

Accepted manuscript

Omslandseter, R. O., Jiao, L., Zhang, X., Yazidi, A. & Oommen, J. (2022). The Hierarchical
Discrete Pursuit Learning Automaton: A Novel Scheme With Fast Convergence and Epsilon-
Optimality. IEEE Transactions on Neural Networks and Learning Systems, 1-
15. https://doi.org/10.1109/TNNLS.2022.3226538

Published in: IEEE Transactions on Neural Networks and Learning Systems

DOI: https://doi.org/10.1109/TNNLS.2022.3226538

AURA: https://hdl.handle.net/11250/3053563

Copyright: © 2022 IEEE. Personal use is permitted, but republication/
redistribution requires IEEE permission

License:

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

The Hierarchical Discrete Pursuit Learning
Automaton: A Novel Scheme With Fast

Convergence and Epsilon-Optimality
Rebekka Olsson Omslandseter, Lei Jiao , Senior Member, IEEE, Xuan Zhang ,

Anis Yazidi , Senior Member, IEEE, and B. John Oommen , Life Fellow, IEEE

B. John Oommen dedicates this paper to Neil and Louise
Lee, and Michael and Inger-Maria Twilley, who were like
parents to his wife and him, when they moved to Canada in
1982.

Abstract— Since the early 1960s, the paradigm of learning
automata (LA) has experienced abundant interest. Arguably,
it has also served as the foundation for the phenomenon and
field of reinforcement learning (RL). Over the decades, new
concepts and fundamental principles have been introduced to
increase the LA’s speed and accuracy. These include using
probability updating functions, discretizing the probability space,
and using the “Pursuit” concept. Very recently, the concept of
incorporating “structure” into the ordering of the LA’s actions
has improved both the speed and accuracy of the corresponding
hierarchical machines, when the number of actions is large.
This has led to the ε-optimal hierarchical continuous pursuit
LA (HCPA). This article pioneers the inclusion of all the
above-mentioned phenomena into a new single LA, leading to
the novel hierarchical discretized pursuit LA (HDPA). Indeed,
although the previously proposed HCPA is powerful, its speed
has an impediment when any action probability is close to
unity, because the updates of the components of the probability
vector are correspondingly smaller when any action probability
becomes closer to unity. We propose here, the novel HDPA,
where we infuse the phenomenon of discretization into the
action probability vector’s updating functionality, and which is
invoked recursively at every stage of the machine’s hierarchical
structure. This discretized functionality does not possess the same
impediment, because discretization prohibits it. We demonstrate
the HDPA’s robustness and validity by formally proving the

Manuscript received 2 November 2021; revised 9 November 2022;
accepted 29 November 2022. This work was supported by the European
Economic Area (EEA) and Norway Grants 2014–2021 through the Project
“Spacetime Vision: Toward Unsupervised Learning in the 4D World” under
Grant EEA-RO-NO-2018-04. A preliminary and very abridged version of
some of these results was presented at the 34th Australasian Joint Confer-
ence on Artificial Intelligence (AJCAI 2021), in February 2022, in Sydney,
Australia. (Corresponding author: B. John Oommen.)

Rebekka Olsson Omslandseter and Lei Jiao are with the Department of
Information and Communication Technology, University of Agder, 4879
Grimstad, Norway (e-mail: rebekka.o.omslandseter@uia.no; lei.jiao@uia.no).

Xuan Zhang is with the Norwegian Research Center (NORCE), 4879
Grimstad, Norway (e-mail: xuan.z.jiao@gmail.com).

Anis Yazidi is with the Department of Computer Science, Oslo Metropolitan
University, 0160 Oslo, Norway (e-mail: anisy@oslomet.no).

B. John Oommen is with the School of Computer Science, Carleton
University, Ottawa, ON K1S 5B6, Canada, also with the University of
Agder, 4879 Grimstad, Norway, and also with the TRADE Research Entity,
North-West University, Potchefstroom 2520, South Africa (e-mail: oommen@
scs.carleton.ca).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3226538.

Digital Object Identifier 10.1109/TNNLS.2022.3226538

ε-optimality by utilizing the moderation property. We also invoke
the submartingale characteristic at every level, to prove that the
action probability of the optimal action converges to unity as time
goes to infinity. Apart from the new machine being ε-optimal,
the numerical results demonstrate that the number of iterations
required for convergence is significantly reduced for the HDPA,
when compared to the state-of-the-art HCPA scheme.

Index Terms— Convergence analysis, hierarchical discrete pur-
suit LA, learning automata (LA), reinforcement learning (RL).

I. INTRODUCTION

THE field of learning automata (LA), pioneered by
Tsetlin [1] in the 1960s, has been thoroughly studied

over the years [2]. In LA, nonhuman agents learn with the
goal of solving particular tasks through computer programs.
Specifically, the concept of LA is based on a learning agent,
referred to as a LA,1 interacting with a teacher, referred to
as the Environment. LA entails lightweight adaptive learning
schemes that are able to solve complex learning tasks in
stochastic Environments. The LA learns from the Environment
through continuous trial-and-error interactions, and gradually
increases its chances of choosing the most favorable action.
Without loss of generality, the mapping from the States to the
Actions is deterministic.

The LA operates in conjunction with a stochastic Environ-
ment, where the LA chooses an action from among a finite set
of actions offered by the Environment, which, in turn, provides
a feedback based on the chosen action. Consequently, the LA
adjusts its action based on a selection strategy as per this
feedback. Hopefully, this feedback cycle should subsequently
lead to the LA making “more intelligent” decisions. The
feedback from the Environment is commonly binary, but it
can also be from a finite set, or from a continuous range.

There are primarily two categories of LA, namely:
1) Fixed structure stochastic automata (FSSA), which have

a fixed policy for the interstate transitions within a finite
set of states, where the LA’s current state corresponds to
its chosen action [2], and where both the updating and
decision functionalities are, typically, time-invariant.

2) Variable structure stochastic automata (VSSA), where
the action selection is based on an action probability
vector. In VSSA, updating functions are utilized to
change the behavior of the LA according to feedbacks

1In this article, the shortened term LA refers to both the field of LA, the
machine, and the Learning Automaton itself, depending on the context in
which it appears.

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7115-6489
https://orcid.org/0000-0002-8828-7442
https://orcid.org/0000-0001-7591-1659
https://orcid.org/0000-0002-5105-1575

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

from the Environment. These will be explained in more
detail in Section II.

LA have scores of applications reported in the Literature.
In the interest of brevity, we omit2 them here and merely
include them in the bibliography.

A. Goal of This Article

In any competition, setting an initial record is hard enough,3

but excelling it is a feat. The goal of this article is to try to
attain to a speed/accuracy limit for LA dealing with a large
number of actions, that will be hard (if not impossible) to beat!

Improving the speed and accuracy of LA has always
involved discovering new concepts and fundamental princi-
ples. One of the aims of this article is to record the ways by
which the speed/accuracy of LA has been improved over the
last six decades. All of these enhancements have incorporated
new and fundamental principles that were not invented earlier.
Subsequently, combinations of these principles have led to
even further improvements. Our goal is to record all of the
principles and paradigms, and then combine them efficiently.4

As briefly explained below, these include using probability
updating functions in VSSA, discretizing the probability space,
and using the “Pursuit” concept. Very recently, the concept of
incorporating “structure” into the ordering of the LA’s actions
has improved both the speed and accuracy of the correspond-
ing hierarchical machines, when the number of actions is
large. This has led to the �-optimal hierarchical continuous
pursuit LA (HCPA), which is currently the record holder for
such Environments. This article pioneers the inclusion of all
the above-mentioned phenomena into a new single LA, leading
to the novel hierarchical discretized pursuit LA (HDPA).

B. Organization of This Article

The remainder of the article is organized as follows.
Section II takes the reader through all the avenues by which
the speed/accuracy of LA has been enhanced in quantum
jumps or relatively incrementally, over the last six decades.
This motivates and sets the stage for the main contribution of
this article, namely the HDPA. In Section III, we describe,
in detail, the new algorithm. In Section IV, we prove the
algorithm’s convergence property, i.e., its �-optimality. The
numerical results are presented in Section V, after which we
conclude the article in Section VI.

II. STRATEGIES TO ENHANCE SPEED/ACCURACY IN LA

A. Infancy: FSSA

As briefly alluded to above, in a stochastic LA, if the
state transition probability and output function are constant,
i.e., they do not vary with the time step “t” and the input

2The original submission had a detailed list of the applications of LA from
the past decades. Since they are all well cited in the Literature, we merely
include them in the bibliography as per the request of the AE and Referees.
We are grateful for their input. They can be included if required by the EiC.

3This is apparent from the 100-m sprint, which is reckoned as the ultimate
test of a person’s speed. The physical and psychological barrier of completing
it in under 10 s makes the person “a world-class sprinter.” Although Carl
Lewis pioneered this challenge at 9.97 s in 1983, the current record holder is
Usain Bolt who ran it in 9.58. It takes a lot more effort, and years of hard
work, to even marginally improve a quantifying performance metric, that is
almost at the limit of par excellence!

4We are not aware of any publication which records these details, and we
believe that it will be extremely helpful for future researchers.

sequence, the automaton is an FSSA. The pioneering and
popular examples of these LA were proposed by Tsetlin [1],
Krylov, and Krinsky—all of which are �-optimal under various
conditions. These were the primitive ground-breaking LA, and
the whole world of LA and reinforcement learning (RL) had
their very existence because of them. Their details can be
found in [2].

B. From FSSA to VSSA

The first quantum increase in speed was achieved by the
discovery/invention of VSSA. Unlike FSSA, VSSA are the
ones in which the state transition probabilities are not fixed.
Here, the state transitions or the action probabilities themselves
are updated at every time instant using a suitable scheme.

VSSA are an order of magnitude faster than FSSA because:
1) VSSA permit an enhanced stochastic exploration of the

action probability space, rather than moving through the
states of the machine step-by-step, as FSSA do;

2) unlike FSSA, VSSA permit a “switch” of actions at
every step in time, and not merely at the so-called
Boundary states;

3) VSSA also provide a far greater flexibility, because
they utilize functions to determine the updating, and the
number of functions that can be used is limitless;

4) the transition probabilities and the output function vary
with time, and the action probabilities are updated on
the basis of the input. The action chosen is dependent on
the action probability vector, which is, in turn, updated
based on the Reward/Penalty input that the LA receives
from the Environment.

