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A B S T R A C T

Hosting capacity knowledge is of great importance for distribution utilities to assess the amount of PV capacity
possible to accommodate without troubling the operation of the grid. In this paper, a novel method to quantify
the hosting capacity of low voltage grids is presented. The method starts considering a state of fully exploited
building rooftop solar potential. A downward process is proposed—from the starting state with expected
violations on the grid operation to a state with no violations. In this process, the installed PV capacity
is progressively reduced. The reductions are made sequentially and selectively aiming to mitigate specific
violations: nodes overvoltage, lines overcurrent and transformer overloading. Evaluated on real data of fourteen
low voltage grids from Austria, the method proposed exhibits benefits in terms of higher hosting capacities and
lower computational costs compared to stochastic methods. Furthermore, it also quantifies hosting capacity
expansions achievable by overcoming the effect of the violations. The usage of a potential different from solar
rooftops is also presented, demonstrating that a user-defined potential allows to quantify the hosting capacity
in a more general setting with the method proposed.
1. Introduction

Installations of distributed generation (DG), most notably solar
photovoltaic (PV), in low voltage grids are occurring around the globe
and the trend is expected to rise due to environmental incentives [1].
To assess the impact of DG at low, medium, and high penetration levels
on the operation of low voltage grids, several studies were carried
out [2–5]. These studies show that major concerns in the operation of
low voltage grids due to DG penetration relate to voltage/frequency
variations, thermal overloading, power quality and protection prob-
lems [3]. Consequently, one major concern from distribution system
operators (DSOs) ought to be: how much DG can be installed in the low
voltage grids before facing the aforementioned operational problems?
This concern was addressed recently by introducing the concept of
hosting capacity [6–9]. Even though hosting capacity can relate to
any DG technology, we refer to PV hosting capacity as PV is the most
common technology deployed in low voltage grids worldwide [1].

Hosting capacity refers to the maximum amount of installed PV ca-
pacity that can be accommodated in a low voltage grid without causing
operational problems. Relevant considerations in order to quantify the
hosting capacity are: (i) the characteristic of the low voltage grid and its
elements (e.g., loads, transformers, lines, topology); (ii) the operational
problems to be considered relevant to a study-case, most commonly
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based on grid violations due to nodes overvoltage and thermal over-
loading of lines and transformers [6]; (iii) the assessment period: either
a worst-case snapshot assessment to get conservative hosting capacity
values; or time-series assessment that better represents the interaction
of the elements of the grid and thus provide more accurate values for
the hosting capacity [10].

Systematic methods for hosting capacity quantification in low volt-
age grids are available in the literature. These can be broadly classified
as: rules-of-thumb, analytics, stochastics, and optimization-based meth-
ods [6,7,11–13]. Rules-of-thumb methods have been the first methods
to roughly quantify the hosting capacity by most DSOs. Although they
are easy to implement, the hosting quantities reached are usually quite
conservative as high safety margins are considered [7]. Analytics or
deterministic methods intent to provide the theoretical maximum value
of the hosting capacity by considering all the possible scenarios caused
by PV installations and load consumption. In practice, this is so far
infeasible for large networks as it entails tens of millions of power
flow simulations to evaluate the hosting capacity [6,7]. Rather than the
maximum hosting capacity, stochastic methods provide a set of hosting
capacity values based on the simulations of different configurations to
represent uncertain variables (mostly driven by the location and size of
future PV installations). Those variables are randomly established and
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Fig. 1. Stochastic upward process and the heuristic downward process as proposed for
osting capacity quantification.

ncreased in an upward process until violations in the grids emerge.
hereafter, hosting capacity is usually featured using probabilistic dis-
ribution functions. Accuracy on the results depends upon the number
f configurations considered to represent the various uncertainties [14–
9]. Optimization based methods aim to maximize the PV installed
apacity while meeting the grid constraints using optimal-power-flow
echniques. The difficulties in application of these methods are the
easibility to find a globally optimal solution given the complexity and
nherent non-convexity [11,12,20].

Overall, rules-of-thumb methods are likely to be displaced by more
ophisticated methods, if the latter provide simplified methodolo-
ies requiring information readily available to DSOs. Analytical and
ptimization-based methods have the potential to provide the global
aximum for the hosting capacity, however, the computational cost

nd the feasibility on the results are still to be demonstrated. Stochastic
ethods have been applied to real grid data [6,7], and some commer-

ial tools have been developed [13]. Thus, stochastic methods represent
well-established state-of-the-art, and, therefore, will also be used as a

eference case in this paper to contrast the performance of the method
roposed.

