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Abstract

The proliferation of artificial intelligence is increasingly dependent on model
understanding. Understanding demands both an interpretation—a human
reasoning about a model’s behavior—and an explanation—a symbolic repre-
sentation of the functioning of the model. Notwithstanding the imperative
of transparency for safety, trust, and acceptance, the opacity of state-of-the-
art reinforcement learning algorithms conceals the rudiments of their learned
strategies. We have developed a policy regularization method that asserts
the global intrinsic affinities of learned strategies. These affinities provide
a means of reasoning about a policy’s behavior, thus making it inherently
interpretable. We have demonstrated our method in personalized prosperity
management where individuals’ spending behavior in time dictate their in-
vestment strategies, i.e. distinct spending personalities may have dissimilar
associations with different investment classes. We now explain our model
by reproducing the underlying prototypical policies with discretized Markov
models. These global surrogates are symbolic representations of the proto-
typical policies.
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1. Introduction

The ultimate goal of explainable AI is understanding. It builds trust,
improves safety, and improves predictive performance by facilitating precise
model improvements [1]. For instance, feature saliency analyses can im-
prove feature selection and consequently the predictive performance in stock
trading [2], and rule extraction can enhance trust in an AI system for loan
approvals Sachan et al. [3]. Despite considerable advancement in fields such
as explainable reinforcement learning (RL) [4, 5, 6], the explainability of their
underlying models has not yet been fully addressed [7, 8].

Reinforcement learning has become omnipotent in finance, for example,
multi-agent RL for algorithmic trading [9]. Methods such as probabilistic ar-
gumentation [10], structural causal modeling [11], and introspection through
interesting elements [12] exemplify the pursuit of post-hoc explainability.
We, however, propose an alternative approach: rather than attempting to
extract the learned strategy post hoc, ours is an intrinsic method that in-
stills a desirable behavior during training [13]. Through regularization of the
objective function, our method encourages global action affinities and thus
exercises control over what agents learn. We have demonstrated the value of
our method in personal prosperity management, where individual spending
behaviors dictate investment strategies [14]. We instilled affinities for certain
asset classes into the policies of a set of prototypical agents, each associating
with a given personality trait. For example, a conscientiousness agent prefers
asset classes typically associated with reduced risk.

Understanding ensues from a model explanation and an interpretation of
its behavior. We distinguish between these two concepts: an explanation is
a symbolic representation of a model’s predictions, while an interpretation
is a human reasoning about its behavior. While our agent’s policies are in-
herently interpretable, they lacked a symbolic explanation. Using discretized
Markov models, we now provide that explanation and thus gain insight into
previously unanswered questions, such as why do the agents invest according
to conventional wisdom: exploiting the benefits of compound growth and
reducing risk with increasing customer age. These previously unanswered
questions demonstrate the need for both explanations and interpretations:
the lack of a symbolic representation of agents’ policies inhibited our com-
plete understanding.

Our contributions are therefore: (1) we demonstrate how to instill global
action affinities, thus affecting how RL agents learn, which we argue is a useful
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paradigm shift over the current approach of either post hoc rule extraction
or constrained learning, (2) we distinguish between model explainability and
interpretability, and in an empirical example demonstrate the difference and
the utility of both, and (3) we propose a method of using Markov models
to extract symbolic explanations of RL agents’ policies. In the next section,
we provide an overview of the current state of the art in explainable RL and
identify limitations in the field. We then describe our data and empirical
methodology, discuss our results, and conclude with insights and future work.

2. Related Work

RL agents learn to solve problems by maximizing the total expected re-
ward awarded by the environment in which they act. They are particularly
adept at learning in the presence of sparse and delayed rewards [15]. The en-
vironment is a discrete-time process where the current state depends only on
the previous state and the action taken by the agent: a Markov decision pro-
cess (MDP), described by the tuple (S,A,R, P ) where S is a set of states, A
a set of actions, R(s, a) the reward for taking action a ∈ A in the state s ∈ S,
and P (s, a) = P (s′|s, a) the probability that action a in the state s leads to
the state s′ [16]. Deep deterministic policy gradients (DDPG) is a model-free
RL algorithm for learning policies in a continuous action space [17]. A DDPG
agent consists of four neural networks: an actor µ(θ) representing the policy,
a critic Q(θ) representing the state action value function, and for numerical
stability, a target actor µ′(θ′) and a target critic Q′(θ′). During learning, the
target network parameters are typically updated slowly given a soft update
parameter τ ∈ [0, 1] with a small value: θ′i = τθi + (1− τ)θ′i, i ∈ {µ,Q}.

