
Balancing Profit, Risk, and Sustainability for

Portfolio Management

Charl Maree*

Center for AI Research

University of Agder

Grimstad, Norway

charl.maree@uia.no

Christian W. Omlin

Center for AI Research

University of Agder

Grimstad, Norway

christian.omlin@uia.no

Abstract—Stock portfolio optimization is the process of

continuous reallocation of funds to a selection of stocks. This is

a particularly well-suited problem for reinforcement learning,

as daily rewards are compounding and objective functions may

include more than just profit, e.g., risk and sustainability. We

developed a novel utility function with the Sharpe ratio

representing risk and the environmental, social, and governance

score (ESG) representing sustainability. We show that a state-

of-the-art policy gradient method – multi-agent deep

deterministic policy gradients (MADDPG) – fails to find the

optimum policy due to flat policy gradients and we therefore

replaced gradient descent with a genetic algorithm for

parameter optimization. We show that our system outperforms

MADDPG while improving on deep Q-learning approaches by

allowing for continuous action spaces. Crucially, by

incorporating risk and sustainability criteria in the utility

function, we improve on the state-of-the-art in reinforcement

learning for portfolio optimization; risk and sustainability are

essential in any modern trading strategy, and we propose a

system that does not merely report these metrics, but that

actively optimizes the portfolio to improve on them.

Keywords—AI in finance, multi-agent reinforcement learning,

genetic algorithms, MADDPG

I. INTRODUCTION

Stock portfolio optimization has been a focal point in
financial technology with various solutions proposed
including artificial neural networks, support vector machines,
random forests, and, more recently, reinforcement learning [1,
2]. The application of reinforcement learning to stock portfolio
optimization has generally followed two different approaches:
deep Q-learning (DQL) where discretized actions denote buy
and sell volumes [3], and policy gradient methods where
continuous actions correspond to the distribution of assets in
the portfolio [4]. In recent publications, DQL has typically
been outperforming policy gradient methods even though
discretization is considered disadvantageous [5]. We therefore
investigate the cause of the inferior performance of policy
gradient methods and propose a solution: replacing gradient
descent with a genetic algorithm for parameter optimization.
Further, we note that recent studies have typically been using
financial returns as the sole performance metric [6]. We
propose to include two additional metrics – risk and
sustainability – in a novel utility function using the Sharpe
ratio and environmental, social, and governance (ESG) score,
respectively. While risk is a key element of modern portfolio
theory, sustainability is increasingly becoming requisite in
financial services. By adding these two metrics to the utility
function, we create a system that actively reduces risk while
maintaining a sustainable portfolio, thus furthering the state-
of-the-art in modern portfolio management.

II. BACKGROUND AND RELATED WORK

A. Portfolio Metrics and Market Indicators

The Sharpe ratio is commonly used to quantify the risk-to-
reward ratio of a portfolio [7]. It is defined as the expected
return in excess of the risk-free return per unit of risk in the
portfolio, formally:

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝
(1)

Here, 𝑅𝑝 and 𝑅𝑓 are the expected daily return of the

portfolio and the risk-free return respectively, while 𝜎𝑝 is the

standard deviation of the daily returns of the portfolio. The
higher the Sharpe ratio of a portfolio, the better the risk-
adjusted performance: a Sharpe ratio less than one is
considered sub-optimal by investors, while a ratio greater than
one is considered good, greater than two is very good, and
greater than three is excellent [8]. The use of the Sharpe ratio
in the reward function can significantly increase the return [9].

The environmental, social, and governance (ESG) score is
a set of criteria that measure a company’s operations for
sustainability. It is used by socially aware investors and
investment firms to select stocks appropriate to their portfolio,
as well as in the finance sector generally; firms such as
JPMorgan Chase, Wells Fargo, and Goldman Sachs have all
published annual reports that present their ESG performances
[10, 11, 12]. While the main purpose of ESG is to provide a
measure of sustainable conduct, it may also serve as an
indicator of long-term risk; through prioritizing ESG, an
investor might be able to avoid companies that conduct high-
risk activities with potential future consequences on stock
prices. In this study, we use the ESG score reported by Yahoo
Finance with a scale of 0-100, where a lower score indicates
more sustainable conduct.

