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Abstract—Stock portfolio optimization is the process of 

continuous reallocation of funds to a selection of stocks. This is 

a particularly well-suited problem for reinforcement learning, 

as daily rewards are compounding and objective functions may 

include more than just profit, e.g., risk and sustainability. We 

developed a novel utility function with the Sharpe ratio 

representing risk and the environmental, social, and governance 

score (ESG) representing sustainability. We show that a state-

of-the-art policy gradient method – multi-agent deep 

deterministic policy gradients (MADDPG) – fails to find the 

optimum policy due to flat policy gradients and we therefore 

replaced gradient descent with a genetic algorithm for 

parameter optimization. We show that our system outperforms 

MADDPG while improving on deep Q-learning approaches by 

allowing for continuous action spaces. Crucially, by 

incorporating risk and sustainability criteria in the utility 

function, we improve on the state-of-the-art in reinforcement 

learning for portfolio optimization; risk and sustainability are 

essential in any modern trading strategy, and we propose a 

system that does not merely report these metrics, but that 

actively optimizes the portfolio to improve on them. 

Keywords—AI in finance, multi-agent reinforcement learning, 

genetic algorithms, MADDPG 

I. INTRODUCTION

Stock portfolio optimization has been a focal point in 
financial technology with various solutions proposed 
including artificial neural networks, support vector machines, 
random forests, and, more recently, reinforcement learning [1, 
2]. The application of reinforcement learning to stock portfolio 
optimization has generally followed two different approaches: 
deep Q-learning (DQL) where discretized actions denote buy 
and sell volumes [3], and policy gradient methods where 
continuous actions correspond to the distribution of assets in 
the portfolio [4]. In recent publications, DQL has typically 
been outperforming policy gradient methods even though 
discretization is considered disadvantageous [5]. We therefore 
investigate the cause of the inferior performance of policy 
gradient methods and propose a solution: replacing gradient 
descent with a genetic algorithm for parameter optimization. 
Further, we note that recent studies have typically been using 
financial returns as the sole performance metric [6]. We 
propose to include two additional metrics – risk and 
sustainability – in a novel utility function using the Sharpe 
ratio and environmental, social, and governance (ESG) score, 
respectively. While risk is a key element of modern portfolio 
theory, sustainability is increasingly becoming requisite in 
financial services. By adding these two metrics to the utility 
function, we create a system that actively reduces risk while 
maintaining a sustainable portfolio, thus furthering the state-
of-the-art in modern portfolio management. 

II. BACKGROUND AND RELATED WORK

A. Portfolio Metrics and Market Indicators

The Sharpe ratio is commonly used to quantify the risk-to-
reward ratio of a portfolio [7]. It is defined as the expected 
return in excess of the risk-free return per unit of risk in the 
portfolio, formally:  

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝
(1) 

Here, 𝑅𝑝  and 𝑅𝑓  are the expected daily return of the

portfolio and the risk-free return respectively, while 𝜎𝑝 is the

standard deviation of the daily returns of the portfolio. The 
higher the Sharpe ratio of a portfolio, the better the risk-
adjusted performance: a Sharpe ratio less than one is 
considered sub-optimal by investors, while a ratio greater than 
one is considered good, greater than two is very good, and 
greater than three is excellent [8]. The use of the Sharpe ratio 
in the reward function can significantly increase the return [9]. 

The environmental, social, and governance (ESG) score is 
a set of criteria that measure a company’s operations for 
sustainability. It is used by socially aware investors and 
investment firms to select stocks appropriate to their portfolio, 
as well as in the finance sector generally; firms such as 
JPMorgan Chase, Wells Fargo, and Goldman Sachs have all 
published annual reports that present their ESG performances 
[10, 11, 12]. While the main purpose of ESG is to provide a 
measure of sustainable conduct, it may also serve as an 
indicator of long-term risk; through prioritizing ESG, an 
investor might be able to avoid companies that conduct high-
risk activities with potential future consequences on stock 
prices. In this study, we use the ESG score reported by Yahoo 
Finance with a scale of 0-100, where a lower score indicates 
more sustainable conduct. 

