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Robust Active Learning Multiple Fault Diagnosis
of PMSM Drives with Sensorless Control under
Dynamic Operations and Imbalanced Datasets

Sveinung Attestog, Jagath Sri Lal Senanayaka, Member, IEEE ,
Huynh Van Khang, and Kjell G. Robbersmyr, Senior Member, IEEE

Abstract— This paper proposes an active learning
scheme to detect multiple faults in permanent magnet
synchronous motors in dynamic operations without us-
ing historical labelled faulty training data. The proposed
method combines the self-supervised anomaly detector
based on a local outlier factor (LOF) and a deep Q-network
(DQN) supervised reinforcement learner to classify inter-
turn short-circuit, local demagnetisation and mixed faults.
The first fault, which is detected by LOF and verified by
an expert during maintenance, is used as training data
for the DQN classifier. From that point onward, the LOF
anomaly detector and DQN fault classifiers are working in
tandem in the identification of new faults, which require
expert intervention when either of them identifies a fault.
The robustness of the scheme against dynamic operations,
mixed fault and imbalanced training datasets is validated
via a comparative study using stray flux data from an in-
house test setup.

Index Terms— Active learning, Demagnetisation, Imbal-
ance classes, Inter-turn short-circuit, Permanent magnet
synchronous motor, Mixed fault, Variable load and speed

I. INTRODUCTION

Permanent magnet synchronous motors (PMSM) in off-
shore wind turbines and electric vehicles are intensively ex-
posed to mechanical and thermal stresses in dynamic oper-
ations with thermal cycling. These result in inter-turn short-
circuit (ITSC), and local demagnetisation fault (DF) [1]. A
local demagnetisation only affects a small region of rotor
magnets in early states and induces a magnetic asymmetry in
contrast to uniform DF, which downgrades all magnets equally.
Detecting and identifying these faults in incipient stages allow
for life-prolonging operation or planned maintenance, reducing
costs and production down-times [2]–[4].

Fault detection and identification (FDI) methods for electri-
cal machines have been extensively developed and categorised
as: model-, signal- and machine learning (ML) based methods
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[5]. The model-based methods aim to identify fault signa-
tures by estimating hard-to-measure parameters or computing
a residual between a suggested model and measurements.
This approach relies on the accurate information of physical
parameters in the model or detailed dimensions of machines,
which are difficult to acquire in reality [6]. Signal processing
methods detect a fault based on fault-related characteristic
frequencies. These methods are simple but are only applicable
to single fault diagnosis. Further, missing a fault characteristic
frequency does not guarantee that a machine is completely
healthy. ML based methods have recently gained popularity
since they are less demanding on prior knowledge of a machine
and flexible in the implementation [7].

To address the lack of labelled faulty data issues, anomaly
detection has been used in various studies [8]–[10]. These
anomaly detectors and one-class classifiers (OCCs) train on
the observation of healthy cases. A trained OCC can quantify
the deviation of a new data sample from the healthy samples.
A large deviation from a healthy sample is considered a
faulty case. Krawczyk et. al. [11] separate the OCCs into four
categories namely; (1) Density-based methods e.g. local outlier
factor (LOF) [12], (2) Reconstruction-based methods e.g, auto-
encoder [13] and contrastive learning [14], (3) Boundary-based
methods e.g., one-class support vector machine (SVM) [15],
(4) Ensemble-based methods which combine OCCs to form a
more flexible data description model [11]. It is important to
use a proper comparative study to find the best OCC type for a
given anomaly detection application. However, to the authors’
knowledge, finding the best OCC method for detecting an
anomaly in PMSMs has not been studied in the literature.

Another method to tackle the lack of labelled faulty data
is using active learning (AL). It is a set of semi-supervised
learners [16], [17], which are used to accelerate the labelling
process of a partially labelled dataset. They are trained on
the labelled samples and tests on the unlabelled samples. The
prediction with the lowest confidence is passed to an expert,
who ”actively” labels the dataset for the ML-based detection.
An AL is often called a cooperative learner when it signifi-
cantly alleviates the labelling task for the expert. Authors in
[18] presented an ensemble-based fuzzy rough AL approach
for detecting broken rotor bars in induction motors based on
a data entropy criterion. It retrains a new classifier if the input
samples have drifted. The proposed FDI scheme is robust
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against non-stationary signals but requires the initial faulty
samples for its implementation. The study in [8] proposed an
FDI development scheme without using historical data from an
operating electric powertrain with faults on gearbox, bearing
and stator winding. Within the study, a self-supervised one-
class SVM is first used to detect the anomaly. However, this
OCC defines healthy domains based on its kernel function
and may include regions of low competence. It will have a
high rate of false negatives (FN) if the healthy and faulty
classes overlap. The second part of the presented FDI scheme
is a convolutional neural network (CNN) classifier, which
is trained by samples identified by the one-class SVM and
validated by an expert. Further development of such an FDI
will create a more competent CNN with knowledge of faults,
that have occurred. The authors in [8] trained and tested the
FDI scheme on a balanced dataset alone. However, obtaining a
balanced dataset for ML-based fault diagnosis methods is not
feasible from PMSMs in offshore wind turbines. Developing a
novel fault diagnosis must take the imbalance in datasets into
consideration.

