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A B S T R A C T

Vehicle occupant injuries due to collisions cause many fatalities every year. Safe vehicle design plays a critical
role in averting serious injuries to occupants and vulnerable road users in the event of a crash. In this paper
we study a full frontal vehicle crash against a rigid barrier introducing a Lumped Parameter Model (LPM)
inspired by the elastic pendulum motion. The model uses polar coordinates to simplify the problem and the
governing equations have been defined using Lagrangian formulation. The Simulink model has been validated
against Finite Element (FE) data demonstrating good correlation with pitching angle and maximum crush of
the vehicle. These parameters are crucial for designing vehicles which efficiently protect occupants.
1. Introduction

Vehicle collisions are the one of the major causes of occupant
injuries in a vehicle crash event. The 2015 European Commission report
identifies a frontal impact as the most common crash scenario leading
to serious injuries, followed by a side impact. These injuries are caused
by different forces acting on the cage protecting the occupants in a
collision in various impact scenarios [1,2]. The report also suggests
further studies of mechanisms and measures aimed at reducing injury
severity in a crash. Factors leading to occupant head and neck injuries
are the vehicle pitch and drop in case of a full frontal impact [3]. Oc-
cupant interaction with vehicle cage leads to severe injuries in a crash,
especially in case of unbelted occupants. In order to prevent head to
roof/header contacts it is imperative to include vehicle pitch and drop
in design considerations for full frontal impact injury mitigation [3].

The geometry and deformation of the front end members are impor-
tant for predicting the forward pitching of a vehicle. In fact, downward
bending of the rails generated by the imbalance of forces acting on
the part in the vertical direction is a key reason for pitching in full
frontal impacts [4,5]. The rotation of the vehicle that leads to yawing
and rolling is not included in most simulation models predicting the
injury response because they are negligible in case of a full frontal
impact. Designing an ideal straight frame vehicle safety engineers face
challenges due to package constraints (engine compartment); this leads
to vertical downward bending of frame rail structures in body-on-frame
vehicles during deformation. Such out of plane bending not only causes
less efficient energy absorption but also adds a downward moment
causing an imbalance of forces acting on the vehicle. The vehicle pitch
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was simulated using CAE modeling by Chang et al. who concluded that
the modeling and design of vehicle rails play a crucial role in vehicle
pitch and drop [6,7]. Vehicle rotations were also predicted by Lumped
Parameter Models (LPM) in [4,8] using a 6 DOF (Degrees of Freedom)
vehicle model with an active vehicle dynamics control system.

Mathematical modeling is used in vehicle development process to
respond to changing safety norms and to ensure that new vehicles are
designed to protect pedestrians and occupants in a crash. Mathematical
models replace physical testing to predict the injury values in a collision
scenario; Finite Element (FE) models have good accuracy in correlating
the kinematics of an impact and have been used in several applica-
tions in the automotive industry [9,10]. LPMs are usually designed as
simplified spring-damper systems representing a deformable part and a
rigid lumped mass component replicating the non-deformable occupant
compartment. The study by Kamal was one of the first applications of
LPM in automotive crashworthiness modeling [11]. In the last decade
several researchers employed parameter estimation techniques to study
impact dynamics using LPM models [12,13]. Pavlov [14] represented a
vehicle as a pendulum in motion and predicted vehicle pitching using
an inverted pendulum. Occupant modeling using inverted spherical
pendulum model was conducted by Cyrén and Johansson [15], who
derived the equations of motion of the pendulum using Lagrangian
formulation. Inverted pendulum has also been used in explaining the
dynamics of a two-wheeled vehicle with self-tilt motion by Miao [16].

This paper introduces an elastic pendulum model to explain the
impact kinematics for a full frontal impact model (0% offset) of a
vehicle which is undergoing impact at 56 kmph against a rigid barrier;
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Fig. 1. Vehicle body rotating like a pendulum about the impact point.

the vehicle occupant cage is represented by a compound pendulum.
The vehicle pitching angles are generally in the range of 5–20 deg
making it easier to conduct an energy analysis on the model [17,18].
The equations of motion of the system are derived using the Lagrangian
formulation. The model is validated against an FE model simulation,
details are explained in the next section.

2. Methodology

Our model represents a non-linear vehicle impact as a pendulum in
motion. The vehicle hitting a rigid impactor goes through three stages:

• front end deformation (modeled as in an elastic pendulum),
• rotation about the impact point acting like a pivot in case of a

pendulum,
• restoring force due to gravity bringing the vehicle back to the rest

position.

