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Abstract

Time series forecasting is one of the foremost challenges studied in finance. In this thesis

various Convolutional Neural Network and Long Short Term Memory Artificial Neural

Network models are used to predict Bitcoin returns. Previous literature has explored using

data from Sentiment analysis of Social Media, and Blockchain information in isolation.

This thesis seeks to combine the predictive power of earlier smaller models into a larger

model that better utilizes a broader category of features in time series prediction. The

resulting models are able to predict Bitcoin returns well, beating out simpler methods that

do not utilize Artificial Neural Networks.

Keywords: Time series forecasting, Artificial neural networks, Forecasting, Bitcoin,

Cryptocurrencies, Sentiment analysis.

JEL Classification: C45, C53.
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1 Introduction

This master thesis explores machine learning predictions on large datasets. Machine learn-

ing has been able to develop comprehensive models that can make astonishing predictions in

fields like text and speech recognition, and image classification. These models rely on large

datasets to be able to create models with such great applications. When machine learning

has been applied to finance, there has been a trend of not being able to fully utilize the depth

and complexity of Neural Networks. This is because financial data is often very limited in

frequency and span (Israel et al., 2020). When looking at returns one might only have one

data point per day (or per month), if only a few features are available then little information

can be extracted from this. This thesis attempts to remedy this limitation by broadening the

feature selection available, by using a prediction target where data on fundamental factors

are more easily available, including market perception, through sentiment analysis.

The use of Artificial Neural Networks (ANNs) in finance has been studied since the 1980s.

Researchers have compared the performance of ANNs to conventional financial forecasting

techniques and found that ANNs often outperform these methods. Some studies have found

that neural network models can be more effective than classic statistical methods like regres-

sion and ARIMA at predicting price changes. The use of ANNs to predict prices and returns

of Bitcoin and other cryptocurrencies has also been explored. Researchers have found that

deep learning-based algorithms like LSTM can outperform traditional methods.

In the thesis, a rich dataset is gathered on historical Bitcoin prices, market sentiments

through social media sentiment analysis, and various fundamental features of the underlying

Bitcoin infrastructure, in the form of blockchain information. Several types of Artificial Neu-

ral Network models are trained, including Convolutional Neural networks, Long-Short Term
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Memory Artificial Neural Networks, and combination models. Their performance metrics

are characterized against the mean Bitcoin return. Several models outperform the simple

mean return model, providing increased backing for the broad applications of Artificial Neu-

ral Networks for time-series prediction in finance.

The rest of the thesis is organized as follows. Chapter 2 present a review of the existing

liteature relating to Artificial Neural Networks and their applications in finance. Chapter 3

covers prerequisite theory, including the basics of Artifcial Neural Networks, and the Efficient

Market Hypothesis. Chapter 4 presents the data used in this thesis, the methods of collection,

and the properties of the dataset. Chapter 5 details the methodology used when building the

Artificial Neural Network models used in this thesis. Chapter 6 details the empirical results,

and discusses them in light of previous literature and theory. Finally chapter 7 serves as the

conclusion of the thesis.
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2 Literature Review

The applications of Artificial Neural Networks to finance has been a topic of study since the

end of the 1980s (White, 1988), (Jr. & Yoon, 1992). A number of authors have contrasted

the outcomes of neural networks with those of conventional financial forecasting techniques.

Canadian stock market returns were used to compare the average directional accuracy of

ANNs with conventional least square regression and logistic regression by Olson and Moss-

man, 2003. The outcomes revealed that the ANN performed better than the best regression

alternatives. Similar to this, Mostafa, 2010 carried out an empirical study to project clos-

ing price changes on the Kuwait Stock Exchange. To forecast the closing movements, they

employed extended regression neural networks and multi-layer perceptron neural networks.

The projections were also assessed using root mean square error (RMSE) and mean absolute

error (MAE). The findings demonstrated that classic statistical methods like regression and

ARIMA are not likely to perform as well as neural network models in predicting price changes.

Sitte and Sitte, 2000 studied how effective time delay neural networks (TDNN) are at pre-

dicting the S&P500, to measure the performance of their network they used root mean

square error (RMSE). They found that the S&P500 TDNN predictions were same as a ran-

dom walk prediction. They believed this to be a characteristic of the data, not the neural

network. Rundo et al., 2019 did a large review of the most significant works in the field of

machine learning applied to finance. They found the field was still evolving rapidly with

new techniques continuing to be published, such as bat-neural network multi-agent system

(BNNMAS), genetic algorithm-neural network (GANN), long short-term memory (LSTM)

neural networks, among others. The surveyed studies conducted and reported in the article

showed that deep learning-based algorithms such as LSTM outperformed traditional-based

algorithms such as the ARIMA model. They also noted the significant success of sentiment
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analysis of both financial news and twitter data for building models that predict stock prices.

With the rise of Bitcoin and cryptocurrencies, an interest in using Artificial Neural Networks

to predict both prices and returns has emerged (Spilak, 2018). Both Serafini et al., 2020 and

Pano and Kashef, 2020 used VADER sentiment analysis for bitcoin pricing prediction. Ser-

afini et al., 2020 used both a Recurrent Neural Network, and an Auto-Regressive Integrated

Moving Average with eXogenous Input (ARIMAX) model to model how market behavior

and sentiment impacted Bitcoin pricing. Both models were evaluated using Mean Square

Error (MSE). Pano and Kashef, 2020 focused on finding what the optimal preprocessing

strategy for BTC tweets to develop an accurate machine learning model that can predict

bitcoin prices was. Pant et al., 2018 manually analyzed sentiments of tweets to train a Re-

current Neural Network (RNN) to predict Bitcoin prices.

Tripathi and Sharma, 2022 compared various types of LSTM networks (LSTM, Bi-directional

LSTM, Convolutional Neural Network LSTM) on bitcoin price prediction, using Bayesian

Optimization for hyperparameter tuning. They found that the Deep Artificial Neural Net-

work model created using technical indicators as input data outperformed the other models,

with record accuracy.

Jang and Lee, 2018 used a Bayesian Neural Network to predict bitcoin prices using fundamen-

tal blockchain data, including average block size, transactions per block, median confirmation

time, hash rate, mining difficulty, number of confirmed transactions, and total amount of

Bitcoin mined, finding this to improve the predictions of their model.

The paper Israel et al., 2020 discusses the potential uses of machine learning in finance,

particularly in the field of return prediction. The authors provide an overview of machine

learning and how it differs from traditional statistical methods. They also discuss the chal-

lenges of applying machine learning to finance and provide examples of successful uses of

machine learning in finance. The authors conclude that machine learning is a natural evolu-

tion of quantitative tools in asset management, and not a revolutionary shift in the business

model. Israel et al., 2020 argued that return prediction is a “small data” problem, because the
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amount of predictor variables does not change the class of problem to a “big data” problem,

to do that one would need a large set of variables to try to estimate.

To summarize, various types of Artificial Neural Networks have been successfully been em-

ployed in previous research as a tool for forecasting financial time series. Previous literature

on Bitcoin return prediction tend to only use historical prices and sentiments, or historical

prices and blockchain data. This motivates the exploration of combining both of these data

source into a more powerful model.
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3 Theory

3.1 Artificial Neural Networks

Artificial neural networks (ANNs) are computational models that are inspired by the struc-

ture and function of the human brain. These networks are composed of many interconnected

processing nodes, which are called neurons. Each neuron receives input from other neurons,

processes this input using a non-linear activation function, and then produces an output

that is passed on to other neurons in the network. The main advantage of ANNs is that

they are capable of learning from data, which allows them to make predictions or decisions

based on previously unseen inputs. This ability to learn from data is what makes ANNs a

powerful tool for many applications, such as image and speech recognition, natural language

processing, and predictive modeling.