VSSA are modeled by a discrete-time Markov Process,
defined on a suitable set of states. If a probability updating
scheme is time-invariant, the action probability vector when
t ≥ 0, {P(t)}t≥0, is a discrete-time, homogenous Markov
process, and the probability vector at the current time instant
P(t), [along with the action at time t , α(t), and the feedback
from the Environment at time t , β(t)] completely determine
P(t + 1). Hence, each distinct updating scheme identifies a
different type of learning algorithm. For Continuous Linear
VSSA, the following four learning schemes are extensively
studied in the literature: The well-known Linear Reward-
Penalty (LR–P) scheme, the Linear Reward-Inaction (LR–I)
scheme, the Linear Inaction-Penalty (L I–P) scheme, and the
Linear Reward-�Penalty (LR−�P) scheme are examples of
linear VSSA updating rules [2], [3]. As opposed to these,
increasing the probabilities of the LA in a nonlinear manner
has been investigated in [2], [3], and [23].

C. From Continuous VSSA to Discretized VSSA

The next paradigm that was invented/discovered to increase
the speed/accuracy of LA was that of discretizing the action
probability space. The previous VSSA algorithms are con-
tinuous, i.e., the action probabilities can assume any real
value in the interval [0, 1]. In such LA, the choice of an
action is determined by a random number generator (RNG).
In order to increase the speed of convergence of these LA,
Oommen [24] introduced the family of discretized algorithms
which pioneered the discretization of the probability space.

Discretized automata can be perceived to be like a hybrid
combination of FSSA and VSSA. Discretization is conceptu-
alized by restricting the probability of choosing the actions
to only a fixed number of values in the closed interval [0, 1].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

OMSLANDSETER et al.: HIERARCHICAL DISCRETE PURSUIT LEARNING AUTOMATON: A NOVEL SCHEME 3

Thus, the updating of the action probabilities is achieved in
steps, rather than in a continuous manner. The different prop-
erties (absorbing and ergodic) of these LA, and the updating
schemes of action probabilities for these discretized automata
(like their continuous counterparts) were later studied in
detail by Oommen [24] and Oommen and Christensen [25].
Also, similar to the continuous LA paradigm, the discretized
versions, the DLRI, DLIP, and DLRP automata have also been
reported.

Originally, the assumption was that the RNGs could gen-
erate real values with arbitrary precision. In the case of
discretized LA, if an action probability is reasonably close
to unity, the probability of choosing that action increases in a
single iteration to unity (when the conditions are appropriate)
directly, rather than asymptotically.

The second important advantage of discretization is that it
is more practical since RNGs used by continuous VSSA can
only theoretically be assumed to be any value in the interval
[0, 1]. But machine implementations use pseudo-RNGs, where
the set of possible values is not infinite in [0, 1], but finite.

Finally, discretization is also important in terms of imple-
mentation and representation. Discretized implementations of
automata use integers for tracking the number of multiples
of the learning parameter, (1/N) = �, where N is the so-
called resolution parameter. This, not only increases the rate
of convergence of the algorithm, but also reduces the time,
in terms of the clock cycles it takes for the processor to do
each iteration of the task, and the memory needed. By virtue
of the above, discretized algorithms are both more time and
space efficient than their continuous counterpart algorithms.

D. Estimator-Based Paradigm

The next major quantum jump in the speed/accuracy of
LA was by the discovery/invention of estimator-based algo-
rithms (EAs). Just as in the case of the family of discretized
algorithms, Thathachar and Sastry designed a new class of
algorithms, called the Estimator Algorithms [4], which at
their time possessed a faster rate of convergence than all the
previous families. These algorithms, like the previous ones,
maintain and update an action probability vector. However,
unlike the previous ones, these algorithms also keep running
estimates for each action that is rewarded, using a reward-
estimate vector, and then use those estimates in the probability
updating equations. The reward estimates vector is, typically,
denoted in the literature by D̂(t) = [d̂1(t), . . . , d̂r (t)]T . The
corresponding state vector is denoted by Q(t) = �P(t), D̂(t)�,
and the estimates can be computed using a Maximum Likeli-
hood scheme (see below), or in a Bayesian manner [26].

The reason for the quantum increase in speed is because
in EAs, the convergence involves two intertwined phenomena,
namely the convergence of the reward estimates, D̂(t), and
the convergence of the action probabilities themselves. The
combination of these vectors in the updating rule is intricate,
and must be done in a delicately designed manner. By the
law of large numbers, if the actions are sampled “enough
number of times,” their estimates5 converge to their true

5The convergence proofs of EAs are far more complex than those of
traditional LA. This is because, if the accuracies of the estimates are
poor because of inadequate estimation (i.e., if the suboptimal actions are
not sampled “enough number of times”), the convergence accuracy can be
diminished. We address this issue later.

values. The Environment thus influences the probability vector
both directly and indirectly, the latter being as a result of the
estimation of the reward estimates of the different actions.
This may, thus, lead to increases in action probabilities for
actions different from the currently rewarded action. This revo-
lutionary concept changed the entire world of LA, and indeed,
even though there is an added computational cost involved in
maintaining the reward estimates, these estimator algorithms
possess an order of magnitude superior performance than the
nonestimator algorithms previously introduced.

Pursuit algorithms are a subclass of EAs that pursue an
action that the automaton “currently” perceives to be opti-
mal. The first pursuit algorithm, referred to as the C PRP

algorithm due to Thathachar and Sastry, pursues the optimal
action on Reward and Penalty. Here, the currently perceived
“best action” is rewarded, and its action probability value is
increased with a value directly proportional to its distance to
unity, whereas the “less optimal actions” are penalized. The
cases of changing the action probabilities only on reward and
ignoring the penalties lead to the CPRI scheme, also described
in [27]. Thathachar and Sastry [4] introduced the class of
continuous EAs, where one pursues not only the best currently
optimal action,6 and Agache and Oommen [27] proposed the
so-called Generalized Pursuit LA.

E. Merging Estimators-Based and Discretized Worlds

The next steps in enhancing the speed/accuracy of LA
involved merging the properties of the previously introduced
phenomena. In particular, the researchers piggy-backed on
the benefits of discretization and of the Pursuit paradigm.
Utilizing the previously proven capabilities of discretization in
improving the speed of convergence of the learning algorithms,
Lanctot and Oommen [28] enhanced the Pursuit algorithm
and the “Thathachar and Sastry’s Estimator” algorithm [4].
This led to the designing of classes of learning algorithms,
referred to in the literature as the discrete estimator algo-
rithms (DEAs) [28], which possessed the so-called Moderation
and Monotone Properties. Agache and Oommen [27] pro-
vided a discretized version of their GPA algorithm presented
earlier. Their algorithm, called the Discretized Generalized
Pursuit Algorithm (DGPA), also essentially generalized the
“Thathachar and Sastry’s Estimator” algorithm [4].

All of these were further investigated in [29] and [30],
respectively, where the earlier flawed proofs of the schemes
themselves were perfected.

F. Incorporating Structure

All of the LA schemes that have been discussed till now
assumed that the actions were unordered, which, of course,
makes sense since the penalty probabilities are unknown.
Indeed, why should one action be preferred above the others?
The next major quantum jump in the speed and accuracy of
designing LA occurred by incorporating structure into the
ordering of the actions. This represents the current state-
of-the-art, and is particularly pertinent when the number of
actions involved, R, is large. In such scenarios, the learn-
ing problem becomes extremely complex, which motivated

6The probability updates differ depending on whether the reward estimates
are smaller or larger than the estimate of the currently selected action.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Yazidi et al. [31] to devise a scheme by which small subsets
of actions (e.g., of cardinality two) were compared, and the
result of their comparison was trickled up to avoid dealing
with R-action LA and vectors.

Unlike the prior art, in the case of FSSA, one requires
S-states for each of the R actions. When the number of actions
is large, an LA deals with an R ·S × R ·S-sized Markov chain,
and this adds to the sluggishness of the machine. In the case of
VSSA, the action probability vector has a dimension of R and
its elements sum up to 1. When R is large, many of the action
probabilities can have very small values and may not even
be chosen, thus rendering the principle behind VSSA to be
void. For the families of pursuit algorithms, the problem still
exists because one still utilizes the action probability vector
with dimension R, which could be large in this setting.

To make the LA work for a large number of actions, the
HCPA was developed [31]. In the hierarchical structure7 of
the HCPA, instead of using one CPA with R actions, they
employed multiple CPA, and arranged them in different layers.
In this way, the authors avoided having insignificant values in
the action probability vector. This endowed the HCPA with
the ability to handle the cases when R was very large, which
was not even feasible for the traditional CPA to solve.

The quantum jump in speed and accuracy was achieved by
merging the phenomena of VSSA and EAs, and doing this
in an ordered hierarchical manner, where each LA dealt with
a small number of actions. Indeed, the convergence speed of
the novel LA proposed in [31] was many orders of magnitude
faster than any of the other legacy LA. In essence:

1) It incorporated the area of “data structures” into the field
of LA, and suggested a novel hierarchical LA which
uses a tree structure as a part of the learning process;

2) the scheme was based on a multilevel hierarchy com-
posed of two-action CPA at each of the levels, where
both the estimation required for an EA, and interaction
occurred only at the leaves of the hierarchy;

3) the individual LA performed the learning locally and
the result of this was trickled-up in a recursive manner
by considering only a node and its sibling so as to
achieve global learning. This also mitigated the problem
of having very small action probabilities, since every LA
dealt with only two actions.

The HCPA is the state-of-the-art in LA. The goal of this
article is to incorporate all of the above phenomena (VSSA,
discretization, the Estimator phenomenon and structure) into
our present novel contribution, namely the HDPA. The contri-
butions of this present work are thus summarized as follows.

1) We propose a novel HDPA that converges faster than
the state-of-the-art HCPA algorithms as the convergence
criterion is configured close to unity, e.g., above 0.99.
The advantage of the HDPA over the HCPA becomes
more obvious when one works with a large number of
actions.

2) We prove, using a formal, rigorous mathematics analy-
sis, the �-optimality of HDPA.

3) By resorting to simulation results, we quantify, in detail,
how much faster the convergence of the HDPA is when

7A notable prior attempt to devise hierarchical LA is due to Papadim-
itriou [32]. The difference between what the HCPA and we have done (when
compared to the work of [32]) is explained, in detail, in [31].

compared to the HCPA. We have also stated, for the first
time, a bound for the number of iterations, which is an
avenue for future analytical studies.

G. Roadmap for HDPA

Although the HCPA can work in the scenario when there are
a large number of actions, the novelty of this article is that we
have proposed a viable mechanism by which its convergence
speed can be improved. By some insight, one observes that
HCPA has a relatively sluggish convergence, especially when
the required convergence accuracy is high, e.g., above 0.99.
The reason behind it is that the changes in the probability
vector decrease with the number of iterations. As the learning
continues, the increment of the superior action probability
is correspondingly decreased, making it more difficult to
converge in the later phase of learning. To overcome this,
we propose the HDPA to speed up the convergence when high
convergence accuracy is required. The beauty of HDPA is that
learning speed is not decreasing as the learning continues. This
is because we piggy-back the phenomenon of discretization—
we incorporate all of the above phenomena, i.e., VSSA,
discretization, the Estimator phenomenon and structure!

