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A B S T R A C T

In this paper, anti-swing control for a hydraulic loader crane is presented. The difference between hydraulic
and electric cranes are discussed to show the challenges associated with hydraulic actuation. The hanging
load dynamics and relevant kinematics of the crane are derived to create the 2-DOF anti-swing controller. The
anti-swing controller is added to the electro-hydraulic motion controller via feedforward. A dynamic simulation
model of the crane is made, and the control system is evaluated in simulations with a path controller in actuator
space. Simulation results show significant reduction in the load swing angle during motion. Experiments are
carried out to verify the performance of the anti-swing controller, showing good suppression of the payload
angle in practice.
. Introduction

Anti-swing control is an extensively studied topic, with applications
o cranes and hoists in factories, shipyards, and warehouses etc. How-
ver, any non-stationary lifting equipment will induce undesirable load
wing in the hanging load when moving. This load swing can increase
ycle times, reduce efficiency, and in the worst case lead to safety
azards and accidents. Various techniques have been tested to suppress
oad swing. This is a difficult task, as systems with hanging loads are
nderactuated, meaning the degrees of freedom are greater than the
umber of controlled actuators.

Typically the anti-swing controllers are implemented on electric
verhead cranes, where one or several servomotors control the transla-
ional motion of the crane. The control system typically consists of two
eedback controllers, one controlling the position of the crane and the
ther controlling the load swing. Early work on anti-swing control of
verhead cranes includes [1–4], where linearized models are utilized.
ore advanced control systems including fuzzy logic, sliding mode, and

obust control can be found in [5–16], where a nonlinear model of the
rane is often used.

A method that can be used both for anti-swing and vibration reduc-
ion in flexible systems is input shaping. Based on system dynamics, for
xample bandwidth and damping ratio, an input signal is designed to
e self-canceling [17–19].

Another similar method is called delayed reference control. In this
ase the reference generator is time shifted based on the measured
ayload angle [20,21].
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Anti-swing control for hydraulic cranes is not an extensively studied
area, but references include [22] which investigates tool-point control
and anti-swing for a planar hydraulic crane.

For this paper, a hydraulic loader crane is considered, shown in
Fig. 2. In this case the load is hanging from the crane tip, instead of
the trolley of an overhead crane. Many hydraulic cranes use pressure
compensated valves, which give a load independent velocity control for
each actuator. For closed loop control systems, the load independent
velocity control can be utilized in a control system using feedfor-
ward [23,24]. In this case, both a position reference and a velocity
reference are generated in the control system. An example of a typical
closed loop electro-hydraulic motion control system with feedforward
(FF) and feedback (FB) is shown in Fig. 1.

The focus of this paper is on how to design anti-swing control
for hydraulically actuated cranes. This paper presents a novel anti-
swing controller which utilizes load independent velocity control in
combination with kinematic transformations. Based on this, the novel
method provides reference motion for the individual hydraulic degrees
of freedom by combining contributions from a path controller and an
anti-swing controller.

2. Considered system

In this paper an HMF 2020K4 loader crane is used as a case
study for modeling, simulation, and experiments. Fig. 2 shows the
main components of the HMF 2020K4 loader crane. Both the main
cylinder and knuckle cylinder are used to compensate for the hanging
vailable online 20 June 2021
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Fig. 1. Electro-hydraulic motion control system with feedforward.

Fig. 2. Main components of the considered crane.

load dynamics. The relevant data for the main cylinder and knuckle
cylinder are shown in Table 1. Each actuator is controlled via a pressure
compensated proportional directional valve which ensures load inde-
pendent flow control of the actuators. Counterbalance valves are also
used for load holding, assisting in lowering of the booms, and pressure
relief of pressure surges. An illustration of the hydraulic system for the
knuckle cylinder is shown in Fig. 3. Fig. 4 shows the hanging load
definitions along with the main boom angle 𝜃𝑚, knuckle boom angle
𝜃𝑘, and payload angle 𝜃𝑝.

2.1. Difference from electric overhead cranes

Since research in anti-swing control of electric overhead cranes is
an extensively studied subject, the differences between electric and
hydraulic cranes are discussed in this section.

The difference in actuation is clear, an electric motor exerts a torque
on the load based the motor current, while the hydraulic cylinder exerts
a force on the load based on the hydraulic pressure. For some hydraulic
systems, including the HMF 2020K4 loader crane, the pressure compen-
sator senses the load pressure and automatically adjusts the pressure
drop over the control valve to give load independent flow control. As
a result, the hydraulic system is able to control the velocity of the load
2

Table 1
Data for the main cylinder and knuckle cylinder.

Description Name Value

Main piston diameter 𝐷𝑝,𝑚 0.16 m
Main piston area 𝐴𝑚 0.0201 m2

Main rod diameter 𝐷𝑟,𝑚 0.1 m
Main annulus area 𝐴𝑎,𝑚 0.0123 m2

Main piston area ratio 𝜙𝑚 = 𝐴𝑎,𝑚
𝐴𝑚

0.6094
Main valve maximum flow 𝑄𝑚𝑎𝑥,𝑚 40 l/min
Knuckle piston diameter 𝐷𝑝,𝑘 0.15 m
Knuckle piston area 𝐴𝑘 0.0177 m2

Knuckle rod diameter 𝐷𝑟,𝑘 0.1 m
Knuckle annulus area 𝐴𝑎,𝑘 0.0098 m2

Knuckle piston area ratio 𝜙𝑘 =
𝐴𝑎,𝑘
𝐴𝑘

0.5556
Knuckle valve maximum flow 𝑄𝑚𝑎𝑥,𝑘 40 l/min

Fig. 3. Hydraulic circuit for the knuckle cylinder..

directly, whereas the electric system controls the force applied to the
load.

Fig. 5 illustrates a typical overhead crane where the hanging load
is connected to a trolley. The trolley is only able to move in the 𝑥-
direction, and the electric motor exerts a force 𝐹𝑚𝑜𝑡𝑜𝑟 on the trolley
through the wheels. The applied force affects both the trolley motion
and payload motion, and is used to control the position along the 𝑥-axis
as well as the payload angle 𝜃𝑝.

2.2. Control strategy

The control strategy suggested in this paper is shown in Fig. 6. This
control strategy is useful for any hydraulically actuated manipulator
with a tool point and a number of joint angles controlled by means
of hydraulic cylinders. This constitute a wide variety of load handling
machinery. The main task is position control of the tool point and,
classically, this may be combined with a velocity feedforward term.
Feedback control is most easily implemented with reference to the
actuator motion [25]. Therefore, inverse kinematics is employed to
transfer from tool point coordinates via joint coordinates to actuator
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Fig. 4. Definitions of crane tip and hanging load geometries.

Fig. 5. Typical overhead crane with hanging load.

Fig. 6. Anti-swing control strategy.

coordinates. The anti-swing effort is introduced in parallel with the
feedforward term, but is computed with the purpose of counteracting
the continuously measured payload angle by adjusting the tool point
velocity. Therefore, the anti-swing effort also requires a kinematic
transformation into actuator space.
3

Fig. 7. 2D view of the crane model in MATLAB Simscapce™.

The proposed control strategy can be implemented in several ways.
In general, any tool point reference motion will be either 2-dimensional
or 3-dimensional. For the 2-dimensional case, a minimum of two actua-
tors is required, however, more may be employed yielding some degree
of redundancy that can be handled by means of optimization within the
null-space, see [26].

In this paper, only 2-dimensional motion is considered leaving four
different possible combinations:

1. Main boom actuator and knuckle boom actuator
2. Main boom actuator and telescope actuator
3. Knuckle boom actuator and telescope actuator
4. Main boom actuator, knuckle boom actuator and telescope actu-

ator.

To illustrate the presented control strategy, the necessary kinematic
transformations together with the anti swing strategy have been de-
veloped and implemented for case 1.

3. System modeling

A dynamic model of the crane has been made in MATLAB Sim-
scape™. 3D CAD models have been imported into the model using the
Multibody library, and the hydraulic system has been modeled using
the hydraulic library. A side view of the crane in the simulation model
is shown in Fig. 7.

3.1. Hanging load dynamics

To derive the equations of motion for the hanging load using the
payload angle 𝜃𝑝, the Euler–Lagrange equations are used. For the
following equations, the notation 𝑠𝜃𝑝 = sin(𝜃𝑝), 𝑐𝜃𝑝 = cos(𝜃𝑝) is used.
With the boom tip position defined as 𝐫𝑡 = [𝑥𝑡 𝑧𝑡]𝑇 , the payload position
can be calculated as follows.

𝐫𝑝 = 𝐫𝑡 + 𝐿𝑤 ⋅
[

𝑠𝜃𝑝
−𝑐𝜃𝑝

]

(1)

Assuming constant wire length, the payload velocity can be cal-
culated by taking the time derivative of the payload position, shown
in Eq. (2).

�̇�𝑝 = �̇�𝑡 + 𝐿𝑤 ⋅�̇�𝑝 ⋅
[

𝑐𝜃𝑝
]

(2)

𝑠𝜃𝑝
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The Lagrangian  of the system is defined as the kinetic energy
minus the potential energy, and is shown in Eq. (3).