Some of the assumptions in the model include [19]:

• Only vehicle rotations about the 𝑦-axis (pitching) were considered
in the model; rotations in other axes have been neglected.

• Energy losses like friction and heat losses were neglected.
• Although the system behaves non-linearly in a crash, the front-

end spring and damper characteristics were assumed to be piece-
wise linear with four breakpoints.

The periodic pendulum motion shown in Fig. 1 is adopted for this
model; the pendulum is allowed to swing back and forth from its rest
position. In the case of the vehicle under impact, the occupant compart-
ment acts like a pendulum bob rotating about the pivot point leading
to vehicle pitching. The vehicle is not allowed to swing back and
forth due to the ground acting as a constraint. The vehicle suspension
system also acts as a constraint to restrict the motion of the pendulum.
Fig. 2 shows the model with the constraints, the barrier defined for the
LPM is a non deformable 0% offset impactor. The LPM used is a 2
DOF system, similar to the one developed in [5]. The non deformable
occupant compartment is represented in the model by the concentrated
mass. The deformable front end comprising of vehicle rails, crush cans
and the plastic parts is represented by a spring and damper system in
Fig. 3.

The vehicle front end undergoes deformation to absorb energy
which leads to the deceleration of the vehicle; the time of maximum
crush generally coincides with the instant when the vehicle attains zero
velocity. The pendulum LPM uses a spring damper system to absorb
the impact energy as shown in Fig. 4. In a full frontal impact against
a rigid barrier the vehicle starts pitching forward due to the imbalance
of forces as explained by Chang et al. [3,6]; this behavior has been
replicated in the LPM (Fig. 5) and modeled as an elastic pendulum.
2

Fig. 2. Elastic pendulum with constraints representing a vehicle under impact.

Fig. 3. LPM Model of a vehicle impacting a rigid barrier.

2.1. Finite element (FE) model

The LPM is validated by an FE model similar to that considered
in [5]. The FE simulations conducted for a vehicle impact at 56 kmph
were used to validate this model. The FE model developed by National
Highway Traffic Safety Administration (NHTSA) through the reverse
engineering process [20] was used to compare the LPM and FE curves.
Parameter identification was conducted to determine the spring and
damper characteristics for the non-linear deformation in the vehicle
front.

2.2. Parameter identification for front end spring and damper characteris-
tics

The front-end deformation for the vehicle components generally
follows non-linear force deformation characteristics. Predicting the
behavior of the system has been a challenge for many researchers.
This front-end system has been approximated using piece-wise linear
spring and damper characteristics. These characteristics for the front-
end spring-damper system are derived using the algorithm developed
by the authors in [5,21]. The gradient descent optimization algorithm
developed in [5] is modified to include deformation and pitching
of the vehicle during the entire event of collision. The non-linear
force–deformation curve is assumed to be piece-wise linear with six
breakpoints in the curve. The stiffness 𝑘 and spring force 𝐹𝑘 are related
by Eq. (1). Similarly, the damper coefficient 𝑐 is related to the damping
force 𝐹𝑐 by Eq. (2) [17].

𝐹𝑘 = 𝑘(𝑥) ⋅ 𝑥, (1)

𝐹 = 𝑐(𝑥̇) ⋅ 𝑥̇, (2)
𝑐
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(𝐶−𝑥5)

+ 𝑘6, for 𝑥5 ≤ |𝑥̂| ≤ 𝐶.

The damper characteristics are defined similar to the spring character-
istics in the model:
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̂̇𝑥| ≤ 𝑥̇3,

(𝑐5−𝑐4)⋅(| ̂̇𝑥|−𝑥̇3)
(𝑥̇4−𝑥̇3)

+ 𝑐4, for 𝑥̇3 ≤ |
̂̇𝑥| ≤ 𝑥̇4,

(𝑐6−𝑐5)⋅(| ̂̇𝑥|−𝑥̇4)
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+ 𝑐5, for 𝑥̇4 ≤ |
̂̇𝑥| ≤ 𝑥̇5,

(𝑐7−𝑐6)⋅(| ̂̇𝑥|−𝑥̇5)
(𝑣0−𝑥̇5)