Momentum indicators are popular tools used by investors 
to gauge the strength of a stock. They evaluate the ability of a 
stock to sustain a rate of price change. Moving average 
convergence divergence (MACD) is one such indicator which 
subtracts the 26-day from the 12-day exponential moving 
average (EMA) – an exponentially weighted moving average, 
assigning more weight to recent data – of a stock price. MACD 
is used to predict reversals in trends but is prone to false 
positives, i.e., it occasionally predicts reversals that do not 
actually occur. The relative strength index (RSI) is another 
momentum indicator which is often used in tandem with 
MACD to mitigate this shortcoming. It uses the magnitude of 
recent price changes to predict overbought and oversold 
conditions of a given stock. RSI is calculated as follows: 
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𝑅𝑆𝐼 = 100 −
100

1 +
𝑃𝑥

𝑁𝑥

 (2) 

Here, 𝑃𝑥  and 𝑁𝑥  are the averages of the positive and 
negative close prices respectively, for a period of 𝑥 days. The 
RSI value lies between 0 and 100, and the typical 
interpretation is that values below 30 and above 70 indicate 
the stock being oversold and overbought, respectively. Studies 
have shown that MACD and RSI can increase returns for stock 
trading. [13, 14]. 

The final indicator we used is drawdown, specifically daily 
drawdown (DDD) and maximum drawdown (MDD). While 
the former is calculated as the scaled difference between the 
current (𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) and maximum (𝑃𝑚𝑎𝑥 ) stock prices for a 
given period, the latter is the scaled difference between the 
minimum (𝑃𝑚𝑖𝑛) and maximum (𝑃𝑚𝑎𝑥):  

𝐷𝐷𝐷 =
𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑃𝑚𝑎𝑥

𝑃𝑚𝑎𝑥

 (3) 

𝑀𝐷𝐷 =
𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥

𝑃𝑚𝑎𝑥

       (4) 

Drawdown is one of the most widely used indictors of risk 
and is a measure of downside volatility, in contrast to the 
Sharpe ratio which is a measure of volatility in general [15]. It 
is therefore especially useful to, e.g., short-term investors to 
whom upside volatility is not of paramount concern. 

B. Non-Stationarity in Reinforcement Learning 

In reinforcement learning, agents learn policies by 
maximizing expected cumulative rewards [16]; the value of 
each state in a Markov decision process (MDP) is the 
discounted sum of rewards of future states, formalized by the 
Bellman equation [17]: 

𝑉(𝑠) = max
𝑎 ∈ 𝐴(𝑠)

∑ 𝑃(𝑠′ | 𝑠, 𝑎)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉(𝑠′))

𝑠′

 (5) 

Here, 𝑉(𝑠)  is the value of state 𝑠 , 𝑃(𝑠′ | 𝑠, 𝑎)  is the 
probability of transitioning to state 𝑠′ given state 𝑠 and action 
𝑎, 𝑅(𝑠, 𝑎, 𝑠′) is the reward for action 𝑎 in state 𝑠 transitioning 
to sate 𝑠′, and 𝛾 ∈ [0,1] is the discount rate which reduces the 
weight of future rewards. The value of a state is the maximum 
discounted reward for all possible actions for that state, 𝐴(𝑠). 
While Equation (5) is the general Bellman equation for 
stochastic MDPs, deterministic MDPs will have the transition 
probability distribution 𝑃(𝑠′ | 𝑠, 𝑎)  reduced to one. 
Furthermore, stochastic systems may either be stationary or 
non-stationary. Unlike stationary systems which have constant 
transition probability distributions, non-stationary systems 
have proven problematic for traditional reinforcement 
learning methods [18]. A relevant example of a non-stationary 
MDP is a multi-agent system where multiple independent 
agents act on the same environment resulting in unstable state 
transition probabilities caused by the changing policies of the 
other agents during training [18]. 