Imbalance in a dataset is often measured by the ratio (λ)
between negative (healthy) and positive (faulty) samples. The
problem of imbalanced dataset is amplified due to noise,
overlap between classes, and if one class is represented by
multiple clusters [19]. A common method for ”rebalancing”
the imbalanced dataset is to oversample the minority class
and undersample the majority class with random sampling,
generating new synthetic samples or extraction maximisation
imputation-based class imbalanced learning [20]. The study
in [21] presented a cost-sensitive AL using bidirectional
gated recurrent neural network for fault diagnosis. The FDI
scheme is designed for larger industrial plants and is verified
with the Tennessee Eastman dataset. However, the proposed
FDI scheme is not experimentally validated on imbalanced
datasets. The suggested recurrent neural network needs sam-
ples in a sequence, where the fault occurred in the sequence.
These samples will be hard to acquire in reality. A PMSM
may operate with a fault in its incipient state, which can
be used in the training process. The proposed FDI scheme
addressed the imbalanced dataset problem by weighting the
positive and negative samples. The weight function is time-
dependent and requires instant information of the occurred
fault, being difficult to determine. Authors in [13] proposed
a self-supervised feature learning scheme for bearing fault in
steady-state with less than 50 labelled training samples per
class. A CNN is trained with augmented data to match the
computed pseudo labels, which consist of statistical features
and features extracted from an auto-encoder. This allows for
rich feature mining from a small number of positive samples.
The FDI can be effective against imbalanced datasets, but it is
only verified for detecting single faults on PMSM operating
in a steady-state.

This study aims to develop a novel scheme of mixed fault
diagnosis of PMSM drives with sensorless control under dy-
namic operations while addressing the problems of imbalanced
datasets using limited samples from faulty conditions. Within
the framework, an anomaly detector is developed based on
a LOF to define more complex domains in healthy cases to
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Fig. 1. Flowchart of the proposed FDI scheme. Note: Arrows coloured
in red, blue and black represent information flow related to classifier,
detector or both; Green objects represent processes/actions; purple
boxes represent detector and classifier, and red diamonds represent
decisions

tackle overlapping classes. The proposed scheme is proven
to be robust against dynamic operations at different operation
profiles. The OCC part of the proposed scheme is compared
with the one-class SVM, while the DQN classifier is compared
with the widely used ML classifiers, namely, two-class SVM,
k-nearest neighbors (KNN) and CNN. This suggested scheme,
using external flux sensors alone, allows for developing a
plug-and-play automatic fault detection without modifying the
existing drive systems in critical or offshore applications. The
work flow of the research starts with collecting data from
the in-house test setup. The PMSM is operating under three
different operation profiles with the following fault cases:
healthy, ITSC, DF and mixed fault (MF). Finally, the proposed
scheme is trained and tested in anomaly detection, two- and
four-class classifications.

II. PROPOSED FAULT DIAGNOSIS SCHEME

The proposed FDI scheme shown in Fig. 1 is developed
based on an online fault diagnosis scheme in [8]. The pretreat-
ment after data collection involves resampling of the original
time-series data at a fixed angular increment. The resampled
data are split into intervals of 30 revolutions, which are
converted to the frequency domain by fast-Fourier transform
(FFT). The spectrograms are normalised with respect to both
the amplitude and frequency of the fundamental component.
Then, the spectrograms are enveloped by splitting the spectro-
gram into intervals with a length of 0.5 order centred around
the half harmonics (0.5, 1, 1.5, ...) to find the maximum in
each interval. This saves storage space while maintaining the
information on the half harmonics. The pretreatment makes
the FDI scheme robust against dynamic operation conditions
and can be implemented in drives with sensorless control.
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Algorithm 1 Detailed description of FDI scheme
Require: Healthy case dataset, threshold, maintenance expert

while No discovered faulty cases do
Compute Anomaly score with OCC
if Anomaly criterion = TRUE then:

Expert investigation
if Fault = FALSE then:

Update OCC
else if Fault = TRUE then

Perform maintenance
Label discovered fault and train classifier

end if
end if

end while
while At least one discovered fault class do

Compute Anomaly score with OCC
Predict fault class with classifier
if A fault is detected by classifier or OCC then:

Expert investigation
if Fault = TRUE then:

Perform maintenance
if Fault = New then

Label dataset of new fault
else if Fault = Old then

Include new samples in fault dataset
end if
Update classifier

else if Fault = FALSE then
Update OCC

end if
end if

end while

The FDI scheme starts with detecting anomalies using a
self-supervised anomaly detector since historical data at faulty
conditions is not available. If the anomaly detector gives a false
positive (FP), which is determined by an expert, it then needs
to be updated with these FPs to learn the new region of the
healthy case. True positive samples mark the end of the first
stage of the FDI scheme since the samples of the faulty case
are now available for training of the fault classifier. The second
stage keeps the fault detector, but it works alongside the fault
classifier. An investigation by an expert is required when either
the detector or classifier identifies a fault. If a fault is detected
and classified as a previously discovered fault, the fault search
can be narrowed down during maintenance. Note that in the
first iteration of stage 2, the classifier only knows of one fault.
However, more data during operations will result in a more
knowledgeable and confident FDI, which can speed up the
maintenance process, and reducing unexpected downtime and
cost. The detailed description of the FDI is given in Algorithm
1.

A. Estimation of rotor position

The input time-series samples x(t) are resampled at a fixed
angular increment based on the estimated value of rotor

position. It is estimated with an optimisation problem with
the objective of minimising the square error between x(t) and
a sine function with respect to fundamental frequency f1 and
phase shift ϕ.

f1, ϕ = min
f1,ϕ

(x(t)− sin(2πf1t+ ϕ))
2 (1)

The input time-series data is split into samples of 0.1 s.
The parameters f1 are estimated for each sample. First, (1)
is computed for f1 ∈ [0, 100] Hz with 5 Hz increments. The
optimal ϕ is found for each f1 with the golden section search.
The combination of f1 and ϕ yielding the smallest output
of (1) is the initial guess in a simplex search method. The
process is repeated to compute a function of f1 over time,
being integrated for acquiring the rotor position.