+ 𝑐6, for 𝑥̇5 ≤ |
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where 𝑘 is the front end spring coefficient, 𝑐 is the front end damper
coefficient, 𝑥̂ is the computed vehicle deformation, 𝑥̇ is the vehicle
velocity, ̂̇𝑥 is the computed vehicle velocity, 𝐶 is the maximum dynamic
crush, 𝑣0 is the velocity at the time of maximum dynamic crush. The
optimization algorithm which minimizes the error between the test and
computed values has been used to determine the acceleration, velocity
and deformation of the vehicle. The error function is defined by 𝐸(𝛩, 𝑡)
in Eq. (3a) where 𝛩, which denotes the unknown variables in the mode.
The validation data from FE model and optimization algorithm are
plotted in Fig. 6.

𝐸(𝛩, 𝑡) = 𝐸1(𝛩, 𝑡) + 𝐸2(𝛩, 𝑡) + 𝐸3(𝛩, 𝑡),where (3a)

𝐸1(𝛩, 𝑡) = |(𝑎𝐹𝐸 − 𝑎𝐿𝑃𝑀 )| (3b)

𝐸2(𝛩, 𝑡) = |(𝑣𝐹𝐸 − 𝑣𝐿𝑃𝑀 )| (3c)

𝐸3(𝛩, 𝑡) = |(𝑥𝐹𝐸 − 𝑥𝐿𝑃𝑀 )| (3d)

where, 𝑎 is the acceleration; 𝑣 is the vehicle velocity; and 𝑥 is the
displacement.

2.3. Governing equations of motion

The governing equations of motion for the vehicle impacting the
barrier have been modeled using the relativistic Lagrangian formula-
tion [22]:
𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞̇𝑖

− 𝜕𝐿
𝜕𝑞𝑖

+ 𝜕𝐷
𝜕𝑞𝑖

= 𝑄𝑖,

where, in general case, 𝐿 = 𝑇 − 𝑉 , 𝑇 is the total kinetic energy of
the system equal to the sum of the kinetic energies of the particles,
𝑞𝑖, 𝑖 = 1,… , 𝑛 are generalized coordinates and 𝑉 is the potential energy
of the system. Here 𝐷 is the dissipation function and 𝑄𝑖 is the external
force acting on the system; in this case it is the vertical component of
3

Fig. 4. Vehicle front end members undergoing deformation.

Fig. 5. LPM representation of vehicle pitching forward in the event.

Fig. 6. Plot of computed and test values from parameterization algorithm.

the force experienced by the vehicle at the time of maximum dynamic
crush [19].

For the purpose of simplifying the system, we converted the carte-
sian coordinates to polar coordinates: the horizontal (𝑥) and vertical
(𝑧) coordinates and the angle of rotation 𝜃 about the 𝑦 axis, were
represented in polar coordinates by the following expressions:

𝑥 = [𝑙0 + 𝑟(𝑡)] cos 𝜃(𝑡), (4)

𝑧 = [𝑙 + 𝑟(𝑡)] sin 𝜃(𝑡), (5)
0
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where 𝑙0 is the distance from the center of gravity (CG) to the point of
impact of the vehicle at the rest position, 𝑟(𝑡) is the displacement along
the polar radius of the elastic pendulum spring, 𝑡 is the time, and 𝑟 and
𝜃 are the radius and angle in polar coordinates respectively. Taking the
derivatives of 𝑥 and 𝑧 with respect to time 𝑡 we obtain:

̇ = 𝑟̇ cos 𝜃 − (𝑙0 + 𝑟) sin 𝜃 ⋅ 𝜃̇, (6)

̇ = 𝑟̇ sin 𝜃 + (𝑙0 + 𝑟)𝑐𝑜𝑠𝜃 ⋅ 𝜃̇, (7)

where 𝑥̇ and 𝑧̇ represent the velocity of the vehicle in horizontal and
vertical directions. Squaring both sides of the equations gives us:

̇ 2 =𝑟̇2 cos2 𝜃 + (𝑙0 + 𝑟)2 sin2 𝜃 ⋅ 𝜃̇2

− 2𝑟̇ cos 𝜃 ⋅ (𝑙0 + 𝑟) sin 𝜃 ⋅ 𝜃̇,
(8)

̇ 2 =𝑟̇2 sin2 𝜃 + (𝑙0 + 𝑟)2 cos2 𝜃 ⋅ 𝜃̇2

+ 2𝑟̇ cos 𝜃 ⋅ (𝑙0 + 𝑟) sin 𝜃 ⋅ 𝜃̇.
(9)