C. MADDPG for Stabilizing a Multi-Agent System  

Multi-agent deep deterministic policy gradient 
(MADDPG) was introduced to address the inherent non-

 

1 Games are a popular application for reinforcement learning as they facilitate 
learning on high-dimensional input data akin to human sensory input such as 

vision [29]. 

stationarity of multi-agent systems [18]. In their paper, the 
authors demonstrated an increasing variance in policy 
gradients with an increasing number of agents. They extended 
deep deterministic policy gradient (DDPG) in which the 
parameters 𝜃  of the optimum policy 𝜋⋆  are determined 
through maximizing the objective function 𝐽(𝜃) =
𝐸𝑠~𝑝𝜋, 𝑎~𝜋(𝜃)[𝑅], where 𝑝𝜋 is the state distribution and 𝜋(𝜃) 

is the policy according to parameters 𝜃. They formalized the 
gradient of the objective function for deterministic policies 
(𝜇𝜃: 𝑆 ↦ 𝐴) as: 

∇𝜃𝐽(𝜃) = 𝐸𝑠[∇𝜃𝜇𝜃(𝑎 | 𝑠)∇𝑎𝑄𝜇(𝑠, 𝑎)|𝑎=𝜇𝜃(𝑠)] (6) 

In DDPG, 𝜇𝜃(𝑎 | 𝑠)  is modelled by an actor network 
which predicts the best action given a state, while the reward 
function 𝑄𝜇(𝑠, 𝑎)  is modelled by a critic network which 
estimates the value of a state-action pair. These networks 
experience high variance in their policy gradients when used 
in multi-agent settings, as the actions of other agents are absent 
in the loss function while the rewards depend on these actions 
[18]. The authors in [18] mitigated this problem by extending 
the critic 𝑄𝜇(𝑠, 𝑎)  to consider the actions of all agents: 
𝑄𝜇(𝑠, 𝑎𝑖 ,  𝑖 ∈ {1 … 𝑁}), where 𝑁 is the number of agents.  

D. Genetic Algorithms for Parameter Optimization  

In general, genetic algorithms (GA) solve problems by 
evolving a population of individuals 𝑎𝑖 , 𝑖 ∈ {1 … 𝑁} , each 
with a set of parameters 𝜃𝑖 . At each generation 𝑔, a fitness 

score 𝐹(𝑎 | 𝜃𝑖,𝑔)  is calculated for each individual through 

measuring their performance at solving a given problem. 
Typically, the best performing individual is carried over to the 
next generation (𝑔 + 1), while the top 𝑘 < 𝑁 individuals are 
used to generate a new batch of 𝑁 − 1 individuals, such that 
the size of the population remains constant. This new 
population is generated either through parameter mutation – 
where parameters are altered through crossover-mutation 
between parents’ parameters – or through the addition of 
Gaussian noise: 𝜃𝑔+1 = 𝜃𝑔 + 𝜎𝜖  where 𝜖 ~ 𝒩(0, 𝐼) and 𝜎  is 

a hyperparameter which roughly corresponds to a learning 
rate. In [19], the authors used the addition of Gaussian noise 
to evolve the parameters of a neural network and found that it 
outperformed both DQL and gradient-based methods at 
playing games1. In another study, the authors used GA to 
evolve the parameters of a single agent system and showed 
that it outperformed DDPG in moving a physical robotic arm 
[20]. 

E. Reinforcement Learning for Stock Portfolio Optimization 

In stock portfolio optimization, a trader continuously 
redistributes funds between a selection of stocks. Risk-aware 
traders structure their portfolios to optimize risk for a given 
expected return [21]; one approach is portfolio optimization 
using reinforcement learning. In [22], the authors compared 
the performance of different single-agent policy gradient 
methods on an MDP structured as follows:  

• State: the close-price history, high-price history and a 

wavelet transform of the close-price for each of six stocks 

for a given time window. 