In an ANN, the connections between neurons are represented by weights, which are numer-

ical values that determine the strength of the connection. During the learning process, the

weights of the connections are adjusted based on the input data and the desired output, in

order to improve the performance of the network. This process of adjusting the weights is

known as training the network.

There are many different types of ANNs, which can vary in terms of their architecture and

the learning algorithms that they use. Some of the most common types of ANNs include

feedforward networks, convolutional networks, recurrent networks, and deep learning net-

works. Each of these types of ANNs has its own strengths and weaknesses, and is suited to

different types of tasks and data.
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3.1.1 The Perceptron

The perceptron is a type of artificial neural network that was developed in the 1950s by

Frank Rosenblatt, a psychologist and computer scientist at the Cornell Aeronautical Labo-

ratory. The perceptron is a simple model of a neuron in the human brain, and it is composed

of a single layer of processing units, or neurons, that are connected to each other by weights

(Rosenblatt, 1960).

Figure 3.1: Structure of a single-layer perceptron (Shi, 2019).

Rosenblatt‘s original perceptron was designed to simulate the behavior of the visual system

in the brain, and it was intended to be used for pattern recognition tasks. The perceptron

was trained using a learning algorithm called the perceptron convergence procedure, which

adjusted the weights of the network based on the input data and the desired output.

The perceptron was one of the first examples of a supervised learning algorithm, and it was

seen as a promising step towards the development of intelligent machines that could learn

from data. However, the perceptron had several limitations, and it was only able to solve

linearly separable problems, which are problems in which the data can be divided into two

classes by a single straight line (Minsky & Papert, 1969).

Despite its limitations, the perceptron sparked a great deal of interest and research in the

field of artificial neural networks. In the 1960s, a number of researchers extended the percep-

tron model by adding additional layers of neurons, which allowed the network to solve more

complex problems. These multi-layer perceptrons, as they were called, were the precursors

to modern deep learning networks, which are now used for a wide range of applications.
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Today, the perceptron is still used as a building block for many artificial neural networks,

and it remains an important concept in the field of machine learning. Although it has been

surpassed by more advanced algorithms, the perceptron continues to be a fundamental tool

for understanding and working with neural networks.

3.1.2 Recurrent Neural Networks

Jordan, 1986 presented a first architecture as a superset of feedforward artificial neural net-

works that has one or more cycles. Each cycle makes it possible for a neuron to follow a

path back to itself, allowing feedback of information. These cycles, or recurrent edges, allow

the network‘s hidden units to see its own previous output so they give the network memory

(Elman, 1990).

Recurrent neural networks (RNNs) are a type of neural network that can process sequential

data, such as time series or natural language. Unlike traditional feedforward neural net-

works, which take a fixed-size input and produce a fixed-size output, RNNs can process a

variable-length input and produce a variable-length output. This makes them well-suited

for tasks such as language translation and speech recognition, where the input and output

sequences can have different lengths.

RNNs were first proposed in the 1980s (Jordan, 1986), but it wasn’t until the advent of deep

learning and powerful computational resources in the 2010s that they became widely used.

Early RNNs were relatively shallow, with only one or two hidden layers, and were not able

to model long-range dependencies in the data. This led to the development of deeper RNNs,

such as long short-term memory (LSTM) networks and gated recurrent units (GRUs), which

are able to capture long-range dependencies more effectively.

RNNs are typically trained using a variant of backpropagation called backpropagation through

time (BPTT). This involves unrolling the RNN in time and applying the chain rule to cal-

culate the gradient of the loss function with respect to the network’s weights. BPTT can be
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computationally expensive, especially for long sequences, and several techniques have been

developed to improve its efficiency, such as truncated BPTT and reverse-mode differentiation

(Werbos, 1990), (Frostig et al., 2021).

Despite their effectiveness, RNNs have several limitations. One of the main challenges is

the vanishing gradient problem, where the gradient of the loss function with respect to the

network’s weights becomes very small during training, making it difficult for the network to

learn. This can be mitigated using techniques such as gradient clipping and initialization

of the network’s weights. Another challenge is the inability of RNNs to handle long-range

dependencies in the data. While deeper RNNs can alleviate this problem to some extent,

they can still struggle to model very long sequences.

Overall, RNNs have proven to be a powerful tool for modeling sequential data and have

been applied to a wide range of tasks, including language translation, speech recognition,

and time series forecasting. While they have their limitations, research continues to improve

their performance and address their challenges.

3.2 Efficient Market Hypothesis

The efficient market hypothesis (EMH) is a theory in finance that states that financial mar-

kets are efficient and that the prices of financial assets, such as stocks and bonds, reflect all

available information. The EMH is based on the assumption that market participants are

rational and have access to the same information (De Bondt & Thaler, 1985). The concept

of market efficiency has a long history, dating back to the work of French mathematician

Louis Bachelier in 1900 (Sewell, 2011). Bachelier’s work, which focused on the behavior of

stock prices, laid the foundation for the development of the EMH in the 1960s.

The EMH was formally introduced by Eugene Fama in his 1965 paper “The Behavior of

Stock Market Prices“ (Fama, 1965). In this paper, Fama proposed three different forms of

market efficiency, which are now known as the weak form, semi-strong form, and strong form

of the EMH.
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The weak form of the EMH states that past prices and returns of a financial asset do not

provide any information that can be used to predict its future prices and returns. In other

words, technical analysis, which uses past price and volume data to make investment deci-

sions, is not effective in outperforming the market. The semi-strong form of the EMH states

that prices of financial assets reflect all publicly available information, such as financial state-

ments and news releases. In this form, fundamental analysis, which uses information about

a company’s financial health and prospects to make investment decisions, is not effective in

outperforming the market. The strong form of the EMH states that prices of financial assets

reflect all information, including non-public information. In this form, insider trading, which

involves the use of non-public information to make investment decisions, is not effective in

outperforming the market.

The EMH has implications for investors, as it suggests that it is difficult to consistently out-

perform the market through individual investment decisions. Instead, investors are advised

to diversify their portfolios and invest in a broad range of assets to reduce risk and maximize

returns. Overall, the efficient market hypothesis is a widely-accepted theory in finance that

has influenced the way that investors and financial analysts think about markets and invest-

ment decisions. Despite its popularity, the EMH has also been criticized for its assumptions

and its ability to explain real-world market behavior.

One of the main criticisms of the EMH is that it assumes that market participants are ratio-

nal and have access to the same information. However, in reality, investors may not always

be rational and may not have equal access to information. This can lead to mispricings in

the market and opportunities for investors to outperform the market. Another criticism of

the EMH is that it does not fully explain the behavior of financial markets. For example,

market bubbles, where prices of assets rise to unsustainable levels, and crashes, where prices

of assets fall sharply, are not consistent with the predictions of the EMH. Despite these

criticisms, the EMH continues to be an influential theory in finance, and its concepts are

widely used by investors and financial analysts.
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4 Data

This section details the collection process, of obtaining data used, and further processing

that has been performed on the data. The data included has been chosen on the basis of

being freely available, and being fundamentally relevant to Bitcoin pricing. All data is from

the period January 2012 to November 2022. The data must be split into a training and

testing period so that it can be used to train an Artificial Neural Network. A common split

used (Geron, 2019) is the 80/20 split, which is also used in this thesis. The first 80% of the

data is allocated to the training period, and the last 20% is allocated to the testing period.