 =  −  (3)

The kinetic energy of the payload is:

 = 1
2
⋅𝑚𝑝 ⋅�̇�𝑇𝑝 ⋅�̇�𝑝 (4)

The potential energy of the payload is:

 = 𝑚𝑝 ⋅𝑔 ⋅
(

𝑧𝑡 − 𝐿𝑤 ⋅𝑐𝜃𝑝
)

(5)

The total Lagrangian of the payload is then calculated in Eq. (6).

 = 1
2
⋅𝑚𝑝 ⋅

(

�̇�2𝑡 + 𝐿
2
𝑤 ⋅�̇�

2
𝑝 + 2⋅�̇�𝑡 ⋅𝐿𝑤 ⋅�̇�𝑝 ⋅𝑐𝜃𝑝

+�̇�2𝑡 + 2⋅�̇�𝑡 ⋅𝐿𝑤 ⋅�̇�𝑝 ⋅𝑠𝜃𝑝
)

− 𝑚𝑝 ⋅𝑔 ⋅
(

𝑧𝑡 − 𝐿𝑤 ⋅𝑐𝜃𝑝
)

(6)

The equation of motion of the payload described by the coordinate
𝜃𝑝 is given by the Euler–Lagrange equation below.

𝑑
𝑑𝑡
𝜕
𝜕�̇�𝑝

− 𝜕
𝜕𝜃𝑝

= 0 (7)

Some intermediate equations are then used to solve the Euler–
Lagrange equation. They are shown in Eqs. (8)–(11).
𝜕
𝜕𝜃𝑝

= 𝑚𝑝 ⋅
(

−�̇�𝑡 ⋅𝐿𝑤 ⋅�̇�𝑝 ⋅𝑠𝜃𝑝

+ �̇�𝑡 ⋅𝐿𝑤 ⋅�̇�𝑝 ⋅𝑐𝜃𝑝 −𝑔 ⋅𝐿𝑤 ⋅𝑠𝜃𝑝
)

(8)

𝜕
𝜕�̇�𝑝

= 𝑚𝑝 ⋅
(

𝐿2
𝑤 ⋅�̇�𝑝 + �̇�𝑡 ⋅𝐿𝑤 ⋅𝑐𝜃𝑝 + �̇�𝑡 ⋅𝐿𝑤 ⋅𝑠𝜃𝑝

)

(9)

𝑑
𝑑𝑡
𝜕
𝜕�̇�𝑝

= 𝑚𝑝 ⋅
(

𝐿2
𝑤 ⋅�̈�𝑝 + �̈�𝑡 ⋅𝐿𝑤 ⋅𝑐𝜃𝑝 − �̇�𝑡 ⋅𝐿𝑤 ⋅�̇�𝑝 ⋅𝑠𝜃𝑝

+ �̈�𝑡 ⋅𝐿𝑤 ⋅𝑠𝜃𝑝 + �̇�𝑡 ⋅𝐿𝑤 ⋅�̇�𝑝 ⋅𝑐𝜃𝑝
)

(10)

𝑑
𝑑𝑡
𝜕
𝜕�̇�𝑝

− 𝜕
𝜕𝜃𝑝

= 𝑚𝑝 ⋅
(

𝐿2
𝑤 ⋅�̈�𝑝 + �̈�𝑡 ⋅𝐿𝑤 ⋅𝑐𝜃𝑝

+ �̈�𝑡 ⋅𝐿𝑤 ⋅𝑠𝜃𝑝 + 𝑔 ⋅𝐿𝑤 ⋅ 𝑠𝜃𝑝
)

(11)

The Euler–Lagrange equation can then be solved with respect to
�̈�𝑝 to give the describing differential equation of the payload, shown
in Eq. (12). It is clear that the payload angle is dependent on the
motion in both 𝑥- and 𝑧-direction, facilitating 2-DOF anti-swing control.
The impact of the wire length 𝐿𝑤 is also prominent, allowing for gain
scheduling in the controller.

�̈�𝑝 =
1
𝐿𝑤

⋅
(

−�̈�𝑡 ⋅𝑐𝜃𝑝 − �̈�𝑡 ⋅𝑠𝜃𝑝 − 𝑔 ⋅𝑠𝜃𝑝
)

(12)

3.2. Joint space kinematics

The joint space kinematics describes the relation between the joint
angles and Cartesian coordinates of the crane tip. Fig. 8 shows the ge-
ometry which is used with the Denavit–Hartenberg parameters, where
both booms are horizontal. The distances between consecutive joints
are shown in Table 2. The Denavit–Hartenberg parameters are shown
in Table 3, where 𝐑 and 𝐓 are rotational and translational matrices,
respectively. The angles 𝜃𝑚 and 𝜃𝑘 denote the rotation about the main
joint and knuckle joint, respectively.

The transformation matrix 𝐀𝐷𝐻 from the base of the crane to the tip
of the crane can be established as a sequence of transformations based
on the Denavit–Hartenberg parameters, shown in Eq. (13).

𝐀 = 𝐓 (𝑙 )⋅𝐓 (−𝑙 )⋅𝐑 (90◦)⋅𝐑 (𝜃 )
4

𝐷𝐻 𝑧 1𝑧 𝑥 1𝑥 𝑥 𝑧 𝑚
Fig. 8. Crane geometry used with Denavit–Hartenberg parameters.

Table 2
Coordinates shown in Fig. 8.

Name Length [m]

𝑙1𝑥 0.250
𝑙1𝑧 1.569
𝑙2𝑥 2.400
𝑙2𝑧 0.070
𝑙3𝑥 2.429
𝑙3𝑧 0.093

Table 3
Denavit–Hartenberg parameters.
𝑅𝑧 𝑇𝑧 𝑇𝑥 𝑅𝑥
0 𝑙1𝑧 −𝑙1𝑥 90◦

𝜃𝑚 0 0 −90◦

0 𝑙2𝑧 𝑙2𝑥 90◦

𝜃𝑘 0 0 −90◦

0 −𝑙3𝑧 𝑙3𝑥 0

⋅𝐑𝑥(−90◦)⋅𝐓𝑧(𝑙2𝑧)⋅𝐓𝑥(𝑙2𝑥)⋅𝐑𝑥(90◦)

⋅𝐑𝑧(𝜃𝑘)⋅𝐑𝑥(−90◦)⋅𝐓𝑧(−𝑙3𝑧)⋅𝐓𝑥(𝑙3𝑥) (13)

The final matrix 𝐀𝐷𝐻 is shown in Eq. (14).

𝐀𝐷𝐻 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑐𝜃𝑚+𝜃𝑘 0 −𝑠𝜃𝑚+𝜃𝑘 𝑥𝑡
0 1 0 0

𝑠𝜃𝑚+𝜃𝑘 0 𝑐𝜃𝑚+𝜃𝑘 𝑧𝑡
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(14)

𝑥𝑡 = −𝑙1𝑥 + 𝑙2𝑥 ⋅𝑐𝜃𝑚 − 𝑙2𝑧 ⋅𝑠𝜃𝑚
+ 𝑙3𝑥 ⋅𝑐𝜃𝑚+𝜃𝑘 + 𝑙3𝑧 ⋅𝑠𝜃𝑚+𝜃𝑘 (15)

𝑧𝑡 = 𝑙1𝑧 + 𝑙2𝑥 ⋅𝑠𝜃𝑚 + 𝑙2𝑧 ⋅𝑐𝜃𝑚
+ 𝑙3𝑥 ⋅𝑠𝜃𝑚+𝜃𝑘 − 𝑙3𝑧 ⋅𝑐𝜃𝑚+𝜃𝑘 (16)

The joint kinematics from the crane base to the crane tip are now
contained in 𝑥𝑡 and 𝑧𝑡.

To find the correlation between the desired crane tip velocities and
the joint velocities, the inverse Jacobian matrix must be defined. The
correlation between crane tip velocities and joint velocities is shown in
Eqs. (17) and (18).
[

�̇�𝑡
�̇�𝑡

]

= 𝐉⋅
[

�̇�𝑚
�̇�𝑘

]

(17)
[

�̇�𝑚
�̇�𝑘

]

= 𝐉−1 ⋅
[

�̇�𝑡
�̇�𝑡

]

(18)

First, the Jacobian matrix is defined as the partial derivative of the
crane tip position with respect to the joint angles, shown in Eq. (19).

𝐉 =

[ 𝜕
𝜕𝜃𝑚

(𝑥𝑡)
𝜕
𝜕𝜃𝑘

(𝑥𝑡)
𝜕 (𝑧 ) 𝜕 (𝑧 )

]

(19)

𝜕𝜃𝑚 𝑡 𝜕𝜃𝑘 𝑡
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𝜃

Fig. 9. Geometry of the linkage system for the main joint.

Table 4
Lengths of the main linkage.

Name Length [m]

𝑙𝑎 1.473
𝑙𝑏 1.514
𝑙𝑐 0.143
𝑙𝑑 0.490
𝑙𝑓 0.170
𝑙𝑔 0.340

Inverting the Jacobian matrix yields the solution for the joint ve-
ocities, shown in Eqs. (20)–(22). The full calculations are shown in
ppendix A.