Despite their inherent benefits, stochastic methods ignore the state
f the grid in the process of assessing the hosting capacity, meaning
hat increases made in the PV installed capacity at different nodes
f the grid are subject of randomness rather than of operational grid
onditions. In fact, randomness appears as a solution to deal with the
ecision-making of how and where to increase PV capacities in any
pward process. On the other hand, the actual extent of the hosting
apacity based on the solar potential is usually not considered. Only
rabner et al. [19] presented a study of the hosting capacity taking

nto account the solar potential of the grid based on building roofs.
t employs a stochastic method including rooftop potential data to
mprove the modeling of PV generation. The aforementioned aspects
an be disadvantageous acknowledging that nodes in a grid can have
reat differences in the ability to accommodate PV units, either due
o operational conditions or due to solar potential virtue at a node
evel. Moreover, stochastic methods usually rely on reduced period of
ssessment (one timestep [16], 2 hours [17], 1 day [18]), although
tudies [6,10] show that the accuracy of the results might be degraded
y short time-series simulation periods. Yet, long simulation periods
onsiderably increase the computational costs of stochastic methods,
s multiple configurations are already needed to represent stochastic
ariables.

In this paper, we present a novel method to quantify the host-
ng capacity in low voltage grids. We propose a heuristic downward
rocess that takes into account the operational state of the grid. The
oncept of the downward process is depicted in Fig. 1. Our proposed
ethod considers a fully exploited solar potential in all nodes of a

rid as the starting condition. Then, the installed capacity of PV units
re sequentially and selectively reduced aiming to mitigate existing
iolations in the grid operation. The violations considered are nodes
2

overvoltage, lines overcurrent and transformer overloading. The met-
rics to define the violations are according to local practices based
on EN50160 standard [21]. New violations that consider harmonics,
stability or protection issues are being suggested [22], and advanced
metrics for voltage violations are being proposed [23]. Even though
additional violations and metrics can be incorporated in the structure
of the method proposed, as it will be shown later, standard violations
and metrics are used as the common framework to evaluate the perfor-
mance of the method proposed and compare it against well-established
stochastic methods. To this aim, the hosting capacity of fourteen low
voltage grids from Austria are quantified using both methods.

The main features of the method proposed can be summarized as
follows:

• it quantifies hosting capacity values closer to the global maximum
while requiring lesser computational time compared to stochastic
methods;

• it quantifies expansions of the hosting capacity by overcoming the
effect of the grid violations;

• it has the advantage to adapt the potential used in the hosting ca-
pacity quantification according to the user interest, e.g., building-
rooftop based, equally distributed, unequally distributed.

Evaluations of the different means to enhance the hosting capacity,
such as PV control features (e.g., voltage regulation, curtailment),
online-tap changer on transformers, flexible devices (e.g., electric vehi-
cles, batteries), are not the intention of the present paper. Such analysis,
however, can be performed using the method proposed as it will be
pointed out later in the paper.

The rest of the paper is structured as follows: Section 2 provides
an overview of stochastic methods and introduces relevant scientific
work used as references to contrast the performance of the method
proposed, which is presented in detail in Section 3. Section 4 presents
the characteristics of the real low voltage grids used in the study,
as well as the simulation framework. The results and discussion are
presented in Section 5. Finally, the conclusions are drawn in Section 6.

2. Stochastic methods

Fig. 2 depicts the general concept of stochastic methods for hosting
capacity quantification in low voltage grids as proposed in litera-
ture [15–19]. The grid data comprises all known variables available
from the DSO for a specific low voltage grid, i.e., data such as: grid
topology, transformer(s) data, line data, load nodes, type of loads
connected at each node, annual consumption of loads. The amount and
quality of the grid data available to the DSO depends on the degree of
digitization of the infrastructure, however, the current trend for DSOs
is to collect more and accurate data.

While the behavior of some variables are assumed to be known
with relatively high accuracy, uncertain variables are modeled via
random processes. Uncertain variables mainly represent the stochastics
of PV installations regarding locations, installed capacity or size, and
time-dependant production. Conventional loads such as households,
business, public facilities, are sometimes also represented by uncertain
variables within the quantification process [16,18], despite the fact
that many DSOs have already enough data to faithfully represent load
behavior. In general, uncertain variables are set and a time-series power
flow simulation is performed. Then, based on desired conditions, the
algorithm decides whether a new set of uncertain variables is created
or whether to stop the execution of the algorithm and settle on the
hosting capacity derived. The two approaches by Breker et al. [16]
and Torquato et al. [17] shall be used as references to contrast the
performance of the method proposed. Both methods are opensource
and have been applied to real grid data. The two methods are discussed
in a more detailed manner hereafter, the corresponding flowcharts are
shown in Fig. 3.
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Fig. 2. Concept of stochastic methods for hosting capacity quantification.
Fig. 3. Flowchart of stochastic methods as proposed by Breker et al. [16] (left) and Torquato et al. [17] (right). IC refers to the total PV installed capacity in the grid, 𝑐𝑜𝑛𝑓𝑖𝑔
and 𝑐𝑜𝑛𝑓𝑖𝑔𝑠 are the counter and the total number of configurations, respectively.
In Breker et al. [16], once the grid and loads are modeled, PV units
are placed in all nodes of the grid (excluding unfeasible nodes: bypass
nodes, nodes for lines re-distributions, or similar). The peak power of
each PV unit is set randomly such that the total initial installed capacity
equals a starting value, e.g., 1 kWp (kilowatt-peak). Having established
this initial configuration (𝑐𝑜𝑛𝑓𝑖𝑔 = 1), a power flow simulation is
performed. If according to established constrains no violation in the
grid operation is observed, the total installed capacity is increased by
a number or a factor keeping the initial proportion of PV units in the
present configuration. Otherwise, if a violation results from the current
configuration, the last viable hosting capacity is stored, and a new
configuration of PV units is created. The process is repeated until the
total number of configurations (𝑐𝑜𝑛𝑓𝑖𝑔𝑠) is reached.