Each datapoint consists of the last 50 days worth of data, and the prediction target (label)

is the next days log-return.

4.1 Historical Bitcoin Returns, Volume

The prediction target of the model is future Bitcoin log-returns. Historical daily Bitcoin

prices and volume are from Bitcoinity, using prices from four exchanges: bitstamp, coinbase,

gemini, and kraken. The initial data includes some outliers, in particular during exchange

outages. The daily mean price is computed, and values that lie more than 2% outside the

mean price are removed from the dataset (until at least two values exist at the time-step).

A new daily mean price is calculated, which is used.

Subsequently, daily log-returns are calculated:

Rt = ln

(
Pt

Pt−1

)
(4.1)
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4.2 Twitter sentiment data

Opinions expressed in social media can provide valuable insight into the market outlook

on an asset. A number of papers have used sentiment analysis in their models with great

success (Pano & Kashef, 2020), (Mohapatra et al., 2020), (Pant et al., 2018). A total of 237

million tweets from January 2012 to November 2022 were gathered on five keywords using

the python library snscrape:

2012 2014 2016 2018 2020 2022

0

50000

100000

150000

200000

Daily Number of Tweets

btc

#BTC

ethereum

eth

bitcoin

Figure 4.3: Daily number of tweets
for each keyword.

Keyword Number of tweets

btc 59,051,214

eth 50,038,897

#BTC 20,282,755

bitcoin 91,748,937

ethereum 16,233,656

Total 237,355,459

Table 4.1: Keywords and number of
results retrieved.

VADER - Valence Aware Dictionary and Sentiment reasoner

The main challenge that comes with classifying social media sentiments are time and accu-

racy. Manual classification is extremely time-consuming. VADER (Valence Aware Dictionary

and Sentiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specif-

ically attuned to sentiments expressed in social media (Hutto & Gilbert, 2015). It is fully

open-sourced under the MIT License.

VADER uses a combination of natural language processing (NLP) and rule-based sentiment

analysis to accurately identify sentiment in text. In other words, VADER uses a dictionary

of sentiment-related words, along with a set of heuristics, to determine the overall sentiment

of a piece of text. This approach allows VADER to accurately capture the nuances of senti-

ment that are often expressed in social media, including emoticons, emojis, and slang (Hutto
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& Gilbert, 2015).

One of the key strengths of VADER is its ability to handle the ambiguity and subjectivity

of sentiment. For example, consider the phrase “I am not unhappy.” This phrase could be

interpreted in a variety of ways, depending on the context. VADER is able to handle this

kind of ambiguity by using a combination of NLP and rule-based techniques to accurately

identify the sentiment expressed in the phrase.

In terms of implementation, VADER uses a dictionary of sentiment-related words, along

with a set of rules, to determine the overall sentiment of a piece of text. The dictionary

includes words that are associated with positive or negative sentiment, as well as words that

are associated with neutral sentiment. VADER also includes a set of rules that allow it to

identify sentiment-related punctuation, such as exclamation points, and to adjust the senti-

ment score accordingly. VADER assigns a numeric value (polarity score) to the sentiment

expressed in a string of text, such as a tweet, in the range of −1 to 1. A polarity score

of −1 represents a maximally negative sentiment, a polarity score of 0 represents a neutral

sentiment, and a polarity score of 1 represents a maximally positive sentiment.

Overall, VADER is a valuable tool for analyzing the sentiment of text, particularly in the

context of social media. Its combination of NLP and rule-based techniques allows it to

accurately identify sentiment, even in the face of ambiguity and subjectivity. As a result,

VADER is a useful tool for researchers and practitioners who are interested in understanding

the sentiment expressed in social media data.
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Figure 4.4: Daily sentiment µ and σ

For each day, the mean sentiment µ, and the standard deviation σ of sentiment, is computed

for each keyword. When VADER is not able to classify a sentiment properly, it assigns a

polarity score of 0. Therefore, to increase the signal to noise ratio, tweets that are given

a polarity score of exactly 0 are excluded. A comparison of the sentiment data with- and

without polarity scores of 0 is made available in the appendix.
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4.3 Blockchain data

A blockchain is a distributed, decentralized, public ledger that records transactions on mul-

tiple computers. It allows for the secure and transparent storage of transaction data without

the need for a central authority or intermediary. At its core, a blockchain is a chain of

blocks that contain transaction data. Each block contains a cryptographic hash of the pre-

vious block, a timestamp, and transaction data. This structure allows for the creation of a

tamper-evident, append-only record of transactions (Narayanan et al., 2016).

The decentralized nature of a blockchain means that it is not controlled by any single entity

and is instead maintained by a network of participating nodes. This distributed network

ensures that the transaction data on the blockchain is not susceptible to tampering or revi-

sion. The use of cryptographic hashes and distributed network architecture allows for the

implementation of consensus mechanisms that enable the network to agree on the current

state of the blockchain. This ensures the integrity of the transaction data and allows for the

creation of trust among parties involved in the transaction.

The information stored on the blockchain is useful when pricing the asset. The blockchain

contains a complete and transparent record of all transactions on the bitcoin network. This

allows for the analysis of transaction data, including the amount of bitcoin being trans-

ferred, and the addresses involved in the transaction. This information can be used to

identify trends and patterns in the movement of bitcoin, which can be useful in forecasting

its future value. The use of cryptographic hashes and distributed network architecture in

the blockchain ensures the integrity and immutability of transaction data. This means that

the data on the blockchain cannot be tampered with or altered, providing a reliable source

of information for forecasting purposes. Furthermore, the adoption of bitcoin as a store of

value and means of exchange can also impact its future returns. The increasing acceptance

of bitcoin by businesses, institutions, and individuals as a legitimate asset class can drive

its demand and value, leading to potential future returns for investors. Different metrics of

the blockchain and Bitcoin network are included to capture this information: The number

of transactions, blocksize, mining difficulty, and the network hashrate.
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The number of transactions, blocksize, mining difficulty are sourced from Bitcoinity, while

the hashrate is sourced from Blockchain.com.

4.4 Stationarity

In time series analysis, stationarity refers to the statistical properties of a time series, such as

the mean and variance, that do not change over time. A time series is said to be stationary

if its statistical properties are constant over time.

In other words, a stationary time series has a constant mean and variance, and its autocor-

relation structure does not depend on the time at which the series is observed. This means

that the time series can be modeled using a fixed set of parameters, which makes it easier

to make predictions about future values in the series.

There are several methods for testing whether a time series is stationary, such as the Aug-

mented Dickey-Fuller test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski

et al., 1992). These tests use statistical tests to determine whether the mean and variance

of the time series are constant over time.

The Augmented Dickey-Fuller (ADF) test is a statistical test used to determine the presence

of a unit root in a time series sample. A unit root is a feature of a time series in which the

value of the series at a given point is the sum of its own previous value and a white noise
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error term. If a time series has a unit root, then it is said to be non-stationary, meaning that

its statistical properties (such as its mean and variance) vary over time (Dickey & Fuller,

1979).

We start with the Dickey-Fuller test. Consider the following AR(1) regression model:

yt = θyt−1 + ϵt (4.2)

The unit root null hypothesis against the stationary alternative corresponds to

H0 : θ = 1 against HA : θ < 1 (4.3)

The model can also be stated as

∆yt = (θ − 1) yt−1 + ϵt = πyt−1 + ϵt (4.4)

Here π = θ − 0. The unit root hypothesis can be restated as

H0 : π = 0 against HA : π < 1 (4.5)

The Dickey-Fuller test is the t-test for H0:

r̂ =
θ̂ − 1

SE(θ̂)
=

π̂

SE(π̂)
(4.6)

The ADF test is an extension of the Dickey-Fuller test, which was developed in the 1970s as

a way to test for the presence of a unit root in a time series. The ADF test is an improved

version of the Dickey-Fuller test that uses additional information such as the lagged values

of the time series in order to provide more accurate results.