The newly proposed discretized learning is shown to be
faster than what has been achieved previously in the liter-
ature for Environments where the convergence criterion is
configured to be more than 99%. The speed of the scheme
for such convergence criteria is significantly faster than the
HCPA, and the gained efficiency is observed to increase as
the number of actions increases. Thus, when we are faced
with many actions and we are concerned with the accuracy
of convergence, the HDPA outperforms the state-of-the-art
HCPA scheme presented in [31] in terms of efficiency, i.e.,
the number of iterations required before convergence.

We conjecture that the HDPA has thus attained to a
speed/accuracy limit for LA dealing with a large number of
actions, that will be hard (if not impossible) to beat!

III. DESCRIPTION OF THE HDPA

The HDPA incorporates all of the phenomena detailed
in the introduction. More specifically, we organize a set of
DPA instances in a hierarchical tree structure, where all
the DPA instances have a set of actions corresponding to
the possible paths down the tree structure. We maintain the
action probabilities of the respective LAs through vectors that
are updated in a discretized manner based on whether an
action receives a Reward (or Penalty). At the bottom level
of the tree, we have the actions that directly interact with
the Environment, and we maintain reward estimates of all
the different actions throughout the tree. According to the
Pursuit concept, the HDPA pursues the currently estimated
best action in all iterations. Thus, the action that currently
has the best-estimated reward probability is rewarded upon
a Reward, regardless of which action actually triggered the
Reward. A more throughout explanation is given below.

A. Structure of the HDPA

In the interest of simplicity and clarity, in the following
explanations, we will utilize two-action DPRI instances as
the primitive machine in the construction of the HDPA.
Consequently, the hierarchy can be organized as a balanced

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

OMSLANDSETER et al.: HIERARCHICAL DISCRETE PURSUIT LEARNING AUTOMATON: A NOVEL SCHEME 5

Fig. 1. Visualization of the tree structure in the HDPA with notations as utilized for the explanations in the article.

full binary tree for a problem with 2K actions8 and a maximum
depth of K . If the number of actions is less than 2K , one can
add dummy actions with zero reward probabilities. Likewise,
when we have more than 2K actions, we need to consider
the nearest power of two and then set the action probabilities
to zero for the excess number of actions. To incorporate
the mathematics established in [31] and for ease of the
comparisons to the HCPA scheme, we utilize notations that
are similar to those of the latter paper. We further formalize
the levels in the hierarchy as follows.

1) The Depth Index of the Tree: For a tree with the
maximum depth K , we employ k to index the depth
of the tree, where k ∈ {0, 1, . . . , K }.

2) The Various LA: We denote a specific LA by A{k, j},
where k refers to its depth and j represents its partic-
ular index in depth, k. More specifically, the LA j ∈
{1, . . . , 2k} at depth k is referred to as A{k, j}, where
k ∈ {0, . . . , K − 1}. The LA at the top of the hierarchy
is the one at depth 0.

3) The LA at Depths From 0 to K − 1 (0 ≤ k < K − 1):

a) each of the LA, A{k, j}, has two actions, denoted
by α{k+1,2 j−1} and α{k+1,2 j}, respectively;

b) whenever the action α{k+1,2 j−1} is chosen, the spe-
cific LA A{k+1,2 j−1} at the next level is activated;

c) whenever the action α{k+1,2 j} is chosen, the specific
LA A{k+1,2 j} at the next level is activated;

d) A{k+1,2 j−1} and A{k+1,2 j} are referred to as the Left
Child and the Right Child of its parent (A{k, j}),
respectively.

4) The LA at Depth K − 1 (k = K − 1): The LA at
depth K − 1 select the actual actions to interact with
the Environment:

a) all of the LA at depth K − 1 have two possible
actions each, referred to as α{K ,2 j−1} and α{K ,2 j},
respectively;

b) the K − 1 depth has 2K actions in total, referred
to as α{K , j} where j ∈ {1, . . . , 2K };

c) the selected action denoted by: α{K , j} is the child
of A{K−1,� j/2�}.

5) The Actions at Level K (k = K): At depth K , i.e., at the
bottom of the tree, we have the actions that directly
interact with the Environment.

8The LA instances can easily be extended to have more actions, but the
reader should remember that we endeavor to mitigate the problem of slow
convergence associated with many actions in the action probability vector.
Consequently, the number of actions should, in any case, be limited in
consideration of the convergence rate.

B. Concept of the HDPA

As explained above, the concept of the HDPA is to orga-
nize the DPA nodes in a tree structure. Observe that any
of the various reported instantiations of the DPA can be
utilized at every level. However, we have chosen to utilize
the DPRI instances, because the Reward-Inaction scheme has
demonstrated a superior performance than the Reward-Penalty
types [31].

As depicted in Fig. 1, each node, except the nodes at the
bottom level, is the parent of two children, i.e., each node
maintains a discretized probability vector with two possible
actions, corresponding to its children. The HDPA maintains
the original actions through the two-actions DPA instances at
the second bottom level of the tree, i.e., the nodes at depth
K −1. Consequently, if a problem has 28 = 256 actions, there
are 128 nodes at the K −1 depth of the tree, each maintaining
a two-action probability vector, i.e., 256 actions in total.

By way of example, let us consider the structure in Fig. 1,
where we have eight original actions, i.e., eight leaves. In this
case, we have seven LA, i.e., A{0,1}, A{1,1}, A{1,2}, A{2,1},
A{2,2}, A{2,3}, and A{2,4}. When the HDPA scenario can be
structured as a full binary tree, the number of LA needed is
given by 2K − 1. Each LA maintains an action probability
vector of dimension 2. To choose an action, we follow the
path down the tree by sampling the action probabilities in these
vectors. For example, when A{0,1} has an action probability
vector of [0.9, 0.1], it selects α{1,1} at the root, with probability
0.9. Once α{1,1} is chosen, A{1,1} is selected for making the
decision at depth 1 for the next depth in the tree. Let us
assume that A{1,1} happens to select the action α{2,2}, and the
LA A{2,2} is consequently activated. After that, A{2,2} selects
the action at the leaf depth as per its action probability vector.
If α{3,4} happens to be chosen, the fourth original action is
selected to interact with the Environment in that iteration. The
HDPA consequently updates the probability components in
the tree based on the feedback from the Environment. More
specifically, the reward estimates are updated in the reverse
path of the actions selected in the tree. For the updating of
the action selection probabilities, it is based on whether the
selected leaf receives a Reward or not. If the selected leaf
receives a Reward, following the Pursuit concept, we reward
all actions in the tree along the path that leads to the leaf with
the current best reward estimate. Note that the leaf with the
current best reward estimate may not be the selected leaf in the
current iteration due to the fact that we only pursue the action
that currently most likely receives a Reward, when averaged
over all iterations. The above concepts are formalized below.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Notations and Definitions: To clarify the concepts explained
above, we use the following definitions in the description of
Algorithm 1.

1) The 2K actions that interact with the Environment are
elements from the set {α{K ,1}, . . . , α{K ,2K }}. Further, the
actions {α{K ,2 j−1}, α{K ,2 j}} are the only two actions that
can be selected at depth K − 1, namely A{K−1, j}.

2) Each LA j ∈ {1, . . . , 2k} at depth k, referred to as
A{k, j}, where k ∈ {0, . . . , K −1} has two actions, namely
α{k+1,2 j−1} and α{k+1,2 j}.

3) P{k, j} = [p{k+1,2 j−1}, p{k+1,2 j}], is the action probability
vector of LA A{k, j}, where k ∈ {0, . . . , K − 1} and j ∈
{1, . . . , 2k}.

Parameters:
1) �: The learning parameter, where 0 < � < 1, and its

value is configured arbitrarily close to zero.
2) u{K , j}: The number of times that action α{K , j} was

rewarded when selected, where j ∈ {1, . . . , 2K }.
3) v{K , j}: The number of times that action α{K , j} was

selected, where j ∈ {1, . . . , 2K }.
4) d̂{k, j}: The estimated reward probability of action α{k, j},

k ∈ {1, . . . , K }, j ∈ {1, . . . , 2k}. At level K , d̂{K , j}
is computed as d̂{K , j} = (u{K , j}/v{K , j}), where j ∈
{1, . . . , 2K }.

5) β: The response from the Environment, where β = 0,
corresponds to a Reward, and β = 1 to a Penalty.

6) T : The convergence criterion threshold.
We initialize the estimates of the reward probabilities as
0.5. Thus, both actions in all the LA in the tree have an
initial estimated reward probability of 0.5, i.e., u{K , j}(0) = 1,
v{K , j}(0) = 2, thus d̂{K , j}(0) = (1/2). The action probability
vector is also initialized as 0.5 for all the LA, i.e., P{k, j}(0) =
[(1/2), (1/2)], where k ∈ {0, . . . , K − 1} and j ∈ {1, . . . , 2k}.

Algorithm 1 can be simplified because it is unnecessary to
update the reward estimates along the path for the algorithm
to run. In other words, we only need the estimated reward
probabilities for the actions that directly interact with the
Environment, i.e., for the leaves. But we have chosen to
describe the scheme using Algorithm 1, because we utilize,
in Section IV, the reward estimates along the path in the
convergence analysis. In the interest of space and brevity,
as one can see, the detailed descriptions of the updates are
omitted here, as recommended by the Referees. The interested
reader can find them in [40].

IV. PROOF OF �-OPTIMALITY

The proof follows the four-step method established in [33]
for the DPA. But in contrast, we prove here that convergence
will also occur when the learning units are structured hierarchi-
cally. In particular, we consider the moderation property and
prove that we have a marginality property along the optimal
path. After that, we utilize the submartingale property in a
level-by-level approach. We finally prove that the probabil-
ity of the optimal action approaches unity as time goes to
infinity.

A. Moderation Property

We first need to consider the moderation property, proving
that under the HDPA, by utilizing a sufficiently small value
of the learning parameter, �, each action will be selected an
arbitrarily large number of times.

Algorithm 1 The HDPA
t = 0
Loop

1) Depths 0 to K − 1:

• The LA A{0,1} selects an action by randomly (uni-
formly) sampling as per its action probability vector
[p{1,1}(t), p{1,2}(t)].

• Let j1(t) be the index of the chosen action at depth
0, where j1(t) ∈ {1, 2}.

• The activated LA, i.e., A{1, j1(t)}, in turn, chooses an
action and activates the next LA at depth “2”.