In Torquato et al. [17], having the grid and loads modeled, PV
units are placed randomly in a user defined share of nodes, e.g., 20%.
The size of each PV unit is set to be proportional to the annual
energy consumption of the loads connected at the same connection
point, such that the total initial installed capacity equals a starting
value, e.g., 1 kWp. Using this initial configuration, a grid simulation is
performed and relevant results related to the state of the grid are stored.
The process of (i) randomly placing PV units in a defined number of
nodes, (ii) keeping the proportion of PV units to the loads’ annual
energy consumption, and (iii) having the same total installed capacity,
is repeated until the number of configurations are completed. After
completion, if no violation is found, then the total installed capacity
is increased by a number or a factor. Otherwise, the hosting capacity
is determined for the proportion of nodes considered exhibiting PV
generation.

The total number of configurations (𝑐𝑜𝑛𝑓𝑖𝑔𝑠) refers to a user-defined
parameter. Breker et al. [16] stated that 100 configurations is adequate
to get a sufficient accuracy for their method, while Torquato et al. [17]
used 50 configurations for their method.

3. Proposed violation-mitigation-based method

In general, the hosting capacity quantification problem can be
described as optimization problem, the solution being the single PV
capacities installed to reach the maximum hosting capacity in the grid.

(𝑃 ∗
1 ,… , 𝑃 ∗

𝑁 ) = arg max
(𝑃1 ,…,𝑃𝑁 )

∑

𝑛∈
𝑃𝑛,

such that
3

𝑃𝑛 ≥0,∀𝑛 ∈  ,

and no violations occur. (1)

 = {1,… , 𝑁} being the set of nodes in the grid and 𝑃𝑛 referring to
the installed PV capacity at node 𝑛.

In the following, the grid violations considered are specified by
constraints. We assume that the grid can be represented as directed
simple graph ( ,) consisting of nodes and lines, where lines are given
as pairs of nodes, if a connection exists, i.e.,

 =
{

(𝑛, 𝑚) ∶ 𝑛, 𝑚 ∈  , 𝑛 ≠ 𝑚
}

. (2)

At 𝑡 ∈  = {1,… , 𝑇 } of the time steps considered in a time-series
simulation, the voltage at a single node 𝑛 is described by 𝑢𝑛,𝑡. Then,
constraints to reflect violations due to overvoltage can be defined as:

𝑢𝑛,𝑡 ≤ 𝑢max
1 ,∀𝑛 ∈  ,∀𝑡 ∈  , (3)

∑

𝑡∈
𝐻(𝑢𝑛,𝑡 − 𝑢max

2 ) ≤ 𝑡max,∀𝑛 ∈  . (4)

Here, 𝑢max
1 defines the upper voltage limit not to be exceeded. The

second voltage limit 𝑢max
2 is only allowed to be exceeded in 5% of

the simulation period [21], i.e, 𝑡max = 0.05𝑇 . Here, 𝐻 refers to the
Heavyside function, i.e.,

𝐻(𝑥) =
{

1 𝑥 > 0
0 𝑥 ≤ 0

. (5)

At time step 𝑡, the current at the line 𝑙 = (𝑚, 𝑛) ∈  is given by 𝑖(𝑚,𝑛),𝑡,
the constraint to reflect the maximum allowed current 𝑖max

(𝑛,𝑚) at that line
then reads

𝑖(𝑛,𝑚),𝑡 ≤ 𝑖max
(𝑛,𝑚),∀(𝑛, 𝑚) ∈ ,∀𝑡 ∈  . (6)

The reverse power 𝑆 at the transformer is limited by 𝑆max, described
by the constraint

𝑆𝑡 ≤ 𝑆max,∀𝑡 ∈  . (7)

We propose a heuristic to solve the problem defined in Eq. (1)
starting from the initial value given by the solar potential, i.e.,

𝑃 (0)
𝑛 = 𝑃max

𝑛 ,∀𝑛 ∈  . (8)

Checking for violation of the constraints defined in (3), (4), (6), (7), the
algorithm calculates the new hosting capacity (downwardly) 𝑃 (𝑖+1) =
(𝑃 (𝑖+1)

1 ,… , 𝑃 (𝑖+1)
𝑁 ) from the current values reached after 𝑖 iterations

𝑃 (𝑖) = (𝑃 (𝑖)
1 ,… , 𝑃 (𝑖)

𝑁 ) by using the following mitigation processes (with
a reduction-step of 𝑃 ):
step
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• If voltage constraints (3) or (4) are violated, all PV units con-
nected to the violated nodes are identified and in sum reduced
by 𝑃step to

𝑃 (𝑖+1)
𝑛 =𝑃 (𝑖)

𝑛 (1 −
𝑃step

∑

𝑛∈𝑢 𝑃
(𝑖)
𝑛

),∀𝑛 ∈ 𝑢, (9)

𝑢 =
{

𝑛 ∈  ∶ 𝑃 (𝑖)
𝑛 > 0 ∧

(

𝑢𝑛,𝑡 ≥ 𝑢max
1

∨𝐻(𝑢𝑛,𝑡 − 𝑢max
2 ) > 𝑡max

)}

. (10)

this relies on the premise that if there is overvoltage violation in
a node, it is because: (i) the violated node has a PV connected; or
(ii) there is at least one PV connected to a nearby node in which
there is overvoltage violation too; or (iii) both cases.