The null hypothesis of the ADF test is that the time series has a unit root, while the alterna-

tive hypothesis is that the time series is stationary. To perform the ADF test, we first need

to construct an augmented regression model of the time series, which includes the time series

and its lagged values as independent variables, as well as an error term. This augmented
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regression model is then used to estimate the coefficients of the time series and its lagged

values, which are used to calculate the ADF statistic.

∆yt = α + βt+ γyt−1 + π1∆yt−1 + ...+ πp−1∆yt−p+1 + ϵt (4.7)

where the constant term α and the coefficient on a time trend β are included in a model of

an autoregressive process with lag order p. When the values of α and β are both set to zero,

the model represents a random walk, whereas setting only β to zero results in a random walk

with a drift.

The ADF test statistic is given by

DF τ =
γ̂

SE(γ̂)
(4.8)

The ADF statistic is a t-statistic that measures the significance of the estimated coefficients

in the augmented regression model. If the ADF statistic is greater than the critical value for

the chosen significance level, then we can reject the null hypothesis and conclude that the

time series is stationary. The following test statistics and p-values where computed:
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Time series Test statistic p-value
btc_logreturn -10.2504 0.0000
btc_volume -2.7094 0.0724
blockchain_blocksize -1.9500 0.3089
blockchain_transactions -1.7804 0.3902
blockchain_difficulty 0.2266 0.9737
blockchain_hashrate 1.5435 0.9977
sentiments_btc -3.2501 0.0173
sentiments_sd_btc -5.5455 0.0000
sentiments_#BTC -4.4787 0.0002
sentiments_sd_#BTC -3.0432 0.0310
sentiments_ethereum -3.2736 0.0161
sentiments_sd_ethereum -2.2192 0.1994
sentiments_eth -4.5441 0.0002
sentiments_sd_eth -6.0128 0.0000
sentiments_bitcoin -5.2523 0.0000
sentiments_sd_bitcoin -3.2426 0.0176

Table 4.2: Augmented Dickey-Fuller test results. P-values significant at the 5%-level are high-
lighted.

We fail to reject H0 on six variables, showing that a significant portion of the data is not

stationary. Notably, the variable we are trying to predict (BTC log-returns) are shown to be

stationary (we can reject H0, and affirm the alternative hypothesis Ha, showing stationarity

for the log-returns).

Recurrent neural networks (RNNs) are a type of artificial neural network that are designed

to process sequential data, such as time series data. Unlike traditional feedforward neural

networks, which have a fixed input and output size, RNNs have a “memory” that allows

them to store information from previous time steps and use it to inform their predictions or

decisions at the current time step.

One of the key advantages of RNNs is that they do not require the input time series to be

stationary (Malhotra et al., 2015). Stationarity is a desirable property for time series data,

because it simplifies the analysis and modeling of the data. However, many real-world time

series are non-stationary, meaning that they have varying means and variances, and exhibit

trends or seasonality. Non-stationary time series can be difficult to model using traditional

methods, because the statistical properties of the data are constantly changing.
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RNNs, on the other hand, are able to model non-stationary time series effectively, because

they are able to capture the dynamics of the data and learn how the statistical properties

of the series change over time (Malhotra et al., 2015). This ability to model non-stationary

time series is particularly useful in applications such as financial forecasting, where the

data may be subject to changes in market conditions or other factors (Gers et al., 2001).

One popular type of RNN is the long short-term memory (LSTM) network, which is a

variant of the basic RNN architecture that uses special units called LSTM cells to store

and manipulate information from previous time steps. RNNs and LSTM networks are well-

suited for modeling non-stationary time series data, because they are able to capture the

dynamics of the data and learn how the statistical properties of the series change over time.

This ability to model non-stationary data makes RNNs and LSTMs a powerful tool for

time-series forecasting.

4.5 Descriptive Statistics

Descriptive statistics provides a set of tools and techniques for describing and summarizing

data. These tools include measures of central tendency, such as the mean, median, and mode,

which describe the center of the data distribution. Other measures, such as the standard

deviation, variance, and interquartile range, describe the spread and dispersion of the data.
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Data Mean Std Iqr Min Max Skewness Kurtosis
btc_logreturn 0.002 0.038 0.028 -0.615 0.291 -1.784 30.794
btc_volume 4.22e+08 7.20e+08 5.14e+08 6.71e+04 9.99e+09 3.520 21.166
bc_blocksize 5.20e+05 2.83e+05 4.94e+05 1.48e+04 9.98e+05 -0.054 -1.079
bc_transactions 1.38e+05 1.17e+05 2.13e+05 5.00e+03 4.91e+05 0.568 -1.123
bc_difficulty 4.93e+12 6.01e+12 1.38e+13 1.16e+06 1.66e+13 0.676 -1.333
bc_hashrate 4.78e+07 6.54e+07 9.51e+07 8.58e+00 2.28e+08 1.163 0.023
sen_btc 0.266 0.109 0.102 -0.076 0.704 0.566 1.560
sen_sd_btc 0.466 0.064 0.062 0.000 0.559 -3.350 21.065
sen_#BTC 0.328 0.088 0.119 -0.139 0.755 -0.095 1.129
sen_sd_#BTC 0.408 0.087 0.119 0.000 0.672 -1.022 0.921
sen_ethereum 0.234 0.155 0.189 -0.765 0.803 -0.870 1.584
sen_sd_ethereum 0.342 0.180 0.170 0.000 0.842 -1.115 -0.279
sen_eth 0.322 0.083 0.088 -0.222 0.714 -0.089 2.779
sen_sd_eth 0.481 0.032 0.034 0.000 0.674 -0.692 17.268
sen_bitcoin 0.246 0.087 0.093 -0.260 0.546 -0.208 2.175
sen_sd_bitcoin 0.449 0.059 0.082 0.000 0.570 -1.525 5.882

Table 4.3: Descriptive statistics.

A normal distribution has a skewness equal to zero. Therefore, a positive skewness indicates

a distribution that is skewed to the right, while a negative skewness indicates a distribution

that is skewed to the left. A positive skewness may be an indication of more small losses and

fewer large gains in the returns. In contrast, a negative skewness may indicate a distribution

with longer or fatter tails. A normal distribution has a kurtosis of 3. We note that the

Bitcoin log-returns are highly leptokurtic, with a kurtosis of 30.8. This means that the

log-returns exhibit heavy tails.

4.6 Data scaling for use with Neural Networks

Data scaling is an important preprocessing step for training artificial neural networks. Neu-

ral networks are sensitive to the scale of the input data, and if the data is not properly

scaled, the network may not be able to learn effectively (Geron, 2019).

One of the reasons why data scaling is important is that it helps to ensure that the network

can learn from the data. If the data is not scaled, some input variables may have much

larger values than others, which can cause the network to focus disproportionately on those

variables. For example, if one input variable has values in the range 0-1 and another has
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values in the range 0-1000, the network may pay much more attention to the second variable,

since it has much larger values. This can lead to suboptimal learning and may prevent the

network from achieving good performance.