• This process continues including depth K − 1.

2) Depth K :

• Let jK (t) be the index of the action chosen at depth
K , where jK (t) ∈ {1, . . . , 2K }.

• Update d̂{K , jK (t)}(t) based on the response from the
Environment at the leaf depth, K :

u{K , jK (t)}(t + 1) = u{K , jK (t)}(t)+ (1 − β(t))

v{K , jK (t)}(t + 1) = v{K , jK (t)}(t)+ 1

d̂{K , jK (t)}(t + 1) = u{K , jK (t)}(t + 1)

v{K , jK (t)}(t + 1)
.

• For all other “leaf actions”, where j ∈ {1, . . . , 2K }
and j 	= jK (t):

u{K , j}(t + 1) = u{K , j}(t)
v{K , j}(t + 1) = v{K , j}(t)

d̂{K , j}(t + 1) = u{K , j}(t + 1)

v{K , j}(t + 1)
.

3) Define the reward estimates for all other actions along
the path to the root, k ∈ {0, . . . , K − 1} in a recursive
manner, where the LA at any one level inherits the
feedback from the LA at the level below as

d̂{k, j}(t) = max(d̂{k+1,2 j−1}(t), d̂{k+1,2 j}(t)).

4) Proceed to update the action probability vectors along
the path leading to the leaf with the current maximum
reward estimate, as follows.

• By definition, each LA j ∈ {1, . . . , 2k} at depth k,
referred to as A{k, j}, where k ∈ {0, . . . , K − 1} has
two actions α{k+1,2 j−1} and α{k+1,2 j}. Let j h

k+1(t) ∈
{2 j − 1, 2 j} be the index of the larger element
between d̂{k+1,2 j−1}(t) and d̂{k+1,2 j}(t).

• Let j h
k+1(t) = {2 j − 1, 2 j} \ j h

k+1(t) be the opposite
action, i.e., the one with the lower reward estimate.

• For all k ∈ {0, . . . , K − 1}, update p{k+1, j h
k+1(t)} and

p{k+1, j h
k+1(t)} using the estimates d̂{k+1,2 j−1}(t) and

d̂{k+1,2 j}(t) as:
If β(t) = 0 Then

p{k+1, j h
k+1(t)}(t + 1) =

min(p{k+1, j h
k+1(t)}(t)+�, 1),

p{k+1, j h
k+1(t)}(t + 1) = 1 − p{k+1, j h

k+1(t)}(t + 1).
Else

p{k+1, j h
k+1(t)}(t + 1) = p{k+1, j h

k+1(t)}(t),
p{k+1, j h

k+1(t)}(t + 1) = p{k+1, j h
k+1(t)}(t).

EndIf

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

OMSLANDSETER et al.: HIERARCHICAL DISCRETE PURSUIT LEARNING AUTOMATON: A NOVEL SCHEME 7

5) For each A{k, j}, if either of its action probabilities
p{k+1,2 j−1} and p{k+1,2 j} surpasses a threshold T , where
T is a positive number that is close to unity, the action
probabilities for the HDPA will stop updating, and
convergence is achieved.

6) t = t + 1

EndLoop

Theorem 1: For any value of δ ∈ (0, 1] and integer
M < ∞, there exist a nonzero positive learning parameter,
�0 < 1, such that for all � < �0

Pr {x} > 1 − δ

where x indicates the event that each action is selected more
than M times before time t0.

Proof: The details of the proof that Theorem 1 is true for
the DPA can be found in [4], [29] and [34]. We now further
elaborate on why this is also true for the HDPA.

In the case of the HDPA, we have 2K actions at depth
K denoted as α{K , j} and j ∈ {1, . . . , 2K }. Let Y t

{K , j} be the
number of times action α{K , j} is chosen up to time t . To prove
Theorem 1, we want to show Pr{Y t

{K , j} > M} > 1−δ, which is
the same as Pr {Y t

{K , j} ≤ M} ≤ δ. The events {Y t
{K , j} = l} and

{Y t
{K , j} = n} are mutually exclusive for l 	= n. Consequently,

it follows that:

Pr
�
Y t

{K , j} ≤ M
� =

M�
l=1

Pr
�
Y t

{K , j} = l
�
.

Further, the probability of the actions at depth K being
chosen is connected to the probabilities in shallower depths
as follows:

Pr {α{K , jK }is chosen} = p{K , jK} p{K−1, jK−1}, . . . , p{0, j0}

where jK−1 = � jK/2�, jK−2 = � jK−1/2�, . . ., and j0 =
� j1/2�. Considering the time aspect, it follows that:
Pr {α{K , jK }is chosen at time t}

= p{K , jK}(t)p{K−1, jK−1}(t), . . . , p{1, j1}(t).

Let us further assume that all the LA instances have the
same action probability at beginning, i.e., pk, j (0) = 1/2 at t =
0. For ease of expression, we use p(0) to represent the initial
action probabilities, pk, j (0), for all actions. By the modus
operandus of the various instances of the DPA, we know that
the magnitude by which any action probability can decrease
in any single iteration is bounded by � such that we have

Pr {α{K , jK } is chosen at time t} ≤ 1 and

Pr {α{K , jK } is not chosen at time t} ≤ (1 − (p(0)− t�)K).

Consider the first t iterations. Using these upper bounds,
the probability that α{K , jK } is chosen at most M times among
the t iterations has the following upper bound:

Pr {Y t
{K , j} ≤ M} =

M�
l=1

Pr {Y t
{K , j} = l} ≤

M�
l=1

�
t

l

�
(1)l� t−l

where � = 1−(p(0)− t�)K . To show that a sum of M terms
is less than δ, it is sufficient to make each element of the sum

is less than (δ/M). Let us consider the case of l = m, where
the mth term times M should be less than δ. Consequently,
we need to show that M

�t
l

�
(1)m(1 − (p(0) − t�)K)t−m is

bounded by δ. We see that
�t

l

� ≤ tm , and we need to show that
Mtm� t−m ≤ δ. In order to achieve this, (1 − (p(0) − t�)K)
must be strictly less than unity. In order for (1−(p(0)−t�)K)
to be less than unity, we must have p(0) − t� > 0, which
leads to the bound of �, i.e., � < (p(0)/t) = (1/2t). Hence,
(1 − (p(0) − t�)K) < 1. By definition, 0 < � and thus
0 < � < (1/2t). With this value of �, we can simplify the
analysis, and we now have Pr {Y t

{K , j} ≤ M} < Mtm� t−m ,
where 0 < � < 1. We now evaluate the case when t → ∞
as

lim
t→∞ Mtm� t−m = M lim

t→∞
tm

(1/�)t−m
.

By using L’Hospital’s Rule, it follows that:

M lim
t→∞

tm

(1/�)t−m
= M lim

t→∞
m!

(ln(1/ψ))m(1/�)t−m
= 0.

Therefore, for every leaf action α{K , j}, there exists t = t (j)
such that Pr(Y t

{K , j} ≤ M) ≤ δ. Since t > t (j) then Y t (j)
{K , j} ≥ M

gives Y t
{K , j} ≥ M , and therefore Pr{Y t

{K , j} ≥ M} ≥ Pr{Y t (j)
{K , j} ≥

M}. Consequently, Pr {Y t
{K , j} ≤ M} ≤ δ for all t > t (j). This

implies that the probability of an action not being chosen as
t → ∞, given the restriction of �, is zero.

To complete the proof, let t0 = max1≤ j≤2K {t (j)}. Then for
all t > t0 and for all j such that 1 ≤ j ≤ 2K , we have
Pr {Y t

{K , j} ≤ M} ≤ δ. Theorem 1 is thus proven.

B. Marginality Property

For the second part of the proof, we need to show that,
given that each action α{K , j} is selected a sufficiently large
number of times, the reward estimate of the optimal action
will remain the largest with sufficiently large probability along
the optimal path throughout the hierarchical tree structure.
We first establish a baseline for Theorem 2. Let q{k, j∗

k } be the
probability that the reward estimate, d̂{K , j∗

K }, of the optimal
action, is the largest among all actions of the tree at A{k, j∗

k },
where ∗ is used to indicate the action that corresponds to the
path of the optimal action. This relates to the various depths
of the HDPA, when K > 3, as follows.

1) The First Level (Root): At this depth, we have a single
LA A{0,1}, and q{0,1} is the probability that d̂{K , j∗

K } is the
maximum among all the 2K actions.

2) The Second Level: q{1, j∗
1 } is the probability that d̂{K , j∗

K } is
the maximum among all actions of the tree rooted from
A{1, j∗

1 }. There are 2(K−1) actions that compete for having
the best reward estimate at this depth.

3) The Interior Level(s): For the interior depths of the
hierarchy, this phenomenon holds as we follow the
path down the tree at every level, having fewer actions
competing for the best reward estimate as we go further
down the tree.

4) The Last/Leaf Level: q{K−1, j∗
K−1} is the probability that

d̂{K , j∗
K } is maximum among the two actions of LA

A{K−1, j∗
K−1} at this level. There are exactly two actions

that compete for having the best reward estimate here.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Theorem 2: Given a value of � ∈ (0, 1), there exists a time
instant denoted by t0 < ∞, such that

q{k, j∗
k } > 1 − δ

which is true ∀t > t0 and ∀k ∈ {0, 1, . . . , K − 1}.
Proof: To prove Theorem 2, we use the aspect that q{0,0} <

q{1, j∗
1 } < · · · < q{K−1, j∗

K−1}, since the probability of being
the best from a set of actions is less than the probability of
being the best from a subset of actions. Consequently, proving
Theorem 2 can be achieved by proving that q{0,0} > 1 − δ.
Given that Theorem 1 is proven, the proof of Theorem 2
becomes identical to the corresponding proof for the DPA
given in [4], [29] and [34], respectively. The additional details
of the proof are thus omitted here to avoid repetition.

C. Submartingale Property

In order to conclude the proof in Section IV-C, we first need
to show that the HDPA has the submartingale property. To do
this, we now show that after a time instant t0, the probability
of choosing the optimal action is increasing, in the expected
sense. This feature is different from the probability of being
monotonically increasing, which is a very strong condition.

Theorem 3: Under the HDPA, the quantity�
p{k, j∗

k }(t)
�

where k ∈ {1, . . . , K } and t > t0 is a submartingale.
Proof: We first formalize the submartingale property by

denoting a sequence of random variables as X1, X2, . . . , Xt .
The sequence is a submartingale if for any time instant t

E[Xt] < ∞ and E[Xt+1|X1, X2, . . . , Xt] ≥ Xt .