𝐉† ≜ 𝐉−1 =
[

𝐽 †
11 𝐽 †

12
𝐽 †
21 𝐽 †

22

]

(20)

̇𝑚 = 𝐽 †
11 ⋅�̇�𝑡 + 𝐽

†
12 ⋅�̇�𝑡 (21)

�̇�𝑘 = 𝐽 †
21 ⋅�̇�𝑡 + 𝐽

†
22 ⋅�̇�𝑡 (22)

3.3. Actuator space kinematics

The actuator space kinematics describes the relation between the
cylinder lengths and joint angles, where the joint angles are functions
of the cylinder lengths, 𝜃𝑚(𝑥𝑚) and 𝜃𝑘(𝑥𝑘). Fig. 9 shows the geometry of
the linkage system for the main joint. The coordinate 𝑥𝑚 is the length
of the hydraulic cylinder, and the length 𝑙𝑒 is an intermediate length
to help derive the actuator space kinematics. The lengths of the main
linkage system are shown in Table 4.

The calculations of the actuator space kinematics are based on
the law of cosines, since the linkage contains five triangles when the
intermediate length 𝑙𝑒 is introduced. An offset angle 𝜃𝑚 = 1.3 rad is
subtracted from the joint angle 𝜃𝑚 to ensure that the main boom is
horizontal when 𝜃𝑚 = 0. The calculations are shown in Eqs. (23)–(28),
and the main joint angle 𝜃𝑚 is defined in Eq. (29). The calculations for
the knuckle joint are given in Appendix B.

𝜃𝑎 = arccos

(

𝑙2𝑎 + 𝑙
2
𝑐 − 𝑙

2
𝑏

2⋅𝑙𝑎 ⋅𝑙𝑐

)

(23)

𝜃𝑏 = arccos

(

𝑙2𝑎 + 𝑙
2
𝑑 − 𝑥

2
𝑚

2⋅𝑙𝑎 ⋅𝑙𝑑

)

(24)

𝜃𝑐 = 𝜃𝑎 − 𝜃𝑏 (25)

𝑙 =
√

𝑙2 + 𝑙2 − 2⋅𝑙 ⋅𝑙 ⋅𝑐 (26)
5

𝑒 𝑐 𝑑 𝑐 𝑑 𝜃𝑐
Fig. 10. Pressure compensated directional valve.

𝜃𝑑 = arccos

(

𝑙2𝑒 + 𝑙
2
𝑔 − 𝑙

2
𝑓

2⋅𝑙𝑒 ⋅𝑙𝑔

)

(27)

𝜃𝑒 = arccos

(

𝑙2𝑏 + 𝑙
2
𝑒 − 𝑥

2
𝑚

2⋅𝑙𝑏 ⋅𝑙𝑒

)

(28)

𝜃𝑚 = 𝜃𝑑 + 𝜃𝑒 − 𝜃𝑚 (29)

Based on Eq. (29), an analytical expression for �̇�𝑚 can be derived.
This is done by taking the time derivative of 𝜃𝑚(𝑥𝑚), and then inverting
to obtain an expression for �̇�𝑚. This is shown in Eq. (30). The full
derivation of the cylinder velocity is given in Appendix C.

�̇�𝑚 =
(

𝜕𝜃𝑚(𝑥𝑚)
𝜕𝑥𝑚

)−1
⋅�̇�𝑚 = 𝜃†𝑥𝑚 ⋅�̇�𝑚 (30)

3.4. Hydraulic modeling

Both the main cylinder and the knuckle cylinder are controlled by
pressure compensated directional valves. An illustration is shown in
Fig. 10. The pressure compensator senses the load pressure to keep
the pressure drop over the directional valve constant, thus ensuring
a load independent flow. The governing equations of the pressure
compensator are given in Eqs. (31)–(33).

𝑢𝑝𝑐 =
𝑝𝑠𝑒𝑡 + 𝑝𝑙𝑜𝑎𝑑 − 𝑝𝑝

𝛥𝑝𝑐
(31)

𝑝𝑙𝑜𝑎𝑑 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑎 if 𝑢𝑠𝑝𝑜𝑜𝑙 > 0
𝑝𝑏 if 𝑢𝑠𝑝𝑜𝑜𝑙 < 0
𝑝𝑡 otherwise

(32)

𝑄𝑝𝑐 = 𝑘𝑝𝑐 ⋅𝑢𝑝𝑐 ⋅
√

𝑝𝑖 − 𝑝𝑝 (33)

where;

𝑢𝑝𝑐 = opening of compensator, 0 ≤ 𝑢𝑝𝑐 ≤ 1
𝑝𝑝 = compensated pressure at port 𝑝
𝛥𝑝𝑐 = pressure difference when fully opened
𝑝𝑎 = pressure at port 𝑎
𝑝𝑏 = pressure at port 𝑏
𝑝𝑡 = tank pressure
𝑝𝑠𝑒𝑡 = spring pressure setting
𝑝𝑙𝑜𝑎𝑑 = load pressure
𝑢𝑠𝑝𝑜𝑜𝑙 = position of the main spool, −1 ≤ 𝑢𝑠𝑝𝑜𝑜𝑙 ≤ 1
𝑄𝑝𝑐 = flow in pressure compensator
𝑘𝑝𝑐 = flow gain of compensator
𝑝𝑖 = compensator inlet pressure

The steady state of 𝑝𝑝 is then given by Eq. (34).
𝑝𝑝 = 𝑝𝑙𝑜𝑎𝑑 + 𝑝𝑠𝑒𝑡 (34)
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Fig. 11. Double counterbalance valves.

The sensing of the load pressures 𝑝𝑎 and 𝑝𝑏 ensures that the pressure
rop over the directional control valve always equals 𝑝𝑠𝑒𝑡, and that the
low is load independent. This is shown in Eq. (35).

= 𝑘𝑣 ⋅𝑢𝑠𝑝𝑜𝑜𝑙 ⋅
√

𝑝𝑝 − 𝑝𝑙𝑜𝑎𝑑

= 𝑘𝑣 ⋅𝑢𝑠𝑝𝑜𝑜𝑙 ⋅
√

𝑝𝑠𝑒𝑡 (35)
= 𝑄𝑚𝑎𝑥 ⋅𝑢𝑠𝑝𝑜𝑜𝑙

where;

𝑘𝑣 = flow gain of the directional valve
𝑄𝑚𝑎𝑥 = maximum valve flow

To assist with load holding, lowering of the load, and protection
against pressure surges, counterbalance valves are used between the
directional valve and the hydraulic cylinder. Fig. 11 shows an illustra-
tion of double counterbalance valves, as used on the knuckle cylinder.
The main cylinder uses a single counterbalance valve.

The governing equations of the counterbalance valves are shown in
Eqs. (36) and (37).

𝑢𝑎 =
𝑝𝑎2 + 𝜓 ⋅𝑝𝑏1 − 𝑝𝑐𝑟𝑎𝑐𝑘,𝑎

𝛥𝑝𝐶𝐵𝑉
(36)

𝑢𝑏 =
𝑝𝑏2 + 𝜓 ⋅𝑝𝑎1 − 𝑝𝑐𝑟𝑎𝑐𝑘,𝑏

𝛥𝑝𝐶𝐵𝑉
(37)

where;

𝑢𝑎 = opening of valve 𝑎, 0 ≤ 𝑢𝑎 ≤ 1
𝑢𝑏 = opening of valve 𝑏, 0 ≤ 𝑢𝑏 ≤ 1
𝑝𝑎1 = pressure at valve 𝑎 input side
𝑝𝑎2 = pressure at valve 𝑎 actuator side
𝑝𝑏1 = pressure at valve 𝑏 input side
𝑝𝑏2 = pressure at valve 𝑏 actuator side
𝑝𝑐𝑟𝑎𝑐𝑘,𝑎 = crack pressure of valve 𝑎
𝑝𝑐𝑟𝑎𝑐𝑘,𝑏 = crack pressure of valve 𝑏
𝜓 = pilot area ratio
𝛥𝑝𝐶𝐵𝑉 = pressure difference when fully opened

The models of the pressure compensated directional valve and
counterbalance valves are implemented using the hydraulics library in
Simscape for the simulation purposes.

4. Control system design

From Eq. (12), it is clear that motion in both the 𝑥- and 𝑧-direction
affects the payload angle dynamics. As such, the controller can utilize
cos(𝜃𝑝) and sin(𝜃𝑝) for the motion in 𝑥- and 𝑧-direction to suppress the
payload angle. The measured payload angle 𝜃𝑝 is used as feedback to
generate crane tip velocities, as this eliminates the payload angle in
steady state. As the function from control signal to crane tip motion is
highly nonlinear, the kinematic functions derived earlier must be used.
The full control system is shown in Fig. 12, outlining the feedback con-
troller (blue), feedforward controller (red), and anti-swing controller
(green). The anti-swing controller uses actuator kinematics (Act. Kin.),
6

inverse Jacobian (Inv. Jac.), and inverse actuator kinematics (Inv. Act.).
Fig. 12. Schematic of the proposed control system, with feedback controller (blue),
feedforward controller (red), and anti-swing controller (green). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Both the feedforward controller and anti-swing controller use the gain
𝑘𝑓𝑓 to calculate the valve opening from actuator velocity.

