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Abstract—Micro-segmentation of customers in the finance
sector is a nontrivial task and has been an atypical omission
from recent scientific literature. Where traditional segmentation
classifies customers based on coarse features such as demo-
graphics, micro-segmentation depicts more nuanced differences
between individuals, bringing forth several advantages including
the potential for improved personalization in financial services.
AI and representation learning offer a unique opportunity to
solve the problem of micro-segmentation. Although ubiquitous
in many industries, the proliferation of AI in sensitive industries
such as finance has become contingent on the explainability of
deep models. We had previously solved the micro-segmentation
problem by extracting temporal features from the state space of
a recurrent neural network (RNN). However, due to the inherent
opacity of RNNs, our solution lacked an explanation. In this
study, we address this issue by extracting a symbolic explanation
for our model and providing an interpretation of our temporal
features. For the explanation, we use a linear regression model
to reconstruct the features in the state space with high fidelity.
We show that our linear regression coefficients have not only
learned the rules used to recreate the features, but have also
learned the relationships that were not directly evident in the
raw data. Finally, we propose a novel method to interpret the
dynamics of the state space by using the principles of inverse
regression and dynamical systems to locate and label a set of
attractors.

Index Terms—explainable AI, micro-segmentation, inverse re-
gression, dynamical systems

I. INTRODUCTION

Customer segmentation is an important field in banking and
with customer bases growing, banks are having to employ
ever advancing methods to maintain, if not improve, levels of
personalization [1]. Customer segmentation has typically been
achieved using demographics such as age, gender, location,
etc. [2]. However, these features not only produce coarse
segments, but also introduce the potential for discrimina-
tion, e.g., when using postal codes for credit rating [3]. In
contrast, micro-segmentation provides a more sophisticated,
fine-grained classification that depicts nuanced differences
between individuals, improves personalization, and promotes
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fairness. Despite these advantages and the fact that the need
for such fine-grained segmentation has been highlighted [4],
the scientific community has been surprisingly quiet on the
topic with only a few recent publications from, e.g., the health
sector [5], [6] and apparently none from the finance sector. We
observe the spending behaviour of customers over time using a
recurrent neural network (RNN) which allows the extraction of
salient features not possible with feed-forward neural networks
or otherwise [7].

Artificial intelligence is fast becoming ubiquitous across
multiple industries with representation learning an auspicious
method for customer micro-segmentation [7]. Sensitive indus-
tries such as finance face legal and ethical obligations towards
the responsible implementation of AI [8]. The European Com-
mission has published several guidelines surrounding respon-
sible AI and scientific fundamentals have been consolidated
in recent surveys on the topic [9], [10]. Explainability and
interpretability are key elements in responsible AI [11], which
are generally not yet adequately addressed in applications of
AI in finance [12]. Our perspective on explainability in AI
refers to a symbolic representation of a model, whereas inter-
pretability refers to a human understanding of and reasoning
about the functionality of the model. Explainability therefore
neither guarantees nor implies interpretability. In this study, we
address both the issues of explainability and interpretability,
and we introduce a novel method for interpretation of features
based on inverse regression and dynamical systems [13], [14].

Our aim is to extract and facilitate the use of salient features
in future financial services; we have already shown the poten-
tial in predicting default rate and customer liquidity indices [7].
Our ultimate goal is the development of personalized financial
services in which responsible customer micro-segmentation is
key.

II. RELATED WORK

A. Representation Learning using Recurrent Neural Networks

In [15], the authors developed a model for predicting
spending personality from aggregated financial transactions
with the intent to investigate the causality between personality-
aligned spending and happiness. They rated each of 59
spending categories according to its association with the Big-
Five personality traits - extraversion, neuroticism, openness,