To prove Theorem 3, we first observe that p{k, j∗
k } is a prob-

ability, which means p{k, j∗
k } ≤ 1 < ∞. Second, we explicitly

calculate E[p{k, j∗
k }(t)], for all k ∈ {1, . . . , K }. The proof of

this theorem is achieved by an inductive argument. At every
level, we consider the nodes that are one and two levels below
it, respectively. Indeed, this is true because that is the structure
that effectively remains at the specific node, and is essentially
depicted in Fig. 1, where the root node of the subtree is
determined by the decision of two children and four grand-
children. Once the proof has been proven for such a scenario,
the overall proof follows trivially, because the decision of
every node is based on the decision of its immediate two
children and four grandchildren. A straightforward inductive
argument formalizes this to be true for the overall tree, since
it is true at every level for the subtree of depth two from
the root of the corresponding subtree. Thus, in what follows,
we merely use the tree structure of Fig. 1 to formalize the
proof.

We look at the first three levels of the LA hierarchy and
calculate E[p{k, j∗

k }(t)], when k = 2. Without loss of generality,
we simplify the notations to what are shown in Fig. 1, and let
A{1,1} (α{1,1}) and A{2,1} (α{2,1}) be the LA (actions) on the
optimal path. One can see that this implies that the optimal
path is the one consisting of all the leftmost nodes in both
levels. We denote the set of all the action probabilities in
time instant t in the tree as P(t). Then, by going through all
the four paths that lead to four individual actions at level 2,
and by following the action probability updating rules of the

HDPA, we can calculate the expected probability of choosing
the optimal action at level 2 as

E[p21(t + 1)|P(t)]
= p11 p21(d21(q11(p21 +�)+ (1 − q11)(p21 −�))

+ (1 − d21)p21)

+ p11 p22(d22(q11(p21 +�)+ (1 − q11)(p21 −�))

+ (1 − d22)p21)

+ p12 p23 p21 + p12 p24 p21

= p11 p21(d21q11 p21 − d21q11�+ d21 p21 − d21�

− d21q11 p21 + d21q11�+ p21 − d21 p21)

+ p11 p22(d22q11 p21 − d22q11�+ d22 p21 − d22�

− d22q11 p21 + d22q11�+ p21 − d22 p21)

+ p12 p21

= p11 p21d21�(2q11 − 1)+ p11 p21 p21

+ p11 p22d22�(2q11 − 1)+ p11 p22 p21

+ p12 p21

= p11�(p21d21 + p22d22)(2q11 − 1)+ p21.

Note that in the above expression, we have omitted all the
time instant information to keep the expression simpler and
neat. The complete version should be

E[p21(t + 1)|P(t)]
= p11(t)�

�
p21(t)d21 + p22(t)d22

��
2q11(t)− 1

�
+ p21(t).

Following the same manner in which we calculated the
above E[p21(t + 1)|P(t)], we are able to get the generalized
formula for the expected probability of choosing the optimal
action at level k

E
	

p{k, j∗
k }(t + 1)|P(t)

= p{k, j∗
k }(t)+

� �
l=1,...,k−1

p{l, j∗
l }(t)

×
⎛
⎝ �

j=1,2

p{k, j}(t)d{k, j}�(2q{k−1, j∗
k−1}(t)− 1)

⎞
⎠

which can be proven by an inductive argument. The difference
between E[p{k, j∗

k }(t + 1)] and p{k, j∗
k }(t) is thus

Diffp{k, j∗k }(t) = E[p{k, j∗
k }(t + 1)|P(t)] − p{k, j∗

k }(t)

=
� �

l=1,...,k−1

p{l, j∗
l }(t)

×
⎛
⎝ �

j=1,2

p{k, j}(t)d{k, j}�(2q{k−1, j∗
k−1}(t)− 1)

⎞
⎠.

As p{k, j}(t) > 0 and d̂{k, j}(t) > 0 for all t, k, and j ,
we clearly see that if ∀t > t0, q{k, j∗

k }(t) > (1/2), then
Diffp{k, j∗k }(t) > 0, and the sequence p{k, j∗

k } with t > t0 is a
submartingale. Therefore, we only need to let 1 − δ = (1/2),
then, by Theorem 2, there exists a time instant t0, such that
for all t > t0 we have

q{k, j∗
k }(t) >

1

2
.

Theorem 3 is thus proven.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

OMSLANDSETER et al.: HIERARCHICAL DISCRETE PURSUIT LEARNING AUTOMATON: A NOVEL SCHEME 9

D. �-Optimality of the HDPA

Finally, we show the �-Optimality of the HDPA.
Theorem 4: For all stationary stochastic Environments, the

HDPA is �-optimal, i.e., the HDPA will converge to the
optimal path P∗ = {p{k, j∗

k }}, k = {1, . . . , K }. Formally, given
any 1−δ > (1/2), there exists a � ∈ (0, 1) and a time instant
t0 < ∞, such that for all � < �0 and for all time instants
t > t0, we have q{k, j∗

k }(t) > 1 − δ,∀k, and the quantity

Pr
�

p{k, j∗
k }(∞) = 1

� → 1, where k ∈ {1, . . . , K − 1}.
Proof: We can interpret Theorem 4 as follows. If the

probability of choosing the optimal action in each level
converges to unity, then the entire tree will converge to the
optimal path, which consists of the optimal nodes from each
level. We thus can follow the level-wise approach to prove
Theorem 4.

We again refer to the simplified tree and notations in Fig. 1
and consider the first two levels in the LA hierarchy, i.e., when
k = 1. We are to prove that Pr {p11(∞) = 1} → 1, and the
proof is essentially the same as how we proved that a flat
DPA converges to the optimal action in [36]. Consequently, the
proof can be based on the submartingale convergence theory,
and we can utilize a Regular function to indirectly study the
convergence probability. First, as per Theorem 3, p11(∞) is
a submartingale. According to the submartingale convergence
theory, p11(∞) = 0 or 1. Second, the convergence probability
Pr {p11(∞) = 1} can be written as Pr {P01(∞) = em},
where em is the unit vector and m is the index of element
which corresponds to the optimal action. At node A{0,1},
em = e1 = [1, 0], as the optimal action is the first action.
Therefore, proving Pr {p11(∞) = 1} → 1 is equivalent to
proving 	(P01) = Pr {P01(∞) = e1} → 1.

To prove this, we shall use the theory of Regular functions,
and follow an argument similar to the one given in [36]. Let

(P) be a function of P , and we define an operator U as

U
(P) = E[
(P(t + 1))|P(t) = P].
Then, we repeatedly apply U , resulting in the expression

U t
(P) = E[
(P(t))|P(0) = P].
If
(P) = U
(P) = U 2
(P) = · · · = U∞
(P),

we call
(P) a regular function of P . If
(P) ≥ U
(P) ≥
U 2
(P) ≥ · · · ≥ U∞
(P),
(P) is a super-regular function
of P , and when
(P) ≤ U
(P) ≤ U 2
(P) ≤ · · · ≤
U∞
(P),
(P) is a sub-regular function of P . Furthermore,
if
(P) satisfies the boundary conditions

(em) = 1 and
(e j) = 0, (for j 	= m) (1)

then, as per the definition of Regular functions and the
submartingale convergence theory, we have

U∞
(P) = E[
(P(∞))|P(0) = P]
=

�
j=1,2

(em)Pr {P(∞) = e j |P(0) = P}

= Pr {P(∞) = em|P(0) = P}
= 	(P). (2)

Equation (2) shows that 	(P) is exactly the function
(P)
upon which U is applied an infinite number of times, and this
function can be lower/upper bounded by
(P) if
(P) is a
sub-regular/super-regular.

Our goal is to find a proper sub-regular function to serve
as the lower bound 	(P01). We solve this by first finding a
corresponding super-regular function of P01. Let us consider
a specific instantiation of
 to be the function
1 and

1(P01) = e−x1 p11

where x1 is a positive constant. It follows that, under the
HDPA, we have

U(
1(P01))−
1(P01)

= E[
1(P01(t + 1))|P(t)] −
1(P01(t))
= E

	
e−x1 p11(t+1)|P01(t)

 − e−x1 p11(t)

=
�
j=1,2

e−x1(p11+�) p1 jd1 j q01

+
�
j=1,2

e−x1(p11−�) p1 j d1 j(1 − q01)

+
�
j=1,2

e−x1 p11 p1 j(1 − d1 j)− e−x1 p11

=
�
j=1,2

p1 jd1 j e
−x1 p11

�
q01

��
e−x1� − ex1�

�

+ (ex1� − 1)
��
. (3)

In the above equation, time instant (t) has been omitted
from p1 j(t), p11(t), and q01(t). We now need to determine a
proper value for x1 such that
1(P) is super-regular, i.e.,

U(
1(P01))−
1(P01) ≤ 0

which is equivalent to solving the following inequality:
q01

�
e−x1� − ex1�

� + �
ex1� − 1

� ≤ 0.

By Taylor expansion, the above equation can be approxi-
mated

q01

�
1 − x1�+ x2

1�
2

2
− 1 − x1�− x2

1�
2

2

�

+ 1 + x1�+ x2
1�

2

2
− 1 ≤ 0

⇒ x1

�
x1�

2
+ 1 − 2q01

�
≤ 0

⇒ 0 ≤ x1 ≤ 2(2q01 − 1)

�
. (4)

Let us now introduce a new function, φ1(P01), which
satisfies the boundary conditions as follows:

φ1(P01) = 1 − e−x1 p11

1 − e−x1
=

�
1, when P01 = e1

0, when P01 = e2

where x1 is similar to how it is defined in
1(P01). It follows
that, if
1(P01) = e−x1 p11 is super-regular (sub-regular),
then φ1(P01) = (1 − e−x1 p11/1 − e−x1) is a sub-regular (super-
regular) [2]. The definition of x1 that renders
1(P01) to be
super-regular makes φ1(P01) to be sub-regular. Following the
property of Regular functions, it follows that:

	(P01) ≥ φ1(P01) = 1 − e−x1 p11

1 − e−x1
. (5)

As (5) holds for every x1 bounded by (4), we can choose
the largest value x1 max = (2(2q01 − 1)/�). When � → 0,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

we have x1 max → ∞, which renders φ1(P01) → 1, hence
	(P01) → 1. Thus, Pr (p11(∞) = 1) → 1 under the HDPA.

The above proof methodology can be applied to higher
levels of the HDPA hierarchy. Take the simplest hierarchical
DPA with K = 2 for an example, again, we refer to Fig. 1 for
the simplified notations, and we are to prove that 	(P11) =
Pr {P11(∞) = e1} = Pr {p21(∞) = 1} → 1.