B. Anomaly detection

The existing anomaly detectors using self-supervised learn-
ers need samples from healthy cases to identify any anomalies,
which later can be labelled by an expert for initiating the
training of a fault classifier in a later stage. The suggested
one-class SVM in [8] is replicated, and 10 % of the training
data is assumed to be outliers. The drawback with this OCC
is its assumption of defining the region of the healthy case
with the kernel function. Regions of low competence may
be included to increase the chance of FN. To address this
demerit, a density-based method LOF in [12], [22] is used in
this work to replace the one-class SVM. Like the k-nearest
neighbours, the pair-wise distance between all the samples in
the training dataset needs to be computed. This will make the
LOF computationally heavy when the library of samples in the
healthy case becomes too large. This problem can be solved
by selective samplings [23].

The samples in the datasets are grouped into clusters. An
outlier can be isolated by a threshold value of the average
distance to its nearest neighbours. However, the samples of
the healthy dataset do not necessarily have a uniform density
in its cluster in feature space. Thus anomalies can be closer
to a cluster, depending on the region in the feature space [12],
[22]. LOF isolates outliers based on the sample density ρsamp
in feature space.

ρsamp(P ) =

(
1

k

k∑
n=1

d(P, on)

)−1

(2)

where k is an integer, d(P, on) is the pair-wise Euclidean
distance between point P and its nearest neighbours on.
Then the sample density of each of the neighbour points on
(ρsamp(on)) needs to be computed. LOF is here defined as:

LOF(P ) =
1

k

k∑
n=1

ρsamp(on)

ρsamp(P )
(3)

Fig. 2 illustrates the principle of LOF. The sixth nearest
neighbours for point P are coloured in orange, while the
rest of the dataset is coloured in blue. Point o1 is used as
an example, where o1 and its sixth nearest neighbours have
grey connections. An anomaly is detected if LOF is greater
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Fig. 2. Illustration of LOF in a 2D-feature space with P (black), on

(orange), d(P, o1) (red), distance between o1 to its nearest neighbours
(gray), and rest of samples in the cluster (blue)

than a set threshold. This implies that the new observation
P is located in a region, which is a too ”sparsely” populated
region in feature space.

C. Fault identification

After the anomaly detection, the multiple fault identifica-
tions are implemented by a reinforcement learning (RL) based
classifier in this study. RL has already proven its effectiveness
in information theory, simulation-based optimisation, control
theory and statistics [24], [25] and developed for bearing fault
diagnosis alone [26] while the imbalance issues were not
addressed. The proposed RL scheme based on a double deep
Q-network (DQN) in [27], [28] will be compared with the
recently developed CNN architecture for fault identification in
[8]. The problem with the existing CNN classifier is that it is
not suited for imbalanced datasets. The proposed DQN fault
classifier can compensate for the imbalanced datasets without
any oversampling. RL usually uses the analogy of teaching
the agent to play a game. In the fault classification, the RL
agent plays a ”quiz game”. It is formulated in form of 1D
arrays as features, where the agent needs to give a response
on classification. The Q-learning aims to set up a Q-table that
contains the policy to maximise a reward depending on the
input. In DQN, the Q-table is replaced with a neural network.
Fig. 3 illustrates the interaction between the DQN agent and its
environment. The illustration inside the DQN shows the layers
of the critic network with four layers: Input layer (243 nodes),
fully connected layer (100 nodes), ReLU activation function
layer and the second fully-connected layer. The number of
nodes in the final layers is equal to the number of classes in
the training data.

The action of the agent is associated with the label of
the training dataset. If there are only two classes in the
training set, it is sufficient to define the action space as
A = {0, 1}. In this study, the action space is defined as
A = {[0, 0], [0, 1], [1, 0], [1, 1]}. The entries in A represent
healthy or no-fault (NF), DF, ITSC and MF, respectively. MF
is the mix of DF and ITSC. The encoding of the labels is for
the DQN only, which needs to be decoded after the prediction.

The reward function [27] is weighted based on the ratio
between negative (healthy case) and positive (faulty case)
samples.

Fig. 3. Block diagram of DQN interacting with the environment

rt =


1, at = Lt = Negative

−1, at ̸= Lt = Negative
λ, at = Lt = Positive

−λ, at ̸= Lt = Positive

 (4)

The performance of a classifier to identify positive samples
will decline when the imbalance ratio λ is increased. Even-
tually, the network will classify every sample as negative
regardless of input. This phenomenon is called a collapse and
is caused by the fact that the negative samples receive a greater
sway in the training of the network since they are in majority.
The role of rt is to tackle the trend towards a collapse by
balancing the weights of the negative and positive samples
in the training process. The training process of the DQN is
described in Algorithm 2 [29], where Θ is the parameter critic
and τ is the smoothing factor for updating the target critic,
which has the parameter Θt. There is no terminal state for
St+1.