• Action: a continuous daily distribution of funds across the 

six stocks. 

• Reward: log(Δ𝑃) + 𝑆 , where ΔP  is the daily change in 

portfolio value, and 𝑆 is the Sharpe value. 

It could be argued that this approach does not appropriately 
weight risk for all types of investors; certain investors might 
be more risk-averse than others, e.g., individuals in different 
stages of their lives. The authors stated that even though 
DDPG was their best performing method, it performed rather 
poorly and frequently ended in local minima. Their best 
performing scenario with a careful stock selection achieved 
approximately 25% annual returns. 

Similarly, the authors in [23] presented a DDPG-based 
method for trading a selection of 8 stocks. They used LSTM 
networks for the critics and feed-forward networks for the 
actors. Their state consisted of daily stock prices, RSI, stock 
positions, and the portfolio value. Their rewards were simple 
daily returns, and their actions were the continuous 
distribution of stock positions in the portfolio. They reported 
compound annual return of 14% and a Sharpe ratio of 0.6 over 
a period of 11 years. 

In [24], the authors presented a multi-agent DQL system 
that traded four different crypto currencies – Bitcoin (BTC), 
Litecoin (LTC), Etherium (ETH), and Ripple (XRP). In this 
system, each agent traded a single asset and the MDP was 
formalized as follows:  

• State: the close price for each asset at the given time step. 

• Action: 2 × 30 discretized bins for buy and sell 

respectively, and one action to hold, totaling 61 actions. 

• Reward: two reward functions were tested: a simple sum 

of financial returns and a weighted sum of the returns and 

the Sharpe ratio. 

The weighting between the returns and Sharpe ratio was a 
hyperparameter – an improvement over [22] as this potentially 
allows for different strategies depending on the investor’s 
appetite for risk. The authors reported that the second reward 
function yielded better results. They reported daily returns 
between 2.0% and 4.7%, while the best annualized Sharpe 
ratio achieved was 3.2. This system clearly performed better 
than the ones in [22] and [23], which could be related to the 
nature of the optimizer in a discretized action space; DQL does 
not rely on policy gradients and is therefore not susceptible to 
local minima. Another difference is that this study used 
multiple agents, i.e., one agent per stock. It could be argued, 
however, that these agents were simply clones that fulfilled the 
same role given the same observations and rewards, and that 
they could learn neither unique behaviors nor cooperation.  

The DQL system presented in [25] divided the portfolio 
optimization problem into timing and pricing elements which 
resulted in two types of agents: signal agents and order agents, 
respectively. Additionally, each of these two types of agents 
were concerned with either buying or selling of assets, which 
resulted in four individual agents. Agents had individual state 
observations: while buy and sell signal agents received a 
history of asset prices, the sell agent also received information 
about potential profit using the next-day stock price. Further, 

the buy and sell order agents’ observations were market 
indicators – the Granville indicator 2  and Japanese 
Candlesticks3. The action spaces for the four agents consisted 
of buy and sell signals sent from the signal agents to the 
appropriate order agents which in turn generated discrete buy 
or sell volumes. The reward function 𝑅 ∈ [0,1]  was the 
normalized difference between the selling or buying price and 
the high or low price of the next day, respectively. Though the 
authors presented their results in percentage profit over a 4.5-
year test period (1138.7%), we calculated their compound 
annual return for their best-case scenario as 74.9%. They did 
not report a Sharpe ratio for their optimized portfolio. 

In summary, discretized DQL systems typically 
outperform policy gradient systems for stock portfolio 
optimization. We hypothesized that this could be attributed to 
the nature of the policy gradients; flat policy gradients and 
local minima pose challenges for gradient-based optimizers 
[18]. We therefore replaced gradient descent with a genetic 
algorithm for parameter optimization to eliminate gradient-
based optimization problems while maintaining a continuous 
action space. A continuous action space is desirable because 
stock trading is not inherently discrete, and discretization adds 
an unnecessary level of abstraction [5]. Finally, there has not 
– to the best of our knowledge – been any published 
reinforcement learning portfolio optimization system that used 
ESG in its utility function. This is a significant oversight since 
sustainable investing is pivotal to a more sustainable society 
[10]. We therefore address this by incorporating ESG in our 
utility function. 