Let us consider another specific instantiation of
 to be

2(P11) = e−x2 p21

where x2 is a positive constant. Under the HDPA, we have

U(
2(P11))−
2(P11)

= E[
2(P11(t + 1))|P(t)] −
2(P11(t))

= E
	
e−x2 p21(t+1)|P(t)
 − e−x2 p21(t)

= e−x2(p21+�)(p11 p21d21q11)

+e−x2(p21−�)(p11 p21d21(1 − q11))

+ e−x2 p21(p11 p21(1 − d21))+ e−x2(p21+�)(p11 p22d22q11)

+ e−x2(p21−�)(p11 p22d22(1 − q11))

+ e−x2 p21(p11 p22(1 − d22))+ e−x2 p21(p12 p23)

+ e−x2 p21(p12 p24)− e−x2 p21

= e−x2 p21

�
p11 p21

�
e−x2�d21q11+ex2�d21(1 − q11)

�+(1 − d21)

+ p11 p22
�
e−x2�d22q11 + ex2�d22(1 − q11)

+ (1 − d22))+ p12

�
− e−x2 p21

= e−x2 p21

⎡
⎣p11

⎛
⎝ �

j=1,2

p2 j
�
e−x2�d2 j q11 + ex2�d2 j (1 − q11)

+ (1 − d2 j)
�� + p12

 − e−x2 p21

= e−x2 p21

⎡
⎣p11

⎛
⎝ �

j=1,2

p2 j
�
e−x2�d2 j q11 + ex2�d2 j (1 − q11)

− d2 j)
�⎞⎠ + p11

�
j=1,2

p2 j + p12

⎤
⎦

− e−x2 p21

= e−x2 p21

⎡
⎣p11

⎛
⎝ �

j=1,2

p2 j
�
e−x2�d2 j q11 + ex2�d2 j (1 − q11)

− d2 j)
�⎞⎠ + 1

⎤
⎦ − e−x2 p21

= e−x2 p21

⎡
⎣p11

⎛
⎝ �

j=1,2

p2 j d2 j
�
e−x2�q11+ex2�(1 − q11)−1

�⎞⎠
⎤
⎦

= e−x2 p21

⎡
⎣p11

⎛
⎝ �

j=1,2

p2 j d2 j
�
q11

�
e−x2� − ex2�

�

+ (ex2� − 1)
�⎞⎠

⎤
⎦. (6)

Just as in (3), in the above (6), the time instant (t) has been
omitted from p2 j(t), p11(t), and q11(t), to make the notation

less cumbersome. In order for
2(P11) to be super-regular,
we need

U(
2(P11))−
2(P11) ≤ 0

⇒ q11
�
e−x2� − ex2�

� + �
ex2� − 1

� ≤ 0

⇒ 0 ≤ x2 ≤ 2(2q11 − 1)

�
. (7)

The same x2 will render φ2(P11) = (1 − e−x2 p21/1 − e−x2)
to be sub-regular. Clearly, φ2(P11) meets the boundary condi-
tion, thus

	(P11) ≥ φ2(P11) = 1 − e−x2 p21

1 − e−x2
. (8)

Similarly, when � → 0, we have x2 max =
(2(q11 − 1)/�) → ∞, which renders φ2(P11) → 1, whence
	(P11) = Pr {p21(∞) = 1} → 1 under the HDPA.

As explained above, the overall proof of the entire tree
follows by a simple inductive argument. Defining xk as a
positive constant, we can generalize (6) to any level k

U(
k(P{k−1, j∗
k−1}))−
k(P{k−1, j∗

k−1})
= E[
k(P{k−1, j∗

k−1}(t + 1))|P(t)] −
k(P{k−1, j∗
k−1}(t))

= E
�
e−xk p{k, j∗k }(t+1)|P(t)

�
− e−xk p{k, j∗k }(t)

= e−xk p{k, j∗k }
� �

l=0,...,k−1

p{l, j∗
l }(t)

�

×
⎛
⎝ �

j=1,2

p{k, jk}d{k, j}
�
q{k−1, j∗

k−1}
�
e−xk� − exk�

�

+ (exk� − 1)
�⎞⎠ (9)

and the conclusion is the same: when � → 0, we have
xkmax = (2(2q{k−1, j∗

k−1} − 1)/�) → ∞, which renders
φk(P{k−1, j∗

k−1}) → 1. Hence 	(P{k−1, j∗
k−1 }) = Pr {p{k, j∗

k }(∞) =
1} → 1 under the HDPA.

As the LA converges to the optimal action at each level, the
HDPA converges the optimal path, proving Theorem 4.

V. NUMERICAL RESULTS

To demonstrate the performance of the proposed HDPA
scheme, we carried out extensive simulations for different
Environments with “many” actions. To ensure the credibility
of our simulations, we increased the number of experiments
and the convergence criteria compared to the experiments
in [31]. As highlighted earlier, one of the drawbacks of the
HCPA is that it has a sluggish increase in updating the action
probabilities when the probability to be increased approaches
unity. As opposed to this, we expected that the HDPA,
which has a constant increment in the action probability,
would have significantly faster convergence than that of the
HCPA when the convergence criterion is close to unity. Our
results presented below, demonstrated that the HDPA, indeed,
required significantly fewer iterations for cases requiring high
accuracy.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

OMSLANDSETER et al.: HIERARCHICAL DISCRETE PURSUIT LEARNING AUTOMATON: A NOVEL SCHEME 11

TABLE I

BENCHMARK ACTION REWARD PROBABILITIES ESTABLISHED IN [31]

Fig. 2. Action reward probabilities for the 128 actions environment.

Fig. 3. Action reward probabilities for the 256 actions environment.

A. Simulation Environments

We conducted simulations for Environments with 16, 32,
64, 128, 256, and 512 actions. We configured the simulation
Environments for the 16, 32, and 64 actions on the benchmark
action reward probabilities established in [31], which are
listed in Table I. The table lists 64 reward probabilities. The
parameter jK in Table I indicates the index of the action
at depth K in the HDPA structure, and � = Pr {β = 0}
shows the probability of that action obtaining a Reward from
the Environment. We utilized the first 16 probabilities as the
16-action Environment, i.e., jK ∈ {1, . . . , 16}. Likewise, for
the 32-action Environment, we used jK ∈ {1, . . . , 32}, and so
on. For the 128 and 256 actions Environments, we uniformly
generated 128 and 256 reward probabilities between zero and
unity, visualized in Figs. 2 and 3, respectively. Note that for
128, 256, and 512 actions, the reward probabilities utilized
were distinct from those used for the Environments in [31].

B. Algorithms’ Learning Parameters

From the mathematical proof above and the established
theory of VSSA, we know that when the learning parameter,
�, is sufficiently small, the HDPA will converge to the action
that has the maximum reward probability with a probability
close to unity. The same is true when it concerns the value of
λ for the HCPA. The respective values for λ and � determine
how quickly the LA achieves convergence. The higher the
learning parameters are configured, the faster the algorithms
converge. However, if the learning parameters are configured
too high, the algorithm might not converge to the optimal
action with high probability. Therefore, the tuning of these
parameters is a trade-off between the accuracy of finding the
optimal action and the speed of convergence.

To find the best values for λ and �, we utilized a top-
down approach.9 More specifically, we decreased the value
of the learning parameters in a step-wise manner with two
decimals precision until their configured values made the LA

9This issue is application-dependent, and there is no hard-and-fast rule to
determine this. We thank the anonymous Referee who pointed this out to us.

achieve 100% accuracy in converging to the optimal action
for all the number of experiments arranged. Consequently, the
values of the learning parameters that fulfilled these criteria
represented the assumed “best” values for λ and � given the
distinct Environments used in the simulations. We emphasize
that tuning the values of λ and � is challenging because the
Environments’s stochastic nature can cause uncertainty in the
values of λ and �. Moreover, although we obtained the values
for λ and � through extensive testing, it is not true that the
HDPA will “always” select the optimal action because the
convergence is, indeed, in probability due to the �-optimal
property. The reader should also note that the λ and � values
are dependent on the Environment’s reward probabilities and
that the best values of λ and � vary from Environment to
Environment. Therefore, we refer to the values determined for
λ and � in this article as the “best” learning parameters for
the given Environments, and not the “optimal” ones.

C. Average Number of Iterations

The average number of iterations required before con-
vergence (to a convergence threshold, T) is an established
parameter for evaluating a learning scheme’s. efficiency.

We first address the simulation results presented in Table II.
For these simulations, we conducted 600 experiments and
configured the convergence criterion to be 0.992. Thus,
we affirmed that the LA had converged when it achieved a
0.992 probability of choosing one of the actions in its action
probability vector. All the results presented in Table II were
based on all 600 experiments converging to the optimal action.

For the Environment with 16 actions, the “best” learning
parameters were λ = 0.0043 and � = 0.0011. For the Envi-
ronment with 32 and 64 actions, the best learning parameters
were λ = 0.00057 λ = 3.6e−5, � = 0.00015 and � = 9.9e−6,
respectively. The “best” obtained values for the Environment
with 128 actions were λ = 3.9e−5 and � = 9.7e−6. For
256 actions, we obtained λ = 5.9e−6 and � = 1.5e−6 as the
“best” learning parameters. For the 512-action case, visualized
in Fig. 8, we used λ = 7.9e−5 and � = 1.7e−5. From these,
we can observe that the optimal action is further away from the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II

SIMULATION RESULTS OBTAINED FOR THE VARIOUS ENVIRONMENTS

suboptimal one. Therefore, the Environment is “simpler” than,
e.g., the 64, 128, and 256-action cases, because the algorithms
required less number of iterations for this Environment. Thus,
the hardness of the Environment can impact the number of
iterations more than the number of actions.

Table II includes both algorithms’ results, and lists both
the Mean and the Standard Deviation (Std) of the number of
iterations required before convergence. Let us first consider
the cases with 16, 32, and 64 actions based on the benchmark
probabilities in Table I. The HDPA required just 64%, 60%,
and 59% of the total number of iterations that the HCPA
required for the 16, 32, and 64 actions, respectively. The
benefit of HDPA over HCPA increased with the number of
actions. Observing the Std, the HDPA had more variation in
the number of iterations for all three environments.

Considering the results for 128 actions (with action reward
probabilities depicted in Fig. 2), the HDPA converged within
approximately 97 800 iterations on average, while the HCPA
required 155 000 iterations. Comparing the algorithms’ Std,
we again observe that the HDPA had more variation compared
with that of the HCPA. This indicates that HDPA is slightly
more unpredictable in its convergence iterations. As we can
observe for the 256 case, the HDPA required significantly
fewer iterations than the HCPA. More specifically, the HDPA
achieved convergence with just 60% of the iterations that the
HCPA required, which clearly demonstrated the advantage of
the HDPA over HCPA in the above-studied configurations.