conscientiousness, and agreeableness [16] - which resulted in
a set of 59× 5 linear coefficients. We used these coefficients
in a previous study to train a RNN to predict customers’
personality traits from their aggregated transactions [7]. In this
study, we showed that the temporal features in the state space
of the RNN had interesting properties: they formed smooth tra-
jectories which formed hierarchical clusters along successive
levels of dominance1 of the personality traits. We also showed
that similarly salient features could not be extracted from the
raw data otherwise. Spending patterns over time are either
more consistent than transactions aggregated over a short time
period, they may fluctuate, or they may change based on
life circumstances. Modelling spending over time elucidates
spending patterns and thus may lead to better features [17].
Fluctuations or changes are also better represented by time
series. The hierarchical clustering of the extracted features pro-
vided a means of micro-segmenting customers based on their
financial behaviour. However, the responsible employment of
this model demands an explanation and interpretation, which
is what we address in this study.

RNNs have recently set the benchmark for human activity
recognition where data from wearable sensors were used to
segment and recognise activities such gaits, steps, and gestures
[18]. They are also useful to predict customer behaviour
using temporal recency, frequency, and monetary data in e-
commerce [19]. RNNs can be used to discriminate individ-
uals based on their historical browsing patterns [20]. Other
studies have employed RNNs to encode spatial and temporal
information contained in the two-dimensional trajectories of
physical objects [21], in customer churn prediction [22], [23],
and to characterize individuals in recommender systems for
online shopping or video streaming [24]. While RNNs are
popular in such applications, few attempt to explain, interpret,
and therefore understand their models. This is the contribution
of our work.

B. Explaining Recurrent Neural Networks

Finding symbolic representations of AI models is a key
area of explainable AI [10]. In [25] the authors developed
a symbolic regression algorithm that successfully extracted
physics equations from neural networks. They managed to
extract all 100 of the equations from the well known Feynman
Lectures on Physics and 90% of more complicated equations,
an improvement from 15% using state-of-the-art software.
This was an important study because it not only proved that
deep neural networks are capable of learning complicated
equations and coefficients, but that it is possible to extract
symbolic knowledge from such networks. The authors in [26]
presented a visual method to explain RNNs used in natural
language processing problems. They clustered the activations
in the state space and used word clouds to visualize cor-
relations between node activations and words in the input
sentences. Similarly, the authors in [27] applied clustering

1The dominant personality trait is the one with the largest coefficient in the
Big-Five model of personality traits [7].

in the state space of RNNs, but here the authors showed
that symbolic representations could be extracted as opposed
to visual explanations. Studies such as these prove that deep
neural networks are indeed not inexplicable black box systems,
but could be a means of discovering symbolic representations
of complex relationships in data.

III. METHODOLOGY

A. Recurrent Neural Network Training
We used the financial transactions of approximately 26,000

customers to train a RNN to predict spending personality, as
described in detail in [7]. To summarize, the input data were
each customer’s transactions aggregated annually across 97
transaction classes, such as groceries, transport, leisure, etc.,
over a period of six years. This gave an input vector I ∈
[0, 1]N×T×C where

∑C
c=1 In,t,c = 1∀n ∈ [1, N ], t ∈ [1, T ]

where N ≃ 26000 customers, T = 6 time-steps, and C = 97
transaction classes. Each value in I therefore represents the
fraction of total income spent by a given customer in a
given year on a given transaction class. The output data
O ∈ [−1, 1]N×P were the customers’ Big-Five personality
traits (i.e. P = 5) calculated from published linear coefficients
linking transaction classes to personality traits [15]. Our RNN
consisted of three long short-term memory (LSTM) nodes
[28]. The number of nodes was determined by optimizing the
diminishingly increasing prediction accuracy for an increasing
number of nodes, also known as the ‘elbow’ optimization
method; RNN architectures are known to perform well with
low-dimensional representations [29]. After training and dur-
ing prediction, we inspected the activations of the three recur-
rent nodes in the state space S ∈ RN×T×M where M = 3 is
the number of LSTM nodes; each customer was represented
by a trajectory with six data points in the three-dimensional
space. These trajectories were our extracted features which
may be used for micro-segmentation of customers [7].