III. EXPERIMENTAL SETUP AND DATA COLLECTION

A. In-house test bench
The studied four-pole, 2.2 kW PMSM is coupled to a

generator with a torque transducer in between as shown in
Fig. 4. The output of the generator is rectified by a three-phase
full-bridge rectifier with a 500 µF capacitor bank connected
across the output terminals, to remove the ripples of the DC
output. The brake chopper is regulated by a PWM signal,
which needs to be amplified by a factor of 4 due to the
voltage amplitude insufficiency from the Microlabbox. The
PWM signal is defined by the duty cycle, which in an ideal
system would be proportional to the reciprocal of the motor
speed. However, due to losses and imperfections, a look-up
table is generated for the duty cycle. It dictates the required
duty cycle for achieving a requested load in the speed range
between 1000 rpm and 2000 rpm.

The solid state hall sensors, Type SS495A, measure the
stray flux. The output of these sensors is linear and ratio-
metric within the range [-67, 67] mT and has a sensitivity
of 31.25 mV

mT . Two sensors were soldered to a Veroboard and
wired to the Microlabbox, which delivers power to the sensors
and records the measurement. The sensors could measure both
tangential and radial components of the stray flux. Two sets
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Algorithm 2 Training Algorithm for DQN
Require: Positive and negative samples

for Nepi episode do
Pick a random sample s1 from the training set
for Nstep-1 steps do

if Exploration then
Pick a random action at from A

else
at = argmaxat

= Q(st, at|Θ)
end if
Execute at and observe the reward rt
Randomly pick st+1 from training set
Store the experience (st, at, rt, st+1)
Compute and store the value function:
yt = rt + γmaxAt

Qt(st+1, at+1|Θt).
Compute the loss for a mini-batch with M samples

L =
1

M

M∑
t=1

(yt −Q(st, at|Θ))
2

Update the critic by one-step minimisation
Update the target critic parameters with

Θt = τΘ+ (1− τ)Θ

Update the decaying probability for exploration
Repeat

end for
end for

TABLE I
PARAMETERS OF THE MOTOR UNDER STUDY

Parameter Value
Output power 2.2 kW
Nominal voltage 280 V
Nominal current 5 A
Nominal speed 3000 rpm
Nominal torque 7.0 Nm
Number of poles 4
Phase resistance 0.8 Ω
Inductance 6 mH

of sensors were placed in proximity to the PMSM at the top
and on the side.

B. Description of collected datasets

Stray fluxes are measured for three different non-stationary
operating conditions with a sampling rate of 10 kHz. The time-
series data is resampled with 400 samples per rotor revolution
and split into samples with a length of 30 revolutions. Each
sample is transformed into the frequency domain to produce
the features for each observation used for the training and
testing the proposed algorithm. The test setup is operated
with the three operation profiles shown in Fig. 5. Profile 1
consists of a regular pattern, where the speed ramps up and
down between 1000 rpm and 2000 rpm, and the load changes
between 25 % and 75 % of the full load. Profile 2, which
keeps the load constant at 60 % of the full load, while the
speed changes with a randomly generated speed profile. Profile

Fig. 4. Overview of the test bench with (1) resistor bank, (2) flyback
diode, (3) three-phase rectifier with capacitor bank, (4) 12 V DC-supply,
(5) IGBT brake chopper with OP-Amp, (6) hall sensors, (7) PMSM,
(8) torque transducer, (9) generator, (10) short circuit resistor, (11)
Microlabbox, (12) 24 V DC-supply, (13) ABB drive, (14) office laptop
and (15) cabinet containing the current sensors

3 keeps the speed constant at 1200 rpm, and then the load is
randomly generated, where it repeats itself every 30 s. Stray
flux measurement was collected from the PMSM operating
in all mentioned profiles in the following fault condition: NF,
ITSC with 5 % severity, local partial DF, and an MF case with
both ITSC and DF.

C. Implemented Faults
The local DFs in PMSM are usually implemented by

removing parts of the magnets and replacing them with a non-
magnetic material or installing weaker magnets in the rotor.
These methods, however, do not mimic the local demagnetisa-
tion due to thermal cycling in dynamic operations of PMSM
drives. In this study, one pole of the rotor is demagnetised
by heating it on an electric hob for 10 minutes. Fig. 6 shows
the heat-treatment of the rotor with a wet towel to prevent the
other poles from demagnetisation. Fig. 7 shows the magnetic
field strength of the demagnetised pole divided by the average
field strength of the non-demagnetised poles after the heat
treatment. The heat treatment caused two spots on one North
pole to lose 30 % of their original strength. The heat treated
rotor is installed in a PMSM stator during measurement of the
PMSM with local DF, but it is replaced by an untreated rotor
for measuring a non-demagnetised PMSM.

The studied PMSM has windings with three parallel wire
strands per phase. This configuration reduces overall resis-
tance, inductance, and back electromotive force. An analysis of
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the equivalent resistance measured by a multi-meter is needed
for estimating the number of shorted turns relative to the total
number of turns per phase to define ITSC severity. Fig. 8
shows the PMSM with four short circuit taps implemented on
separate wire strands in phase U. The ITSC is completed when
it is connected to its input terminal in series with a short circuit
resistor of 1 Ω. The severity of the induced ITSC is estimated
to short 5 % turns of a single wire strand. The remaining wire
strands are not shorted.

IV. RESULTS AND DISCUSSIONS

A. Performance of anomaly detection

The one-class SVM and LOF need to define their respected
criterion for anomaly identification. The sensitivity of the one-
class SVM is defined by the outlier fraction, where the portion
of outliers in the training dataset is set to 10 %. The output of
the trained one-class SVM under testing is a numeric score,
which is less than 0 in case of an anomaly as suggested
in [8]. The LOF does require trial and error to determine a
suitable threshold. A value close to 1 will make the detector
more sensitive but has the risk of increasing the FP rate. The
threshold for LOF was set to 1.1, which means that a new
point is classified as an anomaly/fault if the regions of its kth

nearest neighbours are on average 10 % denser than the region
of the new point. The parameter k is set to 5.