• If current constraints are violated (6), all lines with overcurrent
violation are identified. For each line, the downstream PVs are
identified. A downstream PV is defined as any PV unit located
downstream the line with respect to the distribution transformer
(the downstream boundary is the transformer itself to account for
meshed topologies). Only downstream PVs might contribute to
the current flowing through the line causing overcurrent, as in
the non-PV condition, lines are assumed to supply existing loads
without violations. Then, the installed capacity of all identified
downstream PVs (accounting all lines with violation) are reduced
in total by 𝑃step to

𝑃 (𝑖+1)
𝑛 = 𝑃 (𝑖)

𝑛 (1 −
𝑃step

∑

𝑛∈𝑖 𝑃
(𝑖)
𝑛

),∀𝑛 ∈ 𝑖, (11)

𝑖 =
{

𝑛 ∈  ∶ 𝑃 (𝑖)
𝑛 > 0 ∧ 𝑛 ∈ 

}

, (12)

where  is the collection of all downstream PVs.
• In case of transformer overloading, i.e., violation of constraint (7),

all PV units are reduced according to the excess power 𝑃ex at the
transformer, i.e.,

𝑃 (𝑖+1)
𝑛 = 𝑃 (𝑖)

𝑛 (1 −
𝑃ex

∑

𝑛∈𝑝 𝑃
(𝑖)
𝑛

),∀𝑛 ∈ 𝑝, (13)

𝑝 =
{

𝑛 ∈  ∶ 𝑃 (𝑖)
𝑛 > 0

}

, (14)

𝑃ex = max
𝑡∈

𝐻(𝑆𝑡 − 𝑆max). (15)

From Eqs. (9), (11) and (13), we observe that selected PV units con-
tribute to the reduction (𝑃step) an amount proportional to its size. This
is supported by the logic that larger PV installations are more likely to
contribute more to the violation considered, not only at the immediate
point of connections, but also on their surroundings.

The algorithm stops, as soon as a feasible point is found, i.e. that
fulfills all constraints (3), (4), (6), (7). It should be noted that to reach
a solution, the non-PV condition of the grid must be free of violation
(i.e., existing assets should supply existing loads without violations)
which is a sensible assumption.

Although the grid violations considered are based on nodes over-
voltage, lines overcurrent and transformer overloading additional vi-
olations can be incorporated within the structure of the method pro-
posed by defining their constrains and mitigation processes. More-
over, new constrains considering advances metrics, e.g., for voltage
violations [23], can also be considered.

The order in which the mitigation of violations are executed might
influence the resulting hosting capacity, mainly because the mitigation
of a particular violation can have collateral effects on other violations.
All possible orders of mitigation are given in Table 1. In Section 5, the
effect of the order of mitigation on the hosting capacity quantification
is evaluated, and, based on the results, the most preferable order is
selected.

The flowchart diagram of the method proposed considering one
specific order of mitigation is shown in Fig. 4. First, the grid and loads
are modeled. Then, solar potential is determined for all nodes of the
4

Table 1
Possible orders of violation mitigation.
ID Sequence

order1 Trans. over. → Overcurrent → Overvoltage
order2 Trans. over. → Overvoltage → Overcurrent
order3 Overcurrent → Trans. over. → Overvoltage
order4 Overcurrent → Overvoltage → Trans. over.
order5 Overvoltage → Trans. over. → Overcurrent
order6 Overvoltage → Overcurrent → Trans. over.

Fig. 4. Proposed violation-mitigation-based method flowchart considering a specific
order.

grid. From this starting condition, violations can be expected to emerge
in the initial power flow simulation. The mitigation of violations are
executed sequentially, i.e., only if a type of violation is mitigated
completely, the next type of violation is handled by the algorithm.
The selection and reduction of the installed capacity of PV units are
done following the mitigation process as defined in Eqs. (9)–(15). After
each PV reduction, a power flow simulation is performed to determine
the new state of violations. For a worst-case assessment ( consists
only in one timestep), loads are set to zero and PVs are set to their
installed capacity (peak capacity) in a snapshot power flow simulation.
When finally no violation is found, the last installed capacity of PV
units is considered to be the hosting capacity at individual nodes. The
aggregation of the latter results in the hosting capacity of the grid.