Data scaling also helps to improve the convergence of the network during training. The opti-

mization algorithms used to train neural networks typically work by adjusting the network’s

weights in the direction of the gradient of the loss function. If the data is not scaled, the

gradients of the loss function with respect to the weights may have different scales, which can

cause the optimization algorithm to oscillate or move in suboptimal directions. By scaling

the data, the gradients will have more consistent scales, which can help the optimization

algorithm to converge more quickly and reliably (Djordjevic et al., 2022).

Another benefit of data scaling is that it can improve the generalization of the network.

When a neural network is trained on a particular dataset, it tries to learn a set of weights

that can be used to make accurate predictions on that dataset. However, the network’s

performance on unseen data (i.e. data that was not used during training) is not always as

good as its performance on the training data. This is because the network may have learned

patterns that are specific to the training data, and may not generalize well to new data. By

scaling the data, the network can learn more robust and generalizable patterns, which can

improve its performance on unseen data.

To optimize the performance of the models, the data is scaled using the sklearn python

library to have a mean of 0 and a variance of 1. Each feature is independently scaled, and

after model prediction, the prediction data is un-scaled using the inverse scaling operation.
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5 Methodology

This section covers the method used to generate the various Artificial Neural Network models

used in this thesis.

5.1 Gradient Descent

Gradient descent is an optimization algorithm that is commonly used in machine learning

and deep learning. It is an iterative algorithm that starts with an initial estimate of the

solution to a problem, and then iteratively improves the solution by taking small steps in

the direction of the negative gradient of the objective function (Geron, 2019).

The objective function is a mathematical function that expresses the problem to be solved.

For example, in a machine learning problem, the objective function might be the loss func-

tion, which measures the difference between the predicted output of a model and the true

output. The goal of gradient descent is to find the values of the model parameters that

minimize the loss function, and therefore produce the best possible predictions.

To understand how gradient descent works, it is helpful to consider a simple example. Sup-

pose we have a function f(x) that we want to minimize. We can use gradient descent to find

the minimum of this function by starting with an initial guess of the solution, xt, and then

iteratively updating the solution according to the following rule:

xt+1 = xt − η ×∇f(xt) (5.1)

Here, η is the learning rate, which determines the size of the steps that we take in the direc-

tion of the negative gradient. The gradient, ∇f(x), is a vector that points in the direction
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of the greatest increase in the function. By moving in the opposite direction, we can move

downhill towards the minimum of the function.

In practice, we can repeat this process many times, using the updated solution from one

iteration as the initial guess for the next iteration. This allows us to improve the solution

iteratively, until we reach a point where the gradient is very small, indicating that we have

reached the minimum of the function.

One of the key advantages of gradient descent is that it is an efficient algorithm that can

handle large-scale optimization problems. By using a learning rate that is carefully chosen,

we can ensure that the algorithm converges to the minimum of the function in a reasonable

amount of time. Furthermore, gradient descent can be easily parallelized, allowing us to

take advantage of modern computing architectures to solve large-scale optimization prob-

lems more efficiently.

5.2 Activation Function (Loss Function)

Activation functions are a fundamental component of neural networks, and are used to com-

pute the output of a neuron given its input. An activation function (also referred to as a

loss function) takes in a real-valued input, performs a mathematical operation on it, and

produces a real-valued output. The output of the activation function is then passed on to

the next layer of the neural network, where it is used to compute the output of the next set

of neurons (Geron, 2019).

There are many different activation functions that can be used in a neural network, and the

choice of activation function can have a significant impact on the performance of the net-

work. Some commonly used activation functions include the sigmoid function, the hyperbolic

tangent function, and the Rectified Linear Unit (ReLU) function.

The sigmoid function is a smooth, S-shaped function that maps any real-valued input to a
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value between 0 and 1:

F (x) =
1

1 + e−x
(5.2)

It is often used in the output layer of a binary classification neural network, where it can be

interpreted as a probability. The sigmoid function has the useful property that its derivative

is easy to compute, which makes it efficient to use in training a neural network.

The hyperbolic tangent function, also known as tanh, is similar to the sigmoid function, but

maps inputs to values between -1 and 1.

f(x) =
ex − e−x

ex + e−x
(5.3)

Like the sigmoid function, the tanh function is smooth and differentiable, which makes it

easy to use in training a neural network. However, the tanh function has a slightly steeper

slope than the sigmoid function, which can make it more effective at capturing subtle pat-

terns in the data (Lewis et al., 2020).

The ReLU function is a simple, non-linear function that maps any input that is less than or

equal to 0 to 0, and any input that is greater than 0 to the input itself:

f(x) = max(0, x) (5.4)

The ReLU function is widely used in neural networks because it is computationally efficient

and has been shown to improve the performance of neural networks on a wide range of tasks

(Sussillo & Abbott, 2014).

Overall, activation functions are an important component of neural networks, and the choice

of activation function can have a significant impact on the performance of the network. Dif-

ferent activation functions have different properties, and the appropriate choice of activation

function will depend on the specific task and the characteristics of the data. The ReLU

activation function is used for all models trained in this thesis.
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5.3 Long Short-Term Memory (LSTM)

Long time lag problems are difficult for traditional recurrent neural networks using hidden

units to learn due to a tendency for the gradients to vanish. Long Short Term Memory units

(LSTM units) were introduced as a solution to this by addressing the vanishing gradients

issue (Hochreiter & Schmidhuber, 1997).

Figure 5.1: Structure of an LSTM unit (Kienzler, 2018).

LSTM units take an input xt, are composed of an input gate it, a forget gate ft, and an

output gate ot. The gates are used to add or remove information from the unit, they can be

read from, written to, or erased at each time step, through explicit gating mechanisms. The

unit also maintains a hidden state vector ht and a memory cell st. The following equations

express a forward pass of a single LSTM unit (Greff et al., 2017):

ft = σg (Wfxt + Ufht−1 + bf ) (5.5)

it = σg (Wixt + Uiht−1 + bi) (5.6)

ot = σg (Woxt + Uoht−1 + bo) (5.7)
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st = ft × st−1 + it ∗ σs (Wsxt + Usht−1 + bs) (5.8)

ht = ot ∗ σh (ct) (5.9)

The symbol ∗ denotes the element-wise product of the matrices.

5.4 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are a type of neural network that is particularly

well-suited to processing data that has a grid-like structure, such as an image. CNNs are

composed of multiple layers of interconnected neurons, and are trained using a variant of

the backpropagation algorithm (O’Shea & Nash, 2015).

One of the key features of CNNs is the use of convolutional layers, which are designed to

automatically and adaptively learn spatial hierarchies of features. In a convolutional layer,

the input is passed through a set of learnable filters, each of which is convolved with the

input to produce a set of output maps. The filters are typically small spatially, but extend

through the full depth of the input. The convolution operation is repeated across the entire

input, with the filter moving in a sliding window fashion. This allows the convolutional layer

to automatically learn spatial hierarchies of features, without the need for manual engineer-

ing (O’Shea & Nash, 2015).

Another key feature of CNNs is the use of pooling layers, which are designed to reduce the

spatial size of the input, while retaining the most important information. This is typically

achieved through the use of a pooling operation, such as max pooling, which selects the

maximum value within a small window of the input. By reducing the spatial size of the

input, pooling layers make the neural network more computationally efficient, while also

helping to reduce overfitting.
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Once the convolutional and pooling layers have extracted and condensed the relevant fea-

tures from the input, the resulting feature maps are passed through a series of fully connected

layers, which use the features to make predictions. The output of the fully connected layers

is then passed through a loss function, which is used to compute the error between the pre-

dicted output and the true output. This error is then backpropagated through the network,

and used to update the weights of the network in order to reduce the error (O’Shea & Nash,

2015).