The one-class SVM and LOF classifiers are first trained on
the healthy datasets from Profile 1 with the result shown in
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Fig. 6. Thermal treatment setup consisting of (1) cooking plate, (2) solid
aluminium block, (3) wet towel and (4) the motor end shield

Fig. 7. Magnetic strength of faulty pole relative to healthy poles

2

1

U

N

Fig. 8. The star connected PMSM with neutral point N is short-circuited
with individual wire strands (1), which are accessed externally (2) and
shorted with input terminate U
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TABLE II
ACCURACY (%) OF ONE-CLASS SVM OUTLIER DETECTOR

Fault test case Test Extra samples from Profile 2 and 3

(Criterion) Pro. 0 50 100 150 200 250
Healthy 1 84.0 82.0 80.0 80.0 80.0 80.0
(Score ⩾ 0) 2 80.0 98.0 98.0 98.0 98.0 98.0

3 46.0 70.0 80.0 80.0 84.0 90.0
DF 1 71.7 55.3 56.0 56.0 51.7 53.0
(Score < 0) 2 57.0 46.0 45.7 44.3 41.0 41.0

3 84.0 58.3 54.7 51.0 44.7 44.3
ITSC 1 82.3 55.3 53.7 53.0 46.3 45.7
(Score < 0) 2 90.7 54.3 48.0 39.7 22.7 21.7

3 98.3 77.0 74.7 67.0 59.0 57.0
MF 1 66.7 44.0 46.0 43.0 39.7 38.7
(Score < 0) 2 73.3 32.0 30.3 23.7 16.3 15.0

3 93.0 62.3 58.7 51.7 42.7 37.0

TABLE III
ACCURACY (%) OF LOF OUTLIER DETECTOR

Fault test case Test Extra samples from Profile 2 and 3

(Criterion) Pro. 0 50 100 150 200 250
Healthy 1 86.0 86.0 88.0 88.0 80.0 98.0
(LOF ⩽ 1.1) 2 14.0 72.0 94.0 80.0 86.0 84.0

3 8.0 52.0 88.0 80.0 82.0 90.0
DF 1 100 100 98.0 98.0 100 100
(LOF > 1.1) 2 100 98.0 100 100 100 100

3 100 92.0 94.0 94.0 98.0 98.0
ITSC 1 100 100 100 100 100 100
(LOF > 1.1) 2 100 100 100 100 100 100

3 100 100 100 94.0 100 100
MF 1 100 98.0 100 96.0 100 100
(LOF > 1.1) 2 100 94.0 96.0 100 100 98.0

3 100 92.0 84.0 92.0 96.0 96.0

Tabel II and Table III. The healthy dataset was split by 83.3
% (250 samples) for training and 16.7 % (50 samples) for
testing. All the samples from each of the faulty cases from any
operation profile are used for testing (900 samples in total).
Initially, the training set includes only samples from Profile
1. The performance of the one-class SVM has an accuracy of
84 % when tested on the same profile during training. The
accuracy of the one-class SVM anomaly detector proposed in
[8], when testing on each of the fault cases, varies between
57 % and 98.3 %. The proposed LOF algorithm, on the
other hand, predicts all the fault cases as anomalies almost
perfectly. However, the proposed LOF has a high FP rate.
To address this issue, more samples in the healthy dataset
from Profiles 2 (50 samples) and 3 (50 samples) are added
to the training data to improve in the proposed FDI scheme
with AL. As a result, the accuracy of the proposed LOF
anomaly detector improves constantly when more samples are
added. The compared one-class SVM detector suffers from
the newly added data samples, where its accuracy in healthy
cases improves, but the rate of FN increases. This proves that
the proposed LOF anomaly detector could effectively identify
anomalies better than the existing one when more knowledge
of healthy cases is added during normal operations.

B. Training times of fault classifiers
To compare the computational effectiveness of the proposed

DQN fault classifier, an existing one, the average training times

TABLE IV
RECORDED TRAINING TIME (S) OF DQN AND CNN

Imb. DQN CNN

ratio 2 classes 4 classes 2 classes 4 classes
1 133.5 125.0 279.1 525.7

1.25 131.9 123.0 233.6 437.9
1.67 132.1 120.5 209.6 348.7
2.5 131.1 122.2 187.2 284.8
5 129.4 122.0 163.2 196.4
10 129.6 124.0 140.7 155.3
15 126.5 118.4 141.1 154.9
30 127.1 119.7 142.9 139.3

of DQN and the CNN benchmark are reported in Table IV
while increasing the imbalance in the datasets. The classifiers
were trained with two classes (healthy and faulty), and with
all four classes of healthy, DF, ITSC and MF. The training
time for the DQN stays close to constant around two minutes
while the training time of the CNN declines when increasing
the imbalance as reported in Table IV. The training times of
the SVM and KNN classifiers are not included, because they
are less than a few seconds. The imbalance ratio λ is increased
by removing samples in the faulty case. The number of steps in
each of the episodes in the DQN is set to 400, which would
explain why the training time does not change. The CNN-
based classifier on the other hand uses all available samples
in each step in the training. It is noted that the imbalance of
the training dataset in the case of four-class is computed by
the imbalance of each respected fault class. The ratio between
healthy and each faulty case is considered a more relevant
metric in the compensation described in the reward function.
In this study, equal imbalance (Imb.) ratios λ are applied for
each fault case.

