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Hunting and fishing are often size-selective, which favours slow body
growth. In addition, fast growth rate has been shown to be positively corre-
lated with behavioural traits that increase encounter rates and catchability in
passive fishing gears such as baited traps. This harvest-induced selection
should be effectively eliminated in no-take marine-protected areas (MPAs)
unless strong density dependence results in reduced growth rates. We com-
pared body growth of European lobster (Homarus gammarus) between three
MPAs and three fished areas. After 14 years of protection from intensive,
size-selective lobster fisheries, the densities in MPAs have increased con-
siderably, and we demonstrate that females moult more frequently and
grow more during each moult in the MPAs. A similar, but weaker pattern
was evident for males. This study suggests that MPAs can shield a wild
population from slow-growth selection, which can explain the rapid recov-
ery of size structure following implementation. If slow-growth selection is
a widespread phenomenon in fisheries, the effectiveness of MPAs as a
management tool can be higher than currently anticipated.

1. Introduction

Intense human harvest of wild animals has caused reductions in body size and eroded
age structure in exploited populations worldwide [1,2]. Such downsizing can be a
result of increased mortality alone but is often reinforced by selective harvesting prac-
tices. For example, many fisheries must avoid catching juveniles and small adults,
either through regulations applied to the fishing gear (hook size, mesh size, trap
entrance size), or through minimum size limits [3]. Similarly, rules that are intended
to prevent the killing of small and young individuals are commonly applied in man-
agement of hunted mammal populations [4]. In addition to size selectivity imposed
for management or conservation reasons, the largest animals have often a dispropor-
tional economic or experiential value to hunters and fishers. Fishing also has the
potential to selectively remove fast-growing individuals if growth rate is positively
correlated with behaviour traits that increase vulnerability of capture [5,6].
Harvest-induced downsizing is typically assumed to have impacts, mostly nega-
tive, on population dynamics and ecological interactions [2]. This is because body size
tends be positively correlated with fitness-related traits in both males and females. For
example, big parents often produce more viable offspring, providing them with more
nutritional resources and/or better care and protection [7,-9]. In fish and crustaceans,
animals with indeterminate growth, large females of most species produce dispropor-
tionally more offspring relative to smaller females [10], while large males tend to be
preferred mating partners [11-13]. For species with sexual-size dimorphism, size-
selective harvesting can also lead to skewed sex ratios, disrupted mating behaviour
and cause gamete-limitation [13-15]. Selective harvesting can also cause ecosystem-
level consequences, for instance, downsizing of key predatory species can reduce
their effectiveness in controlling prey population and result in negative ecological cas-
cades [16,17] (but see [18]). Further, populations that have undergone size and age
truncation can have reduced resilience to cope with environmental change [19-23].
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Figure 1. The development in mean CPUE of all European lobster caught in the annual research trap survey in lobster reserves and fished areas of (a) Aust—Aqgder,
(b) Vestfold and (c) @stfold between 2006 and 2020 (modified from Knutsen et al. [42]). Establishment of the protected areas from August of 2006 is indicated by vertical
dashed line. The error bars depict s.e. around the mean. For weight—length relationship, see model in electronic supplementary material, figure S3. (Online version in colour.)

An effective way of mitigating consequences of selective
harvesting is to establish no-take protected areas, reserves
where the removal of all or specific species is prohibited. The
premise is simple; if large enough and well-enforced, protected
areas provides opportunity for species to restore abundances,
size and age structure and other types of phenotypic complex-
ity [24-26]. In addition, neighbouring un-protected areas can
benefit through spill-over of surplus recruits and unselected
adults [27,28]. Protected areas, and un-protected control areas
with similar ecological characteristics, provide unique oppor-
tunities to study how harvesting affects trait distributions
and population dynamics [29]. This is a necessary study
design for disentangling the effects of harvest selection and
environmental factors on phenotypic traits [4]. In the marine
environment, there is now ample evidence that marine-
protected areas (MPAs) can improve body size and other
morphological traits [24,30-32], but less is known about
how life-history traits, such as somatic growth rate, is affected
[33,34]. Is the increased body size in MPAs solely due to
the upheaval of fishing mortality, or is it also modulated by
shifts in somatic growth? If an MPA does improve body
growth (due to elimination of harvest selection against fast
growth rate), this should have additional positive effects on
population productivity and contribute to an even faster
restoration of size structure. Alternatively, increased popu-
lation densities in protected areas may intensify competition
and cause reduced body growth rates, which would constrain
recovery and reduce the benefits off spill-over to harvested
areas [34-36].