B. Explanation through Surrogate Modelling
To provide an explanation for the RNN, we trained a linear

regression model - an inherently transparent class of models
[10] - to replicate the trajectories from each customer’s aggre-
gated spending distribution: Fθ(I) 7→ S where θ represents
the coefficients of the linear regression model F . We show
that these coefficients reproduced, with high fidelity, the states
of the RNN, thereby offering a symbolic explanation of its
functioning.

C. Interpretation through Inverse Regression
To obtain an interpretation of the features, we propose a new

method that maps the output space O onto the state space S
using inverse regression [13]. From an M -dimensional grid
S′ ∈ R|K|×M where S′

i ∈ {0.1k, k ∈ K = [−10, 10]}, i ∈
[1,M ], filling the entire volume of the M -dimensional state
space S, and using the trained weights of the output layer
of the RNN, ωout ∈ RM×(P+1) 2, we calculated the entire

2The dimensions M × (P + 1) represent the weights connecting the M
LSTM nodes to the P output nodes, plus one dimension to account for the
bias.



reachable output as a P -dimensional hypercube O′ ∈ R|K|×P ,
where |K| = 21 is the number of points in each dimension of
the grid S′. Formally,

O′ = S′ · ωout

This reachable hypercube of the output space is shown
in Figure 5. Next, using the principles of inverse regression
as described in [13], we calculated the parameters ωinv ∈
R(P+1)×M that map the output space O to the state space S.
Formally,

ωinv = (O′TO′)−1 · (O′TS′)

In order to map the magnitudes of the dimensions of the
output space O onto the state space S, we created a diagonal
matrix D ∈ RP×P with the elements on the diagonal equal to
the magnitude of each dimension of the output hypercube O′:

D = diag

{
max

1≤i≤|K|
O′

i,j , j ∈ [1..P ]

}
(1)

The representation of the dimensions of the output space in
the state space O ∈ RP×M is then given by:

O = D · ωinv − 0P · ωinv (2)

where 0P is the zero vector of size P representing the origin
of the output space and 0P ·ωinv is the location of this origin
in the state space.

IV. RESULTS

In Fig. 1, we show the features that we extracted from
our RNN. Fig. 1(a) illustrates the clustering behaviour of the
trajectories in the state space. Our empirical observations led
us to hypothesise the existence of attractors for each of the five
personality traits. Fig. 1(b) shows two trajectories for the same
customer where the inputs to the RNN were aggregated over
two different time periods: one year and six years. The fact
that there is little difference between these two trajectories
is significant; it demonstrates that the duration of the time
window did not affect customer classification. This was not
the case when clustering the raw personality data, where
customers frequently moved between different clusters for dif-
ferent time periods due to variations in spending with changing
life circumstances. Although we did observe significant course
changes for some customers’ trajectories (e.g., in Fig. 1(c)),
the vast majority of customers remained in their assigned
clusters for the six-year period. This stability in customer
micro-segmentation is key for personalized financial services,
as financial advice has to be consistent. Fig. 1(c) shows the
long-term (six years) and short-term (one year) trajectories of
a single customer who changed their spending behaviour such
that their dominant personality type changed in the last year. In
this figure it is clear that, for the final year, both trajectories
moved towards the same attractor (conscientiousness), with
the neuroticism attractor no longer acting upon the long-term
trajectory.
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Fig. 1. Trajectories in the 3-dimensional state space of a recurrent neural
network trained to predict personality from aggregated transactions. While
(a) shows the clustering of the trajectories of many customers according to
their most dominant personality traits, (b) shows two trajectories for the same
customer identically classified for two different time periods: one year vs. six
years., and (c) again shows two such trajectories, but for a different customer
that converged to a common attractor (conscientiousness) in the last year, after
having converged to a different attractor (neuroticism) for the first five years.