III. EMPIRICAL METHODOLOGY 

A. Data 

We used market data as reported by Yahoo Finance for a 
selection three of stocks from the DOW30 index: The 
Goldman Sachs Group, Inc. (GS), The Procter & Gamble 
Company (PG), and 3M Company (MMM). For our training 
and testing periods, these three stocks had constant ESG risk 
scores of 28.12, 25.10, and 34.88, respectively. However, it is 
possible that ESG sores can change in time according to 
changes in companies’ operations and our system is designed 
to cope with such changes. We used the asset close prices for 
a period of two years in training (shown in Fig. 1a) and the 
following year in testing (shown in Fig. 1b); it is injudicious 
in stock portfolio optimization to not have a separate test set, 
firstly because trading will always happen on unseen data, and 
secondly because typical MDPs for stock portfolio 
optimization are non-stationary and therefore render 
reinforcement learning agents susceptible to overfitting [26, 
27]. 

B. Design of Markov Decision Process 

Many studies have been avoiding policy gradient methods 
for portfolio optimization by discretizing action spaces. 
However, the portfolio optimization problem is not inherently 
discrete and continuous action spaces are therefore considered 
preferrable [5]. In this study, we used a triple agent system and 
the following MDP with a continuous action space:  

 

2 The Granville indicator is a set of eight conditions of a stock price in relation 

to its moving average, e.g., a bullish breakthrough is when the stock price 
crosses the moving average in an upward trend. It indicates buying or selling 

conditions. 

3 Japanese candlesticks consider four daily price points: open, close, high, and 

low. A stock is considered either bearish or bullish depending on the 
difference between open and close prices while the high and low prices 

indicate daily volatility. 



 

 

 
(a)  (b) 

Fig. 1 The stock price data used for (a) training and (b) testing purposes. Market data is shown for The Goldman Sachs Group, Inc. (GS), The Procter & 

Gamble Company (PG), and 3M Company (MMM). Market conditons were slightly different between these two datasets, e.g., GS experienced an overall 

decrease in stock price for the training period, but an overall increase during the testing period. 

• Our state was represented by 18 values: for each of the 

three stocks a normalized stock price (with subtracted 

mean, scaled to unit variance), MACD, RSI, DDD, MDD, 

and the difference between the 20-day and 5-day EMA’s.  

• The action-spaces of our first two agents (profit agent and 

risk-averse agent) were the continuous distributions of 

positions for the three stocks and one for holding cash, i.e., 

there were four values per action (𝐴1 and 𝐴2 respectively 

where |𝐴𝑖| = 4, 𝐴𝑖,𝑗 ∈ [0,1], ∑ 𝐴𝑖,𝑗
4
𝑗=1 = 1, 𝑖 ∈ {1,2} ). 

The third action (the sustainability action) consistently 

selected best performing stock with respect to ESG, e.g., 

𝐴3 = [0,1,0,0] while PG had the lowest ESG score. The 

final agent’s (manager agent) action was the weighting 

between the three actions (profit, risk, and sustainability): 

𝐴𝑡 = ∑ 𝛽𝑖𝐴𝑖,𝑡
3
𝑖=1 , where 𝐴𝑡  was the total action sent to the 

environment at time-step 𝑡 and 𝛽𝑖 ∈ [0,1],  𝑖 ∈ [1,3] was 

the third agent’s action.  

• The rewards were unique to each agent: the profit agent’s 

reward was the change in portfolio value from time-step 𝑡 

to 𝑡 + 1: 𝑟1,𝑡 = Δ𝑃|𝑡
𝑡+1; it was only concerned with profit. 