D. Illustrative Details of Convergence Analysis

In this section, we present more convergence details for
the Environments with 64 actions. For these simulations,
we conducted 1000 experiments with 0.999 as the convergence
criterion. The “best” learning parameters for these simulations,
found with the top-down approach, were λ = 3.8e−5 and � =
9.4e−6, respectively. In Fig. 4, a cumulative representation of
the number of iterations required with the different schemes is
presented. As we can observe, the HDPA required significantly
fewer iterations, and we see that approximately 90% of the
experiments converged within approximately 140 000 itera-
tions. In comparison, none of the HCPA experiments required
less than 200 000 iterations.

In Fig. 5, we present the number of iterations required for
the HCPA and the HDPA through a scatter representation.
We can observe that some of the HDPA experiments required
more iterations than the HCPA, and that some of them coincide

Fig. 4. Cumulative representation of the percentage of experiments con-
verging within a certain number of iterations. The figure is based on
1000 experiments, with 0.999 as the convergence criterion for 64 actions.

Fig. 5. Scatter plot of the experiment number and the number of iterations
it took before the LA converged for that experiment. The figure is based on
1000 experiments, with 0.999 as the convergence criterion for 64 actions.

with the number of iterations as the HCPA. However, these
are outliers, and most of the experiments are concentrated at
around 100 000 for the HDPA. For the HCPA we see that the
number of iterations is located at around 200 000. The reason
that the iteration numbers in most of the experiment instances
is close to the actual minimum number is that the numbers of
iterations become close to each other after the action selection
probabilities reach a certain level. In these cases, it is very
likely that the LA choose the optimal actions, and that they
also obtain a reward for choosing these actions. Due to the
pursuit concept, the system rewarded the current best actions
even if a suboptimal action was chosen and rewarded.

E. Performance for Different Convergence Criteria

In Figs. 6 and 7, we present the performance of the HCPA
and the HDPA for different convergence criteria for 64 actions.
In these simulations, we conducted 100 experiments, where we
used the top-down approach for finding the “best” λ and � for
each individual convergence criterion. The “best” λ and � for
the convergence criteria between 0.90 and 0.99 can be made
available to the interested readers. For the convergence criteria
between 0.990 and 0.999, the “best” learning parameters were
found to be λ = 5.3e−5 and � = 1.0e−5 for all convergence
criteria.10 The reason why these learning parameters remained

10The reader should note that the “best” values for λ and � found here
differ from the “best” ones reported in Sections V-C and V-D because the
numbers of experiments are different. Indeed, the 1 000 experiments stipulated
in Section V-D set a higher requirement to the learning parameters than the
100 experiments in Section V-E, and thus required more conservative learning.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

OMSLANDSETER et al.: HIERARCHICAL DISCRETE PURSUIT LEARNING AUTOMATON: A NOVEL SCHEME 13

Fig. 6. Average number of iterations required before convergence for
100 experiments with different convergence criteria from 0.90 to 0.99 for
a 64-action environment.

Fig. 7. Average number of iterations required before convergence for
100 experiments with different convergence criteria from 0.990 to 0.999 for
a 64-action environment.

constant is that when the LA reached such a high probability
level as 0.990, it rarely changed to another action than the
one it was currently pursuing. Consequently, the values for λ
and � that we found represented the highest (fastest) learning
parameters for all convergence criteria above 0.990.

In Fig. 6, we can observe that the HCPA required less
iterations on average for the convergence criteria between
0.9 and 0.97. However, for the convergence criteria of 0.98 and
0.99, the HDPA had fewer required iterations on average.
Consequently, we observed that the HDPA was more efficient
as the convergence requirement was configured closer to unity.
The effectiveness of the HDPA for higher convergence criteria
was further verified in Fig. 7, where the HDPA had fewer
required iterations on average for all convergence require-
ments. Additionally, it is clear from Fig. 7 that the difference
between the two schemes increased as the criterion increased.

F. Comparison With Other Competing LA

Before we conclude this article, it is pertinent that we
compare our results with another set of algorithms.11 These
papers [37], [38], [39] (referred to as AlgJu1, AlgJu2,
and AlgJu3) have all been written by the same team of
researchers, and it is prudent to compare them quantitatively
and qualitatively.

Our first remark is that these papers are brilliant within
the field of LA. We have implemented all of them and found
that they are very competitive even against the best-reported

11We were unaware of these papers, when we submitted the initial version of
the paper. We are extremely grateful to the anonymous Referee who directed
us to them. This section is dedicated to such a mutual comparison.

TABLE III

COMPARISON BETWEEN THE HDPA AND ALGJU3 BASED
ON 1000 EXPERIMENTS

schemes. Of particular interest, however, is the scheme AlgJu3
presented in [39], which is noticeably superior to AlgJu1 and
AlgJu2 from [37] and [38], respectively. In the interest of
brevity and space, we merely report below the results compar-
ing our work with the paper of [39], while the comparisons
with [37] and [38] are included in the Ph.D. thesis [40].

The methodology that is used in AlgJu3 has the potential
of making it the most superior algorithm. However, the under-
lying principle is a two-edged sword as explained below.

1) The principle which renders this article competitive is
that after a sufficiently large number of iterations it is
able to distinguish between “the boys and the men.” In
this way, the algorithm decides to discard many of the
rather inferior actions, resulting in a brilliant paradigm
of learning within a smaller action space. This is the
reason why the method becomes so competitive.

2) The negative side of such a decision is that if such an
action-pruning task is undertaken after a large number
of iterations, it is, indeed, not profitable. But if it is
undertaken before this “large” number of iterations,
in many cases the scheme, unfortunately, discards some
of the more superior actions. While this is mostly an
infrequent occurrence, in reality, when the actions are
highly competitive, it does occur to a noticeable extent
by which some of the best actions are discarded.

3) The above negative phenomenon, while being less likely
in stationary Environments, is an almost-predominant
occurrence in “nonstationary” Environments.

4) While the above phenomenon can be mitigated by using
a small enough learning parameter, the question of
determining the size of the parameter is still open, other
than by invoking a meta-learning scheme.

The results of comparing our algorithm with AlgJu3 [39] are
given in Table III, where as mentioned above, the weaker
schemes of AlgJu1 and AlgJu2 are omitted. The reader will
observe that AlgJu3 is superior in most cases, but we have
to emphasize that the results reported in the article are not as
stringent as those reported here because we have required a
categorical 100% accuracy. AlgJu3 is arguably superior, but it
has an impediment in that in some cases it discards the best
action from the entire competition. Thus, while it appears to
be superior, as explained in the above items, the truth of the
matter is that its superiority is a result of operating within a
diminished action space.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Action reward probabilities for the 512-action environment.

Fig. 9. Performance for a 64-action environment where the optimal action
changes over time. After about 13 000 iterations both α1 and α2 are discarded
from the competition because of the environment’s nonstationarity.

This comment has a major significance as mentioned in
the third item above. The graph in Fig. 9 displays the action
selection probability when α1 is the best action and after about
13 000 iterations it discards both α1 and α2 because of the
nonstationarity of the Environment.

VI. CONCLUSION

In this article, we have thoroughly surveyed the strategies
to enhance the speed and accuracy in the field of LA over
the last six decades. By incorporating the major phenomena
into a single machine, namely the HDPA, proposed in this
article, we are able to beat the state-of-the-art HCPA in terms
of efficiency when the accuracy requirement is uniformly
superior, e.g., above 0.99. In specifically, the HDPA combines
VSSA probability updating functionality, discretizing the prob-
ability space and the Estimator phenomenon together into a
hierarchical tree structuring with pursuit capabilities. We have
explained the fine details of the algorithm and proven its �-
optimality through a formal, rigorous mathematical analysis.
Our simulation results have demonstrated the advantage of
the HDPA compared with the HCPA when the convergence
criterion is close to unity. Indeed, the HDPA is arguably the
best LA reported in the literature, to-date.

REFERENCES

[1] M. L. Tsetlin, “Finite automata and modeling the simplest forms of
behavior,” Uspekhi Matem Nauk, vol. 8, no. 4, pp. 1–26, 1963.

[2] K. S. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction (Dover Books on Electrical Engineering Series). Mineola,
NY, USA: Dover, 2012.

[3] S. Lakshmivarahan, Learning Algorithms Theory and Applications, 1 ed.
New York, NY, USA: Springer-Verlag, 1981.

[4] M. A. L. Thathachar and P. S. Sastry, “Estimator algorithms for learning
automata,” in Proc. Platinum Jubilee Conf. Syst. Signal Process. Ben-
galuru, Karnataka: Indian Institute of Science, Department of Electrical
Engineering, 1986.

[5] R. Thapa, L. Jiao, B. J. Oommen, and A. Yazidi, “A learning automaton-
based scheme for scheduling domestic shiftable loads in smart grids,”
IEEE Access, vol. 6, pp. 5348–5361, 2018.

[6] A. Yazidi, I. Hassan, H. L. Hammer, and B. J. Oommen, “Achieving fair
load balancing by invoking a learning automata-based two-time-scale
separation paradigm,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32,
no. 8, pp. 3444–3457, Aug. 2021.

[7] S. Sahoo, B. Sahoo, and A. K. Turuk, “A learning automata-based
scheduling for deadline sensitive task in the cloud,” IEEE Trans. Services
Comput., vol. 14, no. 6, pp. 1662–1674, Nov. 2021.

[8] L. Zhu, K. Huang, Y. Hu, and X. Tai, “A self-adapting task scheduling
algorithm for container cloud using learning automata,” IEEE Access,
vol. 9, pp. 81236–81252, 2021.

[9] R. R. Rout, G. Lingam, and D. V. L. N. Somayajulu, “Detection of
malicious social bots using learning automata with URL features in
Twitter network,” IEEE Trans. Computat. Social Syst., vol. 7, no. 4,
pp. 1004–1018, Aug. 2020.

[10] H. Guo, S. Li, K. Qi, Y. Guo, and Z. Xu, “Learning automata based
competition scheme to train deep neural networks,” IEEE Trans. Emerg.
Topics Comput. Intell., vol. 4, no. 2, pp. 151–158, Apr. 2020.

[11] Z. Zhang, D. Wang, and J. Gao, “Learning automata-based multiagent
reinforcement learning for optimization of cooperative tasks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 10, pp. 4639–4652,
Oct. 2020.

[12] C. Di, B. Zhang, Q. Liang, S. Li, and Y. Guo, “Learning automata-based
access class barring scheme for massive random access in machine-
to-machine communications,” IEEE Internet Things J., vol. 6, no. 4,
pp. 6007–6017, Aug. 2019.

