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Abstract

Due to the inherent intermittency in wind power production, reliable short‐
term wind power production forecasting has become essential for the efficient

grid and market integration of wind energy. The current wind power

production forecasting schemes are predominantly developed for wind farms.

With the rapid growth in the microgrid sector and the increasing number of

wind turbines integrated with these local grids, power production forecasting

schemes are becoming essential for distributed wind energy systems as well.

This paper proposes a power production forecasting scheme developed

explicitly for distributed wind energy projects. The proposed system integrates

two submodels based on support vector regression: one for downscaling the

wind speed predictions to the hub coordinates of the turbine and the other for

predicting the site‐specific performance of the turbine under this wind

condition. The forecasting horizons considered are the hour ahead (t+ 1) and

the day ahead (t+ 36), which align with the Nord pool's energy market

requirements. For the day‐ahead scheme, a multistep recursive approach is

adopted. The accuracy and adaptability of the proposed forecasting scheme are

demonstrated in the case of a distributed wind turbine.
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1 | INTRODUCTION

With the record installations of 93GW in 2020, the global
wind power capacity has crossed over 742GW.1 Considering
the present growth rate, the cumulative installations of wind
energy systems are expected to reach a capacity of 1212GW
by 2025. One of the major challenges in the grid integration
of wind energy is its temporal variability. Due to the
stochastic nature of the wind, power output from the wind
turbines can fluctuate significantly, even within short time
intervals.2 To efficiently manage such grids, variations in

energy contributed by the turbines must be quantified in
different time scales. Accurate wind power forecasts must
understand these power fluctuations and manage the
resulting uncertainties.

Wind power production forecasting can generally be
classified as physical methods, traditional statistical meth-
ods, and, more recently, the so‐called learning methods
(e.g., machine learning [ML] approaches).2–6 ML methods
are considered an alternative to conventional methods as
they have shown their ability to accurately predict wind
power production.6 One or more of these approaches can

Energy Sci Eng. 2022;10:4662–4673.4662 | wileyonlinelibrary.com/journal/ese3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Energy Science & Engineering published by Society of Chemical Industry and John Wiley & Sons Ltd.

 20500505, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ese3.1295 by U

niversity O
f A

gder, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://orcid.org/0000-0003-3228-7360
mailto:Ghali.yakoub@uia.no
https://onlinelibrary.wiley.com/journal/20500505
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fese3.1295&domain=pdf&date_stamp=2022-09-02


be combined to develop hybrid forecasting methods.3,4

Wind power forecasting can also be categorized as direct
and indirect forecasting. The direct method uses historical
data to forecast future wind power production,7 usually
called a time series analysis. In another direct scheme,
weather forecasts are directly used to predict wind power,
which is often termed the wind‐to‐power (W2P) approach.
This approach proved to be more accurate than time series
analysis, especially for horizons more than 6 h ahead.
However, the accuracy of this method highly depends on
the accuracy of the used weather forecasts.8,9

On the other hand, in indirect forecasting, wind
speeds are initially forecasted which is then utilized for
power predictions using the turbines' power curves.10 In
this approach, errors are mainly caused due to the error
in forecasting the wind speed.11 Therefore, many studies
on indirect wind power forecasting are focused on
improving the accuracy of wind forecast.12–14 Accuracy
of the indirect approach can also depend on the
nonlinear relationship between wind speed and power
output,2,15,16 which is generally represented by the power
curve of the wind turbine. Several techniques have been
proposed to model the power curve of wind turbines.
Generally, these techniques can be classified as parame-
tric and nonparametric17 methods. Parametric models
are built upon mathematical formulation based on a
family of functions with some variables that are fitted
specifically to a wind turbine. In contrast, nonparametric
techniques, which generally learn the velocity‐power
relationship from the data, do not require any prespeci-
fied conditions. A comprehensive review of these power
curve modeling techniques can be found in Carrillo
et al.18 and Lydia et al.19 Among these, support vector
regression (SVR) has shown a good capability to estimate
the nonlinear relationship between wind speed and
power.2,20,21 In addition, SVR base models have capabili-
ties for fast convergence and easy integration. A detailed
description of SVR‐based models can be found at The
MetCoOp Team22 and Pandit and Kolios.23

