power signal. 
Predictions on the individual EV usage behaviour based on historic data 
are required locally for the scaling and tracking algorithm. We used 
deterministic non-EV load profiles and EV energy demands in our 
implementation. The effect of uncertainties related to the predictions 
will be considered in future implementations. We included a central 
implementation as a benchmark for comparison purposes. 

The results demonstrate that the decentralized OPT approach elim-
inates the additional peak demand increments induced by EV charging 
and performs comparably to the centralized OPT implementation. In 
addition to the peak reduction, benefits also include the reduction of the 
power losses in the cables as well as prevention of voltage limit viola-
tions and cable overloading. A further intriguing feature of the OPT is 
the reduced computational overhead that makes it well suited for inte-
grating into local embedded controllers attached to existing charging 
infrastructure. Despite the fact that the decentralized OPT, in contrast to 
the centralized OPT, leads to longer charging times due to the loss of 
information on the full extent of the EV data, it ensures the demanded 
energy delivery to all the EVs. In light of all these facts, is evident that 
the method is a compelling strategy for grid friendly integration of EVs 
with no requirement for bidirectional communication and computa-
tionally intensive infrastructure in comparison to the centralized 
methods. 
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Appendix A. EV locations 

The heatmaps illustrating the number of EVs connected to the nodes at the grid for the different penetrations considered are shown in Fig. A1. The 
EVs were assigned to the nodes based on the number of households at each node. As can be seen in the Fig. A1(j), the nodes with high EV numbers are 
distributed over the grid. Even though most EVs are connected at the end of the feeders, the performance indices lie within the safe operating bounds 
for all configurations. 
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Fig. A1. Geographical representation of locational details for the different EV penetrations in the Austrian low voltage grid. The heatmap represents the number of 
EVs at each node at the respective EV penetration. The allocation of the EVs is based on the number of households at each node. 

Appendix B. Summary of the results 

A summary of the results including all the key indices we used for the evaluation and the details of the EV assignments to the different nodes for the 
range of penetrations is presented in Table B.1.  

Table B.1 
The summary of the assignation details of EV to network nodes and the results representing key performance indices for the different EV penetrations.  

Penetration No of 
EVs 

No. of 
nodes 
with EVs 

PAPR Minimum Maximum Power Charging  

Voltage (p.u.) Line loading (%) Loss (kWh) Time (hours) 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D  

0  0  0  1.83    0.96    89.7    517    0.72    
10  49  23  1.94  1.74  1.74  0.95  0.96  0.96  116.6  89.7  89.7  605  564  562  0.74  4.65  7.28  
20  98  30  1.99  1.67  1.67  0.94  0.96  0.96  125.5  89.7  89.7  685  610  604  0.75  6.17  9.64  
30  148  35  1.98  1.59  1.60  0.94  0.96  0.96  135.6  89.7  89.7  790  672  659  0.74  7.06  10.95  
40  196  35  2.18  1.52  1.54  0.93  0.96  0.96  147.2  89.7  89.7  911  736  714  0.75  7.86  11.72  
50  245  40  2.30   1.49  0.92   0.96  163.1   89.7  1016   763  0.74   12.10  
60  293  45  2.30   1.45  0.92   0.96  169.9   89.8  1135   820  0.74   12.46 

(continued on next page) 
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Table B.1 (continued ) 

Penetration No of 
EVs 

No. of 
nodes 
with EVs 

PAPR Minimum Maximum Power Charging  

Voltage (p.u.) Line loading (%) Loss (kWh) Time (hours) 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D 

Unc OPT- 
C 

OPT- 
D  

70  342  47  2.45   1.40  0.91   0.96  176.1   89.8  1242   867  0.74   12.79  
80  392  48  2.48   1.35  0.90   0.96  191.7   89.9  1390   931  0.74   13.09  
90  441  49  2.56   1.31  0.89   0.96  198.6   90.1  1526   991  0.74   13.34  
100  490  52  2.69   1.32  0.87   0.96  205.7   90.2  1659   1045  0.74   13.40  
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