Explainable RL has traditionally employed generic methods that explain
the underlying models of agents [1]. More recently, however, bespoke meth-
ods have emerged that consider the state-action space and / or the behavior
of the learned policy [6, 4, 5]. Most, if not all, of these approaches extract
explanations after training; they generalize the learned policy through ob-
servation or statistical analyses. Few of these extracted explanations match
our definition of explainability, and most are more accurately described as
interpretations. State representation learning connects the state space with
information from actions, rewards, or expert knowledge when extracting rep-
resentations that are useful for reasoning about policies [18]. Under certain
restrictions, e.g., linearity, it learns models that either predict states form
state-action pairs, or actions from states, thus simplifying the state-action
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space and improving interpretability. Introspection analyzes an agent’s expe-
rience through statistics such as the frequency of occurrences of states, state-
actions, and transitions, the transition probabilities, and estimated rewards
compared to the learned state-action value function [12]. It uses interesting
elements from this analysis, such as outliers, mean values, etc. to reason
about agents’ behaviors. Structural causal modeling learns causal relation-
ships between states, actions, and rewards by defining action influence graphs
that map the action transitions for all possible paths from an initial state to
a set of terminal states [11]. It defines the causal chain as the one path in the
action influence graph that matches the learned policy, and a reward chain as
the vector of rewards along this causal chain. Its interpretation of the policy
is the comparison between the reward chain and all other possible reward
vectors that do not follow the causal chain. Probabilistic argumentation uses
argumentation graphs—sets of attacking and supporting arguments for each
action in a finite action space—to learn interpretations in a RL setting [10].
The state is the intersection of the argumentation graph and the policy to
be explained, the actions form a probabilistic distribution across the argu-
ments, and the rewards depend on whether an argument attacks or supports
the current action. The learned policy provides probabilistic interpretations
of agents’ actions in human understandable terms: supporting and attacking
arguments for each action. Reward decomposition replaces the scalar reward
with a vector of more meaningful rewards, where the total reward is the sum
of the vector [19, 20, 21]. Although evaluating the reward vector for a given
action might enable reasoning about that action in meaningful terms, it does
not take into account expected future rewards and can be insufficient in en-
vironments with delayed or sparse rewards. Reward redistribution addresses
this problem by redistributing delayed rewards in time; it assigns credit to
previous actions, thus reducing the delay of the reward [22]. The immediate
reward for each time step in a sequence of state-action transitions is equal to
the change in the total expected reward. It defines key interpretable events in
the policy and, through sequence alignment, redistributes rewards to those
events given a set of transition sequences. Hierarchical RL divides com-
plex tasks into smaller and simpler tasks that are solved by correspondingly
simpler RL agents [23, 21]. An orchestration agent learns to sequentially
combine these prototypical agents to solve complex tasks. If tasks are suf-
ficiently subdivided, the interpretation, or human reasoning about agents’
decisions, follows from their simplicity.

The complexity of RL models exacerbates the issue of fidelity and vali-
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dation of any post hoc explanation. We, instead, encourage agents to adapt
their behavior during learning, thus instilling an inherent probabilistic ac-
tion affinity that is also an interpretation of their behavior [13]. Contrary
to constrained RL, which avoids certain conditions [24, 25], affinity-based
learning promotes certain behaviors. This paradigm shift allows the devel-
oper to define a desired behavior that an agent must follow during learning,
thus instilling a characterization and interpretation during learning; it de-
couples learned strategies from the reward expectation [26]. Affinity-based
RL is not to be confused with preference-based RL that completely elimi-
nates the reward function and instead learns state-action trajectories that
maximize the preferences of the expert between pairs of state-action combi-
nations [27]. Affinity-based RL uses policy regularization that aids—and is
never detrimental to—learning convergence by encouraging exploration in en-
vironments with complex dynamics or particularly sparse rewards [28, 29]. It
adds a term to the objective function that penalizes any divergence between
the current policy and a given prior, for example, Kullback-Leibler (KL) reg-
ularization, which uses KL divergence as the distance measure [30]. Entropy
regularization is a specific case of KL-regularization, where the prior is a
uniform action distribution that increases the entropy of the policy and thus
encourages general exploration of the state-action space[31]. Our method in-
stead encourages exploration of a predefined subset of the state-action space,
which describes the desired behavior [13]. We define our objective function
as follows:

J(θ) = Es,a∼D [R(s, a)]− λL (1)

L =
1

M

M∑

j=0

[Ea∼πθ
(aj)− (aj|π0(a))]

2

where D is the replay buffer, λ is a hyperparameter that scales the regu-
larization term L, M is the number of actions, and π0 is a specific prior
action distribution that represents the desired behavior. Instilling an inter-
pretable behavior is sufficient for online policy interpretation [32]. Unlike
KL-regularization, our prior π0 is independent of the state and therefore in-
stills a global action affinity in the learned policy. We have demonstrated this
in Maree and Omlin [13] where agents navigated a grid towards a destination;
they learned to prefer, for example, only right turns and followed optimal
paths given their global affinities. In a more elaborate example, we trained
a set of prototypical agents with global affinities to invest in certain asset
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classes [14]. We observed the emergence of interesting investment strategies,
such as capitalizing on compound growth and reducing risk with portfolio
maturity. Although consistent with conventional wisdom, these strategies
were absent from the objective function. To complete our understanding of
this behavior, we now provide a symbolic representation—an explanation—of
these policies using Markov models.

A hidden Markov model (HMM) models an unobservable Markov process
X from its relation to an observable Markov process Y ; it learns about X
by observing Y under the key assumptions that Yt is solely dependent on
Xt, and Xt is solely dependent on Xt−1 (the Markovian property) [33]. For a
finite hidden state space X, there exists a Markov matrix F—the sum of the
rows add up to one—of state transition probabilities where Fij = P (Xn+1 =
j | Xn = i). Similarly, for a finite observed state space Y , there exists
a Markov matrix E that describes emission probabilities: Eij = P (Yt =
j | Xt = i). We illustrate this process in Figure 1. Given a series of ob-
served states {Yt}Tt=0, the transition and emission probabilities can be esti-
mated using the Baum-Welch algorithm—a special case of the expectation-
maximization algorithm [34].

Unobservable Markov process: Xt0 Xt1 Xt2 · · · XtT

Observable Markov process: Yt0 Yt1 Yt2 · · · YtT

F

E

F

E

F

E

F

E

Figure 1: A trellis diagram representing a hidden Markov model with an unobservable
Markov process X, and observable Markov process Y , transition probability matrix F ,
and emission probability matrix E.

3. Methodology

In Maree and Omlin [35], we defined a set of prototypical agents with
intrinsic investment behaviors associated with each of five personality traits:
openness, conscientiousness, extraversion, agreeableness, and neuroticism.
We used affinity-based RL to learn investment strategies for each of the pro-
totypical agents. Their actions were monthly investment distributions across
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five different asset classes: savings accounts, property funds, stocks, mortgage
curtailment, and luxury items. While stocks, savings, and property invest-
ments are self-explanatory, we defined mortgage curtailment as additional
payments that reduce the principal debt of a loan, and luxury items such
as art, classic cars, fine wines, etc., that might appear in, e.g., the Knight
Frank luxury investment index [36]. We also learned linear combinations of
these agents to best match the spending personalities of individual customers
which, for the sake of brevity, we do not discuss here. However, to facilitate
an understanding of our application, we summarize this paradigm in Figure 2
and refer the reader to a comprehensive account in [35]. We now provide an
explanation for the prototypical agents’ policies using Markov models.