The risk-averse agent’s reward was the Sharpe ratio for a 

moving window of 20 days: 𝑟2,𝑡 = 𝑆ℎ𝑎𝑟𝑝𝑒(𝑡 − 20 →

 𝑡) 𝑖𝑓 𝑡 ≥ 20, 𝑒𝑙𝑠𝑒 0; it was concerned with risk and the 

variability of daily returns. The manager agent’s reward 

was a linearly weighted function of the rewards of the first 

two agents and the mean ESG score for the portfolio: 𝑟4 =
∑ 𝜔𝑖𝑟𝑖,𝑡

3
𝑖=1 ,  ∑ 𝜔𝑖 = 13

𝑖=1 , 𝜔𝑖 ∈ [0,1]  where 𝑟3,𝑡 =

− ∑ (𝑥𝑖 ⋅ 𝐸𝑆𝐺𝑖)
3
𝑖=1  where 𝑥𝑖 and 𝐸𝑆𝐺𝑖  are the position and 

ESG score of stock 𝑖 and the weighting parameters 𝜔𝑖 ,  𝑖 ∈
[1,3] were hyperparameters which we tuned to the values 

of 0.7, 0.2 and 0.1, respectively; the manager agent 

weighed the recommended actions from the other agents 

to achieve balanced rewards given a tunable prioritization 

between risk, reward and sustainability. 

Finally, we calculated our market indicators as follows: 
We used standard periods of 14 days in Equation (2) for RSI 
and 26 days in Equations (3) and (4) for DDD and MDD. We 
annualized the Sharpe ratio by assuming 252 trading days per 

year  𝑆ℎ𝑎𝑟𝑝𝑒𝑎𝑛𝑛𝑢𝑎𝑙 = √252 ⋅ 𝑆ℎ𝑎𝑟𝑝𝑒𝑑𝑎𝑖𝑙𝑦  where 

𝑆ℎ𝑎𝑟𝑝𝑒𝑑𝑎𝑖𝑙𝑦 was calculated from Equation (1) with a risk-free 

return equal to zero; we assumed risk-free returns were 
negligible which is not an unusual assumption with 
consistently low interest rates for our selected time period. For 
simplicity, we ignored transaction costs. 

C. Design of Agents 

We compared two systems of three agents acting on the 
MDP described above: a MADDPG system (as described in 
[18]), and a system using a genetic algorithm to optimize the 
parameters of the deep neural networks of the agents. The 
MADDPG agents each had two feed-forward neural 
networks, one for the actor and one for the critic. The actor 
networks’ inputs were complete observations of the state 
described above, while their outputs were the actions as 
described above. The critic networks’ inputs were a complete 
observation of the state plus the actions of all agents, while 
their outputs were the estimated value of the current state. The 
hidden layers were the same for all networks: two fully 
connected layers of 64 nodes each, followed by a softmax 
activation for the actor networks and no activation for the 
critic networks. We tuned the learning rate to 0.001, discount 
factor (𝛾) to 0.99, and target-network update parameter (𝜏) to 
0.01 for all agents. The training batches were relatively large 
(256 samples) to mitigate the effects of the observed flat 
policy gradients. Each training run consisted of 5,000 
iterations, each with one data collection episode and three 
training batches, and the replay buffer was sized to store the 
transition trajectories for two episodes. The system based on 
genetic algorithms used identical actor networks to that of the 
MADDPG system, without the need for critic networks. We 
optimized the weights of the actor networks with a genetic 
algorithm, thus eliminating gradient descent. For a tuned 
population size of 200, we mutated the fittest 10% of each 
generation using random mutation and a gaussian noise 
multiplier 𝜎  tuned to 0.3  while carrying over the fittest 
individual unmutated. For both systems, hyperparameter 
tuning was done through a standard one-at-a-time parameter 
sweep. 

IV. RESULTS 

In Table 1, we show the results of our experiments 
compared to that of published work on both continuous and 
discretized action spaces for stock portfolio optimization. 