[13] S. Tanwar, S. Tyagi, N. Kumar, and M. S. Obaidat, “LA-MHR: Learn-
ing automata based multilevel heterogeneous routing for opportunistic
shared spectrum access to enhance lifetime of WSN,” IEEE Syst. J.,
vol. 13, no. 1, pp. 313–323, Mar. 2019.

[14] B. El Khamlichi, D. H. N. Nguyen, J. El Abbadi, N. W. Rowe, and
S. Kumar, “Learning automaton-based neighbor discovery for wireless
networks using directional antennas,” IEEE Wireless Commun. Lett.,
vol. 8, no. 1, pp. 69–72, Feb. 2019.

[15] X. Deng et al., “Learning-automata-based confident information cover-
age barriers for smart ocean Internet of Things,” IEEE Internet Things
J., vol. 7, no. 10, pp. 9919–9929, Oct. 2020.

[16] Z. Yang, Y. Liu, Y. Chen, and L. Jiao, “Learning automata based
Q-learning for content placement in cooperative caching,” IEEE Trans.
Commun., vol. 68, no. 6, pp. 3667–3680, Jun. 2020.

[17] R. O. Omslandseter, L. Jiao, Y. Liu, and B. J. Oommen, “User grouping
and power allocation in NOMA systems: A novel semi-supervised
reinforcement learning-based solution,” Pattern Anal. Appl., pp. 1–12,
Jul. 2022, doi: 10.1007/s10044-022-01091-2.

[18] O.-C. Granmo, “The Tsetlin machine—A game theoretic bandit driven
approach to optimal pattern recognition with propositional logic,” 2018,
arXiv:1804.01508.

[19] R. K. Yadav, L. Jiao, O.-C. Granmo, and M. Goodwin, “Robust
interpretable text classification against spurious correlations using AND-
rules with negation,” in Proc. 31st Int. Joint Conf. Artif. Intell., Jul. 2022,
pp. 4439–4446.

[20] K. D. Abeyrathna et al., “Massively parallel and asynchronous tsetlin
machine architecture supporting almost constant-time scaling,” in Proc.
38th Int. Conf. Mach. Learn. (ICML), 2021, pp. 1–11.

[21] L. Jiao, X. Zhang, O.-C. Granmo, and K. D. Abeyrathna, “On the
convergence of Tsetlin machines for the XOR operator,” IEEE
Trans. Pattern Anal. Mach. Intell., early access, Sep. 7, 2022, doi:
10.1109/TPAMI.2022.3203150.

[22] X. Zhang, L. Jiao, O.-C. Granmo, and M. Goodwin, “On the convergence
of Tsetlin machines for the identity- and not operators,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 6345–6359, Oct. 2022.

[23] S. Lakshmivarahan and M. A. L. Thathachar, “Absolutely expedient
learning algorithms for stochastic automata,” IEEE Trans. Syst., Man,
Cybern., vol. SMC-3, no. 3, pp. 281–286, Apr. 1973.

[24] B. Johnoommen, “Absorbing and ergodic discretized two-action learning
automata,” IEEE Trans. Syst., Man, Cybern., vol. SMC-16, no. 2,
pp. 282–293, Mar. 1986.

[25] B. J. Oommen and J. P. R. Christensen, “�-optimal discretized linear
reward-penalty learning automata,” IEEE Trans. Syst., Man, Cybern.,
vol. SMC-18, no. 3, pp. 451–458, Jun. 1988.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/s10044-022-01091-2
http://dx.doi.org/10.1109/TPAMI.2022.3203150

OMSLANDSETER et al.: HIERARCHICAL DISCRETE PURSUIT LEARNING AUTOMATON: A NOVEL SCHEME 15

[26] X. Zhang, B. J. Oommen, and O.-C. Granmo, “The design of
absorbing Bayesian pursuit algorithms and the formal analyses of
their �-optimality,” Pattern Anal. Appl., vol. 20, no. 3, pp. 797–808,
Aug. 2017.

[27] M. Agache and B. J. Oommen, “Generalized pursuit learning schemes:
New families of continuous and discretized learning automata,” IEEE
Trans. Syst., Man, B, Cybern., vol. 32, no. 6, pp. 738–749, Dec. 2002.

[28] J. K. Lanctôt and B. J. Oommen, “Discretized estimator learning
automata,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 22, no. 6,
pp. 1473–1483, Nov./Dec. 1992.

[29] B. J. Oommen and M. Agache, “Continuous and discretized pursuit
learning schemes: Various algorithms and their comparison,” IEEE
Trans. Syst. Man, Cybern. B, Cybern., vol. 31, no. 3, pp. 277–287,
Jun. 2001.

[30] X. Zhang, O.-C. Granmo, and B. J. Oommen, “Discretized Bayesian
pursuit—A new scheme for reinforcement learning,” in Advanced
Research in Applied Artificial Intelligence, vol. 7345. Berlin, Germany:
Springer, 2012, pp. 784–793.

[31] A. Yazidi, X. Zhang, L. Jiao, and B. J. Oommen, “The hierarchical con-
tinuous pursuit learning automation: A novel scheme for environments
with large numbers of actions,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 31, no. 2, pp. 512–526, Feb. 2020.

[32] G. I. Papadimitriou, “Hierarchical discretized pursuit nonlinear learning
automata with rapid convergence and high accuracy,” IEEE Trans.
Knowl. Data Eng., vol. 6, no. 4, pp. 654–659, Aug. 1994.

[33] X. Zhang, B. J. Oommen, O.-C. Granmo, and L. Jiao, “Using the theory
of regular functions to formally prove the �-optimality of discretized
pursuit learning algorithms,” in Proc. 27th Int. Conf. Modern Adv. Appl.
Intell., vol. 8481, 2014, pp. 379–388.

[34] K. Rajaraman and P. S. Sastry, “Finite time analysis of the pursuit
algorithm for learning automata,” IEEE Trans. Syst. Man, Cybern. B,
Cybern., vol. 26, no. 4, pp. 590–598, Aug. 1996.

[35] X. Zhang, L. Jiao, B. J. Oommen, and O.-C. Granmo, “A conclusive
analysis of the finite-time behavior of the discretized pursuit learning
automaton,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 1,
pp. 284–294, Jan. 2020.

[36] X. Zhang, B. J. Oommen, O.-C. Granmo, and L. Jiao, “A formal proof of
the �-optimality of discretized pursuit algorithms,” Appl. Intell., vol. 44,
no. 2, pp. 282–294, 2016.

[37] J. Zhang, C. Wang, D. Zang, and M. C. Zhou, “Incorporation of optimal
computing budget allocation for ordinal optimization into learning
automata,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp. 1008–1017,
Apr. 2016.

[38] J. Zhang, C. Wang, and M. C. Zhou, “Fast and epsilon-optimal dis-
cretized pursuit learning automata,” IEEE Trans. Cybern., vol. 45, no. 10,
pp. 2089–2099, Oct. 2015.

[39] J. Zhang, C. Wang, and M. C. Zhou, “Last-position elimination-
based learning automata,” IEEE Trans. Cybern., vol. 44, no. 12,
pp. 2484–2492, Dec. 2014.

[40] R. O. Omslandseter, “On the theory and applications of hierarchical
learning automata and object migration automata,” Ph.D. thesis, Dept.
Inf. Commun. Technol., Univ. Agder, Norway, Europe, 2023.

Rebekka Olsson Omslandseter was born in Pors-
grunn, Norway, in January 1995. She received the
B.E. degree from the University of Agder (UiA),
Grimstad, Norway, in 2017, where she is currently
pursuing the integrated Ph.D. degree.

She is currently a Scientific Researcher with
the Centre of Artificial Intelligence Research
(CAIR), UiA. Her research interests include learn-
ing automata, partitioning and clustering algorithms,
resource allocation, and performance evaluation for
communication and energy systems.

Lei Jiao (Senior Member, IEEE) received the B.E.
degree from Hunan University, Changsha, China,
in 2005, the M.E. degree from Shandong University,
Jinan, China, in 2008, and the Ph.D. degree in
information and communications technology from
the University of Agder (UiA), Grimstad, Norway,
in 2012.

He is currently an Associate Professor with the
Department of Information and Communication
Technology, UiA. His research interests include
reinforcement learning, learning automata, natural

language processing, and resource allocation for communication and energy
systems.

Xuan Zhang received the bachelor’s degree in elec-
tronics and information engineering and the mas-
ter’s degree in signal and information processing,
and the Ph.D. degree in information and commu-
nication technology from the University of Agder
(UiA), Grimstad, Norway, in 2005, 2008, and 2015,
respectively.

She is currently a Senior Researcher with the
Norwegian Research Center (NORCE), Grimstad.
At the same time, she is also a Scientific Researcher
with the Centre of Artificial Intelligence Research

(CAIR), UiA. Her research interests include learning automata, mathematical
analysis on learning algorithms, deep learning, natural language processing,
and computer vision.

Dr. Zhang is currently serving as a Board Member of the Norwegian
Association for Image Processing and Machine Learning.

Anis Yazidi (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees from the University of
Agder, Grimstad, Norway, in 2008 and 2012,
respectively.

He was a Researcher with Teknova AS, Grimstad.
From 2014 to 2019, he was an Associate Professor
with the Department of Computer Science, Oslo
Metropolitan University, Oslo, Norway, where he
is currently a Full Professor, leading the research
group in applied artificial intelligence. He is also
a Professor II with the Norwegian University of

Science and Technology (NTNU), Trondheim, Norway. His current research
interests include machine learning, learning automata, stochastic optimization,
and autonomous computing.

B. John Oommen (Life Fellow, IEEE) was born
in Coonoor, India, in September 1953. He received
the B.Tech. degree from IIT Madras, Chennai, India,
in 1975, the M.E. degree from the Indian Institute
of Science, Bengaluru, India, in 1977, and the M.S.
and Ph.D. degrees from Purdue University, West
Lafayettte, IN, USA, in 1979 and 1982, respectively.

He joined the School of Computer Science,
Carleton University, Ottawa, ON, Canada, in the
1981–1982 academic year. He is still at Carleton and
holds the rank of a Full Professor. Since July 2006,

he has been awarded the honorary rank of Chancellor’s Professor, which is a
Lifetime Award from Carleton University, and he is also an Extraordinary
Professor at the North-West University, Potchefstroom, South Africa. His
research interests include automata learning, adaptive data structures, statisti-
cal and syntactic pattern recognition, stochastic algorithms, and partitioning
algorithms. He is the author of more than 495 refereed journal articles and
conference publications.

Dr. Oommen is a fellow of IAPR. He has also served on the Editorial Board
for the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS and
Pattern Recognition.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: UNIVERSITY OF AGDER. Downloaded on February 23,2023 at 10:09:35 UTC from IEEE Xplore. Restrictions apply.

	article1
	Article

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