The manufacturers' power curves, which are gener-
ally used to model this relationship between wind
velocity and power, are based on measurements under
ideal test conditions.18 Hence, they may not be able to
capture the sit‐specific dynamics of the complex W2P
conversion process. Therefore, it is advised to use site‐
specific performance models, which are based on the
actual performance data of the turbine at a given site, for
correlating the wind speed and corresponding power in
the wind power forecasting models.19

Though several methods and approaches have been
proposed for wind power production forecasting, most of
these are developed for wind farms, where several
turbines are clustered together. Along with the rapid

growth in these “centralized” wind farm sectors, the
distributed wind energy sector has also grown rapidly in
recent years. For example, in the United States alone,
distributed wind systems' cumulative capacity was
1145MW in 2019,17 which is expected to be enhanced
by 300% by 2030.20 With varying rated capacities from a
few kW to MW, these systems are often connected to
microgrids, which are isolated or integrated with the
main grid.17 Short‐term power production forecasts from
wind turbines coupled with these microgrids are
essential for efficient management.

Wind turbines perform differently while operating as a
single turbine or as clusters, like, wind farms. This is
mainly due to the wake interactions between the
neighboring upwind and downwind turbines. So, the
power forecasting schemes developed for wind farms
cannot be adopted for predicting the performance of
distributed wind energy systems. Hence, as emphasized in
the Distributed Wind Research Program report,17,21 there
is a need to develop exclusive models for estimating and
forecasting the performance of distributed wind turbines
to integrate and manage them within hybrid microgrid
energy systems efficiently.

This paper proposes an intelligent power production
forecasting method, exclusively developed for distributed
wind energy systems, using ML methods. The proposed
method integrates wind speed forecasts, which are
downscaled from Numerical Weather Predictions
(NWPs) to the hub coordinates of the turbine, and a
site‐specific wind turbine performance model which
predicts the performance of the given turbine under the
forecasted wind field. SVR was used to develop the speed
and turbine performance models.

The paper is arranged as follows. After this introduc-
tory section, a brief description of the study case is
presented, followed by an illustration of the framework
for the proposed forecasting scheme. This is then
followed by the details of various steps in developing
the wind downscaling model. The performance of the
downscaling approach at the hub coordinates of a 5 kW
test turbine is then illustrated. The wind turbine
performance model is then introduced with discussions
on its development approaches and performances while
applied to a 5 kW turbine. Finally, the performance of the
integrated power production forecasting scheme is
presented and discussed.

2 | STUDY CASE

To demonstrate the proposed SVR wind power produc-
tion, the geospatial location of a fully instrumented 5 kW
experimental wind turbine is considered in this study.

YAKOUB ET AL. | 4663
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The wind turbine is located at Smøla island, on the west
coast of Norway, as shown in Figure 1, within a wind
farm composed of 67 turbines with an installed capacity
of 148.4MW. The uniqueness of its location introduces
an interesting challenge for the proposed method.

For this study, data from January 1 to December 31,
2019 were retrieved from two sources. The first data set
was from a met mast installed next to the experimental
wind turbine at 20m above ground level (AGL). These
observed data were recorded at an interval of 5 min and
consisted of the wind speed and direction. The second
data set was extracted from the archived historical hourly
raw weather forecast at the height of 10m AGL from the
regional NWP model METCoOp Ensemble Prediction
System (MEPS). This model is a convection‐permitting
atmosphere ensemble model covering Scandinavia and
the Nordic sea with a horizontal resolution of 2.5 km, 65
vertical levels, and 10 members.22 Several weather
parameters like wind speed, direction, air temperature,
relative humidity, and air pressure were extracted from
that model and considered in this study. To better
understand the weather conditions at the point of
interest, weather forecast data were extracted from the
four grid cells nearest the wind mast location, as shown
in Figure 1. The green icons show the locations of the
centers of the four NWP grid cells, and the red icon
shows the location of the target wind turbine at Smøla
island.