In this study, we provide a robust empirical assessment
of how body growth responds to protection from selective fish-
ing mortality in a heavily exploited population of European
lobster. We analysed individual body growth using 14 years
of capture-recapture data from three pairs of no-take lobster
MPAs and adjacent areas open to fishing in Skagerrak, southern
Norway. In this region, lobsters are subjected to an intensive
trap fishery which has led to gradual and strong reductions in
catch rates across several decades [37]. We regard it as likely
that the lobster fishery is targeting fast-growing individuals
for three reasons: first, the lobster fishery is size-selective [38],
which should select for slower growth [39]. Lobsters grow by
replacing their exoskeleton (moulting). This implies lower

fishing mortality for slow growers; more specifically for the
individuals (smaller than 250 mm) that either skip moulting
or that do not surpass the size limit if they moult. Second,
female lobsters that carry visible eggs must be returned to
sea. Females do not moult when they are berried, and they
make up approximately 50% of the female catch during the fish-
ing season [40]. This regulation may therefore induce additional
selective pressure for skipped moulting in females, favouring
those that invest surplus energy in eggs rather than somatic
growth. Third, it is also probable that fast-growing lobsters
have higher probability of being captured in the baited traps,
independently of body size. This in line with the hypothesis
on behaviour-driven growth selectivity in passive gears, and
especially since the most convincing experimental evidence is
from a species of clawed crayfish (Cherax destructor) [6], which
have many morphological and behavioural similarities with
clawed lobsters. In that study, individual boldness and voracity
was found to correlate with fast growth rate, and as bold and
fast-growing individuals spent more time searching for food,
they also were more likely to encounter and enter baited
traps. Unfortunately, similar experiments have not been con-
ducted on clawed lobsters; however, a recent study finds
support for behaviour-driven selection in lobster in Southern
Norway, where males with large claws relative to body size
has higher capture probability in the fishery, and consequently
males in fished areas have smaller claws compared to males
inside MPAs [32,41]. Lobsters in the MPAs are protected from
these selective pressures and are therefore predicted to grow
relatively faster—a difference that should increase with body
size due to the size-selective fishing regulations and the cumu-
lative effects of assumed growth selection over several seasons.
Alternatively, it is possible that density dependence is strong
and have resulted in lower growth rates for lobsters in MPAs
where the density of lobsters has increased substantially in
MPAs since implementation (figure 1).

2. Methods and materials
(a) Study species and study system

European lobsters are large and long-lived crustaceans exhibit-
ing sexual dimorphism. Males grow faster than females,
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mature at smaller size and have relatively larger claws, a sexu-
ally selected trait [13,43]. Social structures are upheld by
dominance hierarchies in territories controlled by a large and
superior male [44]. In Norway, trap catches are at the lowest
record in history after decades of overfishing [37]. A ban on
the harvest of egg-bearing females was implemented in 2008,
along with an increase in minimum legal size from 220 mm
to 250 mm total length (TL). In 2017, a maximum size limit at
320 mm TL (approx. 116 mm carapace length) was introduced
for lobsters caught along the Skagerrak coast [13].

This study was conducted in three replicated pairs of
lobster no-take MPAs and adjacent fished areas as controls
on the Skagerrak coast in southern Norway in Aust-Agder
(approx. 1km?), Vestfold (0.5km?) and Ostfold county
(approx. 0.7 km?®) (sampling locations shown in the electronic
supplementary material, figure S1). Established in September
2006, the MPAs prohibit any capture of lobsters or use of
standing gear (traps/pots, nets).