TABLE 1 RESULTS FROM OUR GENETIC ALGORITHM (GA) AND MADDPG 

SYSTEMS COMPARED TO TYPICAL DDPG AND DQL SYSTEMS. 

System Returns* Sharpe ratio* ESG* 

Our GA 70.4% ± 6.8% 3.15 ± 0.22 26.9 ± 1.2 

Our MADDPG 27.9% ± 9.5% 1.28 ± 0.42 29.6 ± 0.3 

DDPG 25%         [22] 0.6        [23] - 

DQL 74.9%      [25]  3.2        [24] - 

*Ranges are for 95% confidence intervals. 

Our MADDPG returns were in line with the returns 
reported in the single agent DDPG system in [22], while the 



returns of the better performing DQL system in [25] were 
within the 95% confidence interval of our GA system, making 
them essentially the same. Further, our GA system 
outperformed our own MADDPG system in terms of 
sustainability, with a superior ESG score of 26.9 compared 
to29.6. Our GA system also achieved low risk, with a Sharpe 
ratio of 3.15 which is typically considered “excellent”, while 
a Sharpe ratio of 1.28 as achieved by the MADDPG system is 
considered merely “good” [8]. Finally, while [24] reported a 
similar Sharpe ratio to our system, it was merely a reported 
metric whereas our system took an active approach to 
minimizing risk. Our system could thus match [24] in terms 
of risk and  [25] in terms of profit, while each of these systems 
were inferior to ours otherwise. Therefore, though we did not 
strictly outperform DQL systems in terms of pure financial 
returns, the fact that we can match their financial returns while 
offering reduced risk and a sustainable portfolio leads us to 
claim that our solution is an improvement over the state-of-
the-art. 

In Fig. 2 we show two typical portfolios held by the two 
systems during testing. While the GA system quickly 
achieved a positive portfolio value, the MADDPG system 
fluctuated around the break-even line for the first half of the 
episode. Only when the market entered a bullish state after 
roughly 180 days did we observe a markable increase in the 
MADDPG portfolio value. This increase was observed much 
earlier for the GA system – after about 100 days. The fact that 
the GA system held positions in the GS stock during 
evaluation, despite this stock having had a mostly downward 
trend in the training data, suggests that it had learned to 
interpret market signals as opposed to simply holding the 
stock that performed best during training. The GA system also 
responded better to market fluctuations by, for example, 
taking a position in PG while GS showed bearish signals 
between ca. 40 and 60 days and choosing to hold cash at times 
when the MADDPG system did not. The two systems had 

clearly learned different strategies, reiterating that for at least 
one of them the optimum policy remained elusive. 

We verified that the substantial difference in performance 
between the MADDPG and GA systems was due to the nature 
of the MADDPG system’s policy gradients. In Equation (6) 
we showed that the objective function of a MADDPG system 
is expressed in terms of the parameters of the actor (𝜇) and 
critic (𝑄) networks. Fig. 3 illustrates the steepest negative 
gradients of each of the actor and critic networks during 
training and gives an indication of how well an optimizer may 
perform at gradient descent; if all gradients are flat – or close 
to zero – then the optimizer has no indication of how to adjust 
the weights.  From this figure, we observed that while the three 
critics appeared to have had sufficient gradients to perform 
gradient descent, the actors all experienced flat gradients. This 
suggests that the critics were able to learn the values of states, 
but the agents were not able to effectively use these values to 
find optimum policies. This might be due to the critics having 
had a more holistic view of the state action space, as intended 
by the authors of MADDPG [18]. We therefore conclude that 
the optimum policy had remained elusive to the MADDPG 
system, as substantiated by the higher returns achieved using 
the GA system. 