It is still possible to accelerate the mitigation processes of overvolt-
age and overcurrent violations. In these processes, selected PV units
can be grouped by the feeder they belong to, knowing that the effect
of a PV unit from a feeder has no effect in the violations of other
feeders (considering the transformer as a slack bus with fix value).
Then, the reduction-step (𝑃step) is set for each group. This grouping
proceeding is optional and only meant to speed up the reductions
process in the proposed method. Thus, it has no effect on the resulting
hosting capacity.

It is worth to mention that in the present paper, we do not intent to
include features than might enhance the hosting capacity, e.g., voltage
regulators, PV curtailments, flexible demands, energy storages. It is
understood, however, that those features can be integrated within the
power flow simulation (Fig. 4) to evaluate their impact on the hosting
capacity quantification.
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Table 2
Main characteristics of the low voltage grids under study.
Grid Rated power (kVA) Load nodes Length (km) Annual energy (MWh) Power factor

1 400 24 5.8 160 0.96
2 400 146 11.9 1014 0.97
3 1260 221 12.7 3064 0.98
4 400 112 16.3 818 0.89
5 1000 24 4.5 1793 0.95
6 250 37 3.8 474 0.96
7 800 110 7.1 947 0.96
8 630 160 10.7 1227 0.96
9 630 160 15.4 1417 0.96
10 1260 20 2.6 780 0.96
11 630 137 12.6 1216 0.95
12 630 36 6.5 877 0.96
13 1030 140 10.8 1933 0.96
14 160 22 5.2 143 0.96
4. Simulation framework

Fourteen grids were selected among over a thousand existing low
voltage grids managed by the local DSO Vorarlberger Energienetze
GmbH [24]. The DSO handpicked the grids representing different
typical configurations and provided all the data used to model the
grids including information of the distribution transformer (numbers,
rated power), loads (location, load type, annual energy consumption),
lines (connectivity, cable type, length), and buildings (rooftop solar
potential). An overview of the main characteristic of the selected grids
is presented in Table 2. The geographical representation of the fourteen
grids are shown in Fig. A.11, in the Appendix.

In order to perform a time-series simulation, the load profiles for
residential consumers are represented by real smart meter data col-
lected from a field test of a local energy provider illwerke vkw AG [25].
The metering data were pre-processed to clean and fix inconsistencies
before usage, then a smart meter database was set with 351 households
measured for a period of a year with a time resolution of 15 minutes.
The smart meter data is assigned to residential consumers using the an-
nual energy consumption as the matching criteria. For other consumers,
e.g. business, public facilities, standard load profiles from the Austrian
clearing and settlement agency [26] are used. The standard profiles are
scaled according to the annual energy consumption of the particular
consumer. The power factor of the loads was tuned based on active and
reactive power measurements at six substations, for the rest an average
power factor of 0.96 was used.

Using the geographic information system (ARCGIS) available to the
DSO, the solar power potential is estimated for the rooftops of all
buildings connected to the low voltage grid. Typical PV power profiles
from the region of the grid with a 15-minutes resolution are used and
scaled to match the installed capacity of a particular PV installation.

The power flow simulation is implemented using the backward
forward sweep flow method as proposed by Ghatak and Mukherjee [27,
28]. The simulation was conducted considering the low voltage side of
the transformer as the slack node with a reference voltage of 1 p.u. The
voltage limits 𝑢max

2 and 𝑢max
1 are considered 1.06 p.u. and 1.09 p.u., re-

spectively. The latter is in compliance with the DSO practice to account
for voltage drops at the medium voltage side of the transformer. We
conducted time-series simulations with a time resolution of 15 minutes
for a period of a week, in the summer season when solar production is
high. Although a week period is fair enough to demonstrate the perfor-
mance of the method proposed, longer periods are equally applicable
as our method proposed relies on reduced computational cost as it is
demonstrated later in the following section. For the simulations, we
used a notebook with a dual core (Intel Core i7-6500, 2.6 GHz) and
8 GB of RAM.

To achieve a fair comparison of the method proposed against the
stochastic methods selected, the following adaptions are made to the
descriptions found in literature. We consider conventional loads to be
5

known variables, which are modeled with the grid data provided by
the DSO. In all three methods, all nodes in the grid are considered to
be feasible for PV installations (excluding bypass nodes, nodes for lines
re-distributions, or similar). The incremental factor in both stochastic
methods is set to 10% [16], and the reduction-step (𝑃step) in the method
proposed is set to 1 kWp. Moreover, we use the same simulation period
of a week and the same violations in the quantification of the hosting
capacity using the three methods.

5. Results and discussion

This section is divided into four subsections. First, we investigate
the impact of the violation-mitigation order on the resulting hosting ca-
pacity, and, based on that derive the most preferable order. Second, we
compare the method proposed to the two selected stochastic methods
from literature with respect to performance and computational costs.
Then, in Section 5.3, we investigate the method proposed in detail and
discuss additional features thereof. Finally, we evaluate the effect of
using a user-defined potential instead of the rooftop solar potential to
provide an approach to apply the method proposed in an even more
general setting.