(b) Lobster sampling

Lobsters were sampled as part of a capture-recapture survey
conducted annually by the Norwegian Institute of Marine
Research. Since 2006, each pair of MPA and fished area
have been sampled simultaneously during 4 consecutive
sampling days (between 20 August and 10 September), so
that shared temporal effects can be accounted for (electronic
supplementary material, figure S2). Single, two-chambered
Parlour traps baited with raw mackerel (Scomber scombrus)
were randomly distributed throughout the sampling areas
(8-30 m depth) and hauled the following day. The traps
had no escape openings, in oppose to conventional traps, to
also catch lobsters smaller than the minimum legal-size
limit. All lobsters were measured for TL (mm), sexed and
tagged with externally visible T-bar tags, and released at
the sampling site. To provide an index of population density
in an area, we estimated the mean catch per unit effort
(CPUE; kg lobster per trap haul) for each year. To calculate
this, additional weight data were obtained at sea for a sub-
sample of the lobsters caught in 2019 (n =253), which was
used to fit a linear regression model to predict weight for
all lobsters in the dataset (adjusted R%2=0.98, see electronic
supplementary material, figure S3).

(c) Individual growth calculations

The capture-recapture data were used to calculate change in
TL (ATL = TLyecap — TLcap) of individual lobsters. Lobsters
only grow when they shed and replace their exoskeleton
(moulting). To determine whether a recaptured individual
had moulted or not since the previous observation, we fol-
lowed a similar procedure as in an earlier paper [13].
Briefly, we considered capture-recapture events across 1 or
2 years (85% of all recaptures, electronic supplementary
material, figure S4). We calculated the difference between
TLrecap (TL in year,) and TLe.p, (TL in year,;) and visually
inspected the overall distribution of size differences (ATL)
in a scatterplot versus TL.,, to determine the thresholds in
ATL that corresponded 0, 1, 2 or 3 moults (electronic sup-
plementary material, figure S4). We inferred that one
moulting had occurred if the size difference was 5 mm or
higher from the previous year, while smaller differences
were assumed to be a consequence of human measurement
error [13]. The size distributions were considerably left

truncated in the control areas (electronic supplementary [ 3 |

material, figure S5), and we therefore constrained the dataset
to lobsters with a TLyecap <320 mm, which also corresponds
to the maximum size limit implemented in 2017. We
excluded recaptures that were observed in a different area
than previous capture (reserve or fished; approximately 2%
of the observations).

(d) Statistical analysis

Statistical analyses were performed in R v.4.0.3 [45]. To test the
hypothesis of differences in growth in between MPAs and con-
trol areas, we first modelled the probability of a skipped moult
(0 or 1) where skipping was inferred to have occurred if the
number of moults was less than the number of years in liberty.
Generalized linear mixed models (GLMM:s) with Bernoulli dis-
tribution were fitted with the R-package glmmTMB [46] and
included TL at capture (TLcap), status (MPA or control), years
in liberty (YL; 1 or 2), region and sampling date (day in year; day
1=16 August) as fixed effects (electronic supplementary
material, table S1). A random effect of region-interval (66-89
groups) was included to account for potentially shared but
unmeasured environmental conditions (e.g. temperature,
prey availability) affecting growth in lobsters from the same
capture intervals in each region. The fixed effect region accounts
for any consistent spatial differences affecting growth rates (e.g.
habitat size and quality), whereas sampling date accounts for
temporal variation in the annual sampling period in each
region (occurred between 16.08 and 10.09, electronic sup-
plementary material, figure S2). Moulting in lobster usually
happens between June and September [47], thus coinciding
with our sampling window. Sexes were analysed separately.
Individual ID was not used as a random effect, since most lob-
sters had only one individual observation (59% for skipped
moulting and 70% for growth increment) and if included, the
models had difficulties converging.

Our starting model included a three-way interaction
between TLc,, status and years in liberty, with additive effects
of region and sampling date. We then fitted several models
with simpler structures and used Akaike information cri-
terion (AIC) to identify the model that best balance bias
and variance [48,49]. If harvest selection against fast growth
rate is strong, we predicted to find support for models with
interaction effects between TL and status and/or YL and
status—predicting skipped moulting to be less frequent
among MPA lobsters, a difference that should increase with
size (TL) and/or time (YL) because of accumulative harvest
selection against large size and fast growth (frequent moul-
ters). Alternatively, if density dependence has a stronger
influence on body growth than harvest selection, we would
expect the reverse pattern with higher frequency of skipped
moulting in the MPA, most likely as an additive (size-
independent effect) if density is affecting all size classes
equally. Models without any status effect were also included
in the comparison, which if supported, would indicate low
or balanced (less likely) influence of both harvest selection
and density dependence. We chose models with the same
covariate structure for both sexes, if the A AIC was less
than two units from the optimal model (approx. similar
support) in either sex. Lastly, we used AIC to evaluate
whether region should be included or not in the optimal
model structure. Models without the additive region effect
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were used to visualize the overall growth patterns in MPA
and control areas.