C. Performance of two-class classifiers
The proposed DQN and existing SVM, KNN and CNN fault

classifiers use the half harmonics of the radial and tangential
components of the stray flux as features. They all are trained
to identify a specific single fault, namely DF or ITSC, which
is indicated by the second line of Table V and Table VI. The
number of nearest neighbours is set to 5 for the KNN. Results
of true positive rate (TPR) and true negative rate (TNR) are
listed in the tables. Values above 98 %, in green and red-
coloured numbers indicate values below 50 %. This is to
highlight the main trends of the results. The terms of positive
and negative samples will hereafter be interchangeably used
with faulty and healthy cases, respectively. The imbalance
is increased by reducing the number of positive samples in
the training dataset. All negative samples from the PMSM
operating with Profile 1 are used for training. The test dataset
from Profile 1 consists of 50 positive and 50 negative samples.
The positive samples from each fault case are not sampled
from the training dataset when λ > 1. All samples from Profile
2 and Profile 3 are used for testing (300 samples per health
class per profile).

In the case of DF, only the samples of the motor with an
induced local demagnetisation are used as the positive training
samples. The proposed DQN and existing SVM, KNN and
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TABLE V
TPR (%) AND TNR (%) OF SVM AND KNN CLASSIFIERS WHEN TRAINED FOR IDENTIFYING EITHER DF OR ITSC

SVM KNN

DF ITSC DF ITSC

Test Imb. TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR
Pro. ratio DF NF MF ITSC ITSC NF MF DF DF NF MF ITSC ITSC NF MF DF

1 1 98.4 99.1 93.7 28.7 100 100 71.3 89.3 98.6 100 82.3 44.7 100 100 70.0 89.3
1.25 78.5 99.6 91.4 33.6 98.5 100 71.0 90.4 84.8 100 77.5 50.0 97.5 100 66.0 90.5
1.67 73.9 99.8 89.1 34.8 97.6 100 69.5 91.0 71.0 100 69.4 57.8 93.1 100 60.9 92.9
2.5 72.0 100 85.5 46.5 96.5 100 66.0 92.5 54.4 100 55.6 68.9 84.2 100 51.0 95.3
5 60.9 100 74.3 57.0 91.9 100 56.5 94.8 22.7 100 28.5 85.5 68.2 100 32.1 98.0

10 38.3 100 54.6 72.6 86.6 100 43.9 96.7 3.8 100 8.5 95.2 45.3 100 13.8 99.3
15 32.3 100 45.9 78.6 78.9 100 33.6 97.1 2.2 100 3.5 97.7 29.3 100 8.0 99.6
30 17.1 100 24.9 88.3 65.0 100 19.5 98.4 0.4 100 0.8 99.5 10.3 100 1.5 99.9

2 1 82.0 63.0 91.3 20.3 91.3 90.0 84.0 77.0 60.3 87.7 84.7 39.0 96.3 93.0 84.0 77.7
1.25 80.6 64.5 89.1 28.3 91.1 91.1 82.7 78.3 48.9 91.4 74.4 48.7 94.3 95.5 81.0 81.4
1.67 77.1 67.5 86.3 33.1 90.0 92.2 82.8 78.5 39.1 94.7 62.7 59.7 92.1 96.9 76.9 84.9
2.5 71.1 72.7 81.8 39.2 88.4 92.8 78.7 82.4 23.7 96.7 46.3 71.7 85.7 98.5 68.9 90.2
5 58.7 80.4 68.8 56.2 82.4 96.0 73.1 86.3 7.1 99.1 14.6 89.9 61.4 99.8 45.2 97.7

10 43.9 87.0 52.3 68.2 73.6 98.1 61.2 91.9 2.2 99.9 6.0 95.7 30.0 100 19.5 99.7
15 36.9 90.3 46.9 73.9 63.6 98.6 49.8 93.4 0.4 99.9 1.3 98.6 17.2 100 9.0 99.9
30 19.2 95.4 29.0 83.0 43.6 99.5 33.0 97.0 0.1 100 0.3 99.6 3.0 100 0.9 100

3 1 74.0 75.0 87.7 48.0 96.0 95.3 80.1 83.0 38.7 86.0 52.7 23.7 93.0 98.0 30.3 95.7
1.25 72.5 76.4 84.3 55.3 94.9 95.5 77.5 84.8 32.3 88.3 43.9 28.2 90.8 98.3 25.6 97.0
1.67 68.9 78.6 80.5 58.5 93.4 96.6 74.6 86.9 21.1 92.8 31.0 35.4 87.2 99.0 19.1 98.0
2.5 68.4 80.5 79.5 59.0 92.4 97.3 68.7 89.6 10.5 96.9 13.5 42.8 81.6 99.7 14.2 99.3
5 55.2 89.1 65.0 65.2 88.0 98.6 57.3 94.0 2.7 99.5 4.2 65.4 65.0 99.9 7.3 99.8

10 31.5 95.4 40.7 73.8 71.9 99.5 36.2 96.9 0.7 99.8 0.5 85.2 34.8 100 1.9 100
15 27.2 96.0 36.4 76.0 72.7 99.8 28.3 97.9 0.2 99.9 0.2 93.8 24.5 100 1.0 100
30 10.6 98.5 15.5 86.4 49.6 100 11.5 99.8 0.1 100 0.1 97.0 6.7 100 0.2 100