Overall, CNNs are a powerful tool for processing data that has a grid-like structure, such as

an image. The use of convolutional and pooling layers allows CNNs to automatically and

adaptively learn spatial hierarchies of features, while the fully connected layers use these fea-

tures to make predictions. This makes CNNs well-suited to a wide range of tasks, including

image classification, object detection, and image segmentation.

CNNs are typically used to process data that has a grid-like structure, such as an image.

However, CNNs can also be applied to time series data, which has a temporal structure

rather than a spatial structure. One of the key reasons why CNNs can be applied to time

series data is that the convolution operation, which is central to the functioning of CNNs,

is a mathematical operation that can be applied to any type of data, regardless of its struc-

ture. In the case of time series data, the convolution operation is applied along the temporal

axis, rather than the spatial axis. This allows CNNs to automatically and adaptively learn

temporal hierarchies of features, just as they would learn spatial hierarchies of features in

the case of image data (Velastegui et al., 2020).

Another reason why CNNs can be applied to time series data is that the convolutional and

pooling layers in a CNN are shift-invariant, meaning that they produce the same output

regardless of the position of the input within the temporal sequence. This property is partic-

ularly useful for time series data, where the order of the data points is important. By using

shift-invariant layers, CNNs are able to capture the temporal dynamics of the data, without

the need for manual engineering.
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Furthermore, CNNs are able to handle variable-length time series data, which is common in

many real-world applications. By using padding, CNNs can process time series of different

lengths, and still produce a consistent output. This allows CNNs to be applied to a wide

range of time series data, without the need for data preprocessing or manual feature engi-

neering.

Overall, CNNs can be applied to time series data because the convolution operation is a

general mathematical operation that can be applied to any type of data, regardless of its

structure. The shift-invariance of the convolutional and pooling layers allows CNNs to cap-

ture the temporal dynamics of the data, and the ability to handle variable-length inputs

makes them well-suited to a wide range of time series data.

5.5 Combination Networks

5.5.1 CNN-LSTM

Convolutional neural networks (CNNs) and long short-term memory (LSTM) networks are

both types of neural network that are widely used in machine learning and deep learning.

CNNs are typically used to process data that has a grid-like structure, such as an image, while

LSTM networks are used to process data that has a temporal structure, such as a time series.

Combining CNNs and LSTM networks can be particularly useful for tasks involving financial

time series data, where the goal is to make predictions about the future behavior of finan-

cial markets. Financial time series data has both spatial and temporal structure, and can

be effectively processed by combining CNNs and LSTM networks (Tripathi & Sharma, 2022).

For example, consider a stock prediction task, where the goal is to predict the future price of

a stock based on historical data. A CNN could be used to process the historical data, and to

extract spatial features such as patterns, trends, and anomalies. These spatial features could

then be passed to an LSTM network, which would process the sequence of spatial features
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over time, and use them to make predictions about the future price of the stock.

Another way in which CNNs and LSTM networks can be combined for financial time series

data is by using a CNN to extract spatial features from the input data, and then using

these features as the input to an LSTM network. This approach allows the CNN to capture

the spatial patterns in the data, and to produce a condensed representation of the input

that is suitable for processing by an LSTM network. This can be particularly useful when

dealing with large-scale datasets, where the use of a CNN can make the overall model more

computationally efficient (Tripathi & Sharma, 2022).

Overall, combining CNNs and LSTM networks can be a powerful approach for tasks involv-

ing financial time series data. The ability of CNNs to extract spatial features from the data,

and the ability of LSTM networks to process temporal sequences, make these two types of

network well-suited to predicting the future behavior of financial markets. By combining

CNNs and LSTM networks, we can build models that are able to capture both the spatial

and temporal patterns in the data, and make more accurate predictions.

5.5.2 Multi-Head-CNN-LSTM (MH-CNN-LSTM)

Multi-head convolutional neural networks (CNNs) and long short-term memory (LSTM) net-

works are a type of neural network architecture that combines the strengths of both CNNs

and LSTM networks. In a multi-head CNN-LSTM network, the input data is processed

by multiple parallel CNNs, each of which extracts different spatial features from the data.

The output of the CNNs is then passed to an LSTM network, which processes the temporal

sequence of spatial features and uses them to make predictions (Mo et al., 2020).

This type of architecture can be particularly useful for tasks involving financial time series

data, where the goal is to make predictions about the future behavior of financial markets.

Financial time series data has both spatial and temporal structure, and can be effectively

processed by combining multiple CNNs and an LSTM network.
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For example, consider a stock prediction task, where the goal is to predict the future price

of a stock based on historical data. A multi-head CNN-LSTM network could be used to

process the historical data, with each CNN extracting different spatial features from the

data. These features could include patterns, trends, and anomalies, and could be extracted

at different scales and resolutions. The output of the CNNs would then be passed to an

LSTM network, which would process the sequence of spatial features over time, and use

them to make predictions about the future price of the stock.

One of the key advantages of this type of architecture is that it allows the CNNs and the

LSTM network to learn complementary spatial and temporal features, respectively. By ex-

tracting multiple spatial features from the input data, the CNNs are able to capture a rich

and diverse set of patterns and trends. The LSTM network can then use these features to

make more accurate predictions, by taking into account the temporal dynamics of the data

(Mo et al., 2020).

Furthermore, multi-head CNN-LSTM networks are able to handle large-scale datasets, and

can make efficient use of modern computing architectures. The use of multiple parallel

CNNs allows the network to process the data in a distributed manner, making it possible to

scale the network to large datasets. This makes multi-head CNN-LSTM networks a valuable

tool for tasks involving financial time series data, where the amount of data can be very large.

5.6 Tuning Hyper Parameters

Hyperparameters are configurations that are external to a model, and are not estimated with

data (Brownlee, 2017). Setting these parameters correct are essential to good model pre-

diction, as such several techniques have been developed to improve beyond manual network

tuning, such as Grid-Search, Randomized-Search. These very computationally expensive,

and not feasible in a multi-dimensional search space on real-world data (Tripathi & Sharma,

2022).
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For all but one model, hyper-parameters were set by using commonly successful settings. To

explore if a gain in performance could be had with hyperparameter optimization, one LSTM

model was trained with estimated optimal hyperparameters:

To estimate the optimal hyperparameters, a Bayesian optimization technique was employed

(Snoek et al., 2012). Bayesian Optimization uses previously calculated hyperparameter

values to guide the search for optimal parameters. The following hyperparameters were op-

timized: learning rate, number of LSTM layers, number of LSTM units (neurons) per layer,

batch size, and dropout rate. The method of optimization was such: A search space for

each hyperparameter was defined (see table 5.1). A Bayesian Optimization was performed

for 400 iterations, each model being trained for 15 epochs. The ten best performing sets of

hyperparameters were saved for further assessment.

The reason for not estimating hyperparameters for all models, and for more iterations was

the compute-time required. Estimating hyper-parameters for all models for 2000 iterations

was estimated to take over 2 years of compute-time, and was deemed unfeasible.

Hyper-
parameter

Type Bounds Values Description

Learning
rate

Range [1e-6,
1e-3]

- Learning rate to adjust the weights of
the network

Number of
layers

Range [1, 5] - Number of LSTM layers in the network

Number of
LSTM units
per layer

Range [5,
512]

- Number of neurons to be used in a layer

Batch size Choice - [8, 16, 32,
64, 128]

Batch Size or the count of samples to be
used in one pass

Dropout
rate

Range [0,
0.30]

- Dropout regularization rate to ignore
randomly selected neurons

Table 5.1: Hyperparameters optimized.