It should be mentioned that the observed data were
transformed to a lower resolution (hourly) to match the
NWP's resolution, where the wind speed record was
simply averaged while the wind directions were first
transformed to radians, then the sin and cosine for the
5min intervals were averaged and finally transformed
back to a degree after using the inverse arctangent
function, precisely the arctan2 function which is a

four‐quadrant inverse function giving out the angle
between 0 and 2π radians.

3 | FORECASTING APPROACH

The proposed forecasting scheme is illustrated in
Figure 2. It consists of two models, one for wind
downscaling and the other for turbine performance,
which is integrated to forecast the performance of the
distributed wind energy system. In the downscaling
model, the speed and direction of the wind, which is
forecasted in low spatial resolution using the NWP
models, are downscaled with enhanced resolution,
corresponding to the hub coordinates of the turbine.
The power responses of the turbine at these speeds are

FIGURE 1 Wind turbine location and the
four nearest NWP grid points. Source: Google
earth. NWP, Numerical Weather Prediction.

FIGURE 2 Forecasting approach proposed for distributed
wind energy systems. NWP, Numerical Weather Prediction.

4664 | YAKOUB ET AL.
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then predicted using the wind turbine performance
model. Algorithms based on SVR are used to develop
the downscaling and turbine performance models. SVR‐
based models have proven to be an effective and valuable
tool in actual value function estimation.2,23–25 Further-
more, the lack of a long historical record limits the
possibility of using more advanced neural networks and
gradient boosting techniques. SVR models are trained
using a symmetrical loss function, which penalizes high
and low misestimates equally. Solving a quadratic
optimization problem while minimizing Vapnik's ε
insensitive loss function, the most widely used cost
function, a flexible tube is formed symmetrically around
the estimated function. Where points outside the tube are
penalized, but those within the tube receive no penalty.
One of the main advantages of SVR is that its
computational complexity does not depend significantly
on the dimensionality of the input space. In addition, it
has excellent generalization capability, with high predic-
tion accuracy.26–29

Nevertheless, achieving an optimal SVR architecture
requires tuning several hyperparameters, namely, the
kernel function, which maps lower‐dimensional data
into higher‐dimensional data. The gamma parameter
defines the inversed radius of the samples' influence
selected by the model as support vectors.30 The
regularization parameter, which is inversely proportional
to the strength of regularization. The epsilon parameter
specifies the tube within which no penalty is associated
in the training loss function with points predicted within
a distance epsilon from the actual value.31–33

A 5 kW fully instrumented wind turbine is considered
to demonstrate the viability of the proposed wind power
forecasting method. Details of these models are discussed
in the following sections.

4 | WIND SPEED DOWNSCALING
MODEL

The wind speed downscaling model used in this
forecasting scheme is an extension of the method
previously proposed by the authors.12 The wind forecast
from the regional NWP model MEPS has been used in
this study, as it sufficiently covers the region where the
experimental turbine is installed.22 Wind speeds fore-
casted at the four grid cells nearest the wind turbine have
been extracted.12 They are then regressed with the
corresponding wind speed and direction measured at
the hub height of the experimental turbine for develop-
ing the SVR model.

The development of the SVR‐based downscaling
model had three major phases: preprocessing, model

building, and postprocessing. Under the preprocessing,
the data were cleaned for outliers and noise, relevant
inputs for the model were identified, and the data were
divided into two sets for training and testing the model.
The inputs were selected by applying Pearson, Kendall,
and Spearman correlations and Mutual Information
Regression34–36 to several weather parameters forecasted
by the NWP and the corresponding wind measurements
from the turbine hub level. Though several inputs were
initially considered, wind speed and gust have been
chosen as the model inputs through this feature
selection, which has been conducted in previous
research. For more details, see Yakoub et al.12

The data division was done by random resampling of
the subsets (i.e., shuffling the lines). The data were divided
into training and testing subsets using a supervised trial
and error method with manual adjustments to get a
satisfactory level of agreement between the statistical
properties, in other words, maintaining a maximum
relative difference of 4% for the statistical properties
(mean, standard deviation, and coefficient of variation) of
the subsets. This ensures that the seasonal and diurnal
variations in the data are well reflected in both subsets.