TABLE VI
TPR (%) AND TNR (%) OF DQN AND CNN CLASSIFIERS WHEN TRAINED FOR IDENTIFYING EITHER DF OR ITSC

DQN CNN

DF ITSC DF ITSC

Test Imb. TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR
Pro. ratio DF NF MF ITSC ITSC NF MF DF DF NF MF ITSC ITSC NF MF DF

1 1 100 99.9 95.8 100 98.5 97.9 12.8 99.4 97.2 98.4 73.7 99.9 95.4 96.6 2.9 99.8
1.25 100 99.9 97.6 99.8 95.7 97.2 9.4 99.6 96.3 98.1 71.2 99.9 93.2 93.6 6.7 98.6
1.67 100 99.7 99.6 100 97.1 98.1 11.5 98.8 95.8 98.9 71.0 100 89.1 97.9 5.8 98.8
2.5 100 99.9 99.5 98.8 98.2 96.5 14.9 98.4 95.5 99.3 69.8 99.9 81.6 97.9 1.6 99.9
5 100 98.7 99.6 99.1 96.4 95.6 14.7 98.9 92.9 98.6 64.3 99.9 67.6 96.9 2.1 99.8

10 100 96.1 99.9 97.9 96.2 92.8 19.0 97.7 82.1 99.8 49.8 100 55.4 96.7 3.0 99.7
15 99.9 93.4 99.6 95.8 93.4 90.3 15.7 98.5 69.4 97.5 35.8 99.7 43.5 99.7 2.0 99.5
30 100 88.6 100 93.1 90.1 84.7 27.2 95.5 46.9 99.8 23.9 99.9 23.6 99.7 0.2 100

2 1 99.4 100 95.8 99.9 91.4 85.1 28.9 95.4 92.3 93.4 74.3 99.4 80.0 94.0 3.0 99.9
1.25 99.6 99.9 97.9 100 92.7 85.1 24.6 96.6 94.8 93.7 77.1 99.5 77.8 91.0 4.8 99.7
1.67 99.9 99.6 98.8 100 90.0 85.7 24.9 96.2 95.3 93.2 75.8 99.4 72.8 95.1 4.4 99.6
2.5 99.8 99.1 99.5 99.7 94.6 77.9 35.1 92.3 95.2 94.8 75.9 99.4 65.0 95.9 2.0 100
5 99.9 97.9 99.6 99.3 94.4 72.5 35.7 91.2 91.3 95.0 65.8 99.5 47.4 96.4 1.7 99.9

10 99.9 91.6 99.8 96.4 88.0 69.9 35.1 91.7 75.4 97.5 47.3 99.9 37.6 96.3 1.4 99.8
15 100 85.0 99.9 93.8 84.6 68.8 30.7 91.2 66.7 93.2 37.6 98.6 23.4 99.4 0.6 99.8
30 100 72.8 100 89.8 79.6 72.3 33.2 88.0 49.1 97.6 32.2 99.3 13.2 99.5 0.3 100

3 1 97.9 99.9 89.0 100 82.0 91.6 12.4 99.3 99.0 97.1 91.6 100 76.1 94.6 5.4 99.1
1.25 97.8 99.9 90.9 100 83.2 90.2 10.1 99.3 98.5 95.4 90.8 99.7 81.0 87.9 11.8 96.9
1.67 98.9 99.8 94.0 99.9 83.8 90.1 10.9 99.3 99.1 96.4 93.7 100 76.9 94.6 9.4 96.6
2.5 99.5 98.2 96.5 99.5 85.9 87.7 11.4 99.0 98.3 98.0 88.1 99.8 64.4 97.1 2.0 99.9
5 99.6 97.0 97.5 98.9 86.6 84.8 11.4 98.8 97.5 97.6 85.9 99.8 53.9 95.3 2.0 99.8

10 99.8 93.1 98.4 97.8 86.9 80.2 14.1 98.8 88.4 99.6 71.0 100 39.1 95.9 1.9 99.1
15 99.7 88.4 98.4 96.3 85.2 79.0 13.3 98.2 78.0 96.3 57.2 98.6 22.5 98.4 2.6 99.0
30 99.8 82.2 99.1 95.1 83.9 73.2 20.5 95.0 46.8 99.6 30.8 100 18.2 99.3 0.4 100
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CNN classifiers are tested on all four-fault cases, namely DF,
ITSC, MF and NF or healthy, to investigate whether the two
other faulty datasets (ITSC and MF) can be classified. The
fault signatures of MF may share common characteristics with
both DF and ITSC. Therefore, it is possible for the MF samples
to be classified as a fault by the classifier trained for detecting
DF or ITSC, which is why Table VI reports TPR for MF.
Ideally, ITSC fault will not be classified as a fault by the
classifiers trained for DF and vice versa. This is why Table
VI reports TNR for the fault classifiers, which are not trained
before being used in testing. Table V shows that both SVM
and KNN classifiers have a high TPR for detecting DF when
they are trained with the DF dataset, but the TPR drops when
λ increases. In the case of balanced datasets, the TNR of
classifiers for ITSC is below 30 %. This rate increases with a
greater λ, since the classifiers collapse and could not improve
overall accuracy. The SVM and KNN classifiers are also less
robust against the operation profiles, which were not included
in the training dataset. Their accuracy drops significantly when
being tested on Profile 2 and Profile 3.