Initial early experiments had shown several models which exhibited epochwise double decent.

This can occasionally be observed in neural networks in cases where the number of param-
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eters (features) that are estimated is large (Stephenson & Lee, 2021). The ten best sets

of hyperparameters were further trained for 1100 epochs, to assess whether they exhibited

epochwise double decent.

Figure 5.2: A case of epochwise double descent (Nakkiran et al., 2019). Initial training data
indicates overfitting, but further training reverses this overfitting.

0 200 400 600 800 1000

Epoch

10−2

Loss - Hyper parameter set 1

Training loss

Validation loss

0 200 400 600 800 1000

Epoch

10−2

Loss - Hyper parameter set 2

Training loss

Validation loss

Figure 5.3: Loss function for the best and second-best hyperparameters
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None of the sets of optimal hyperparameters showed signs of epochwise double descent.The

first set of optimal hyperparameters exhibited fast overfitting, and was therefore disgarded,

the second set was used for further study. All hyperparameters and loss functions can be

found in the appendix.

Hyper-
parameter

1 2 3 4 5 6 7 8 9 10

Learning rate 6.7e-4 2.0e-5 9.7e-6 1.7e-5 4.7e-5 1.4e-5 7.0e-4 2.8e-5 4.4e-5 5.3e-4

N. layers 1 5 5 5 5 4 5 5 5 5

N. units 150 158 40 333 42 149 254 182 490 395

Batch size 8 8 8 8 16 16 128 8 8 128

Dropout rate 0.00 0.06 0.06 0.14 0.14 0.28 0.26 0.30 0.30 0.30

Table 5.2: Hyperparameters optimization results. From best to worst.

5.7 Measuring performance

The chosen set of hyperparameters were trained with an early stopping function, stopping

training after predictive performance on the validation data did not improve for 15 epochs.

To measure performance, three performance metrics were used, mean absolute error (MAE),

mean square error (MSE), and root mean square error (RMSE):

MAE =
1

N

N∑
i=1

|yi − ŷi| (5.10)

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (5.11)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2 (5.12)

Where yi is the ith observation of y, and ŷi is the ith predicted value of y. The model per-

formance was compared with the mean logreturn of the training period, and naïve approach
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where all returns are estimated as 0.
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6 Results and Discussion

Five models were trained, including one hyperparameter optimized LSTM model (LSTM1).

The hyperparameter optimized LSTM model ultimately performed worse than the model

with hyperparameters set by convention, showing the limitation of the hyperparameter es-

timation techniques employed in this thesis, likely coming down to a lack of compute time,

as discussed in the previous chapter.

Metric CNN LSTM1 LSTM2 CNN-LSTM MH-CNN-LSTM Naive Mean return

MAE .6718 .6783 .6777 .6763 .6871 .6796 .6772

MSE .4527 .4613 .4605 .4587 .4742 .4631 .4598

RMSE .6728 .6792 .6786 .6773 .6886 .6805 .6781

Table 6.1: Performance metrics results. Models that outperformed the mean return method in
bold.

While the hyperparameter optimized LSTM model (LSTM1) was able to beat the naïve

approach, it did not perform better than the mean return model.

2012 2014 2016 2018 2020 2022
−0.2

−0.1

0.0

0.1

0.2
LSTM

Returns

Model prediction

Figure 6.1: LSTM1 (Hyperparameter optimized): Target prediction vs actual prediction. Hyper-
parameter optimized LSTM network.
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The LSTM2 model, where hyperparameters were set by the author, did predict better than

the naive approach, and the hyperparameter optimized LSTM model, LSTM1, but was not

able to predict returns better than the simple mean return.
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Model prediction

Figure 6.2: LSTM2: Target prediction vs actual prediction.

The CNN model performed surprisingly well, considering its relative simplicity, exhibiting

detailed and rapid changes in the predicted value, while still remaining relatively good per-

formance.
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Figure 6.3: CNN: Target prediction vs actual prediction

The CNN-LSTM model provided an interesting combination of features of both the CNN

model and the LSTM models. It exhibited larger changes, similar to the CNN model, however

they are much more smoothed out compared to the CNN model. It seems this model is good

predicting the trend of the returns.
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Figure 6.4: CNN-LSTM: Target prediction vs actual prediction

The Multi-Head-CNN-LSTM model exhibited strong signs of epochwise double descent. It is

likely that this model can be improved again by significantly increasing the training period,

although this requires significant time investment due to the size and complexity of the

model. The model was the worst performing model, it is however, likely insufficiently trained

to maximize its performance.
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Figure 6.5: MH-CNN-LSTM: Loss vs. Epoch during training.

40



2012 2014 2016 2018 2020 2022
−0.2

−0.1

0.0

0.1

0.2
MH CNN LSTM

Returns

Model prediction

Figure 6.6: MH-CNN-LSTM: Target prediction vs actual prediction

A tendency of the models that underperformed, such as LSTM1, were to predict very close

to the mean, with little seasonality, it appears these models were not able to learn significant

information from the training set, and as such simply attempted to estimate the mean return

with some minor variation. We can see this trend of estimating the mean, and then reducing

the variance in the predictions across the time-series in the following 3D-plot:

Figure 6.7: LSTM1: Evolution of prediction during training.

Note the orientation of the axis, lines further left are deeper into the training. In contrast,

models, such as CNN that were able to gain information from the data did not exhibit this

feature:
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Figure 6.8: CNN: Evolution of prediction during training.

These findings are interesting in light of the Efficient Market Hypothesis (EMH). This re-

search adds to the literature challenging the notions put forth i the EMH, by demonstrating

that artificial neural networks (ANNs) can be used to make more accurate predictions of

time series data, such as Bitcoin returns, blockchain data, and social media sentiment.

Five ANN models were trained on time series data, including a convolutional neural network

(CNN) model and a CNN-long short-term memory (LSTM) model. The results showed that

both the CNN and CNN-LSTM models outperformed a model based on the mean return of

the data. This finding suggests that the data contains information that can be used to make

more accurate predictions than the EMH would predict.

One possible explanation that could lead to such a scenarios is that the data used in the

study contains information that is not publicly available, and therefore cannot be fully re-

flected in asset prices. However, the data used in this study has been purely from publicly

available sources, and as such this does not apply. Further research where the models are

tested as trading strategies could be used to see if the models truly beat the market.

Furthermore, this thesis challenges the notions put forth by Israel et al., 2020, who argued
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that return prediction is a “small data” problem, because the amount of predictor variables

does not change the class of problem to a “big data” problem, to do that one would need

a large set of variables to try to estimate. In this thesis, we do exactly this by applying

Artificial Neural Networks to a broader set of features, to leverage the ability of ANNs to

infer relations among large datasets. It may be beneficial for investors and firms to attempt

to expand the breadth and depth of data that is collected, so that they also can leverage

ANN models in traditional markets such as stock exchanges or bond markets.
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7 Conclusions

This thesis had as a goal to explore the ability of various Artificial Neural Networks to

model financial data, by leveraging a large dataset. Several models, including CNN and

CNN-LSTM were able to outperform a simple mean return, and the other models. When

machine learning has been applied to finance, there has been a trend of not being able to

fully utilize the depth and complexity of Neural Networks. This is because financial data is

often very limited in frequency and span (Israel et al., 2020). This thesis was able to over-

come some of the limitations suggested by Israel et al., 2020, by leveraging a richer dataset

than what is commonly used. Two networks, CNN and CNN-LSTM performed exceptionally

well, beating the expected return model.