Second, we modelled growth increment (change in TL,
ATL) for lobsters that had moulted annually (no skips).
Only a few individuals had moulted more than once per
year and so were not included in the subsequent analysis
(electronic supplementary material, figure S4). Linear mixed
effects models (LMMs) were fitted with the R package nmle
[50] using the maximum-likelihood method. We used the
same initial model structure and procedure for model selec-
tion as described for skipped moults, with the exception
that sampling date was not included as a covariate, which
should not influence post-moult size. In addition, we
included a last step in the model selection where we assessed
whether the optimal model improved (approx. lower AIC) if
allowing for heterogeneous variance between MPA and con-
trol areas. This is because harvest selection on growth rate in
fished area should be expected to reduce both mean and var-
iance in growth increments. Then, to obtain unbiased
estimates for the supported models, they were refitted with
the restricted maximum-likelihood estimation method [51].

Finally, we tested for density dependence in the MPAs by
with GLMM and LMMs as above using the same final model
structures, including mean CPUE as an additional covariate.
Control areas were excluded from this analysis, due to the
presumably confounding effects that the selective fishery
has on growth rate.

For all models, the underlying statistical assumptions
(homogeneity of variance, normally distributed residuals)
were assessed by graphical inspection of residuals plotted
against fitted values and covariates. The R package perform-
ance (v 0.7.1 [52]) was used to calculate the intraclass
correlation coefficient for random effect region-interval. Full
summaries of model selection and coefficients of the optimal
models are provided as electronic supplementary material
(electronic supplementary material, tables S2 and S3), along
with the dataset and R script (S8).

3. Results

All three MPAs showed a clear increase in CPUE of lobsters
shortly after implementation, relative to control areas. The
CPUE in two smallest MPAs, Vestfold and Ostfold peaked
relatively early (2010 and 2011, respectively), while the
CPUE rose more steadily and slowly in the Fledevigen
MPA, reaching the highest values in 2019 and 2020
(figure 1). The size-selective fishing pressure is also reflected
in a strong truncation of size structure in the control areas
where lobsters above the legal-size limits are few (electronic
supplementary material, figure S5).

A total of 2303 lobsters (less than 320 mm) were cap-
tured-recaptured with 1 or 2 years in liberty and included
in the skipped moult GLMM models. Of these, 1569 lobsters
(68%) had moulted annually (non-skippers) and were used to
model growth increment. Model selection supported two-
way interaction effects between site Status (MPA or control)
and TL, although for skipped moulting in males, the model
with no Status effect had marginally better support
(AAIC = -0.18; electronic supplementary material, table S1).
Further, whether lobsters had 1 or 2 years in liberty affects
the size-dependent growth patterns (TLxYL interaction sup-
ported in all models). The optimal growth increment model

also included an interaction between status and year in liberty. [ 4 |

Additive region-effects were supported except for skipped
moulting in females (electronic supplementary material,
table S1).

For females, protection had positive effects on body
growth (figures 2 and 3; electronic supplementary material,
tables 52 and S3); females in the MPAs were less likely to
skip a moult (likelihood ratio test (LRT): status x TL: L=
13.57, d.f. =1, p <0.0005), while those that moulted annually
increased their length more than in the control areas (LRT:
status x TL: L=3.58, d.f. =1, p=0.06; LRT: status x YL: L=
9.74, p=0.002). For example, the average female at 250 mm
TL (the legal-size limit) had an estimated probability of skip-
ping moulting until next year of 23% in the MPA versus 34%
in control areas, and if moulting, she would increase her
length approximately 9% more in the MPA. For skipped
moulting, there were smaller differences between MPAs
and control areas for females with 2 years in liberty, e.g. the
95% confidence intervals for MPA lobsters overlapped with
the estimate for the control area for all legal-sized lobsters
(figure 2). On the other hand, for growth increment, there
was a stronger effect of protection of those with 2 years in lib-
erty (figure 3). The optimal growth increment model for
females were improved by allowing for heterogenous var-
iance between MPAs and control areas (AAIC = —-3.14), with
the variance being higher in the MPAs (18.5) than in control
areas (13.6).