The proposed DQN classifier and CNN achieve a TPR
higher than 90 % for the fault cases they are trained before
testing when λ = 1. The lowest TPRs for the proposed
DQN and compared CNN classifier are 82.0 % and 76.1 %,
respectively when they were trained for the ITSC dataset and
tested on profile 3 with a constant speed and variable load.
The DQN classifier maintains a TPR of above 97.8 % when
trained and tested for DF. However, the TNR for the healthy
case is dropping to 72.8 %. The CNN classifier improves its
TNR for the healthy case when increasing the imbalance of
the datasets. Fewer FPs is normally a positive quality in a
classifier, but TPR for the CNN drops to below 50 % when
increasing the imbalance in the dataset. The accuracy trend for
the CNN classifier is reduced significantly when all samples
are classified as healthy cases. The proposed DQN classifier,
on the other hand, reduces the possibility of FN but has
overcompensated slightly and increased FPs. Neither FP nor
FN is desirable in FDI. However, both FN and FP rates can
be compensated in the proposed AL scheme by correcting
relabel by an expert, and the proposed DQN fault classifier
has a second option with the weighted reward function.

The MF case includes both DF and ITSC. Therefore, there
is a possibility that this fault case can be classified as one of
those faults. This is in the context of fault classifiers, that are
trained for identifying the presence of a specific fault. The test
result reveals that both DQN and CNN classifiers, which are
trained for DF, identify MF as a fault. The TPR reported under
MF is lower as compared to the case, where the classifiers are
trained and tested on the same fault case. The TPR for the
CNN classifier is also reduced when increasing the imbalance
in the datasets. Neither DQN nor CNN classifier identifies MF
as a fault when they are trained to identify ITSC fault. This
result indicates that there is a high possibility that DF and MF
may share the same fault signatures. The fault classifier, being
trained on all four fault cases included in this study, may find it
difficult to distinguish between DF and MF. In the case of MF,
SVM and KNN classifiers have a larger TPR than DQN and
SVM classifiers, but their TPR drops with a greater imbalance
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Fig. 10. Miss rates of DQN (top) and CNN (bottom) fault classifiers

in the dataset. This is the case when the classifiers are trained
for classifying ITSC. The SVM and KNN classifiers are able to
identify common signatures between ITSC and the MF, which
are not present in DF.

D. Performance of four-class classifier

The proposed DQN and CNN fault classifiers are further
trained with all four fault classes: DF, ITSC, MF and NF.
KNN and SVM algorithms are not effective in classification
of imbalanced datasets, and are not included in the four-class
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classifier case study. Fig. 9 shows the hit rates (TPR and
TNR) of the DQN and CNN fault classifiers using test dataset
in Profile 3. This includes the TNR and TPR, which were
discussed in Section IV.C. The overall accuracy is also added
in Fig. 9, which is the average of the four hit rates, since the
test dataset is balanced between the four classes. The proposed
DQN and CNN fault classifiers suffer from being trained for
all four faults. They start with an overall accuracy of 75 %,
then decrease with respect to the imbalance of the dataset.
Note each fault class has equal λ, which is the imbalance ratio
given on the horizontal axis. The performance of the CNN is
worse than the DQN, since its accuracy declines at a larger
rate with a trend towards a collapse. Its hit rate for healthy
case, i.e. NF, is increased towards 100 % due to this trend.

Each fault class can be incorrectly classified into three
classes. This in total gives 12 miss rates (false positive rates
and false negative rates) for a four-class classifier. Fig. 10
plots the miss rates for both DQN and CNN fault classifiers,
which were not close to 0. The comparison still uses the test
dataset from Profile 3. The first and last letters in the labels
denote the predicted and true classes, respectively. Fig. 10
(top) reveals that the proposed DQN fault classifier is confused
between DF and MF, which were predicted in the analysis of
the two-class classifiers. The DQN classifier confuses ITSC
with NF and MF, while NF is generally confused with all
of the other health classes. This demonstrates that the reward
function may have overcompensated and needs to be adjusted.
A combined decision between fault classifier and anomaly
detector may also reduce the rate of FPs since Table III
reports a high accuracy for LOF. The CNN fault classifier
does not misclassify NF with any of the fault classes. The
confusion between DF and MF does decrease when increasing
the imbalance, but these fault classes start to be predicted
as NF instead. Almost all samples from fault case ITSC are
misclassified as NF.

V. CONCLUSION

This study proposed a fault diagnosis scheme trained and
tested with both dynamic operating conditions and mixed
faults, where labelled training samples from the faulty con-
ditions were initially unavailable. The training and testing
datasets are collected from the in-house test setup with ex-
ternally installed hall sensors. The proposed method order-
normalises the spectrogram by resampling the time-series
data at a fixed angular increment to make it more robust
against dynamic operations. The rotor position is estimated
with a single external stray flux sensor, which allows for
an automatic fault diagnosis without modifying the existing
PMSM drives with sensorless control. The LOF anomaly
detector was trained on samples from Profile 1 with various
operating conditions, which gave a high false positive rate.
Nevertheless, the proposed active learning framework allows
for improving prediction accuracy when adding new healthy
case samples. Newly discovered health classes are used to train
the proposed DQN classifiers at different imbalance ratios. The
comparative study shows that the DQN fault classifier is more
robust than the existing SVM, KNN and CNN fault classifier,

which were tested against the dynamic operations in Profile
2 and Profile 3. The DQN did overcompensate the weight
of the minority class, being a new problem to be solved in
future work. A reward function with a different ratio might
yield higher accuracy. One possible solution is to integrate
this parameter as an adjustable state variable in the training
process of an agent. Furthermore, testing the performance of
the proposed fault diagnosis scheme on other common faults,
such as bearing or semiconductor switch faults, would be an
interesting topic in the future studies.
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