5.1. Effect of the order of mitigations

As described in Section 3, there are six possible orders (see Table 1)
to mitigate violations before reaching the hosting capacity using the
method proposed. Fig. 5(a) shows the relative variation (with respect
to the average) of hosting capacities for the 14 grids considering the
six orders. From this figure, the following observations can be made:
(i) for most grids, 11 out of 14, the variation due to reordering is
minimal, within the range of ±3.3%; and (ii) high negative deviations,
which correspond to lower hosting capacity values, are mainly found
for 𝑜𝑟𝑑𝑒𝑟1 and 𝑜𝑟𝑑𝑒𝑟2, whereas the orders showing higher positive de-
viations, i.e., higher hosting capacities, are 𝑜𝑟𝑑𝑒𝑟4, 𝑜𝑟𝑑𝑒𝑟5, and 𝑜𝑟𝑑𝑒𝑟6.
It is worthwhile to note that 𝑜𝑟𝑑𝑒𝑟1 and 𝑜𝑟𝑑𝑒𝑟2 consider the mitigation
of the transformer overloading at the start. This suggest that PV power
reductions in order to mitigate transformer overloading violations have
lower collateral effects on other violations than the overvoltage and
overcurrent mitigation processes.

Fig. 5(b) shows the hosting capacities relative to the highest value
(of a respective grid) achieved among the six orders. The relative
values are grouped by the order and represented with boxplots. Clearly,
𝑜𝑟𝑑𝑒𝑟4, 𝑜𝑟𝑑𝑒𝑟5 and 𝑜𝑟𝑑𝑒𝑟6 perform better than the rest and among
these, 𝑜𝑟𝑑𝑒𝑟6 provides a hosting capacity that is more likely to be the
maximum among all the orders. Therefore, 𝑜𝑟𝑑𝑒𝑟6 is the preferable
order to quantify the hosting capacity using the method proposed and

will be used hereafter.
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Fig. 5. Effect of the violation mitigation order on the hosting capacity quantification
based on the proposed method for the 14 grids: (a) relative variation in hosting capacity
with respect to the average of all six orders; (b) relative hosting capacities grouped
by the order. A relative value is calculated with respect to the highest value achieved
among the six orders of a respective grid.

5.2. Comparison to stochastic methods

In order to contrast our method, we have implemented the stochas-
tic methods proposed by Breker et al. [16] and Torquato et al. [17]
to quantify the hosting capacity, as described in Section 2. Fig. 6(a)
shows the quantified hosting capacity using the three methods for
the 14 grids. A worst-case scenario was additionally evaluated using
the method proposed only to show that the corresponding hosting
capacities are conservative compared to a time-series assessment (also
using the method proposed), also noted in literature [29]. As a worst-
case assessment is a common practice among planning engineers, the
method proposed can adopt such criteria too.

For all grids investigated, the hosting capacity obtained using the
method proposed is either equal or even higher than the ones computed
based on the stochastic methods. This means that the method proposed
is able to identify hosting capacities closer to the global maximum,
providing DSOs higher margins to manage the accommodation of new
PV installations in their grids.

The computation time required for the three methods is depicted in
Fig. 6(b) and reflects the number of simulations needed before reaching
the hosting capacity. For the stochastic methods, the computational
time is highly dependent on the number of configurations to consider as
well as in the incremental step to move from one configuration to the
other. For them, the upward process was done using an incremental
factor of 10%, meaning that PV installed capacity is increased to
110% of the present value at each iteration. This led to have wider
incremental step, thus shorter computational time. This is particularly
relevant for long simulation periods, in which using an incremental
step of 1 kWp can make stochastic methods impractical due to the
computational burden. Although the method proposed used a reduction
step of only 1 kWp, it achieved remarkable shorter computational times
than the stochastic methods.

In summary, the benefits of using the proposed method are shown
in Fig. 6(c), showing at least an equal, but mostly significantly higher
6

Fig. 6. Comparison to the stochastic methods as proposed by Breker et al. [16] and
Torquato et al. [17]: (a) quantification of the hosting capacity; (b)computational time
required by each method for each grid for a week period of assessment; (c) comparison
in hosting capacity relative to the method proposed; (d) comparison in computational
costs relative to the method proposed.

hosting capacity than the stochastic methods. Additionally, the com-
putational costs are significantly reduced, as can be seen in Fig. 6(d).
This makes the method well-suited to implement on a larger set of grids.
Nonetheless, the computational cost can be further reduced with almost
no effect on the outcomes as it is shown in the following subsection.

5.3. Violation mitigation process

The rooftop solar potential for the 14 grids is depicted in Fig. 7(a)
as the aggregation of stacked bars. The differences of solar potential
between the grids are mainly caused by the amount of building roofs
currently available for PV installations in each of the grids. The PV
power reductions made in order to mitigate violations in the selected
order (𝑜𝑟𝑑𝑒𝑟6): overvoltage (𝛥𝑂𝑣𝑒𝑉 𝑜𝑙𝑉 𝑖𝑜), overcurrent (𝛥𝐶𝑢𝑟𝑉 𝑖𝑜) and
overloading at the transformer (𝛥𝑃𝑜𝑤𝑉 𝑖𝑜), are also depicted in the
same figure. First, it is observed that not all mitigations are required
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Fig. 7. Application of the method proposed applied to the 14 test grids: (a) from
the solar potential (aggregation of staked bars) to the hosting capacity, where
power reductions were made to mitigate violations due to overvoltage (𝛥𝑂𝑣𝑒𝑉 𝑜𝑙𝑉 𝑖𝑜),
overcurrent (𝛥𝐶𝑢𝑟𝑉 𝑖𝑜) and transformer overloading (𝛥𝑃𝑜𝑤𝑉 𝑖𝑜); (b) reduction process
accounting for the number of iterations required to mitigate the respective violations
until hosting capacity is reached.