For males, protection had a borderline significant effect on
both skipped moulting (figure 2; LRT: status x TL: L=3.75,
df.=1, p=0.05) and growth increment (figure 3; LRT:
status x TL: L=4.07, d.f. =1, p =0.04). These interaction effects
followed similar patterns as for females, the positive effects of
protection increased with body size (electronic supplementary
material, tables S3 and S4). The model with heterogeneous var-
iance between MPA and control areas were not supported for
males (AAIC = +1.75). There was a diverging size-dependent
pattern in growth increments; both males and females show
similar growth increments when small (less than 200 mm),
but whereas female increments are steadily decreasing with
body size, the increments of males increase with body size
(figure 3). For both skipped moulting and growth increment,
the fixed effects explained most of the variance, where the intra-
class correlation coefficient for sampling intervals in each region
(the random effect) was greater than 0.20 in all models.

Lastly, CPUE had no significant effect on growth in either
sex (electronic supplementary material, tables S4 and S5),
although we note that a borderline significant negative
effect of CPUE on growth increment was evident in females
(p=0.055).

4. Discussion

We conducted a fully replicated study on the effects of protec-
tion on individual body growth in European lobster in a
region having a long history of intense trap fisheries. We
find convincing evidence for higher growth rates inside
MPAs, particularly for females. The relaxation of size- and
growth-selective fishing mortality inside MPAs is the most
likely explanation of this pattern and can explain why
MPAs have proven to be highly effective in rebuilding size
structure in heavily exploited lobster populations in
Scandinavia [29].
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There are only a few studies, on captive populations, that
have tested (and confirmed) that passive gears induce size-
independent selection for slow growth [5,6,53]. However,
there are good reasons for assuming this to be a common
phenomenon in many fisheries [6] and also applies to trapping
of clawed lobsters. Individuals with fast body growth should
have higher feeding rates and exert more risk-taking behav-
iour, and therefore show increased motivation to seek out,
enter and defend the baited traps. Indirect support for this is
provided by a recent study showing that European lobsters
with larger weapons (claws) are more likely to be caught in
the traps [41]. In addition, there are several well documented
aspects of the fishery that implies elevated fishing mortality
for individuals with fast growth rates; it is intense and size-
selective [38], more than 80% of legal-sized male lobsters
(greater than 250 mm) have been estimated to be removed by
fishing during just a single harvest season lasting a few
months [54]. Lobsters that have reached 250 mm, and thus
recruited to the fishery, had grown on average 21 mm (females)
and 28 mm (males) in the last moult, suggesting that size-
dependent selection for slow-growth act on those between
approximately in the range 205-235 mm. Skipped moulters,
or individuals with small growth increments, may sub-
sequently remain in the sublegal class for another year or two.

We found strong support for size-dependent effects of
protection within MPAs for both skipped moulting and
growth increment in female lobsters, while for males, a simi-
lar effect was only weakly supported on growth increment.
Females also showed reduced variance in growth increment
in the harvested control areas, as expected when the trait is
under strong selection. Stronger harvest selection in females
is likely given that the fisheries regulations state that all
egg-bearing females must be released back at sea, which
accounts for approximately 50% of the legal-sized female
population [40]. This should favour females that allocate
more resources to reproduction (by bearing eggs earlier and
more often), whereas females that invest in body growth
should have higher chance of being fished. This selection
relies on the premise of the existence of a life-history trade-off
between growth and reproduction in female lobsters, which
is certainly plausible. There is an analogous case from the ter-
restrial realm in Sweden, where it is illegal to hunt female
brown bears (Ursus arctos) with cubs. Intensive hunting
pressure has been shown to select for prolonged maternal
care periods for females, which ultimately has been predicted
to slow population growth [55,56]. Similarly, it is not unlikely
that the current protection of berried female lobster is also
reducing population growth in fished areas, although an
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investigation of this should also incorporate data on size-
dependent fecundity from different areas, which is currently
not available from the locations we have studied here.