The model building phase mainly involved develop-
ing and optimizing the SVR architecture. A stepwise
constructive approach, using the Grid Search algorithm
combined with the cross‐validation method, was used to
optimize different hyperparameters of the developed SVR
architecture.

The optimal SVR model has a nonlinear kernel radial
basis function (RBF) with a penalty parameter of 10, the
gamma, and the epsilon parameters of 0.06 and 0.3,
respectively. It should be noted that the optimization
process used the calibration data integrated with the
cross‐validation method where k= 10 folds and the
scoring function was chosen to be a mean‐squared error
to rank the models created.

Given its applications for power dispatch for distributed
turbines integrated with microgrids and considering the
energy market requirements, an hour‐ahead (t+1) and
day‐ahead (t+36) forecasting schemes are considered. For
the day‐ahead (t+36) forecast, which must be available
before noon of each day, a multistep recursive forecasting
strategy, as adopted in Yakoub et al.,12 the strategy consists
in running the downscaling models consecutively, starting
by forecasting (t+1) exactly as the intraday and then
progressing to higher times. Note that the observed values
in the previous hour are unknown for higher times and
therefore replaced by forecasted ones. Also, for each
forecast, the NWP values are maintained equal to the ones
available at the beginning of the forecast period.

The model's performance has been evaluated in the
postprocessing phase by considering several error

YAKOUB ET AL. | 4665
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metrics. Table 1 shows the performance of the wind
speed downscaling model considering the forecasting
schemes using data from January 2020 (note, these data
were not used in the model development). In Table 1,
WSobs(t) is the observed wind speed at the time (t),
avg_WSPi(t+1) and avg_WGPi(t+1) are the average wind
speed, and the wind gust of the four nearest points of the
NWP at the time (t+ 1), respectively. It is clear from the
results that the downscaled hour‐ahead forecast im-
proved the wind speed predictions by 63%, 67%, and 70%,
considering the root mean‐square error (RMSE), mean
arctangent absolute percentage error, and the mean
absolute error (MAE), respectively, compared with the
latest updated NWP wind speed forecast. Similarly,
the multistep recursive forecast (36 h ahead) improved
the wind speed predictions by 35%. As expected, the
multistep recursive forecast is relatively less accurate

than the hour ahead. The relatively high error is due to
the accumulation of errors from the successive hour‐
ahead predictions, which were used as additional inputs.
Moreover, the recursive forecasting scheme (multistep)
uses NWP values that are not updated throughout the
forecast horizon. Therefore, the day‐ahead forecasts
showed higher error levels than the intraday (t+ 1)
forecast, where NWP values are updated every 6 h.

Figure 3 shows the observed wind speeds on
January 15 and 16, 2020 compared with the correspond-
ing downscaled values for both the intraday and day‐
ahead forecasting schemes. The dashed pink lines define
the day‐ahead region of interest (ROI). The hour‐ahead
forecast is the one that follows best the actual measured
values. It can be observed that the multistep recursive
gives much better results compared with the NWP. This
is confirmed by looking at the wind speed results within

TABLE 1 Evaluation of the
forecasting strategies for January 2020

Properties

Wind speed

Intraday (t+ 1) Day aheadc (t+ 36)

Inputs
WSobs(t), avg_WSPi(t+1),
avg_WGPi(t+1) NWPa

WSobs(t),
b avg_WSPi(t+1),

avg_WGPi(t+1) NWPc

RMSE (m/s) 1.31 3.56 2.22 3.42

NRMSE (%) 5.1 14.0 9.1 13.4

MAE (m/s) 0.94 3.20 1.71 3.02

MAAPE (%) 9.6 29.2 17.2 27.4

R2 0.94 0.55 0.81 0.58

Abbreviations: MAAPE, mean arctangent absolute percentage error; MAE, mean absolute error; MSE,
mean‐squared error; NWP, Numerical Weather Prediction; RMSE, root mean‐square error.
aFull record of NWP based on the latest forecast, that is, considering the four updates per day.
bOnly using the observed recent value at the first step, that is, forecast (t+ 1), for the next steps using
predicted downscaled ones.
cConsidering the values based only on the region of interest.