Adding the terms we have:

̇ 2 + 𝑧̇2 =𝑟̇2(cos2 𝜃 + sin2 𝜃)

+ (𝑙0 + 𝑟)2 ⋅ 𝜃̇2(cos2 𝜃 + sin2 𝜃).
(10)

The kinetic energy of the system is given by

𝑇 = 1
2
𝑚(𝑥̇2 + 𝑧̇2), (11)

or, in polar coordinates,

𝑇 = 1
2
𝑚[𝑟̇2 + (𝑙0 + 𝑟)2𝜃̇2]. (12)

The potential energy of the system can be found as

𝑉 =𝑚𝑔(𝑙0 + 𝑟) sin 𝜃 + 1
2
𝑘𝑟2 + 1

2
𝑘1𝑟

2
1 +

1
2
𝑘2𝑟

2
2, (13)

here 𝑟1 and 𝑟2 are expressed in terms of 𝑟 and 𝜃 as follows:

1 = (𝑙0 + 𝑟 − 𝑙1)𝜃, (14)

2 = (𝑙0 + 𝑟 − 𝑙2)𝜃. (15)

ere 𝑚 is the mass of the lumped body, 𝑙1 is the distance from the
G to the front suspension, 𝑙2 is the distance from the CG to the rear
uspension. Simplifying the expression for potential energy in Eq. (13),
e obtain:

=𝑚𝑔(𝑙0 + 𝑟) sin 𝜃 + 1
2
𝑘𝑟2 + 1

2
𝑘1(𝑙0 + 𝑟 − 𝑙1)2𝜃2

+ 1
2
𝑘2(𝑙0 + 𝑟 − 𝑙2)2𝜃2.

(16)

Here 𝑘1 and 𝑘2 are the suspension spring coefficients for the front and
rear suspension respectively. Using Eqs. (12) and (16) and Lagrangian
formulation, 𝐿 = 𝑇 − 𝑉 , we conclude that

𝐿 =1
2
𝑚[𝑟̇2 + (𝑙0 + 𝑟)2𝜃̇2] − 𝑚𝑔(𝑙0 + 𝑟) sin 𝜃 − 1

2
𝑘𝑟2

− 1
2
𝑘1(𝑙0 + 𝑟 − 𝑙1)2𝜃2 −

1
2
𝑘2(𝑙0 + 𝑟 − 𝑙2)2𝜃2.

(17)

he governing equations of motion are:
𝑒𝑥𝑡
𝑟 =𝑚𝑟̈ − 𝑚𝑟𝜃̇2 − 𝑚𝑙0𝜃̇

2 + 𝑚𝑔 sin 𝜃

+ 𝑘𝑟 + 1
2
𝑘1(2𝑟 − 𝑙0𝑟 − 𝑙1)𝜃2

+ 1
2
𝑘2𝜃

2(2𝑟 + 𝑙0𝑟 + 2𝑙2),

(18)

𝑄𝑒𝑥𝑡
𝜃 =𝑚(𝑙0 + 𝑟)2𝜃̈ + 𝑚𝑔(𝑙0 + 𝑟)𝑐𝑜𝑠𝜃

+ 𝑘1(𝑙0 + 𝑟 − 𝑙1)2𝜃 + 𝑘2(𝑙0 + 𝑟 + 𝑙2)2𝜃,
(19)

where 𝑄𝑒𝑥𝑡
𝑟 and 𝑄𝑒𝑥𝑡

𝜃 are the external forces experienced by the vehicle.
The non-conservative forces experienced by the system are included
in the Lagrange’s equation of motion in the form of generalized forces
expressed with the formulation of virtual work 𝛿𝑈 [15]:

𝛿𝑈 =
𝑚
∑

𝐹𝑗 ⋅ 𝛿𝑟𝑗 , (20)
4

𝑗=1 f
where 𝐹𝑗 are the force components, 𝛿𝑟𝑗 are the virtual displacements
given by

𝛿𝑟𝑗 =
𝑁
∑

𝑖=1

𝜕𝑟𝑗
𝜕𝑞𝑖

𝛿𝑞𝑖 (21)

or 𝑗 = 1, 2, 3,… , 𝑚. This yields the following equation for virtual work
s:

𝑈 = 𝐹1 ⋅
𝑁
∑

𝑖=1

𝜕𝑟𝑗
𝜕𝑞𝑖

𝛿𝑞𝑖 + 𝐹2 ⋅
𝑁
∑

𝑖=1

𝜕𝑟𝑗
𝜕𝑞𝑖

𝛿𝑞𝑖 +⋯

+𝐹𝑚 ⋅
𝑁
∑

𝑖=1

𝜕𝑟𝑗
𝜕𝑞𝑖

𝛿𝑞𝑖.