Similar model structures were favoured for both male and
female lobsters, and implies that the strength, rather than the
shape of (harvest) selection on growth differs among sexes.
We note that the footprint of harvest selection on male
growth might be partly concealed in this study because we
estimated individual growth as the increase in total body
length. This excludes growth of the claws, which constitute
a major part of the lobster’'s body mass, especially for
males, and are considered secondary sexual traits as they
grow larger and heavier after maturity. A recent study on
the same populations found that male lobsters have 8%
larger claws relative to body size in MPAs compared to the
fished areas, whereas for females, the differences were only
minor [32]. Thus, MPAs have a positive effect on claw size
in males while favouring body growth in females (this
study). Harvest selection against (total) body growth is
likely present in males too and we would expect to find a
more pronounced MPA response for male body growth if
we had measured lobsters by weight and not length, as the
former would encapsulate all body measures.

In theory, an alternative explanation for the increased
body growth of lobsters inside the MPAs could be protec-
tion-induced changes to the ecosystem contributing to
elevated food supply for an omnivorous lobster population.
In our study area, protection against any standing gear has
resulted in an increase in the abundance of Atlantic cod
and wrasses, which can be both prey and competitors to
the lobster [57,58]. Any trophic cascade effects or changes
to the food web structure in this study system has, however,
not yet been investigated.

After 14 years of protection, population density (esti-
mated as CPUE in kg) is considerably higher inside the
MPAs compared to the fished control areas. The MPAs are
quite small (less than 1 km?), and in the two smallest ones
(Vestfold and Ostfold) CPUE levelled of 4—5 years after
establishment (figure 1). Although we found no indication
of density dependence acting directly on body growth in
adult lobsters, that does not rule out density dependence
affecting other demographic processes such as survival and
dispersal. Clawed lobsters form and maintain hierarchies
that dictate shelter residency and mating opportunities [44].
Both sexes are strongly territorial (home-ranges between
0.57% and 4.15% of 1km?, [59]) and show high fidelity to
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areas studied here [38]. The competitive environment does
seem to differ between the MPAs and fished areas as a
recent study found 5.4% of the lobster in the MPA to suffer
from claw loss compared to 2.2% in fished areas [32]. Injury
inhibit growth and can impact survival [60] and the survival
have in fact decreased in these MPAs in the later years rela-
tive to the first 3 years after establishment, an effect that
was most pronounced in the two smallest MPAs [38].

Contrary to our findings, theoretical work on MPAs has
assumed reduced body growth in MPAs due to density depen-
dence, and therefore reduced fisheries yields outside MPAs
due to spill-over of slow-growing (and smaller) individuals
[35,61]. Although it is well documented that individual
growth can be affected by compensatory density dependence
in exploited populations [62-65], the effects of protection
on body growth of aquatic animals have been shown to
both be positive [33,66-69] (also this study) and negative
[34,36,70,71]. These mixed results illustrate that it is difficult
to generalize how protection can affect body growth, because
the outcome may depend on the interactions of many factors,
such as the life histories of the species in question, the selectiv-
ity and intensity of the fishery, and the age, size and location of
the reserve. Thus, in the absence of robust empirical data, we
advise researchers to be careful about applying strong assump-
tions regarding body growth when modelling the productivity
and yield returns of MPAs in future studies.

Preserving phenotypic and genotypic variability is
increasingly acknowledged as crucial for sustaining popu-
lation’s resilience to anthropogenic stressors and climate
change that inevitably will shift future fitness landscapes
[72,73]. Managing harvest selection on body size can be
achieved by adjusting size limits and gear design, but it is
less obvious how we might relax fisheries-induced selection
on growth, especially if predominantly behavioural driven.
Slot size limits, protecting both small and large individuals
is an option as slot should reward fast growers who are
able to reach the size refuge earlier [6,74], and was
implemented for European lobster in Southern Norway in
2017 (250-320 mm TL). However, we propose that the combi-
nation of slot size limits with strategically placed MPAs in a
network would be a strong synergy, which should increase
the proportion of large lobsters with fast-growing pheno-
types outside MPAs as they would be protected when
moving out. Emigration from protected areas can provide
phenotypic rescue to areas where individuals with large
body size or other key traits have become rare due to harvest-
ing [28,32,75,76]. Surrounding areas may also receive a higher
influx of larvae that carry fast-growth genotypes, and in
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