Momentum indicators are popular tools used by investors
to gauge the strength of a stock. They evaluate the ability of a
stock to sustain a rate of price change. Moving average
convergence divergence (MACD) is one such indicator which
subtracts the 26-day from the 12-day exponential moving
average (EMA) – an exponentially weighted moving average,
assigning more weight to recent data – of a stock price. MACD
is used to predict reversals in trends but is prone to false
positives, i.e., it occasionally predicts reversals that do not
actually occur. The relative strength index (RSI) is another
momentum indicator which is often used in tandem with
MACD to mitigate this shortcoming. It uses the magnitude of
recent price changes to predict overbought and oversold
conditions of a given stock. RSI is calculated as follows:

*Second Affiliation: Chief Technology Office, SpareBank 1 SR-Bank,
Stavanger, Norway.

This study was partially funded by The Norwegian Research Council;

project nr 311465.

𝑅𝑆𝐼 = 100 −
100

1 +
𝑃𝑥

𝑁𝑥

 (2)

Here, 𝑃𝑥 and 𝑁𝑥 are the averages of the positive and
negative close prices respectively, for a period of 𝑥 days. The
RSI value lies between 0 and 100, and the typical
interpretation is that values below 30 and above 70 indicate
the stock being oversold and overbought, respectively. Studies
have shown that MACD and RSI can increase returns for stock
trading. [13, 14].

The final indicator we used is drawdown, specifically daily
drawdown (DDD) and maximum drawdown (MDD). While
the former is calculated as the scaled difference between the
current (𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and maximum (𝑃𝑚𝑎𝑥) stock prices for a
given period, the latter is the scaled difference between the
minimum (𝑃𝑚𝑖𝑛) and maximum (𝑃𝑚𝑎𝑥):

𝐷𝐷𝐷 =
𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑃𝑚𝑎𝑥

𝑃𝑚𝑎𝑥

 (3)

𝑀𝐷𝐷 =
𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥

𝑃𝑚𝑎𝑥

 (4)

Drawdown is one of the most widely used indictors of risk
and is a measure of downside volatility, in contrast to the
Sharpe ratio which is a measure of volatility in general [15]. It
is therefore especially useful to, e.g., short-term investors to
whom upside volatility is not of paramount concern.

B. Non-Stationarity in Reinforcement Learning

In reinforcement learning, agents learn policies by
maximizing expected cumulative rewards [16]; the value of
each state in a Markov decision process (MDP) is the
discounted sum of rewards of future states, formalized by the
Bellman equation [17]:

𝑉(𝑠) = max
𝑎 ∈ 𝐴(𝑠)

∑ 𝑃(𝑠′ | 𝑠, 𝑎)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉(𝑠′))

𝑠′

 (5)

Here, 𝑉(𝑠) is the value of state 𝑠 , 𝑃(𝑠′ | 𝑠, 𝑎) is the
probability of transitioning to state 𝑠′ given state 𝑠 and action
𝑎, 𝑅(𝑠, 𝑎, 𝑠′) is the reward for action 𝑎 in state 𝑠 transitioning
to sate 𝑠′, and 𝛾 ∈ [0,1] is the discount rate which reduces the
weight of future rewards. The value of a state is the maximum
discounted reward for all possible actions for that state, 𝐴(𝑠).
While Equation (5) is the general Bellman equation for
stochastic MDPs, deterministic MDPs will have the transition
probability distribution 𝑃(𝑠′ | 𝑠, 𝑎) reduced to one.
Furthermore, stochastic systems may either be stationary or
non-stationary. Unlike stationary systems which have constant
transition probability distributions, non-stationary systems
have proven problematic for traditional reinforcement
learning methods [18]. A relevant example of a non-stationary
MDP is a multi-agent system where multiple independent
agents act on the same environment resulting in unstable state
transition probabilities caused by the changing policies of the
other agents during training [18].

C. MADDPG for Stabilizing a Multi-Agent System

Multi-agent deep deterministic policy gradient
(MADDPG) was introduced to address the inherent non-

1 Games are a popular application for reinforcement learning as they facilitate
learning on high-dimensional input data akin to human sensory input such as

vision [29].

stationarity of multi-agent systems [18]. In their paper, the
authors demonstrated an increasing variance in policy
gradients with an increasing number of agents. They extended
deep deterministic policy gradient (DDPG) in which the
parameters 𝜃 of the optimum policy 𝜋⋆ are determined
through maximizing the objective function 𝐽(𝜃) =
𝐸𝑠~𝑝𝜋, 𝑎~𝜋(𝜃)[𝑅], where 𝑝𝜋 is the state distribution and 𝜋(𝜃)

is the policy according to parameters 𝜃. They formalized the
gradient of the objective function for deterministic policies
(𝜇𝜃: 𝑆 ↦ 𝐴) as:

∇𝜃𝐽(𝜃) = 𝐸𝑠[∇𝜃𝜇𝜃(𝑎 | 𝑠)∇𝑎𝑄𝜇(𝑠, 𝑎)|𝑎=𝜇𝜃(𝑠)] (6)

In DDPG, 𝜇𝜃(𝑎 | 𝑠) is modelled by an actor network
which predicts the best action given a state, while the reward
function 𝑄𝜇(𝑠, 𝑎) is modelled by a critic network which
estimates the value of a state-action pair. These networks
experience high variance in their policy gradients when used
in multi-agent settings, as the actions of other agents are absent
in the loss function while the rewards depend on these actions
[18]. The authors in [18] mitigated this problem by extending
the critic 𝑄𝜇(𝑠, 𝑎) to consider the actions of all agents:
𝑄𝜇(𝑠, 𝑎𝑖 ,  𝑖 ∈ {1 … 𝑁}), where 𝑁 is the number of agents.

D. Genetic Algorithms for Parameter Optimization

In general, genetic algorithms (GA) solve problems by
evolving a population of individuals 𝑎𝑖 , 𝑖 ∈ {1 … 𝑁} , each
with a set of parameters 𝜃𝑖 . At each generation 𝑔, a fitness

score 𝐹(𝑎 | 𝜃𝑖,𝑔) is calculated for each individual through

measuring their performance at solving a given problem.
Typically, the best performing individual is carried over to the
next generation (𝑔 + 1), while the top 𝑘 < 𝑁 individuals are
used to generate a new batch of 𝑁 − 1 individuals, such that
the size of the population remains constant. This new
population is generated either through parameter mutation –
where parameters are altered through crossover-mutation
between parents’ parameters – or through the addition of
Gaussian noise: 𝜃𝑔+1 = 𝜃𝑔 + 𝜎𝜖 where 𝜖 ~ 𝒩(0, 𝐼) and 𝜎 is

a hyperparameter which roughly corresponds to a learning
rate. In [19], the authors used the addition of Gaussian noise
to evolve the parameters of a neural network and found that it
outperformed both DQL and gradient-based methods at
playing games1. In another study, the authors used GA to
evolve the parameters of a single agent system and showed
that it outperformed DDPG in moving a physical robotic arm
[20].

E. Reinforcement Learning for Stock Portfolio Optimization

In stock portfolio optimization, a trader continuously
redistributes funds between a selection of stocks. Risk-aware
traders structure their portfolios to optimize risk for a given
expected return [21]; one approach is portfolio optimization
using reinforcement learning. In [22], the authors compared
the performance of different single-agent policy gradient
methods on an MDP structured as follows:

• State: the close-price history, high-price history and a

wavelet transform of the close-price for each of six stocks

for a given time window.

• Action: a continuous daily distribution of funds across the

six stocks.

• Reward: log(Δ𝑃) + 𝑆 , where ΔP is the daily change in

portfolio value, and 𝑆 is the Sharpe value.

It could be argued that this approach does not appropriately
weight risk for all types of investors; certain investors might
be more risk-averse than others, e.g., individuals in different
stages of their lives. The authors stated that even though
DDPG was their best performing method, it performed rather
poorly and frequently ended in local minima. Their best
performing scenario with a careful stock selection achieved
approximately 25% annual returns.

Similarly, the authors in [23] presented a DDPG-based
method for trading a selection of 8 stocks. They used LSTM
networks for the critics and feed-forward networks for the
actors. Their state consisted of daily stock prices, RSI, stock
positions, and the portfolio value. Their rewards were simple
daily returns, and their actions were the continuous
distribution of stock positions in the portfolio. They reported
compound annual return of 14% and a Sharpe ratio of 0.6 over
a period of 11 years.

In [24], the authors presented a multi-agent DQL system
that traded four different crypto currencies – Bitcoin (BTC),
Litecoin (LTC), Etherium (ETH), and Ripple (XRP). In this
system, each agent traded a single asset and the MDP was
formalized as follows:

• State: the close price for each asset at the given time step.

• Action: 2 × 30 discretized bins for buy and sell

respectively, and one action to hold, totaling 61 actions.

• Reward: two reward functions were tested: a simple sum

of financial returns and a weighted sum of the returns and

the Sharpe ratio.