The control of the hydraulic cylinders uses feedback of the position
error, and feedforward based on the velocity reference. Since the hy-
draulic system yields load independent velocity control, feedforward is
an effective control method, as stated in [23] and [25]. The anti-swing
gain 𝑘𝑎 and the payload angle 𝜃𝑝 are used to generate two anti-swing
crane tip velocities, �̇�𝑡,𝑎 and �̇�𝑡,𝑎 in order to suppress the payload angle.
These velocities are transformed into joint space and then into actuator
space, to yield the anti-swing cylinder velocities �̇�𝑚,𝑎 and �̇�𝑘,𝑎 for 2-DOF
control. This is shown in Eqs. (38)–(42).

�̇�𝑡,𝑎 = 𝜃𝑝 ⋅𝑘𝑎 ⋅cos(𝜃𝑝) (38)

�̇�𝑡,𝑎 = 𝜃𝑝 ⋅𝑘𝑎 ⋅sin(𝜃𝑝) (39)
[

�̇�𝑚,𝑎
�̇�𝑘,𝑎

]

= 𝐉† ⋅
[

�̇�𝑡,𝑎
�̇�𝑡,𝑎

]

(40)

�̇�𝑚,𝑎 = 𝜃†𝑥𝑘 ⋅�̇�𝑚,𝑎 (41)

�̇�𝑘,𝑎 = 𝜃†𝑥𝑘 ⋅�̇�𝑘,𝑎 (42)

The anti-swing cylinder velocities �̇�𝑚,𝑎 and �̇�𝑘,𝑎 are then multiplied
by 𝑘𝑓𝑓 to generate the valve opening. The control outputs for the
control system are shown in Eqs. (43) and (44).

𝑢𝑚 = (𝑥𝑚,𝑟𝑒𝑓 −𝑥𝑚)⋅𝑘𝑝,𝑚+�̇�𝑚,𝑟𝑒𝑓 ⋅𝑘𝑓𝑓,𝑚+�̇�𝑚,𝑎 ⋅𝑘𝑓𝑓,𝑚 (43)

𝑢𝑘 = (𝑥𝑘,𝑟𝑒𝑓 −𝑥𝑘)⋅𝑘𝑝,𝑘+�̇�𝑘,𝑟𝑒𝑓 ⋅𝑘𝑓𝑓,𝑘+�̇�𝑘,𝑎 ⋅𝑘𝑓𝑓,𝑘 (44)

.1. Theoretical closed loop analysis

An analysis of the closed loop hanging load dynamics can be con-
ucted based on the open loop hanging load dynamics and the selected
ontrol law. The control law controls the velocity of the crane tip.
ecalling from earlier sections, the open loop dynamics and control law
re given as:

̈𝑝 =
1
𝐿𝑤

⋅
(

−�̈�𝑡 ⋅𝑐𝜃𝑝 − �̈�𝑡 ⋅𝑠𝜃𝑝 − 𝑔 ⋅𝑠𝜃𝑝
)

(45)

�̇�𝑡 = 𝜃𝑝 ⋅𝑘𝑎 ⋅𝑐𝜃𝑝 (46)

�̇�𝑡 = 𝜃𝑝 ⋅𝑘𝑎 ⋅𝑠𝜃𝑝 (47)

The expressions for �̈�𝑡 and �̈�𝑡 can be made by taking the time
derivative of the crane tip velocities.

�̈�𝑡 = �̇�𝑝 ⋅𝑘𝑎 ⋅(𝑐𝜃𝑝 − 𝜃𝑝 ⋅𝑠𝜃𝑝 ) (48)

�̈� = �̇� ⋅𝑘 ⋅(𝑠 + 𝜃 ⋅𝑐 ) (49)
𝑡 𝑝 𝑎 𝜃𝑝 𝑝 𝜃𝑝
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The closed loop hanging load dynamics can now be described as:

�̈�𝑝 =
1
𝐿𝑤

⋅
(

−�̇�𝑝 ⋅𝑘𝑎 ⋅(𝑐𝜃𝑝 − 𝜃𝑝 ⋅𝑠𝜃𝑝 )⋅𝑐𝜃𝑝

−�̇�𝑝 ⋅𝑘𝑎 ⋅(𝑠𝜃𝑝 + 𝜃𝑝 ⋅𝑐𝜃𝑝 )⋅𝑠𝜃𝑝 − 𝑔 ⋅𝑠𝜃𝑝
)

(50)

Linearization is conducted to analyze the damping that the control
law provides. Linearizing around 𝜃𝑝 ≈ 0 yields:

�̇�𝑡 = 𝜃𝑝 ⋅𝑘𝑎 (51)

�̇�𝑡 = 0 (52)

�̈�𝑡 = �̇�𝑝 ⋅𝑘𝑎 (53)

�̈�𝑡 = 0 (54)

�̈�𝑝 = −
�̇�𝑝 ⋅𝑘𝑎
𝐿𝑤

−
𝑔 ⋅𝜃𝑝
𝐿𝑤

(55)

A Laplace transform of the linearized closed loop hanging load
dynamics is conducted to find the damping ratio of the system. The
closed loop hanging load dynamics is a second order system, given by:

𝑠2 ⋅𝜃𝑝 = −
𝑠⋅𝜃𝑝 ⋅𝑘𝑎
𝐿𝑤

−
𝑔 ⋅𝜃𝑝
𝐿𝑤

(56)

𝑠2 +
𝑠⋅𝑘𝑎
𝐿𝑤

+
𝑔
𝐿𝑤

= 0 (57)

2 + 2⋅𝑠⋅𝜁 ⋅𝜔 + 𝜔2 = 0 (58)

The bandwidth and damping ratio of the linearized system are
alculated as:

=
√

𝑔
𝐿𝑤

(59)

𝜁 =
𝑘𝑎

2⋅
√

𝐿𝑤 ⋅𝑔
(60)

It can be seen that the damping ratio 𝜁 increases as the anti-swing
ain 𝑘𝑎 increases, and that the system is stable with 𝑘𝑎 > 0. An analyt-
cal expression for the anti-swing gain can now be calculated based on
esired damping ratio and wire length by rearranging Eq. (60).

𝑎 = 2⋅𝜁 ⋅
√

𝐿𝑤 ⋅𝑔 (61)

The analytical expressions in Eqs. (50) and (61) are used in a
umerical analysis of the closed loop nonlinear dynamics. A set of
ransient simulations with 𝐿𝑤 = 2 m and initial conditions of 𝜃𝑝,0 = 0.1
ad and �̇�𝑝,0 = 0 rad/s are shown in Fig. 13 to showcase the damping
hat the anti-swing controller provides. To numerically analyze the
erformance of the anti-swing controller, the RMS value of 𝜃𝑝 as a
unction of 𝜁 from the transient simulations is shown in Fig. 14. The
inimum is at 𝜁 ≈ 0.5, equating to 𝑘𝑎 ≈ 4.5 m∕s.

5. System simulation

The system simulation is conducted in MATLAB Simscape™ with
mported CAD models and the models derived in Section 3. For the
osition control, a path controller based on a trapezoidal velocity
eference is used, as described in [25]. The path controller operates
n actuator space, and uses segments of constant cylinder velocity. The
elevant parameters for the simulation are shown in Table 5. Fig. 15
hows the cylinder position references for the simulation.

A comparison is made in Fig. 16, which shows the payload angle 𝜃𝑝
with 𝑘𝑎 = 0 m/s and 𝑘𝑎 = 5 m/s. The anti-swing controller eliminates
the constant oscillations in the payload angle 𝜃𝑝 when the cylinder is
running with constant velocity, and reduces the payload angle when
the crane tip is accelerating. The anti-swing controller is effective for
both in-stroke and out-stroke cylinder motion.

Fig. 17 shows the position error during simulation with and without
anti-swing control. The position error is larger with the anti-swing
controller, but reducing the payload angle 𝜃 is a higher priority than
7

𝑝 f
Fig. 13. Transient simulation of closed loop nonlinear hanging load dynamics with
damping ratio 0 < 𝜁 < 1.2.

Fig. 14. RMS(𝜃𝑝) as a function of damping ratio for the closed loop nonlinear hanging
load dynamics.

Table 5
Simulation parameters.

Description Name Value

Main feedback 𝑘𝑝,𝑚 5 m−1

Main out-stroke feedforward 𝑘+𝑓𝑓,𝑚 30.16 s m−1

Main in-stroke feedforward 𝑘−𝑓𝑓,𝑚 18.37 s m−1

Knuckle feedback 𝑘𝑝,𝑘 20 m−1

Knuckle out-stroke feedforward 𝑘+𝑓𝑓,𝑘 26.51 s m−1

Knuckle in-stroke feedforward 𝑘−𝑓𝑓,𝑘 14.72 s m−1

Wire length 𝐿𝑤 2 m

reducing the position error. Although the position error is higher when
using anti-swing control, it goes towards zero after the payload angle
is suppressed.