Asset prices

Prototypical
associations

Transaction
history

Generalized
investment
actions

RL

RNN

RL

RNN

Openness Customer C

Prototypical investment agents Personal investment strategies

Encoded spending behavior

Time-variant generali-
zation

Figure 2: A flow diagram illustrating our system of RL agents that predict personalized
investment strategies. There are five prototypical affinity-based RL agents (enclosed in a
red dashed rectangle), each associating with one of five personality traits: openness, con-
scientiousness, extraversion, agreeableness, and neuroticism. These are the agents that we
explain using Markov models. Their actions are combined to match the spending behav-
iors of individual customers, and these combinations are continuously adjusted according
to their changing spending behavior using a recurrent neural network (RNN). While these
combinations are outside of the scope of this study, we believe it is useful to illustrate how
the agents are used in a complete application.
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To train our agents, we used pricing data for the S&P500 index, Nor-
wegian property index, and the Norwegian interest rate index between 1994
and 2022. We used two common market indicators—the moving average con-
vergence divergence (MACD) and the relative strength index (RSI) [37]—to
capture market dynamics. These indicators are the state space features of
the environment in which our agents learned. We show these features in
Figure 3. There is an additional state variable that indicates the maturity of
the portfolio; its value is 0.0 in the first month (January 1994) and linearly
increases to 1.0 in the final month (December 2021).

1994-01 2003-05 2012-09 2021-12
Date

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
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r v
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SP500 inde  macd
Property inde  macd
Interest inde  macd
SP500 inde  rsi
Property inde  rsi
Interest inde  rsi

Figure 3: The state data used to train the prototypical agents. We used two common mar-
ket indicators—the moving average convergence divergence (MACD) and relative strength
index (RSI)—to represent market dynamics of the S&P500 index, Norwegian property in-
dex, and Norwegian interest rate index. Our learning time frame was between 1994 and
2022.

We show the resulting policies for the five prototypical agents in Figure 4.
The agents optimized a common reward function, i.e., monthly returns; they
maximized the portfolio value. Though they shared a common reward func-
tion, the agents learned unique investment strategies: the conscientiousness
agent, for instance, prefers low-risk investment in property followed by reso-
lute mortgage curtailment, while the openness agent prefers investments that
might incite their curiosity, such as luxury items and stocks.

To train Markov models that match the predictions of the five prototyp-
ical agents, we discretized the states and actions of the agents. We assigned
three bins to the RSI indicator based on the knowledge that values between 0
and 0.3 indicate oversold conditions, values between 0.7 and 1 indicate over-
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Figure 4: The monthly actions of the five prototypical agents, shown on an x-axis ranging
between 0 to 1, representing months between 1994 and 2022. The y-axis represents the
monthly investment in each of the asset classes. Note that the actions strictly represent
the purchase of assets, i.e. the extraversion agent, for instance, consistently invests 100%
of available monthly funds into stocks, thus consistently increasing the portfolio holding of
stocks; assets are never sold. Though the agents optimised a common reward function—
monthly returns—, their distinct strategies were instilled through affinity-based learning.

bought conditions, and values between 0.3 and 0.7 are inconclusive [37]. We
similarly assigned two bins for the MACD indicator based on the knowledge
that positive values represent a buy signal, while negative values represent
a sell signal [37]. We divided the maturity state feature into 28 bins: one
for each year of the investment period. We finally assigned 5 equally sized
bins for the agents actions, between 0 and 1. This resulted in 168 poten-
tial states, of which only 102 states ever occurred. It is reasonable that
not all possible states occurred, since MACD and RSI are related; it is not
unexpected that whenever RSI indicates oversold conditions, MACD could
suggest a buy signal [37]. We then estimated the transition probabilities in
the Markov matrices Fi and the emission probabilities Ei, where i ∈ [1, 5],
for the five Markov models by observing the state transitions and the corre-
sponding actions for each of the prototypical agents. Using the initial state
and the five Markov models defined by Fi and Ei, we can reproduce the
policies of the five prototypical agents with high fidelity.
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4. Results

We trained five distinct Markov models as global surrogates to reproduce
the predictions of five affinity-based RL agents. We show the discretized
actions of the agents and the corresponding predictions of the Markov models
in Figure 5. Using only the initial state as input, the Markov models predict
the agents’ actions with high fidelity, with some uncertainly when action
values change due to the probabilistic nature of Markov models.