FIGURE 3 Wind speed forecasts for January 16, 2020. NWP, Numerical Weather Prediction; ROI, region of interest.
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the ROI, where the recursive forecast effectively avoids
the general underestimation of the NWP.

5 | WIND TURBINE
PERFORMANCE MODEL

Once the wind speed at the turbine's hub coordinates is
forecasted from the downscaling model at a given time of
interest, this has further to be integrated with the turbine
performance model for the proposed wind power
forecasting scheme. The turbine performance model
basically predicts the power produced by the turbine at
different wind speeds. Conventionally, the turbine's wind
speed–power response is estimated using the power
curve provided by the manufacturer, which is developed
under ideal test conditions following the specifications in
IEC 61400 12. However, the manufacturers' power curve
may not be able to capture the dynamics of the wind flow
expected under real site environments.15,18,19,37 Hence, a
site‐specific nonparametric modeling approach, using the
speed power measurements from the turbine, is proposed
for the wind turbine performance. In view of its
capabilities in estimating the nonlinear relationship
between wind speed and power, SVR‐based algorithms
are used to develop the turbine performance model.

The SVR‐based turbine performance model was
developed using the 5 kW experimental turbine data.
The turbine's cut‐in, rated, and cut‐out speeds were 3, 12,
and up to 60m/s, respectively. Figure 4 shows the
manufacturer power curve of the turbine compared with
its measured performance. Differences in the expected
and actual performances of the turbine are evident in
Figure 4, highlighting the need to develop a site‐specific
performance model.

The wind speed and the corresponding power produced
by the turbine, measured at 5‐min intervals, have been
aggregated on an hourly basis to match it with the temporal
scale of the wind speed forecasts from the downscaling
model. The hot‐deck imputation approach has replaced
some of the missing power data corresponding to the
turbine's rated to cut‐out wind speed.38 The data were
preprocessed, following a similar approach adopted for
the downscaling model reported in Section 4. Though wind
directions at the point of interest were also predicted using
the downscaling model, they were not used as an input to
the wind turbine performance model as it was verified that it
creates more noise in the forecasting scheme, thereby
lowering the forecast accuracy.

For optimizing the SVR architecture, the same
approach used for the downscaling model is adopted.
The optimal SVR wind turbine performance model has a
nonlinear kernel RBF with a penalty parameter of 1.3,
and gamma and epsilon parameters of 0.6 and 0.02,
respectively.

Table 2 summarizes the SVR‐based model's perform-
ances under calibration and testing. It can be seen that,

FIGURE 4 Manufacturer power curve (MPC) versus observations.

TABLE 2 SVR wind turbine performance evaluation

Performance metrics Calibration set Test set MPC

RMSE (W) 165.02 166.28 807.62

NRMSE (%) 3.32 3.40 16.30

MAE (W) 96.19 98.25 659.85

R2 0.99 0.99 0.71

Overfitting indicator 0.99 0.20

Abbreviations: MAE, mean absolute error; MPC, manufacturer power curve;
NRMSE, normalized root mean‐square error; RMSE, root mean‐square
error; SVR, support vector regression.
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FIGURE 5 Comparison between the observed and predicted
power using SVR (test set). SVR, support vector regression.

FIGURE 6 Performance model predictions over 1 day of January 16, 2020.

FIGURE 7 SVR‐based site‐specific performance turbine model. SVR, support vector regression.