Fig. 18 shows the control signals for the feedback controller 𝑢𝑘,𝑓𝑏,
feedforward controller 𝑢𝑘,𝑓𝑓 , and anti-swing controller 𝑢𝑘,𝑎 on the
knuckle cylinder during simulation with 𝑘𝑎 = 5 m∕s. The main control
signal 𝑢𝑘 is without large oscillations, which is advantageous for the
flexible loader crane. The contributions of the anti-swing controller can
be seen as small spikes when the cylinders are accelerating, i.e. when
the control signal is not constant.

To evaluate the effect of the wire length 𝐿𝑤, the crane is simulated
with different wire lengths and anti-swing gains. From Eq. (12) it is
shown that the payload angle dynamics is dependent on the inverse
of the wire length 𝐿𝑤. To compensate for this a gain scheduling of 𝑘𝑎
can be made to be a function of the wire length. A gain scheduling
of the anti-swing gain equivalent to Eq. (61) with 𝜁 = 0.5644 is used

or this simulation. This equates to 𝑘𝑎 = 5 m∕s at 𝐿𝑤 = 2 m. This
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Fig. 15. Position reference for cylinders during simulation.

Fig. 16. Payload angle 𝜃𝑝 with (red line) and without (blue line) anti-swing control.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 17. Cylinder position error with (solid line) and without (dashed line) anti-swing
ontrol.

eans that the wire length 𝐿𝑤 needs to be measured in a practical
application. The payload angle during motion for different wire lengths
is shown in Fig. 19. The control system yields good suppression of the
payload angle and eliminates the constant oscillations for the different
wire lengths.

To evaluate the interaction between the position controller and anti-
swing controller and identify any instability, a simulation is carried
out with higher values of the anti-swing gain 𝑘𝑎. The payload angle
s shown in Fig. 20 and the main cylinder position error is shown in
8

a

Fig. 18. Control signals for the knuckle cylinder with anti-swing control.

Fig. 19. Payload angle for different wire lengths 𝐿𝑤.

Fig. 20. Payload angle 𝜃𝑝 for different anti-swing gains 𝑘𝑎.

ig. 21. Increasing the gain improves performance until oscillations
ppear in the nonlinear system. In Fig. 20 this is illustrated with three
ifferent gains where the oscillatory behavior is pronounced a 𝑘𝑎 =
0 m∕s.

. Experimental results

The anti-swing controller is implemented on a CompactRIO on the
MF 2020K4 loader crane. A picture of the test setup is shown in
ig. 22. The sensor used in the experiments is the BNO055 Absolute
rientation Sensor from Bosch Sensortec. It outputs three Euler angles

nd they are all used to calculate the payload angle 𝜃𝑝.
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Fig. 21. Main cylinder position error 𝑒𝑚 for different anti-swing gains 𝑘𝑎.

Fig. 22. HMF 2020K4 crane in laboratory.
9

Table 6
Identified deadband for each actuator.

Actuator Out, 𝑢+ In, 𝑢−

Main 0.24 −0.22
Knuckle 0.20 −0.31

There is some deadband in the valves on the HMF 2020K4 loader
crane, and therefore deadband compensation has been implemented
for the laboratory experiments. The identified deadbands for the valves
are shown in Table 6. The equation for the deadband compensation is
shown in Eq. (62). By adding a small deadband �̃�, it is ensured that the
valve will be able to stay closed when no movement is needed.

�̂� =

⎧

⎪

⎨

⎪

⎩

𝑢+ + (1 − 𝑢+)⋅𝑢 if 𝑢 > �̃�
𝑢− + (1 + 𝑢−)⋅𝑢 if 𝑢 < −�̃�
0 otherwise

(62)

where;

�̂� = compensated control signal
𝑢 = control signal
𝑢+ = out-stroke deadband
𝑢− = in-stroke deadband
�̃� = desired deadband, 0.001

In the laboratory there was identified some drift in the payload
angle sensor. This has been removed with a digital high pass filter,
which is shown in Eqs. (63) and (64).

𝑦𝑖 = 𝛼 ⋅𝑦𝑖−1 + 𝛼 ⋅(𝑥𝑖 − 𝑥𝑖−1) (63)

𝛼 =
𝑇𝑓

𝑇𝑓 + 𝑇𝑠
(64)

where;

𝑖 = sample number
𝑦 = filter output
𝑥 = filter input
𝑇𝑓 = filter time constant
𝑇𝑠 = sample time, 0.01 s

To avoid filtering out the motion of the payload, the filter time con-
stant 𝑇𝑓 should be larger than the pendulum period 𝑇𝑝. The pendulum
period is calculated based on the wire length, shown in Eq. (65).

𝑇𝑝 = 2⋅𝜋 ⋅

√

𝐿𝑤
𝑔

= 2.837 s (65)

Because of the value of 𝑇𝑝 the filter time constant has been set to
𝑇𝑓 = 3 s. The effects of the drift and the implemented high pass filter is
shown in Fig. 23. The payload angle drifted towards an offset of 0.02
rad. With the drift of the payload angle, the position error for the main
cylinder converged to a large value. With the high pass filter the drift of
the payload angle has been removed, and the position error converges
to zero as expected.

In the laboratory experiments two different paths are used. The first
path is equal to the path in the simulations shown in Fig. 15, while the
second path is used to show experimental results and performance in
another configuration. An illustration of the crane and the crane tip
motion in the 𝑥𝑧-plane for the two paths is shown in Fig. 24. The first
path is shown in blue, and the second path is shown in red. The circles
denote the starting position of the crane tip for each path and then the
crane moves back and forth along the path.

As in the simulations, the payload angle has been plotted for dif-
ferent gains using the first path. This is shown in Fig. 25. Larger
gains yielded better suppression and removed the constant oscillations.
However, the system became unstable with anti-swing gain 𝑘𝑎 ≥ 7 m∕s
and the experiment was stopped.
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Fig. 23. Payload angle drift and its effect on the position error for the main cylinder.

Fig. 24. Crane tip motion in the 𝑥𝑧-plane for the first path (blue) and second path
red) in the laboratory. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 25. Payload angle 𝜃𝑝 for different anti-swing gains 𝑘𝑎.

A plot of the payload angle with and without anti-swing is shown
n Fig. 26. The payload experiences large oscillations without the anti-
wing controller. With the controller, the payload angle is significantly
educed.
10

t

Fig. 26. Payload angle 𝜃𝑝 with (red line) and without (blue line) anti-swing control
uring the first path. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 27. Cylinder position error with (solid line) and without (dashed line) anti-swing
control.

The position error with and without anti-swing is shown in Fig. 27.
The position error with anti-swing control is kept close to the position
error without control, showing that the anti-swing controller is able to
suppress the payload angle without a large impact on the position error.
The position error without anti-swing control is larger compared to the
ideal system in the simulations.

The payload angle 𝜃𝑝 during the motion along the second path is
shown in Fig. 28. The control system yields good suppression of the
payload angle for this configuration also. Due to the vertical crane tip
motion during the first few seconds of the second path, the payload
barely oscillates in this segment.

7. Conclusion

In this paper a novel anti-swing controller for hydraulic cranes is
designed utilizing load independent velocity control. The anti-swing
controller is simulated, evaluated, and experimentally verified on a
hydraulic loader crane. Relevant kinematic functions are derived to en-
able control of the payload angle. The motion control system operates
in actuator space, and controls the two hydraulic cylinders in order to
suppress the payload angle during motion. The kinematic functions are
used to transform the feedback of the payload angle 𝜃𝑝 into a command
signal for the valves.

In the simulations, the feedback gain 𝑘𝑎 is evaluated in order to
suppress the payload angle 𝜃𝑝 during motion. Simulation results show
ignificant reduction in the payload angle and elimination of oscilla-

ions during a motion with constant cylinder velocity. This is achieved
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Fig. 28. Payload angle 𝜃𝑝 with (red line) and without (blue line) anti-swing control
uring the second path. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Table 7
Lengths of the knuckle linkage.

Name Length [m]

𝑙ℎ 1.626
𝑙𝑖 1.650
𝑙𝑗 0.168
𝑙𝑘 0.490
𝑙𝑚 0.220
𝑙𝑛 0.280

Fig. 29. Geometry of the linkage system for the knuckle joint.

ithout larger cylinder position errors or oscillations in the control
ignal. Simulation results verify the performance of the anti-swing
ontroller.

In the laboratory, a high pass filter is added to eliminate sensor
rift. A deadband compensator is used to compensate for the deadband
n the valves. The feedback gain 𝑘𝑎 is also evaluated, and the exper-

imental verification shows that the anti-swing controller successfully
suppresses the payload angle, with similar results as in the simula-
tions. Results in the laboratory showcase the feasibility of the novel
anti-swing controller for hydraulic cranes in a practical application.