Finally, in Fig. 4 and Fig. 5, we show the actions taken by the 
individual agents of the two systems. The agents of the GA 
system clearly took more distinct roles, with the risk-averse 
agent frequently voting to hold cash and generally avoiding 
the most volatile of the three stocks (GS), which the profit 
agent mostly favored. Interestingly, this clear separation of 
responsibility was not evident in the behavior of the 
MADDPG agents which acted more haphazardly. In future 
work, we intend to more closely inspect the behaviors of the 
agents and we aim to characterize them and extract 
explanations for their actions. 

(a) (b) 

Fig. 2 Two typical portfolios when trading stocks on test data using (a) the genetic algorithm system and (b) the MADDPG system of traders. The upper row 

shows the daily positions of assets – GS, PG, MMM, and cash – for each system, the middle row shows the daily close prices, and the bottom row shows the total 
portfolio values of each system. While the system in (a) hardly has negative portfolio values and finally achieves a return of 83% (Sharpe ratio = 3.4 and ESG = 

26.0), the system in (b) frequently has negative portfolio values in early stages and finally yields a return of 19% (Sharpe ratio = 1.2 and ESG = 27.8.) 

 



V. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK 

In this study, we defined the problem of stock portfolio 
optimization in terms of reinforcement learning and designed 
a multi-agent system with a continuous action space. From 
published works we showed that, for stock portfolio 
optimization, DQL has typically been outperforming policy 
gradient methods despite being limited to discretized actions. 
We then showed that, for our problem, this was due to flat 
policy gradients inhibiting gradient descent from finding the 
optimum policy. Since continuous action spaces are 
nevertheless considered preferable to discretization in stock 
portfolio optimization, we overcame the policy gradient 
problem by replacing gradient descent with a genetic 
algorithm for parameter optimization. We showed that this 
method outperformed MADDPG in a three-agent system 
trading a selection of three stocks from the DOW30 index. 
Furthermore, our agents were rewarded not only for financial 
returns, but also for risk (via the Sharpe ratio), and 
sustainability (via ESG). While risk is key in modern portfolio 
theory, sustainability is increasingly becoming requisite in 
modern trading strategies. It is therefore pivotal that state-of-
the-art solutions not only support reporting of such metrics, 
but that they actively optimize portfolios to improve on them. 
Our main contribution is therefore the inclusion of the Sharpe 
ratio and ESG in the utility function for portfolio optimization, 
while matching state-of-the-art solutions in terms of financial 
returns. We claim that is not necessary to outperform current 
solutions in terms of financial returns since our solution offers 
the same returns with reduced risk in a sustainable portfolio, 
making it an improvement on the state-of the-art.  

Our ultimate objective is the development of personalized 
digital financial advisors using customer micro-segmentation 
[28]. These financial advisors will recommend, in an 
explainable way, an optimum allocation of funds given a 
personal budget and a portfolio of financial products and 
services. We therefore intend to address the explainability of 
our system in future work by characterizing, explaining, and 
predicting an agent’s policy based on the history of past trades. 
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VI. APPENDIX 

 

Fig. 3 The steepest policy gradients of the three MADDPG agents’ actor and critic networks for the first 500 training episodes. Each datapoint shows the 

largest negative component of the gradients of the weights for each of the fully connected (fc1, fc2) and output layers (out). While the critic networks have 

workable gradients, the gradients for the actor networks are mostly flat throughout training.  

 

Fig. 4 The agents’ actions in a typical GA system during testing. The first plot shows the profit agent frequently voting to hold GS, while the second plot shows 

the risk-averse agent more most frequently voting to holding cash. The manager agent’s role was to choose the weighting between the other agents’ votes; the 

last plot shows it frequently varying between all three objectives: profit, risk, and sustainability. 

 



 

Fig. 5 The agents’ actions in a typical MADDPG system during testing. The fist plot shows the profit agent’s vote varying mostly between GS and MMM, while 
the second plot shows the risk-averse agent voting mostly for MMM, interestingly without ever holding cash. The manager agent’s role was to choose the 

weighting between the other agents’ votes; the last plot shows that it always chose to accept the vote of the risk-averse agent. 

 