(22)

sing Eq. (22), we compute the generalized forces experienced by the
ystem.

𝑈 = 𝐹𝑥 ⋅
( 𝜕𝑥
𝜕𝑟

⋅ 𝛿𝑟 + 𝜕𝑥
𝜕𝜃

⋅ 𝛿𝜃
)

+𝐹𝑧 ⋅
( 𝜕𝑧
𝜕𝑟

⋅ 𝛿𝑟 + 𝜕𝑧
𝜕𝜃

⋅ 𝛿𝜃
)

.
(23)

Substituting Eqs. (4) and (5) in Eq. (23), we get

𝑑𝑈 = 𝐹𝑥 ⋅ [(cos(𝜃)𝛿𝑟 − (𝑙0 + 𝑟) sin(𝜃)𝛿𝜃)]

+𝐹𝑧 ⋅ [(sin(𝜃)𝛿𝑟 + (𝑙0 + 𝑟) cos(𝜃)𝛿𝜃)].
(24)

The external forces included in this LPM are barrier forces, damper
forces including front end spring damper system and suspension
damper system forces. The corresponding equations are:

𝑄𝑒𝑥𝑡
𝑟 = 𝑄𝑏𝑎𝑟

𝑟 +𝑄𝑑𝑎𝑚𝑝
𝑟 , (25)

𝑄𝑒𝑥𝑡
𝜃 = 𝑄𝑏𝑎𝑟

𝜃 +𝑄𝑑𝑎𝑚𝑝
𝜃 . (26)

Here 𝐹𝑥 and 𝐹𝑧 are the horizontal and vertical force components acting
on the vehicle; 𝑄𝑏𝑎𝑟

𝑟 and 𝑄𝑑𝑎𝑚𝑝
𝜃 are the non-conservative barrier and

damper forces acting on the system.
Then 𝛿𝑈 becomes:

𝛿𝑈 = 𝑄𝑑𝑎𝑚𝑝
𝑟 ⋅ 𝛿𝑟 +𝑄𝑑𝑎𝑚𝑝

𝜃 ⋅ 𝛿𝜃

+𝑄𝑏𝑎𝑟
𝑟 ⋅ 𝛿𝑟 +𝑄𝑏𝑎𝑟

𝜃 ⋅ 𝛿𝜃,
(27)

where

𝑄𝑏𝑎𝑟
𝑟 = 𝐹𝑏𝑥 cos(𝜃) + 𝐹𝑏𝑧 sin(𝜃), (28)

𝑄𝑏𝑎𝑟
𝜃 = −𝐹𝑏𝑥(𝑙0 + 𝑟) sin(𝜃) + 𝐹𝑏𝑧(𝑙0 + 𝑟) cos(𝜃), (29)

where 𝐹𝑏𝑥 and 𝐹𝑏𝑧 are the barrier forces experienced by the vehicle in
the horizontal and vertical directions. These values are included from
the FE simulation data. The derivative of the dissipation energy 𝐷 is
calculated and the damper forces are presented below:

𝑄𝑑𝑎𝑚𝑝
𝑟 = 𝐹𝑏𝑥 cos(𝜃) + 𝐹𝑏𝑧 sin(𝜃), (30)

𝑄𝑑𝑎𝑚𝑝
𝜃 = −𝐹𝑏𝑥(𝑙0 + 𝑟) sin(𝜃) + 𝐹𝑏𝑧(𝑙0 + 𝑟) cos(𝜃), (31)

𝑑𝑎𝑚𝑝
𝑟 = 𝑐𝑟̇ cos(𝜃) + 𝑐1[(𝑙0 + 𝑟 − 𝑙1) + 𝑟̇𝜃]

+𝑐2[(𝑙0 + 𝑟 + 𝑙2) + 𝑟̇𝜃] sin(𝜃),
(32)

𝑑𝑎𝑚𝑝
𝜃 = −𝑐𝑟̇(𝑙0 + 𝑟) sin(𝜃) + [𝑐1(𝑙0 + 𝑟 − 𝑙1)𝜃̇

+𝑐2(𝑙0 + 𝑟 + 𝑙2)𝜃̇](𝑙0 + 𝑟) cos(𝜃),
(33)

here 𝑐1 and 𝑐2 are the damper coefficients for the front and rear
uspensions.