Future work may include extending the anti-swing controller to
include the slewing motion of the crane, which will include deriving
the necessary kinematic functions. Actively controlling the wire length
with a winch can also be added, and may include gain scheduling based
11
on the wire length. Modeling of the flexibility of the crane may also be
included to analyze how this interacts with the payload dynamics, and
how this affects the performance of the anti-swing control system.
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Appendix A. Jacobian matrix and inverse Jacobian

Recalling the transformation matrix 𝐀𝐷𝐻 and the crane tip posi-
ions 𝑥𝑡 and 𝑧𝑡 as:

𝐷𝐻 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑐𝜃𝑚+𝜃𝑘 0 −𝑠𝜃𝑚+𝜃𝑘 𝑥𝑡
0 1 0 0

𝑠𝜃𝑚+𝜃𝑘 0 𝑐𝜃𝑚+𝜃𝑘 𝑧𝑡
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(A.1)

𝑥𝑡 = −𝑙1𝑥 + 𝑙2𝑥 ⋅𝑐𝜃𝑚 − 𝑙2𝑧 ⋅𝑠𝜃𝑚
+ 𝑙3𝑥 ⋅𝑐𝜃𝑚+𝜃𝑘 + 𝑙3𝑧 ⋅𝑠𝜃𝑚+𝜃𝑘 (A.2)

𝑧𝑡 = 𝑙1𝑧 + 𝑙2𝑥 ⋅𝑠𝜃𝑚 + 𝑙2𝑧 ⋅𝑐𝜃𝑚
+ 𝑙3𝑥 ⋅𝑠𝜃𝑚+𝜃𝑘 − 𝑙3𝑧 ⋅𝑐𝜃𝑚+𝜃𝑘 (A.3)

The Jacobian matrix is defined as the partial derivative of the crane
tip position with respect to the joint angles, shown in Eqs. (A.4)–(A.8).

𝐉 =

[ 𝜕
𝜕𝜃𝑚

(𝑥𝑡)
𝜕
𝜕𝜃𝑘

(𝑥𝑡)
𝜕
𝜕𝜃𝑚

(𝑧𝑡)
𝜕
𝜕𝜃𝑘

(𝑧𝑡)

]

(A.4)

𝜕
𝜕𝜃𝑚

(𝑥𝑡) = −𝑙2𝑥 ⋅𝑠𝜃𝑚 − 𝑙2𝑧 ⋅𝑐𝜃𝑚

− 𝑙3𝑥 ⋅𝑠𝜃𝑚+𝜃𝑘 + 𝑙3𝑧 ⋅𝑐𝜃𝑚+𝜃𝑘 (A.5)
𝜕
𝜕𝜃𝑘

(𝑥𝑡) = 𝑙3𝑥 ⋅𝑠𝜃𝑚+𝜃𝑘 − 𝑙3𝑧 ⋅𝑐𝜃𝑚+𝜃𝑘 (A.6)

𝜕
𝜕𝜃𝑚

(𝑧𝑡) = 𝑙2𝑥 ⋅𝑐𝜃𝑚 − 𝑙2𝑧 ⋅𝑠𝜃𝑚

+ 𝑙3𝑥 ⋅𝑐𝜃𝑚+𝜃𝑘 + 𝑙3𝑧 ⋅𝑠𝜃𝑚+𝜃𝑘 (A.7)
𝜕
𝜕𝜃𝑘

(𝑧𝑡) = −𝑙3𝑥 ⋅𝑐𝜃𝑚+𝜃𝑘 − 𝑙3𝑧 ⋅𝑠𝜃𝑚+𝜃𝑘 (A.8)

Inverting the Jacobian matrix yields the solution for the joint veloc-
ities, shown in Eqs. (A.9)–(A.15).

𝐉† ≜ 𝐉−1 =
[

𝐽 †
11 𝐽 †

12
𝐽 †
21 𝐽 †

22

]

(A.9)

�̇�𝑚 = 𝐽 †
11 ⋅�̇�𝑡 + 𝐽

†
12 ⋅�̇�𝑡 (A.10)

�̇�𝑘 = 𝐽 †
21 ⋅�̇�𝑡 + 𝐽

†
22 ⋅�̇�𝑡 (A.11)

𝐽 † =
−𝑙3𝑥⋅𝑐𝜃𝑚+𝜃𝑘−𝑙3𝑧⋅𝑠𝜃𝑚+𝜃𝑘 (A.12)
11 𝑙2𝑥⋅𝑙3𝑧⋅𝑐𝜃𝑘+𝑙3𝑥⋅𝑙2𝑧⋅𝑐𝜃𝑘−𝑙2𝑥⋅𝑙3𝑥⋅𝑠𝜃𝑘+𝑙2𝑧⋅𝑙3𝑧⋅𝑠𝜃𝑘
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𝑥

R

𝐽 †
12 =

−𝑙3𝑥⋅𝑠𝜃𝑚+𝜃𝑘+𝑙3𝑧⋅𝑐𝜃𝑚+𝜃𝑘
𝑙2𝑥⋅𝑙3𝑧⋅𝑐𝜃𝑘+𝑙3𝑥⋅𝑙2𝑧⋅𝑐𝜃𝑘−𝑙2𝑥⋅𝑙3𝑥⋅𝑠𝜃𝑘+𝑙2𝑧⋅𝑙3𝑧⋅𝑠𝜃𝑘

(A.13)

𝐽 †
21 =

−𝑙2𝑥⋅𝑐𝜃𝑚+𝑙2𝑧⋅𝑠𝜃𝑚−𝑙3𝑥⋅𝑐𝜃𝑚+𝜃𝑘−𝑙3𝑧⋅𝑠𝜃𝑚+𝜃𝑘
𝑙2𝑥⋅𝑙3𝑧⋅𝑐𝜃𝑘+𝑙3𝑥⋅𝑙2𝑧⋅𝑐𝜃𝑘−𝑙2𝑥⋅𝑙3𝑥⋅𝑠𝜃𝑘+𝑙2𝑧⋅𝑙3𝑧⋅𝑠𝜃𝑘

(A.14)

𝐽 †
22 =

−𝑙2𝑥⋅𝑠𝜃𝑚−𝑙2𝑧⋅𝑐𝜃𝑚−𝑙3𝑥⋅𝑠𝜃𝑚+𝜃𝑘+𝑙3𝑧⋅𝑐𝜃𝑚+𝜃𝑘
𝑙2𝑥⋅𝑙3𝑧⋅𝑐𝜃𝑘+𝑙3𝑥⋅𝑙2𝑧⋅𝑐𝜃𝑘−𝑙2𝑥⋅𝑙3𝑥⋅𝑠𝜃𝑘+𝑙2𝑧⋅𝑙3𝑧⋅𝑠𝜃𝑘

(A.15)

Appendix B. Actuator space kinematics

To calculate the actuator space kinematics for the knuckle joint, the
same procedure is followed as with the main joint. The geometry for
the knuckle linkage is shown in Fig. 29. The coordinate 𝑥𝑘 is the length
of the hydraulic cylinder, and the length 𝑙𝑙 is the intermediate length.
The lengths of the knuckle linkage system are shown in Table 7.

As with the main joint, an offset angle 𝜃𝑘 = 3.1086 rad is subtracted
from the joint angle 𝜃𝑘 to ensure that the knuckle boom is horizontal
when 𝜃𝑚 + 𝜃𝑘 = 0. The calculations are shown in Eqs. (B.1)–(B.6), and
the knuckle joint angle 𝜃𝑘 is defined in Eq. (B.7).

𝜃ℎ = arccos

(

𝑙2ℎ + 𝑙
2
𝑗 − 𝑙

2
𝑖

2⋅𝑙ℎ ⋅𝑙𝑗

)

(B.1)

𝜃𝑖 = arccos

(

𝑙2ℎ + 𝑙
2
𝑘 − 𝑥

2
𝑘

2⋅𝑙ℎ ⋅𝑙𝑘

)

(B.2)

𝜃𝑗 = 𝜃ℎ − 𝜃𝑖 (B.3)

𝑙𝑙 =
√

𝑙2𝑗 + 𝑙
2
𝑘 − 2⋅𝑙𝑗 ⋅𝑙𝑘 ⋅𝑐𝜃𝑗 (B.4)

𝜃𝑛 = arccos

(

𝑙2𝑙 + 𝑙
2
𝑛 − 𝑙

2
𝑚

2⋅𝑙𝑙 ⋅𝑙𝑛

)

(B.5)

𝜃𝑙 = arccos

(

𝑙2𝑖 + 𝑙
2
𝑙 − 𝑥

2
𝑘

2⋅𝑙𝑖 ⋅𝑙𝑙

)

(B.6)

𝜃𝑘 = 𝜃𝑛 + 𝜃𝑙 − 𝜃𝑘 (B.7)

Appendix C. Time derivative of actuator space kinematics

By taking the time derivative of the actuator space kinematics,
expressions for the cylinder velocities �̇�𝑚 and �̇�𝑘 can be made. The
equations for the knuckle joint are given below, but the procedure is the
same for the main joint. Taking the time derivative of Eqs. (B.1)–(B.7)
from Appendix B yields:

�̇�ℎ = 0 (C.1)

�̇�𝑖 =
𝑥𝑘

𝑙ℎ ⋅𝑙𝑘 ⋅

√

1 −
(

𝑙2ℎ+𝑙
2
𝑘−𝑥

2
𝑘

2⋅𝑙ℎ⋅𝑙𝑘

)2
⋅�̇�𝑘 (C.2)

�̇�𝑗 = −
𝑥𝑘

𝑙ℎ ⋅𝑙𝑘 ⋅

√

1 −
(

𝑙2ℎ+𝑙
2
𝑘−𝑥

2
𝑘

2⋅𝑙ℎ⋅𝑙𝑘

)2
⋅�̇�𝑘 (C.3)