The weighting between the returns and Sharpe ratio was a
hyperparameter – an improvement over [22] as this potentially
allows for different strategies depending on the investor’s
appetite for risk. The authors reported that the second reward
function yielded better results. They reported daily returns
between 2.0% and 4.7%, while the best annualized Sharpe
ratio achieved was 3.2. This system clearly performed better
than the ones in [22] and [23], which could be related to the
nature of the optimizer in a discretized action space; DQL does
not rely on policy gradients and is therefore not susceptible to
local minima. Another difference is that this study used
multiple agents, i.e., one agent per stock. It could be argued,
however, that these agents were simply clones that fulfilled the
same role given the same observations and rewards, and that
they could learn neither unique behaviors nor cooperation.

The DQL system presented in [25] divided the portfolio
optimization problem into timing and pricing elements which
resulted in two types of agents: signal agents and order agents,
respectively. Additionally, each of these two types of agents
were concerned with either buying or selling of assets, which
resulted in four individual agents. Agents had individual state
observations: while buy and sell signal agents received a
history of asset prices, the sell agent also received information
about potential profit using the next-day stock price. Further,

the buy and sell order agents’ observations were market
indicators – the Granville indicator 2 and Japanese
Candlesticks3. The action spaces for the four agents consisted
of buy and sell signals sent from the signal agents to the
appropriate order agents which in turn generated discrete buy
or sell volumes. The reward function 𝑅 ∈ [0,1] was the
normalized difference between the selling or buying price and
the high or low price of the next day, respectively. Though the
authors presented their results in percentage profit over a 4.5-
year test period (1138.7%), we calculated their compound
annual return for their best-case scenario as 74.9%. They did
not report a Sharpe ratio for their optimized portfolio.

In summary, discretized DQL systems typically
outperform policy gradient systems for stock portfolio
optimization. We hypothesized that this could be attributed to
the nature of the policy gradients; flat policy gradients and
local minima pose challenges for gradient-based optimizers
[18]. We therefore replaced gradient descent with a genetic
algorithm for parameter optimization to eliminate gradient-
based optimization problems while maintaining a continuous
action space. A continuous action space is desirable because
stock trading is not inherently discrete, and discretization adds
an unnecessary level of abstraction [5]. Finally, there has not
– to the best of our knowledge – been any published
reinforcement learning portfolio optimization system that used
ESG in its utility function. This is a significant oversight since
sustainable investing is pivotal to a more sustainable society
[10]. We therefore address this by incorporating ESG in our
utility function.

III. EMPIRICAL METHODOLOGY

A. Data

We used market data as reported by Yahoo Finance for a
selection three of stocks from the DOW30 index: The
Goldman Sachs Group, Inc. (GS), The Procter & Gamble
Company (PG), and 3M Company (MMM). For our training
and testing periods, these three stocks had constant ESG risk
scores of 28.12, 25.10, and 34.88, respectively. However, it is
possible that ESG sores can change in time according to
changes in companies’ operations and our system is designed
to cope with such changes. We used the asset close prices for
a period of two years in training (shown in Fig. 1a) and the
following year in testing (shown in Fig. 1b); it is injudicious
in stock portfolio optimization to not have a separate test set,
firstly because trading will always happen on unseen data, and
secondly because typical MDPs for stock portfolio
optimization are non-stationary and therefore render
reinforcement learning agents susceptible to overfitting [26,
27].

B. Design of Markov Decision Process

Many studies have been avoiding policy gradient methods
for portfolio optimization by discretizing action spaces.
However, the portfolio optimization problem is not inherently
discrete and continuous action spaces are therefore considered
preferrable [5]. In this study, we used a triple agent system and
the following MDP with a continuous action space:

2 The Granville indicator is a set of eight conditions of a stock price in relation

to its moving average, e.g., a bullish breakthrough is when the stock price
crosses the moving average in an upward trend. It indicates buying or selling

conditions.

3 Japanese candlesticks consider four daily price points: open, close, high, and

low. A stock is considered either bearish or bullish depending on the
difference between open and close prices while the high and low prices

indicate daily volatility.

(a) (b)

Fig. 1 The stock price data used for (a) training and (b) testing purposes. Market data is shown for The Goldman Sachs Group, Inc. (GS), The Procter &

Gamble Company (PG), and 3M Company (MMM). Market conditons were slightly different between these two datasets, e.g., GS experienced an overall

decrease in stock price for the training period, but an overall increase during the testing period.

• Our state was represented by 18 values: for each of the

three stocks a normalized stock price (with subtracted

mean, scaled to unit variance), MACD, RSI, DDD, MDD,

and the difference between the 20-day and 5-day EMA’s.