to reach the hosting capacity. An example of this is 𝑔𝑟𝑖𝑑1, after over-
voltage violations are mitigated, the grid does not exhibit other types
of violation. Second, the power reduction in transition from the solar
potential to the hosting capacity shows a wide range of values. For
instance, in 𝑔𝑟𝑖𝑑10, having a relatively small solar potential, the PV
power reduction due to mitigation is minimal. Third, the last violation
mitigated which represents the limiting factor of the hosting capacity
varies between grids. Overvoltage represents the limiting factor for
𝑔𝑟𝑖𝑑1 and 𝑔𝑟𝑖𝑑7, overcurrent is the limiting factor for 𝑔𝑟𝑖𝑑10, while
for all the other grids, the transformer overloading limits the hosting
capacity.

The amount of the total power reduced influences the number of
iterations required to reach the hosting capacity. Fig. 7(b) shows the
PV power reduction process accounting for the number of iterations
required to mitigate each violation. For all grids, most of the iterations
needed are spent on the mitigation of overvoltage violations, owing
to the related mitigation is the first mitigation to perform with a
reduction-step of only 1 kWp. On the other hand, iterations in the trans-
former overloading mitigation process are few. That is because there,
7

Fig. 8. (a) Hosting capacity and solar PV power reductions normalized with respect
to the transformer rated power. (b) Hypothetical situation where transformer upgrades
are assumed for grids with transformer overloading as a limiting factor.

the reduction step is ruled by the excess of overloading rather than by
1 kWp as for the overvoltage and overcurrent mitigation processes. It
is worth noting that the number of iterations, thus the computational
time, can be reduced significantly by slightly increasing the reduction-
step (𝑃step). For instance, by increasing the reduction-step from 1 kWp
to 2 kWp the total iterations in the overvoltage mitigation process can
be reduced to half, while knowingly increasing the uncertainty only by
approx. 1 kWp in the resulting hosting capacity.

The hosting capacities and the power reductions, presented in
Fig. 7(a), are normalized with respect to the transformer size (rated
power) of each grid, and the result is depicted in Fig. 8a. The following
observations are drawn for the latter figure:

• The rooftop solar potential varies from 0.86 to 8.45 times the
transformer size for the grids. While the hosting capacities are
in the range of 0.84 and 1.54, where the lower value is the result
of a poor rooftop solar potential.

• The higher the solar potential relative to the transformer size, the
larger the power reduction needed to be made in the overvolt-
age mitigation process. Having a front-line position, overvoltage
mitigation is responsible to reduce PV installed capacity to more
sensible values (in average, below 2.3) before handing over to
other types of mitigations if necessary.

• 𝛥𝑃𝑜𝑤𝑉 𝑖𝑜 and 𝛥𝐶𝑢𝑟𝑉 𝑖𝑜 quantities also represent expansions in the
hosting capacity after overcoming the effect of their respective
violations: transformer overloading and overcurrent in the lines.

Transformer overloading being the limiting factor means that by
only increasing the transformer size, the hosting capacity will increase
correspondingly. The extent in which the hosting capacity can be
increased by only increasing the transformer size is determined by
𝛥𝑃𝑜𝑤𝑉 𝑖𝑜. So, for instance looking at 𝑔𝑟𝑖𝑑2 (Fig. 8a), the hosting
capacity could reach 3.75 times the present transformer size only by
upgrading the transformer of the grid. Fig. 8b presents a hypothetical
situation in which the transformer size of each grid is increased by its
respective 𝛥𝑃𝑜𝑤𝑉 𝑖𝑜 in order to increase the hosting capacity. This is
done for the grids with transformer overloading as the limiting factor
(all grids, except 𝑔𝑟𝑖𝑑1, 𝑔𝑟𝑖𝑑7 and 𝑔𝑟𝑖𝑑10). In this hypothetical scenario,
it would make no difference in promoting the hosting capacity to
further increase the size of the transformer, as other problems such as
overcurrent or overvoltage would emerge regardless.
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Fig. 9. Relative variation in hosting capacity using the user-defined potential with
respect to the rooftop solar potential.

5.4. Hosting capacity quantification based on user-defined potential

Considering the rooftop solar potential to quantify the hosting
capacity can be one approach. Other approach might want to include
grounded-based PV installations too. Moreover, hosting capacity quan-
tification based solely on the grid strength (rather than on external
factors such as building infrastructure availability) can be of interest
for DSOs; in which case a high and equally distributed initial potential
in all nodes might be more appropriate. With this aim, the method
proposed can be generalized with the use of a user-defined potential,
as shall be shown hereafter.