Figure 6 shows the state transitions for a non-exhaustive subset of states:
the first 16 states visited including the initial state. We observe that not all
states are visited, which is expected since the market indicators MACD and
RSI are not entirely independent, nor are the stock and property markets in
general. For example, during macroeconomic downturns we often observe a
decline in both these markets: refer to Figure 3 and observe, for example, the
decline in both the property and S&P500 indices during the 2008 recession.
Property and stock markets can also demonstrate an inverse correlation: in
Figure 3 the RSI curves for property and stocks can have reversed slopes,
while the MACD curve can exist on opposite sides of zero. By perturbing the
sizes and number of bins, we observed that portfolio maturity holds the most
salient information. This is an important observation; it suggests that the
values of the market indicators have a lesser influence on investment strategies
compared to the maturity of the portfolio. This is in line with conventional
wisdom that long-term investment should not be overly concerned with short-
term market volatility; property and stock indices have typically followed an
upward trend in the long run. The reduced dependence on market conditions
increases confidence in model robustness when trading on unseen data: the
unseen market conditions are less important than investor age; the basic
principle that younger investors can afford increased risk in return for higher
reward, and mature investors should seek to reduce portfolio risk, is common
across a wide range of market conditions.

5. Conclusions

Understanding deep AI models requires an interpretation of their behav-
ior and a symbolic representation, or explanation, of their functioning. These
two elements facilitate reasoning about a model and, thus, enhance trust in
its decisions. We have proposed a novel affinity-based approach to inter-
pretable reinforcement learning; it encourages exploration of a predefined
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Figure 5: A visual comparison between the discretized predictions of five RL agents (on
the left) and the five corresponding Markov models (on the right). The single input to
the Markov models is the initial state, from which they predict the transition to the next
state and the corresponding action by the agent. The Markov models clearly predict the
actions with high fidelity.
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Figure 6: A non-exhaustive illustration of the trained Markov model showing state tran-
sitions for a subset of states. States are shown as blue circles, and state transitions and
their probabilities are shown in black. We show the first 16 states, as visualizing all 102
states is not feasible. Each state represents a set of features with discretized values for
MACD and RSI indicators of the property and stock indices, respectively, as well as the
maturity of the portfolio. Note that not all state transitions are shown, since the origin
or destination state might not be included in this subset.

subset of the state-action space. This prior action distribution describes the
agent’s desired behavior and is the interpretation of its policy. However, our
solution lacked a symbolic explanation, resulting in unanswered questions
about why they make certain decisions. A concrete example is why a set
of agents, that learned to invest according to the preferences of prototypi-
cal personality traits, invest in more risky assets for younger investors and
reduce risk with investor age. We now provide a symbolic representation
of the agents’ policies, using Markov models, that answer such questions.
Our Markov models recreate, with high fidelity, the discretized investment
strategies of five prototypical investment agents using only the initial state.
By perturbing the bin sizes of the discretized state features, we are able
to determine the most salient feature: portfolio maturity. The fact that
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market conditions play a diminutive role in model prediction is significant:
it enhances trust in out-of-sample predictions and suggests that investment
timing is more important than market conditions. The agents make use of
compounding growth by investing in higher reward—but more risky—assets
early on, and fulfill their prescribed action distributions towards the end
of the investment period; they learned how to maximize rewards. This use
case demonstrates the need for both interpretations and explanations to fully
comprehend the functioning and characterization of deep RL systems. The
Markov model is a valuable tool for extracting a symbolic representation of
an otherwise opaque RL model, and affinity-based RL is a unique approach
to control what RL agents learn and thus interpret their behavior. It is a
paradigm shift from current approaches that either encourage general explo-
ration for the purpose of improved convergence or constrain the state space
to prevent the policy from visiting undesirable states. It is compelling to ap-
ply affinity-based RL to virtuous agents, personalized learning and teaching,
chronic disease treatment, climate change, wind farm operations, etc.
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S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, F. Herrera, Explainable artificial intelligence (XAI): Con-
cepts, taxonomies, opportunities and challenges toward responsible AI,
Information Fusion 58 (2020) 82–115.

[2] S. Carta, S. Consoli, A. S. Podda, D. R. Recupero, M. M. Stanciu, Sta-
tistical arbitrage powered by explainable artificial intelligence, Expert
Systems with Applications 206 (2022) 117763.

13



[3] S. Sachan, J.-B. Yang, D.-L. Xu, D. E. Benavides, Y. Li, An explain-
able ai decision-support-system to automate loan underwriting, Expert
Systems with Applications 144 (2020) 113100.

[4] A. Heuillet, F. Couthouis, N. Dı́az-Rodŕıguez, Explainability in deep
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