• The action-spaces of our first two agents (profit agent and

risk-averse agent) were the continuous distributions of

positions for the three stocks and one for holding cash, i.e.,

there were four values per action (𝐴1 and 𝐴2 respectively

where |𝐴𝑖| = 4, 𝐴𝑖,𝑗 ∈ [0,1], ∑ 𝐴𝑖,𝑗
4
𝑗=1 = 1, 𝑖 ∈ {1,2}).

The third action (the sustainability action) consistently

selected best performing stock with respect to ESG, e.g.,

𝐴3 = [0,1,0,0] while PG had the lowest ESG score. The

final agent’s (manager agent) action was the weighting

between the three actions (profit, risk, and sustainability):

𝐴𝑡 = ∑ 𝛽𝑖𝐴𝑖,𝑡
3
𝑖=1 , where 𝐴𝑡 was the total action sent to the

environment at time-step 𝑡 and 𝛽𝑖 ∈ [0,1],  𝑖 ∈ [1,3] was

the third agent’s action.

• The rewards were unique to each agent: the profit agent’s

reward was the change in portfolio value from time-step 𝑡

to 𝑡 + 1: 𝑟1,𝑡 = Δ𝑃|𝑡
𝑡+1; it was only concerned with profit.

The risk-averse agent’s reward was the Sharpe ratio for a

moving window of 20 days: 𝑟2,𝑡 = 𝑆ℎ𝑎𝑟𝑝𝑒(𝑡 − 20 →

 𝑡) 𝑖𝑓 𝑡 ≥ 20, 𝑒𝑙𝑠𝑒 0; it was concerned with risk and the

variability of daily returns. The manager agent’s reward

was a linearly weighted function of the rewards of the first

two agents and the mean ESG score for the portfolio: 𝑟4 =
∑ 𝜔𝑖𝑟𝑖,𝑡

3
𝑖=1 ,  ∑ 𝜔𝑖 = 13

𝑖=1 , 𝜔𝑖 ∈ [0,1] where 𝑟3,𝑡 =

− ∑ (𝑥𝑖 ⋅ 𝐸𝑆𝐺𝑖)
3
𝑖=1 where 𝑥𝑖 and 𝐸𝑆𝐺𝑖 are the position and

ESG score of stock 𝑖 and the weighting parameters 𝜔𝑖 ,  𝑖 ∈
[1,3] were hyperparameters which we tuned to the values

of 0.7, 0.2 and 0.1, respectively; the manager agent

weighed the recommended actions from the other agents

to achieve balanced rewards given a tunable prioritization

between risk, reward and sustainability.

Finally, we calculated our market indicators as follows:
We used standard periods of 14 days in Equation (2) for RSI
and 26 days in Equations (3) and (4) for DDD and MDD. We
annualized the Sharpe ratio by assuming 252 trading days per

year 𝑆ℎ𝑎𝑟𝑝𝑒𝑎𝑛𝑛𝑢𝑎𝑙 = √252 ⋅ 𝑆ℎ𝑎𝑟𝑝𝑒𝑑𝑎𝑖𝑙𝑦 where

𝑆ℎ𝑎𝑟𝑝𝑒𝑑𝑎𝑖𝑙𝑦 was calculated from Equation (1) with a risk-free

return equal to zero; we assumed risk-free returns were
negligible which is not an unusual assumption with
consistently low interest rates for our selected time period. For
simplicity, we ignored transaction costs.

C. Design of Agents

We compared two systems of three agents acting on the
MDP described above: a MADDPG system (as described in
[18]), and a system using a genetic algorithm to optimize the
parameters of the deep neural networks of the agents. The
MADDPG agents each had two feed-forward neural
networks, one for the actor and one for the critic. The actor
networks’ inputs were complete observations of the state
described above, while their outputs were the actions as
described above. The critic networks’ inputs were a complete
observation of the state plus the actions of all agents, while
their outputs were the estimated value of the current state. The
hidden layers were the same for all networks: two fully
connected layers of 64 nodes each, followed by a softmax
activation for the actor networks and no activation for the
critic networks. We tuned the learning rate to 0.001, discount
factor (𝛾) to 0.99, and target-network update parameter (𝜏) to
0.01 for all agents. The training batches were relatively large
(256 samples) to mitigate the effects of the observed flat
policy gradients. Each training run consisted of 5,000
iterations, each with one data collection episode and three
training batches, and the replay buffer was sized to store the
transition trajectories for two episodes. The system based on
genetic algorithms used identical actor networks to that of the
MADDPG system, without the need for critic networks. We
optimized the weights of the actor networks with a genetic
algorithm, thus eliminating gradient descent. For a tuned
population size of 200, we mutated the fittest 10% of each
generation using random mutation and a gaussian noise
multiplier 𝜎 tuned to 0.3 while carrying over the fittest
individual unmutated. For both systems, hyperparameter
tuning was done through a standard one-at-a-time parameter
sweep.