. Results and discussion

The LPM was simulated in Simulink and the results were compared
ith the data generated from the FE model for a 2014 Chevrolet
ilverado impacting a rigid barrier at 56 kmph. The curve outputs

rom LS Dyna were converted to polar coordinates before overlaying
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Table 1
Automotive parameters set [23].

them with LPM results. The Simulink model was run with an ode 45
(fixed solver) and the change of the solver type did not improve or
deteriorate the performance of the model. Prediction of the velocity
of the vehicle after impact for the entire impact event is crucial for
vehicle design in the development stages; in most cases the time of
maximum crush coincides with the instant when the vehicle stops. The
maximum crush (displacement) contributes to the energy absorbed by
the front end members and is an important parameter for vehicle injury
prediction. As described in the previous section, in a full vehicle impact
scenario, the vehicle pitches forward which may lead to serious head
and neck injuries to occupants. Vehicle pitch angle plays an important
role in designing active safety measures like airbags by helping to
mitigate occupant injuries. The pendulum inspired model developed in
this study predicts these parameters; the maximum displacement of the
vehicle in the LPM is overlayed with FE data in Fig. 7.

The values of 𝑘1, 𝑘2, 𝑐1, 𝑐2, 𝑙1, 𝑙2 and 𝑙0 in Table 1 were taken
from [23].

The vehicle deformation recorded from the LPM was plotted against
the test data in Fig. 7. The maximum displacement in the vehicle front
end is very closely correlated with the test data; this indicates that the
prediction of vehicle deformation with model is accurate. The LPM
curves, however, drop after 100 ms which can be attributed to the
spring rebound in the model. The time the vehicle velocity becomes
zero generally coincides with the instant for maximum crush making
the prediction of velocity change on the vehicle an important parameter
for improving crash performance. The curves comparing the test and
LPM velocity curves show good correlation with close prediction of
the time when the vehicle attains zero velocity as shown in Fig. 8.
The vehicle pitching angle is an important parameter to determine the
injury to occupants; the LPM and test curves were overlayed to observe
acceptable prediction values of the pitching angle in Fig. 9. The vehicle
rotations in the other axes were neglected in this study. The model
over-predicts in case of pitching which can be addressed by taking into
account spring rebound, however, the close correlation between the
LPM and the FE data increases confidence in using LPMs for predicting
occupant injuries in the future.

4. Conclusions

In this paper, we suggest a novel mathematical model for a full
frontal vehicle crash. The following key aspects distinguish our model
from those reported in the literature. First, instead of focusing on the
pitching about the center of gravity as most existing models do, we
simulate the vehicle pitching during a full frontal crash about the point
of impact. Second, contrary to traditional approaches based on the use
of Newtonian formulation [4,8] for the derivation of the governing
equations of motion, we use relativistic Lagrangian formulation; the
5

Fig. 7. LPM simulation vehicle deformation curves compared with FE simulation data.

Fig. 8. LPM simulation vehicle velocity curves compared with FE simulation data.

Fig. 9. LPM simulation vehicle pitching curves compared with FE simulation data.

model equations are further simplified by conversion to polar coor-
dinates. The vehicle body pitches and drops at frontal impact are the
main reason for the unbelted driver neck and head injury [6]. Third, we
model the motion of the vehicle during the frontal impact as a rotation
of a compound elastic pendulum about a pivot point; the pendulum
uses a spring damper system for absorbing the impact energy. To our
knowledge, there was no evidence of application of pendulum motion
to model vehicle deformation and pitching in the literature making
this a novel contribution of the work. An LPM model with 2 DOF
designed in the paper has been simulated in Simulink. The results of
the simulation correlate quite well with the data obtained in an FE
simulation model developed by NHTSA. Since our model successfully
replicates vehicle dynamics during the crash against a rigid barrier,
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predicted parameter values for the front end deformation and pitching
can be used by the automotive industry at initial stages of vehicle
design.
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