To explain our model, we fit a linear regression model
to reproduce the trajectories in the state space S from the
RNN’s input data I . From our observations in Fig. 1(b),
we hypothesized that the lengths of the trajectories were not
as important as their directions. We therefore simplified the
trajectories and represented them by the two angles which fully
describe their directions in three-dimensional space. These
angles were the outputs of our linear regression model Fθ(I),
which fit the data with a coefficient of determination of 0.78
for an unseen test set, while a more complicated polynomial
regression model managed an only slightly better 0.79. Other
methods such as ridge regression and decision tree regression
were inferior in accuracy. Our 97 transaction classes mostly
overlapped with those of the 59 × 5 published coefficients
and due to aggregations such as ”health and fitness” being
expanded to ”health” and ”fitness”, there were 61 × 5 non-
zero coefficients for calculating our customers’ personality
traits. The linear regression model had 69 × 2 non-zero 3

coefficients with a strong correlation with the original non-
zero coefficients. Furthermore, within each of the clusters
in Fig. 1(a), we observed hierarchical sub-clusters along the
second, third, and fourth most dominant personality traits.
This hierarchical sub-clustering is important because it pro-
vides a means of micro-segmenting customers which was not
present in the raw data and could neither be replicated using
feed-forward neural networks nor auto-encoders. Using our
linear regression model, we created a two-dimensional plot
of trajectory angles (Fig. 2). In this figure, we illustrate the
hierarchical clustering behaviour that we observed for the
trajectories from the RNN, where (a) shows the clustering
along the customers’ most dominant personality trait and (b)
through (d) show the hierarchy of sub-clusters within the
parent clusters. These clusters, like the trajectory clusters, were
consistent in time, i.e., the linear regression model retained the
desirable properties of the features from the state space of our
RNN. Due to this and the high accuracy obtained in testing, we
conclude that the linear regression model matched the RNN
with high fidelity. The parameters θ of the linear regression
model are the symbolic explanation of the RNN, answering
questions such as “Why was Customer A classified in this
way?” by referring to the customer’s aggregated transactions
in the input data I .

We observed that the directions of the trajectories were
consistent with the grades of the customers’ membership in
each of the five personality traits, i.e., the output data O of the
RNN. The greater a customer’s membership in the dominant
personality trait, the quicker the trajectories converged to-
wards the corresponding hypothesised attractor. The attractors
acted not only on the dominant personality trait, but also on
succeedingly lesser personality traits with succeedingly lesser
forces. We demonstrate this in Fig. 2 where the sub-clusters
preserve the structure of their parent clusters: the trajectories
of lesser personality traits also converged to their respective

3Non-zero here refers to coefficients with values that are not insignificantly
small compared to the mean value of all the coefficients.
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Fig. 2. Hierarchical clustering of trajectory angles in 2-dimensional space.
Each axis represents an angle (in radians) which describes the direction of the
trajectories in 3-dimensional space and each data point represents a trajectory.
These points can be interpreted as the locations where the trajectories penetrate
a sphere enclosing the state space. We show all the levels of hierarchical
clustering: (a) shows the highest level, while (b) through (d) show sub-
clustering within each of the subsequent parent clusters.

attractors. Intuitively, people spend differently according to
their dominant personality trait. Within a group of their peers,
their lesser personality traits still differentiate them from each
other. Thus, the hierarchical clustering of trajectories and the
labeling of the attractors is the model interpretation. Based
on this observation and to locate and label the attractors, we
mapped the dimensions of the output space O onto the state
space S using inverse regression, as described in Section III-C.
The resulting mapping (O) is shown in Figure 6 where each
colored axis represents a personality dimension. These are the
axes along which customers’ trajectories moved in time; each
time-step moved a trajectory further along these dimensions,
with the direction dictated by the grades of membership in
each of the output dimensions. We proved this by predicting
the final location in the state space (L) of each trajectory
given the normalized grades of membership in each of the
dimensions in the output space O.