IV. RESULTS

In Table 1, we show the results of our experiments
compared to that of published work on both continuous and
discretized action spaces for stock portfolio optimization.

TABLE 1 RESULTS FROM OUR GENETIC ALGORITHM (GA) AND MADDPG

SYSTEMS COMPARED TO TYPICAL DDPG AND DQL SYSTEMS.

System Returns* Sharpe ratio* ESG*

Our GA 70.4% ± 6.8% 3.15 ± 0.22 26.9 ± 1.2

Our MADDPG 27.9% ± 9.5% 1.28 ± 0.42 29.6 ± 0.3

DDPG 25% [22] 0.6 [23] -

DQL 74.9% [25] 3.2 [24] -

*Ranges are for 95% confidence intervals.

Our MADDPG returns were in line with the returns
reported in the single agent DDPG system in [22], while the

returns of the better performing DQL system in [25] were
within the 95% confidence interval of our GA system, making
them essentially the same. Further, our GA system
outperformed our own MADDPG system in terms of
sustainability, with a superior ESG score of 26.9 compared
to29.6. Our GA system also achieved low risk, with a Sharpe
ratio of 3.15 which is typically considered “excellent”, while
a Sharpe ratio of 1.28 as achieved by the MADDPG system is
considered merely “good” [8]. Finally, while [24] reported a
similar Sharpe ratio to our system, it was merely a reported
metric whereas our system took an active approach to
minimizing risk. Our system could thus match [24] in terms
of risk and [25] in terms of profit, while each of these systems
were inferior to ours otherwise. Therefore, though we did not
strictly outperform DQL systems in terms of pure financial
returns, the fact that we can match their financial returns while
offering reduced risk and a sustainable portfolio leads us to
claim that our solution is an improvement over the state-of-
the-art.

In Fig. 2 we show two typical portfolios held by the two
systems during testing. While the GA system quickly
achieved a positive portfolio value, the MADDPG system
fluctuated around the break-even line for the first half of the
episode. Only when the market entered a bullish state after
roughly 180 days did we observe a markable increase in the
MADDPG portfolio value. This increase was observed much
earlier for the GA system – after about 100 days. The fact that
the GA system held positions in the GS stock during
evaluation, despite this stock having had a mostly downward
trend in the training data, suggests that it had learned to
interpret market signals as opposed to simply holding the
stock that performed best during training. The GA system also
responded better to market fluctuations by, for example,
taking a position in PG while GS showed bearish signals
between ca. 40 and 60 days and choosing to hold cash at times
when the MADDPG system did not. The two systems had

clearly learned different strategies, reiterating that for at least
one of them the optimum policy remained elusive.

We verified that the substantial difference in performance
between the MADDPG and GA systems was due to the nature
of the MADDPG system’s policy gradients. In Equation (6)
we showed that the objective function of a MADDPG system
is expressed in terms of the parameters of the actor (𝜇) and
critic (𝑄) networks. Fig. 3 illustrates the steepest negative
gradients of each of the actor and critic networks during
training and gives an indication of how well an optimizer may
perform at gradient descent; if all gradients are flat – or close
to zero – then the optimizer has no indication of how to adjust
the weights. From this figure, we observed that while the three
critics appeared to have had sufficient gradients to perform
gradient descent, the actors all experienced flat gradients. This
suggests that the critics were able to learn the values of states,
but the agents were not able to effectively use these values to
find optimum policies. This might be due to the critics having
had a more holistic view of the state action space, as intended
by the authors of MADDPG [18]. We therefore conclude that
the optimum policy had remained elusive to the MADDPG
system, as substantiated by the higher returns achieved using
the GA system.

Finally, in Fig. 4 and Fig. 5, we show the actions taken by the
individual agents of the two systems. The agents of the GA
system clearly took more distinct roles, with the risk-averse
agent frequently voting to hold cash and generally avoiding
the most volatile of the three stocks (GS), which the profit
agent mostly favored. Interestingly, this clear separation of
responsibility was not evident in the behavior of the
MADDPG agents which acted more haphazardly. In future
work, we intend to more closely inspect the behaviors of the
agents and we aim to characterize them and extract
explanations for their actions.