TABLE 3 One hour ahead of power production forecast
performance evaluation

Performance
metrics

Intraday forecast (t+ 1) January 2020

SVR
(WS) + SVR
(WP)

NWP
(WS)a + SVR
(WP) Persistence

RMSE (W) 592.67 1221.95 645.79

NRMSE (%) 12.1 24.9 13.1

MAE (W) 382.01 847.18 396.22

MAAPE (%) 24.4 42 25.3

R2 0.89 0.53 0.87

Abbreviations: MAAPE, mean arctangent absolute percentage error; MAE,
mean absolute error; NRMSE, normalized root mean‐square error; NWP,
Numerical Weather Prediction; RMSE, root mean‐square error; SVR,
support vector regression; WP, wind power; WS, wind speed.
aWind speed forecast extracted from the latest NWP forecast.
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with the SVR model, the overall normalized error in the
power estimates could be reduced to 3.4% against the
corresponding error of 16.3% while using the manufactur-
er's power curve. Figures 5 and 6 compare the actual
power developed by the turbine with the power predicted
by the proposed SVR model. Table 2 and both Figures 5
and 6 clearly demonstrate the proposed SVR model's
ability to characterize the speed power response of the
turbine at a given site. The results in Figure 5 show that
the SVR model has no apparent tendency to either
underpredict (points below the ideal model line) or
overpredict (points above the ideal model line). On the
basis of the SVR model, a site‐specific performance curve
for the turbine has been developed and is presented in

Figure 7. The curve closely follows the actual performance
of the turbine, especially between the cut‐in to rated wind
speeds under which the turbine predominantly operates.

6 | INTEGRATED WIND POWER
PRODUCTION FORECASTING
SYSTEM

The SVR‐based wind speed downscaling and the wind
turbine performance models were integrated to form the
end‐to‐end wind power production forecasting system.
The proposed system is made to temporally align with
the Nord Pool's intraday and day‐ahead markets.

FIGURE 8 One hour‐ahead wind power production forecast for January 16, 2020. NWP, Numerical Weather Prediction; SVR, support
vector regression; WP, wind power; WS, wind speed.

FIGURE 9 One hour‐ahead wind power observed versus predicted: (A) results from the proposed indirect forecast and (B) results from
using the NWP forecast directly with the developed SVR performance model (January 2020). NWP, Numerical Weather Prediction; SVR,
support vector regression; WP, wind power; WS, wind speed.
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The performance of the integrated system in the
hour‐ahead wind power production forecasting is shown
in Table 3. Forecasting schemes combining the turbine
performance model with both the NWP wind predictions
and the SVR‐based downscaled wind forecasts are
compared and benchmarked with the persistence
approach. This is further illustrated in Figure 8. The
forecasting system, which combines the wind down-
scaling model with the turbine performance model,
outperforms the other options. For example, compared
with the approach with NWP wind predictions, the
forecasting errors in terms of RMSE and MAE could be
reduced by 52% and 55% by downscaling the wind speeds
to the turbines' hub coordinates. In comparison with the

persistence approach, corresponding error reductions
were 8% and 3.5%, respectively.

Figure 9 shows a comparison of 1 h ahead wind
power observed and the predicted using (A) the proposed
indirect approach and (B) the NWP wind forecast with
the developed SVR performance model. The proposed
forecast is robust near the two ends of the ideal line
Figure 9A, that is, within 20% of the cut‐in speed and the
rated speed, while the errors are magnified in the region
between cut‐in and rated speeds. Using the NWP results
directly in a generalized underprediction of the wind
power Figure 9B.

The recursive forecasting scheme, developed for the
day‐ahead wind power production forecasting, also
showed similar trends as in the case of the intraday
forecasts discussed above. Table 4 shows the error
evaluation of this recursive forecasting approach. By
downscaling the NWP wind predictions to the hub
coordinates of the turbine, errors in the day‐ahead
recursive forecasting could significantly be reduced. For
example, RMSE and MAE were reduced by 8% and 22%,
respectively, compared with the forecasting approach
using NWP wind predictions directly.