From the previous subsection, the highest relation between the host-
ing capacity and the transformer rated power for the grids evaluated
was found to be approx. 1.54. As being undoubtedly high enough, we
consider an user-defined potential per grid of four times the transformer
8

rated power, and distribute the potential equally on all nodes of the
grid. The resulting hosting capacities using the user-defined potential
are compared with the hosting capacities using rooftop solar potential
(showed in the previous subsection), and the relative variations of
the results are depicted in Fig. 9. From this figure, it is observed
that for eleven grids the variation can be neglectable, as it is below
1.4%. These grids have been identified in Section 5.3 to be those for
which the limiting factor for the hosting capacity is overloading in the
transformer.

Fig. 10 shows example grids for which the limiting factor is the
transformer overloading (𝑔𝑟𝑖𝑑13) as well as overvoltage or overcurrent
(𝑔𝑟𝑖𝑑1 and 𝑔𝑟𝑖𝑑7). The figure shows the potential and resulting hosting
capacity at each node considering rooftop solar and the user-defined
(equally distributed) potential as the starting point of calculations.
Nodes are sorted from low to high rooftop solar potential to facilitate
visibility. On one hand, for 𝑔𝑟𝑖𝑑13, despite the fact that rooftop solar
potential is much larger than the user-defined potential for several
nodes, the resulting hosting capacity is nearly equal (see Fig. 9). This
can be explained considering that the last reductions made in these
grids happen in the transformer overloading mitigation process, thus
the aggregation of PV installed capacities of all nodes is limited by
the transformer size, regardless of their distribution within the grid.
Nonetheless, it is also observed that the distribution (shape) of the
hosting capacity per node tend to be similar either using rooftop or
the equally distributed potential, meaning that the power reductions
are targeted to those PV installations that harm the operation of the
grid.

On the other hand, 𝑔𝑟𝑖𝑑1 and 𝑔𝑟𝑖𝑑7 have considerable variation
in the hosting capacity using the equally distributed potential. 𝑔𝑟𝑖𝑑1
Fig. 10. Per node display of hosting capacity on example grids using both, rooftop solar and user-defined (with asterisk) potential. Nodes are sorted from low to high rooftop solar
potential to facilitate visibility. 𝑔𝑟𝑖𝑑13 has transformer overloading as the limiting factor. 𝑔𝑟𝑖𝑑1 and 𝑔𝑟𝑖𝑑7 have overvoltage or overcurrent as the limiting factor for the hosting
capacity.
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Fig. A.11. Geographical representation of the Austrian low voltage grids used for evaluation. The heatmap represents the hosting capacity, in kWp, at each node quantified using
the method proposed.
shows higher hosting capacity, and 𝑔𝑟𝑖𝑑7 shows lower hosting capacity,
as seen in Fig. 9. For 𝑔𝑟𝑖𝑑1, it is observed (Fig. 10) that using the equally
distributed potential results in considerable higher hosting capacities in
some nodes in comparison with rooftop solar potential usage (even to
the extent to exceed the rooftop solar potential capability; e.g., nodes
1, 10, and 12). For 𝑔𝑟𝑖𝑑7, one can observe similar features as described
previously for 𝑔𝑟𝑖𝑑1, however those features are countered by high
hosting capacities resulting from the rooftop solar potential. E.g., it
is observed that in node 99 (right side of zoomed box) the resulting
hosting capacity is much larger than the equally distributed potential.

In summary, the proposed method can be applied in a more general
setting with the use of a user-defined potential. If compared with
the results based on rooftop solar potential the equally distributed
9

potential provides nearly equal results for the cases with transformer
overloading as the limiting factor. Otherwise, the results are subject to
variations. These variations can be seen on two ways: (i) using user-
defined potential can lead to higher hosting capacity, especially if they
exhibit higher values per node than the rooftop solar potential; and (ii)
user-defined potential can undermine the rooftop potential at certain
nodes, leading to lower hosting capacity quantities.

6. Conclusions

We presented a novel method to quantify the hosting capacity of low
voltage grids. Our method proposes a downward process that takes into
account the operational state of the grid in the quantification process.
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Fig. A.11. (continued).
Evaluated on fourteen Austrian distribution grids, the results achieved
were compared to stochastic methods in literature. The results showed
that while requiring lesser computational time, the method proposed is
able to provide equal or higher hosting capacity than stochastic meth-
ods. Higher hosting capacities mean higher margins for DSOs to manage
upcoming PV installations without the need of grid reinforcements.
As reducing the computational burden of such a method is important
to facilitate large-scale implementations, it appears promising for real
world applications of DSOs.

Furthermore, the proposed method already quantifies possible ex-
pansions in hosting capacity as additional outcomes of its application.
In case of transformer overloading being the limiting factor, the ex-
pansion achievable by a transformer upgrade is quantified. Further
expansion is quantified and can be achieved by overcoming overcurrent
violations.

Finally, we demonstrated that even without the use of a rooftop
solar potential, a quantification of the hosting capacity is still possible
based on a user-defined potential, which provides a more general
applicability of the method proposed.
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