(a) (b)

Fig. 2 Two typical portfolios when trading stocks on test data using (a) the genetic algorithm system and (b) the MADDPG system of traders. The upper row

shows the daily positions of assets – GS, PG, MMM, and cash – for each system, the middle row shows the daily close prices, and the bottom row shows the total
portfolio values of each system. While the system in (a) hardly has negative portfolio values and finally achieves a return of 83% (Sharpe ratio = 3.4 and ESG =

26.0), the system in (b) frequently has negative portfolio values in early stages and finally yields a return of 19% (Sharpe ratio = 1.2 and ESG = 27.8.)

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

In this study, we defined the problem of stock portfolio
optimization in terms of reinforcement learning and designed
a multi-agent system with a continuous action space. From
published works we showed that, for stock portfolio
optimization, DQL has typically been outperforming policy
gradient methods despite being limited to discretized actions.
We then showed that, for our problem, this was due to flat
policy gradients inhibiting gradient descent from finding the
optimum policy. Since continuous action spaces are
nevertheless considered preferable to discretization in stock
portfolio optimization, we overcame the policy gradient
problem by replacing gradient descent with a genetic
algorithm for parameter optimization. We showed that this
method outperformed MADDPG in a three-agent system
trading a selection of three stocks from the DOW30 index.
Furthermore, our agents were rewarded not only for financial
returns, but also for risk (via the Sharpe ratio), and
sustainability (via ESG). While risk is key in modern portfolio
theory, sustainability is increasingly becoming requisite in
modern trading strategies. It is therefore pivotal that state-of-
the-art solutions not only support reporting of such metrics,
but that they actively optimize portfolios to improve on them.
Our main contribution is therefore the inclusion of the Sharpe
ratio and ESG in the utility function for portfolio optimization,
while matching state-of-the-art solutions in terms of financial
returns. We claim that is not necessary to outperform current
solutions in terms of financial returns since our solution offers
the same returns with reduced risk in a sustainable portfolio,
making it an improvement on the state-of the-art.

Our ultimate objective is the development of personalized
digital financial advisors using customer micro-segmentation
[28]. These financial advisors will recommend, in an
explainable way, an optimum allocation of funds given a
personal budget and a portfolio of financial products and
services. We therefore intend to address the explainability of
our system in future work by characterizing, explaining, and
predicting an agent’s policy based on the history of past trades.

ACKNOWLEDGMENT

We acknowledge Phillip Tabor for his implementation of
the MADDPG algorithm. Some of the code for this paper was
adapted from his library.

REFERENCES

[1] Y. Liu, Q. Liu, H. Zhao, Z. Pan and C. Liu, “Adaptive quantitative
trading: An imitative deep reinforcement learning approach,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 2, pp. 2128-2135, 2020.

[2] T. G. Fischer, “Reinforcement learning in financial markets - a survey,”
FAU Discussion Papers in Economics, vol. 12, no. 1, pp. 1-46, 2018.

[3] G. Huang, X. Zhou and Q. Song, “Deep reinforcement learning for
portfolio management based on the empirical study of chinese stock
market,” arXiv, vol. 2012.13773, pp. 1-37, 2020.

[4] X. Y. Liu, H. Yang, Q. Chen, R. Zhang, L. Yang, B. Xiao and C. D.
Wang, “FinRL: A deep reinforcement learning library for automated
stock trading in quantitative finance,” arXiv, vol. 2011.09607v1, pp. 1-
11, 2020.

[5] Z. Jiang, D. Xu and J. Liang, “A deep reinforcement learning
framework for the financial portfolio management problem,” arXiv,
vol. 1706.10059, pp. 1-31, 2017.

[6] A. Mosavi, Y. Faghan, P. Ghamisi, P. Duan, F. S. Ardabili, E. Salwana
and S. S. Band, “Comprehensive review of deep reinforcement learning

methods and applications in economics,” Mathematics, vol. 8, no. 10,
pp. 1640-1682, 2020.

[7] F. S. Willaim, “The Sharpe ratio,” The Journal of Portfolio
Management, vol. 21, no. 1, pp. 49-58, 1994.

[8] J. B. Maverick, “Investopedia,” 30 04 2021. [Online]. Available:
https://www.investopedia.com/ask/answers/010815/what-good-
sharpe-ratio.asp. [Accessed 30 06 2021].

[9] M.-E. Wu, J.-H. Syu, J. C.-W. Lin and J.-M. Ho, “Portfolio
management system in equity market neutral using reinforcement
learning,” Applied Intelligence, vol. 51, no. 9, pp. 1-13, 2021.