Performances of both approaches in the recursive
day‐ahead wind power production forecasting are
compared in Figure 10 for January 16, 2020. Due to
market regulations, the time at which the forecasting
must be made is at 12:00 each day, and the forecasting
ROI, between 00:00 and 23:00 the next day (dotted
vertical pink lines), is also indicated in Figure 10. It
should be noted that the NWP data, which are used for
the downscaling, are extracted at the forecasting time
12:00, which could have affected the accuracy of the
proposed day‐ahead recursive forecasts. Nevertheless, in

TABLE 4 Day‐ahead recursive wind power production
forecast performance evaluation

Day‐ahead forecast (t+ 36) January
2020 “ROI”

Performance
metrics

SVR
(WS) + SVR
(WP)

NWP
(WS)a + SVR(WP)

NRMSE (%) 21.5 26.4

MAE (W) 656.76 839.71

MAAPE (%) 36.7 41

R2 0.65 0.47

Abbreviations: MAAPE, mean arctangent absolute percentage error; MAE,
mean absolute error; NRMSE, normalized root mean‐square error; NWP,
Numerical Weather Prediction; RMSE, root mean‐square error; ROI, region
of interest; SVR, support vector regression; WP, wind power; WS, wind
speed.
aWind speed forecast extracted from NWP forecast at 12 noon each day
covering the next 36 h.

FIGURE 10 Day‐ahead wind power production forecast for January 16, 2020. NWP, Numerical Weather Prediction; SVR, support
vector regression; WP, wind power; WS, wind speed.

4670 | YAKOUB ET AL.

 20500505, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ese3.1295 by U

niversity O
f A

gder, W
iley O

nline L
ibrary on [07/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



general, the forecasts based on the downscaling approach
outperform the NWP‐based option.

Similarly to Figure 9, Figure 11 shows the compari-
son for day‐ahead power forecasts. The performance of
the proposed forecast degrades as the time horizon
increase, which can be observed by the increased
variations shown in Figure 11A. Despite that, the model
continues to not have a clear tendency to overpredict or
underpredict the observations. Interestingly, the direct
use of NWP wind forecast shows consistency in a larger
forecast horizon by preserving a generalized under-
prediction pattern Figure 11B.

7 | CONCLUSIONS

In this study, we have presented an SVR‐based wind
power forecasting, explicitly developed for distributed
wind energy systems integrating the NWP forecasts from
the nearest grid cells to the studied system. The proposed
method consisted of two models, one for downscaling the
wind speed predictions from NWP to the hub coordinates
of the wind turbine and the other for estimating the
power produced by the turbine under these downscaled
wind conditions. The models were then integrated to
form an end‐to‐end wind power production forecasting
scheme, where both hour‐ahead and day‐ahead time-
frames were considered possible applications in grid and
market integration. A multistep forecasting approach
(recursive) was adopted for the day‐ahead timeframe
(t+ 36), which implied running the model several times,
considering the latest prediction as an input to the
next hour's prediction. Both timeframes were tested

individually with the case of a 5 kW turbine and showed
a high accuracy level compared with relying only on pure
NWP forecast.

The proposed wind power forecasting scheme is
unique as it specifically targets stand‐alone distributed
wind turbines. Such forecasts are significant in managing
microgrids integrated with distributed wind systems. The
SVR‐based downscaling of wind speeds, especially in
conjunction with the multistep recursive approach in the
day‐ahead forecasting, has significantly contributed to
enhancing the wind speed prediction accuracies. Simi-
larly, the SVR‐based “site‐specific” approach could
minimize the normalized error of the W2P modeling by
12.9%, in comparison with the conventional method of
using the manufacturers' power curve. With these
improvements, the proposed wind power forecasting
schemes could minimize the normalized error of hour‐
ahead and day‐ahead forecasts by 12.1% and 18.5%,
which is significantly lower than the conventional
indirect wind power forecasting options which combine
the NWPs with the manufacturers' power curves.
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