Artificial neural networks (ANNs) are a type of machine learning algorithm that are modeled

after the structure and function of the human brain. In finance, ANNs are used for a variety

of purposes, including identifying market trends, analyzing financial data, and making pre-

dictions about future market movements. ANNs are particularly useful in finance because

they can process large amounts of data quickly and accurately, and can learn and adapt to

new information over time. Despite their many advantages, ANNs also have limitations, such

as a lack of transparency in their decision-making process, which can make them difficult to

interpret and explain to non-experts. Overall, ANNs are a valuable tool for financial profes-

sionals, but they should be used carefully and in conjunction with other methods of analysis.
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A Appendix

A.1 Python Code

This thesis has been implemented using Python 3.10.8. The machine learning is implemented

in Tensorflow 2.9.1. The machine used was running Windows 10, with 32GB of system

memory, and an RTX 3070 graphics card.

The full codebase for the project is made publicly available on GitHub:

GitHub/btc-return-prediction-LSTM-masters-thesis

GitHub/btc-return-prediction-CNN-masters-thesis
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A.2 Sentiment data with and without neutral sentiments
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Figure A.1: Daily mean sentiment values, comparing including and excluding polarity = 0
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Figure A.2: Daily mean sentiment std. dev., comparing including and excluding polarity = 0
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Figure A.3: Histogram of all sentiment values, with and without polarity = 0
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A.3 Loss Function for 10 optimal hyperparameters
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Figure A.4: Loss functions for hyperparameter set 1 and 2.
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Figure A.5: Loss functions for hyperparameter set 3 and 4.
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Figure A.6: Loss functions for hyperparameter set 5 and 6.
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Figure A.7: Loss functions for hyperparameter set 7 and 8.
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Figure A.8: Loss functions for hyperparameter set 9 and 10.
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B Discussion Paper

B.1 Daniel Lindestad - Topic: International

This discussion paper is written as a mandatory part of the master‘s program in business and

administration with specialization in analytical finance. To get this master thesis approved,

there has been a couple of requirements. Such as a mandatory meeting with supervisors, an

oral presentation of the thesis, and writing a discussion paper. This discussion paper sheds

light on some of insights that have been accumulated during the master‘s program, and the

development of the thesis. This discussion paper also serves as a means of a self reflection

for the author about his experience in the master‘s program.

This master thesis explores machine learning predictions on large datasets. Machine learn-

ing has been able to develop comprehensive models that can make astonishing predictions in

fields like text and speech recognition, and image classification. These models rely on large

datasets to be able to create models with such great applications. When machine learning

has been applied to finance, there has been a trend of not being able to fully utilize the depth

and complexity of Neural Networks. This is because financial data is often very limited in

frequency and span. When looking at returns one might only have one data point per day

(or per month), if only a few features are available then little information can be extracted

from this. This thesis attempts to remedy this limitation by broadening the feature selection

available, by using a prediction target where data on fundamental factors are more easily

available, including market perception, through sentiment analysis.

In the thesis, a rich dataset is gathered on historical Bitcoin prices, market sentiments

through social media sentiment analysis, and various fundamental features of the underly-
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ing Bitcoin infrastructure, in the form of blockchain information. LSTM Neural Networks

are trained on the data, and hyperparameters are optimized. A final model is trained, and

compared against simpler methods of estimating returns.

Machine learning as a topic is currently of massive importance internationally. Developing

intelligent algorithms to automate procedures has been a key factor to gain competitive

advantage in numerous business fields (Attaran & Deb, 2018). An increasing number of

everyday functions are being automated, a lot of this automation is powered by machine

learning. The applications of Neural Networks will likely change the lives of most people

drasticly, be this in the form of better healthcare through better diagnistoc abilities and

better early warning of cancers and diseases such as Alzheimer‘s, or through self driving

cars that lower the amount of automotive related deaths. It is of paramount importance for

Norway to take part in this international endeavour, both through helping businesses make

use of currently available technologies, and becoming a leader in research within the field,

through strengthening national academia, and aiding in international academic collabora-

tion.

The master‘s program included many courses where "international" was a major emphasis.

For instance, in the first year of the program, we covered a topic called sustainable capital-

ism. The first half of this course was divided between lectures and oral presentations, while

the second half involved individual work on a term paper that covered environmental con-

cerns. Here, we discovered the value of international cooperation in lowering global pollution

levels. The issue is seen as a global issue since it imperils all forms of life on Earth. Thus,

international cooperation is also required to address these difficulties.

Over the past several centuries, technology has advanced rapidly, and as a result of digi-

tization, the globe is becoming ever more connected. Private investors’ ability to buy and

sell stocks and funds has significantly increased as additional trading platforms have entered

the market. Only 20 years ago, placing an order required calling your broker; today, it only

takes a few clicks on your computer, tablet, or phone. Additionally, this has increased global

connectivity.

54



Money markets are inherently connected at an international level, meaning that crises that

emerge from international factors, will still impact the national economy. We can see this

with the Oslo Stock Exchange, as it is impacted by what happens in other nations, all the

funds are somehow linked to the global market. For example, the COVID-19 pandemic, the

2015 Greek financial crisis, and the 2008 financial crisis all had an impact on the financial

markets of all nations. That’s because everyone is now connected.

Governments, notably their monetary policies, have perhaps the biggest influence on financial

markets. The extent to which governments control the free market has become abundantly

obvious. The monetary and fiscal policies that governments and their central banks have

implemented have a major impact on the financial sector. By raising or lowering interest

rates, the US Federal Reserve, for instance, may really slow down or speed up economic

growth in the nation.

Financial markets act as the conduit between monetary policy and the actual economy.

Central banks frequently set objectives to maintain an inflation rate constant at about 2%

in order to maintain the stability of financial markets as much as feasible. The 10-year

inflation-indexed bond will always represent a 2% inflation rate in ten years if the credibility

of the central bank is such that market participants believe inflation will remain set at 2%

over the long term. However, if central banks were to grow complacent with the idea that

market assumptions represent steady inflation expectations, they may eventually stray from

the best course of action. Markets will finally see the fault in the policy. We have recently

seen how inflation has soared, and how both governments and markets have struggled to

tackle this challenge. The UK "minibudget" incident showed the world that governments

may not be able to easily perceive how risky the markets view some of their policy actions.

This serves as a warning to other governments to tread very carefully.

The COVID-19 pandemic has sped up the move for many businesses to new forms of remote

work, whether it is for meetings or just doing work from home when necessary. This will

probably continue to have an impact on how funds operate and are provided to consumers,
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whether they need fewer employees or can more efficiently manage their production. Since

index funds are so inexpensive, the funds will probably need to reduce expenses everywhere

they can so that they can truly provide the consumers with the services they have paid for.

Future fund decisions will certainly be influenced by technological developments.

In conclusion, the international financial system is enormous and complex. Techniques that

lie in the field of machine learning, such as Neural Networks might be able to help us develop

tools and methods to navigate it‘s complexity. This thesis has attempted to be a small part

of that puzzle. Through this it also serves as an aid in helping the University of Agder in

being an international force in academia.

Finally, I would like to express my gratitude to the School of Business and Law at the

University of Agder. Here I have experienced five years of academic, social, and personal

development. I feel well prepared to enter the work-force after taking these courses, and I

have no doubt that the information I have gained over the last five years will be useful to

me in my future undertakings. Although there were highs and lows throughout my stay, it

has been a period I will cherish and be proud of.
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