[10] JP Morgan Chase & Co., “Environmental social & governance report,”
JP Morgan Chase & Co., 2020.

[11] Wells Fargo & Co., “Environmental, social, and governance (ESG)
report,” Wells Fargo & Co., 2020.

[12] Goldman Sachs, “The future now: Integrating sustainability with
purpose across our business,” Goldman Sachs, 2020.

[13] T. T.-L. Chong and W.-K. Ng, “Technical analysis and the London
stock exchange: testing the MACD and RSI rules using the FT30,”
Applied Economics Letters, vol. 15, no. 14, pp. 1111-1114, 2008.

[14] T. T.-L. Chong, W.-K. Ng and V. K.-S. Liew, “Revisiting the
performance of MACD and RSI oscillators,” Journal of Risk and
Financial Management, vol. 7, no. 1, pp. 1-12, 2014.

[15] L. Goldberg and O. Mahmoud, “Drawdown: From practice to theory
and back again,” Mathematics and Financial Economics, vol. 11, no.
3, pp. 275-297, 2017.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, Cambridge, MA: MIT Press, 2018.

[17] R. E. Bellman, Dynamic Programming, Princeton: Princeton
University Press, 1957.

[18] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,”
Advances in Neural Information Processing Systems, vol. 30, no. 1, pp.
1-12, 2017.

[19] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley and J.
Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement
learning,” arXiv, vol. 1712.06567, pp. 1-16, 2017.

[20] A. Sehgal, H. La, S. Louis and H. Nguyen, “Deep reinforcement
learning using genetic algorithm for parameter optimization,” in Third
IEEE International Conference on Robotic Computing (IRC), Naples,
Italy, 2019.

[21] H. Markovitz, “Portfolio Selection,” Journal of Finance, vol. 7, no. 1,
pp. 77-91, 1952.

[22] L. T. Hieu, “Deep reinforcement learning for stock portfolio
optimization,” International Journal of Modeling and Optimization,
vol. 10, no. 5, pp. 139-144, 2020.

[23] H. Zhang, Z. Jiang and J. Su, “A deep deterministic policy gradient-
based strategy for stocks portfolio management,” arXiv, vol.
2103.11455v1, pp. 1-8, 2021.

[24] G. Lucarelli and M. Borrotti, “A deep Q-learning portfolio
management framework for the cryptocurrency market,” Neural
Computing and Applications, vol. 32, no. 1, pp. 17229-17244, 2020.

[25] J. W. Lee, J. Park, J. O, J. Lee and E. Hong, “A multiagent approach to
Q-Learning for daily stock trading,” IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, vol. 37, no. 6,
pp. 864-877, 2007.

[26] K. Cobbe, O. Klimov, C. Hesse, T. Kim and J. Schulman, “Quantifying
generalization in reinforcement learning,” arXiv, vol. 1812.02341v3,
no. 1, pp. 1-14, 2019.

[27] C. Zhang, O. Vinyals, R. Munos and S. Bengio, “A study on overfitting
in deep reinforcement learning,” arXiv, vol. 1804.06893v1, no. 1, pp.
1-19, 2018.

[28] C. Maree and C. W. Omlin, “Clustering in recurrent neural networks
for micro-segmentation using spending personality,” IEEE Symposium
Series on Computational Intelligence, pp. 1-5, 2021.

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra and M. Riedmiller, “Playing Atari with deep reinforcement
learning,” arXiv, vol. 1312.5602, pp. 1-9, 2013.

VI. APPENDIX

Fig. 3 The steepest policy gradients of the three MADDPG agents’ actor and critic networks for the first 500 training episodes. Each datapoint shows the

largest negative component of the gradients of the weights for each of the fully connected (fc1, fc2) and output layers (out). While the critic networks have

workable gradients, the gradients for the actor networks are mostly flat throughout training.

Fig. 4 The agents’ actions in a typical GA system during testing. The first plot shows the profit agent frequently voting to hold GS, while the second plot shows

the risk-averse agent more most frequently voting to holding cash. The manager agent’s role was to choose the weighting between the other agents’ votes; the

last plot shows it frequently varying between all three objectives: profit, risk, and sustainability.

Fig. 5 The agents’ actions in a typical MADDPG system during testing. The fist plot shows the profit agent’s vote varying mostly between GS and MMM, while
the second plot shows the risk-averse agent voting mostly for MMM, interestingly without ever holding cash. The manager agent’s role was to choose the

weighting between the other agents’ votes; the last plot shows that it always chose to accept the vote of the risk-averse agent.