L = OT ·O′T (3)

O′ =
O

max
1≤i≤|K|

Oi,j
, j ∈ [1..P ]

Figure 3 shows the predicted final locations (L) of cus-
tomers’ extended trajectories in the state space. We calculated
these extended trajectories I ′ ∈ [0, 1]N×T ′×C by extending
the number of time-steps to T ′ = 100, such that I ′n,t′,c =



meant∈[1,T ](In,t,c) ∀ n ∈ [1, N ], t′ ∈ [1, T ′], c ∈ [1, C].
This extension was intended to allow a larger number of
time-steps such that the state space trajectories may converge
to their predicted final locations L. Note that though all
trajectories asymptotically converged towards their predicted
final locations, some did not fully converge. Using the ex-
tended trajectories from Fig 3, we estimated the locations
of the attractors, shown in Fig 4. For three of the per-
sonality traits - agreeableness, extraversion and neuroticism
- we observed line attractors which we located by fitting
second-order polynomial functions to the final locations of
the trajectories. For the remainder of the personality traits -
openness and conscientiousness - we observed point attractors,
with conscientiousness having three separate point attractors.
We located these attractors by taking the means of the clusters
of the final locations of the trajectories. Since the locations of
the attractors corresponded to the predicted final locations for
the trajectories L, we could use these locations to label the
attractors according to the P personality dimensions in the
output space O. The interpretation of the state space dynamics
is therefore the locations and labels of the attractors based on
customers’ personality traits.

(a) (b)

(c) (d)

Fig. 3. Extended customer trajectories (I′) asymptotically converging to their
predicted final locations (L) in the state space, shown as X’s. Each of the
sub-figures show a different cluster of customer trajectories, each having a
different dominant personality trait.

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

The financial sector is experiencing an increased demand
in the level of personalization offered to its customers, which
requires more nuanced segmentation techniques than the cur-
rent offerings from traditional features such as demographics.

Fig. 4. A subset of trajectories in I′ converging to their relevant attractors
as determined by their dominant personality traits. The attractors are colored
according to their corresponding personality traits and shown as polynomial
lines (for line attractors) and circles (for point attractors). For readability, these
attractors are drawn oversized as thick lines or circles.

Representation learning offers such an alternative technique
for fine-grained segmentation, but it is plagued by the in-
herent opacity introduced by deep learning; explainability
and interpretability promote understanding and are key in
sensitive industries such as finance which must comply with
regulations regarding the responsible use of AI. We proposed
a solution for micro-segmentation of customers by extracting
temporal features from the state space of a RNN, which
formed clusters of trajectories along the most dominant of
the Big-Five personality traits. Within each such cluster, we
found a hierarchy of sub-clusters which corresponded to the
successive levels of dominance of the personality traits. While
the clusters of trajectories corresponding to the dominant
personalities provide a coarse customer segmentation, the hi-
erarchy of trajectory clusters associated with lesser personality
traits offers the opportunity for micro-segmentation.

In this study, we provided a symbolic explanation for the
RNN through a high fidelity linear regression model which
answers questions such as “Why was Customer A classified in
this way?” by referring to their historic financial transactions.
Further, we provided an interpretation of the feature trajec-
tories by applying inverse regression to map the personality
dimensions into the state space, which allowed us to locate
and label the attractors that govern the dynamics of the state
space.

In future work, we intend to use our explainable features
in the development of personal financial services such as per-
sonalized savings advice, advanced product recommendations,
and wealth forecasters. There also exists the potential for a
formal exploration of the attractor space through dynamical
analyses to both qualify and quantify the nature of the attrac-
tors; the null space could potentially be used in a singular value
decomposition to determine the major contributing inputs, as
an alternative to SHAP [30].
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APPENDIX

Fig. 5. The reachable output space of our RNN shown as two-dimensional
projections of all combinations of the five output dimensions. The reachable
output space was mapped from the reachable region in state space (S′ ∈
[−1..1]3) using the output weights of the RNN



Fig. 6. The dimensions of the output space of our RNN (O) mapped onto the
state space (S) as per Equation 2. Each coloured line represents a different
labelled dimension in O, with the lengths of the lines mapped from the
maximum observed values of their corresponding output dimensions (Equation
1).