�̇�𝑙 =
(

𝑙2𝑗 + 𝑙
2
𝑘 − 2⋅𝑙𝑗 ⋅𝑙𝑘 ⋅𝑐𝜃𝑗

)− 1
2 ⋅𝑙𝑗 ⋅𝑙𝑘 ⋅𝑠𝜃𝑗 ⋅�̇�𝑗

= −

(

𝑙2𝑗 + 𝑙
2
𝑘 − 2⋅𝑙𝑗 ⋅𝑙𝑘 ⋅𝑐𝜃𝑗

)− 1
2 ⋅𝑙𝑗 ⋅𝑠𝜃𝑗 ⋅𝑥𝑘

𝑙ℎ ⋅

√

1 −
(

𝑙2ℎ+𝑙
2
𝑘−𝑥

2
𝑘

2⋅𝑙ℎ⋅𝑙𝑘

)2
⋅�̇�𝑘 (C.4)

�̇�𝑛 = −
𝑙2𝑙 − 𝑙

2
𝑛 + 𝑙

2
𝑚

2⋅𝑙2𝑙 ⋅𝑙𝑛 ⋅

√

1 −
(

𝑙2𝑙 +𝑙
2
𝑛−𝑙2𝑚

2⋅𝑙𝑙 ⋅𝑙𝑛

)2
⋅ �̇�𝑙

=

(

𝑙2𝑙 − 𝑙
2
𝑛 + 𝑙

2
𝑚
)

⋅
(

𝑙2𝑗 + 𝑙
2
𝑘 − 2⋅𝑙𝑗 ⋅𝑙𝑘 ⋅𝑐𝜃𝑗

)− 1
2 ⋅𝑙𝑗 ⋅𝑠𝜃𝑗 ⋅𝑥𝑘

2⋅𝑙2𝑙 ⋅𝑙𝑛 ⋅𝑙ℎ ⋅

√

1 −
(

𝑙2𝑙 +𝑙
2
𝑛−𝑙2𝑚

)2
⋅

√

1 −
(

𝑙2ℎ+𝑙
2
𝑘−𝑥

2
𝑘

)2
⋅�̇�𝑘 (C.5)
12

2⋅𝑙𝑙 ⋅𝑙𝑛 2⋅𝑙ℎ⋅𝑙𝑘
�̇�𝑙 =
−1

√

1 −
(

𝑙2𝑖 +𝑙
2
𝑙 −𝑥

2
𝑘

2⋅𝑙𝑖⋅𝑙𝑙

)2
⋅
�̇�𝑙 ⋅

(

𝑙2𝑙 +𝑥
2
𝑘−𝑙

2
𝑖
)

−2⋅𝑙𝑙 ⋅𝑥𝑘 ⋅�̇�𝑘
2⋅𝑙𝑖 ⋅𝑙2𝑙

=
𝑥𝑘

𝑙𝑖 ⋅𝑙𝑙 ⋅

√

1 −
(

𝑙2𝑖 +𝑙
2
𝑙 −𝑥

2
𝑘

2⋅𝑙𝑖⋅𝑙𝑙

)2
⋅�̇�𝑘 −

𝑙2𝑙 +𝑥
2
𝑘−𝑙

2
𝑖

2⋅𝑙𝑖 ⋅𝑙2𝑙 ⋅

√

1 −
(

𝑙2𝑖 +𝑙
2
𝑙 −𝑥

2
𝑘

2⋅𝑙𝑖⋅𝑙𝑙

)2
⋅ �̇�𝑙

=
𝑥𝑘

𝑙𝑖 ⋅𝑙𝑙 ⋅

√

1 −
(

𝑙2𝑖 +𝑙
2
𝑙 −𝑥

2
𝑘

2⋅𝑙𝑖⋅𝑙𝑙

)2
⋅�̇�𝑘

+

(

𝑙2𝑙 +𝑥
2
𝑘−𝑙

2
𝑖
)

⋅
(

𝑙2𝑗 + 𝑙
2
𝑘 − 2⋅𝑙𝑗 ⋅𝑙𝑘 ⋅𝑐𝜃𝑗

)− 1
2 ⋅𝑙𝑗 ⋅𝑠𝜃𝑗 ⋅𝑥𝑘

2⋅𝑙𝑖 ⋅𝑙2𝑙 ⋅𝑙ℎ ⋅

√

1 −
(

𝑙2𝑖 +𝑙
2
𝑙 −𝑥

2
𝑘

2⋅𝑙𝑖⋅𝑙𝑙

)2
⋅

√

1 −
(

𝑙2ℎ+𝑙
2
𝑘−𝑥

2
𝑘

2⋅𝑙ℎ⋅𝑙𝑘

)2
⋅�̇�𝑘 (C.6)

�̇�𝑘 = �̇�𝑛 + �̇�𝑙

=

⎛

⎜

⎜

⎜

⎜

⎝

(

𝑙2𝑙 − 𝑙
2
𝑛 + 𝑙

2
𝑚

)

⋅
(

𝑙2𝑗 + 𝑙
2
𝑘 − 2⋅𝑙𝑗 ⋅𝑙𝑘 ⋅𝑐𝜃𝑗

)− 1
2 ⋅𝑙𝑗 ⋅𝑠𝜃𝑗 ⋅𝑥𝑘

2⋅𝑙2𝑙 ⋅𝑙𝑛 ⋅𝑙ℎ ⋅
√

1 −
(

𝑙2𝑙 +𝑙2𝑛−𝑙2𝑚
2⋅𝑙𝑙 ⋅𝑙𝑛

)2
⋅

√

1 −
(

𝑙2ℎ+𝑙
2
𝑘−𝑥

2
𝑘

2⋅𝑙ℎ ⋅𝑙𝑘

)2
+

𝑥𝑘

𝑙𝑖 ⋅𝑙𝑙 ⋅

√

1 −
(

𝑙2𝑖 +𝑙
2
𝑙 −𝑥

2
𝑘

2⋅𝑙𝑖 ⋅𝑙𝑙

)2

+

(

𝑙2𝑙 +𝑥
2
𝑘−𝑙

2
𝑖

)

⋅
(

𝑙2𝑗 + 𝑙
2
𝑘 − 2⋅𝑙𝑗 ⋅𝑙𝑘 ⋅𝑐𝜃𝑗

)− 1
2 ⋅𝑙𝑗 ⋅𝑠𝜃𝑗 ⋅𝑥𝑘

2⋅𝑙𝑖 ⋅𝑙2𝑙 ⋅𝑙ℎ ⋅
√

1 −
(

𝑙2𝑖 +𝑙
2
𝑙 −𝑥

2
𝑘

2⋅𝑙𝑖 ⋅𝑙𝑙

)2
⋅

√

1 −
(

𝑙2ℎ+𝑙
2
𝑘−𝑥

2
𝑘

2⋅𝑙ℎ ⋅𝑙𝑘

)2

⎞

⎟

⎟

⎟

⎟

⎠

⋅�̇�𝑘 (C.7)

Solving Eq. (C.7) with respect to �̇�𝑘 yields:

̇ 𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

(

𝑙2𝑙 − 𝑙
2
𝑛 + 𝑙

2
𝑚

)

⋅
(

𝑙2𝑗 + 𝑙
2
𝑘 − 2⋅𝑙𝑗 ⋅𝑙𝑘 ⋅𝑐𝜃𝑗

)− 1
2 ⋅𝑙𝑗 ⋅𝑠𝜃𝑗 ⋅𝑥𝑘

2⋅𝑙2𝑙 ⋅𝑙𝑛 ⋅𝑙ℎ ⋅
√

1 −
(

𝑙2𝑙 +𝑙2𝑛−𝑙2𝑚
2⋅𝑙𝑙 ⋅𝑙𝑛

)2
⋅

√

1 −
(

𝑙2ℎ+𝑙
2
𝑘−𝑥

2
𝑘

2⋅𝑙ℎ ⋅𝑙𝑘

)2
+

𝑥𝑘

𝑙𝑖 ⋅𝑙𝑙 ⋅

√

1 −
(

𝑙2𝑖 +𝑙
2
𝑙 −𝑥

2
𝑘

2⋅𝑙𝑖 ⋅𝑙𝑙

)2

+

(

𝑙2𝑙 +𝑥
2
𝑘−𝑙

2
𝑖

)

⋅
(

𝑙2𝑗 + 𝑙
2
𝑘 − 2⋅𝑙𝑗 ⋅𝑙𝑘 ⋅𝑐𝜃𝑗

)− 1
2 ⋅𝑙𝑗 ⋅𝑠𝜃𝑗 ⋅𝑥𝑘

2⋅𝑙𝑖 ⋅𝑙2𝑙 ⋅𝑙ℎ ⋅
√

1 −
(

𝑙2𝑖 +𝑙
2
𝑙 −𝑥

2
𝑘

2⋅𝑙𝑖 ⋅𝑙𝑙

)2
⋅

√

1 −
(

𝑙2ℎ+𝑙
2
𝑘−𝑥

2
𝑘

2⋅𝑙ℎ ⋅𝑙𝑘

)2

⎞

⎟

⎟

⎟

⎟

⎠

−1

⋅�̇�𝑘 (C.8)

eferences

[1] Lee Ho-Hoon, Cho Sung-Kun, Cho Jae-Sung. A new anti-swing control of over-
head cranes. IFAC Proc Vol 1997;30(13):115–20, IFAC Workshop on Automation
in the Steel Industry: Current Practice and Future Developments (ASI’97),
Kyongju, Korea, 16–18 July 1997.

[2] Lee Ho-Hoon. Modeling and control of a three-dimensional overhead crane. J
Dyn Syst Meas Control 1998;120(4):471–6.

[3] Cho Sung-Kun, Lee Ho-Hoon. An anti-swing control of a 3-dimensional overhead
crane. In: Proceedings of the 2000 American control conference. (IEEE Cat. No.
00CH36334), vol. 2. 2000. p. 1037–41.

[4] Lee Ho-Hoon, Choi Seung-Gap. A model-based anti-swing control of overhead
cranes with high hoisting speeds. In: Proceedings 2001 ICRA. IEEE international
conference on robotics and automation (Cat. No. 01CH37164), vol. 3. 2001. p.
2547–52.

[5] Lee Ho-Hoon, Cho Sung-Kun. A new fuzzy-logic anti-swing control for industrial
three-dimensional overhead cranes. In: Proceedings 2001 ICRA. IEEE interna-
tional conference on robotics and automation (Cat. No. 01CH37164), vol. 3.
2001. p. 2956–61.

[6] Cho Sung-Kun, Lee Ho-Hoon. A fuzzy-logic antiswing controller for three-
dimensional overhead cranes. ISA Trans 2002;41(2):235–43.

[7] Lee Ho-Hoon. A new approach for the anti-swing control of overhead cranes
with high-speed load hoisting. Internat J Control 2003;76(15):1493–9.

[8] Fang Y, Dixon WE, Dawson DM, Zergeroglu E. Nonlinear coupling control laws
for an underactuated overhead crane system. IEEE/ASME Trans Mechatronics
2003;8(3):418–23.

[9] Lee Ho-Hoon. A new design approach for the anti-swing trajectory con-
trol of overhead cranes with high-speed hoisting. Internat J Control
2004;77(10):931–40.

[10] Lee Ho-Hoon, Liang Yi, Segura Del. A sliding-mode antiswing trajectory control
for overhead cranes with high-speed load hoisting. J Dyn Syst Meas Control
2006;128(4):842–5.

[11] Park Hahn, Chwa Dongkyoung, Hong Keum-Shik. A feedback linearization
control of container cranes: Varying rope length. Int J Control Autom Syst
2007;5.

http://refhub.elsevier.com/S0957-4158(21)00083-0/sb1
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb1
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb1
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb1
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb1
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb1
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb1
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb2
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb2
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb2
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb6
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb6
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb6
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb7
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb7
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb7
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb8
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb8
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb8
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb8
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb8
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb9
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb9
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb9
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb9
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb9
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb10
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb10
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb10
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb10
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb10
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb11
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb11
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb11
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb11
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb11


Mechatronics 77 (2021) 102599K.J. Jensen et al.
[12] Park M, Chwa D, Hong S. Antisway tracking control of overhead cranes
with system uncertainty and actuator nonlinearity using an adaptive fuzzy
sliding-mode control. IEEE Trans Ind Electron 2008;55(11):3972–84.

[13] Schindele D, Menn I, Aschemann H. Nonlinear optimal control of an overhead
travelling crane. In: 2009 IEEE control applications, intelligent control. 2009. p.
1045–50.

[14] Lee Ho-Hoon, Liang Yi. A robust anti-swing trajectory control of overhead
cranes with high-speed load hoisting: experimental study. In: ASME international
mechanical engineering congress and exposition, vol. 8: dynamic systems and
control, parts A and B. 2010. p. 711–6.

[15] Ngo QH, Hong K. Sliding-mode antisway control of an offshore container crane.
IEEE/ASME Trans Mechatronics 2012;17(2):201–9.

[16] Ambrosino Michele, Dawans Arnaud, Thierens Brent, Garone Emanuele. Oscil-
lation reduction for knuckle cranes. In: Proceedings of the 37th international
symposium on automation and robotics in construction. Kitakyushu, Japan:
International Association for Automation and Robotics in Construction (IAARC);
2020, p. 1590–7.

[17] Singhose WE, Seering Warren, Singer M. Input shaping for vibration reduction
with specified insensitivity to modeling errors. In: Proc. Japan-USA symp. flexible
automation, vol. 1. 1996.

[18] Sorensen Khalid L, Singhose William, Dickerson Stephen. A controller enabling
precise positioning and sway reduction in bridge and gantry cranes. Control Eng
Pract 2007;15(7):825–37, Special Issue on Award Winning Applications.

[19] Kjelland Magnus B, Hansen Michael R. Using input shaping and pressure
feedback to suppress oscillations in slewing motion of lightweight flexible
hydraulic crane. Int J Fluid Power 2015;16(3):141–8.

[20] Boschetti G, Richiedei D, Trevisani A. Delayed reference control for multi-
degree-of-freedom elastic systems: Theory and experimentation. Control Eng
Pract 2011;19(9):1044–55.

[21] Boschetti G, Caracciolo R, Richiedei D, Trevisani A. A non-time based controller
for load swing damping and path-tracking in robotic cranes. J Intell Robot Syst
2014;76(2):201–17.

[22] Kjelland MB, Hansen MR, Tyapin I, Hovland G. Tool-point control of a planar
hydraulically actuated manipulator with compensation of non-actuated degree
of freedom. In: 2012 12th international conference on control, automation and
systems. 2012. p. 672–7.

[23] Bak Morten Kollerup, Hansen Michael Rygaard. Analysis of offshore
knuckle boom crane — Part two: Motion control. Model Identif Control
2013;34(4):175–81.

[24] Jensen Konrad Johan, Ebbesen Morten Kjeld, Hansen Michael Rygaard. Adaptive
feedforward control of a pressure compensated differential cylinder. Appl Sci
2020;10(21):7847.
13
[25] Jensen Konrad Johan, Kjeld Ebbesen Morten, Rygaard Hansen Michael. Devel-
opment of point-to-point path control in actuator space for hydraulic knuckle
boom crane. Actuators 2020;9(2):27.

[26] Kjelland Magnus B, Tyapin Ilya, Hovland Geir, Hansen Michael R. Tool-
point control for a redundant heave compensated hydraulic manipulator. In:
Proceedings of the 2012 IFAC workshop on automatic control in offshore oil
and gas production. Trondheim, Norway: Norwegian University of Science and
Technology; 2012.

Konrad Johan Jensen received the M.Sc. degree in Mecha-
tronics from the University of Agder, Norway, in 2015. His
master’s thesis focused on path control of hydraulic cranes.
He is currently pursuing a doctorate degree in Mechatronics
at the Department of Engineering Sciences at the University
of Agder. His main research interests include hydraulic
systems, robotics, optimization, and control systems.

Morten Kjeld Ebbesen is affiliated with the Department of
Engineering Sciences, University of Agder, Norway, as an
associate professor in the Mechatronics group. He received
his M.Sc. (2003) and Ph.D. (2008) in mechanical engineer-
ing from the University of Aalborg, Denmark. His interests
are dynamics, flexible multi-body systems, time-domain
simulation, fluid power, and optimization.

Michael Rygaard Hansen received the M.Sc. in Mechanical
Engineering, Aalborg University, 1989. Ph.D. in Computer-
Aided Analysis and Design of Mechanical Mechanisms,
Institute of Mechanical Engineering, Aalborg University,
1992. Main interests lie within the use of numerical meth-
ods for modeling, design and optimization of dynamic
mechatronic systems. Teaching and supervision experience
at B.Sc., M.Sc. and Ph.D. level since 1990. The courses
have mainly been devoted to education within mechanical
engineering.

http://refhub.elsevier.com/S0957-4158(21)00083-0/sb12
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb12
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb12
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb12
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb12
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb15
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb15
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb15
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb16
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb16
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb16
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb16
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb16
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb16
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb16
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb16
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb16
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb18
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb18
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb18
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb18
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb18
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb19
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb19
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb19
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb19
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb19
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb20
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb20
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb20
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb20
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb20
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb21
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb21
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb21
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb21
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb21
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb23
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb23
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb23
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb23
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb23
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb24
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb24
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb24
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb24
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb24
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb25
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb25
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb25
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb25
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb25
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb26
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb26
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb26
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb26
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb26
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb26
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb26
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb26
http://refhub.elsevier.com/S0957-4158(21)00083-0/sb26

	Anti-swing control of a hydraulic loader crane with a hanging load
	Introduction
	Considered system
	Difference from electric overhead cranes
	Control strategy

	System modeling
	Hanging load dynamics
	Joint space kinematics
	Actuator space kinematics
	Hydraulic modeling

	Control system design
	 Theoretical closed loop analysis

	System simulation
	Experimental results
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	
	Appendix A. Jacobian Matrix and Inverse Jacobian
	Appendix B. Actuator Space Kinematics
	Appendix C. Time Derivative of Actuator Space Kinematics
	References


