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Abstract

Extensive research has been conducted on the automatic classification of sleep stages utilizing deep neural networks and
other neurophysiological markers. However, for sleep specialists to employ models as an assistive solution, it is necessary
to comprehend how the models arrive at a particular outcome, necessitating the explainability of these models. This work
proposes an explainable unified CNN-CRF approach (SleepXAl) for multi-class sleep stage classification designed explicitly
for univariate time-series signals using modified gradient-weighted class activation mapping (Grad-CAM). The proposed
approach significantly increases the overall accuracy of sleep stage classification while demonstrating the explainability of
the multi-class labeling of univariate EEG signals, highlighting the parts of the signals emphasized most in predicting sleep
stages. We extensively evaluated our approach to the sleep-EDF dataset, and it demonstrates the highest overall accuracy
of 86.8% in identifying five sleep stage classes. More importantly, we achieved the highest accuracy when classifying the
crucial sleep stage N1 with the lowest number of instances, outperforming the state-of-the-art machine learning approaches
by 16.3%. These results motivate us to adopt the proposed approach in clinical practice as an aid to sleep experts.

Keywords Sleep stage identification - Explainable Al - Deep learning - Convolutional neural network - Conditional random

field

1 Introduction

Sleep plays a vital role in an individual’s life and
is crucial for mental and physical health. Conversely,
sleep disorders or deficiencies can lead to chronic health
problems, so it is essential to diagnose these problems
early. Polysomnography (PSG) is the gold standard for
sleep scoring and helps in the early diagnosis of many
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sleep-related disorders. PSG is mainly conducted in
sleep clinics, and an individual usually sleeps there with
multiple electrodes attached to the body, collecting multiple
neurophysiological signals. The PSG signals are also prone
to noise due to patients’ movements during the recordings.
Next, the sleep experts label all the signals into different
sleep stages by visually manipulating and understanding
them; this process is known as sleep scoring. Until 2007,
sleep experts used the Rechtschaffen and Kales (R and
K rules) [21] manual for sleep scoring. Later, the manual
was updated by the American Academy of Sleep Medicine
(AASM) [2] for identifying different sleep stages.

Sleep stages are broadly categorized into two types,
rapid eye movement (REM) and non-rapid eye movement
(NREM) sleep stages. The NREM sleep stage is further
classified into four stages: N1, N2, N3, and N4. NREM
sleep constitutes around three-fourths of the total time spent
in sleep, and REM sleep typically constitutes the remaining
one-fourth of sleep. There is a cyclical transition between
these two stages, and any irregularities in those cycles or
an absence of a sleep stage may result in sleep disorders
[15]; important features of EEG signals that are part of PSG
can help in their identification. Some of the specific EEG
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characteristics of different sleep stages that a sleep expert
looks for are shown in Fig. 1. Sleep stage N1 constitutes 2
to 5 percent of total sleep, with EEG containing rhythmic
alpha waves, and is a transitional state in sleep architecture.
Sleep stage N2 has sleep spindles and K-complexes in EEG
and is between 40 and 60 percent of total sleep stages.
Sleep stages N3 and N4 constitute 13 to 23 percent of
total sleep, and EEG shows slow-wave activity. REM stages
are characterized by sawtooth waves with theta and alpha
activities on an EEG signal. In addition, muscle atonia and
eye movements are present during this sleep stage [1].

All the sleep stages are interrelated, and the transition
from one to another plays a significant role in the mental and
physical development of human beings. Individuals who
suffer from sleep disorders do not cycle through the regular
stages of sleep. Thus, classifying each sleep stage with high
accuracy, whether it is a short transition period of stage N1
or a more extended period of stage N2, plays a crucial role
in identifying sleep disorders. Therefore, a sleep expert has
to look into multiple EEG signals manually, and labeling
the signals with sleep stages becomes labor-intensive and
results in delayed and expensive results. Hence, to avoid this
costly and intensive process, some researchers have been
exploring methods for automating multi-class sleep stage
classification using tools from artificial intelligence.

We rely on an intuitive idea of “explanation,” which
refers to any hint that could assist the human decision-
maker in comprehending the decision (in our work, the sleep
stage identification). It is now vital for systems to provide
an accurate decision and extra information that explains
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Delta Activity N3 and N4
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Sawtooth Waves

Fig. 1 Specific EEG characteristics of different sleep stages
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or supports the decision made by complex algorithms
performing automated diagnosis tasks [9]. Unfortunately,
most medical explainable artificial intelligence (XAI)
research studies have focused on computer vision tasks and
less often on time series. This work, which focuses on the
latter type of data, aims to fill this gap in the literature.
Another significant gap in previous research is that most
studies have focused on increasing the overall accuracy
of sleep stage identification and less on individual sleep
stages.

In this paper, we propose an explainable deep learning
approach for sleep stage identification (SleepXAlI) that
surpasses the existing methods in terms of accuracy and
provides an explanation for the multi-class predictions
by utilizing gradient-weighted class activation mapping
(Grad-CAM) [22]. First, we focus on increasing the
overall accuracy of the sleep stage identification task
based on a single-channel EEG signal, specifically for
sleep stage NI, where most of the previous work
has demonstrated the lowest accuracy due to a low
number of instances. In this regard, we utilized a
combination of 1-D convolutional neural network (CNN)
blocks (Sleep labeler) and conditional random fields
(CRFs) [26] to classify the sleep labels by learning the
temporal dependencies and contextual information and also
calculated the probability scoring. Second, the proposed
model exhibits the explainability of the obtained results
using modified Grad-CAM, which generates a heatmap
visualization of the univariate EEG signals. It highlights
the specific characteristics of EEG signals, which explain
the decision-making of the SleepXAI model. Hence, the
proposed model can act as an automated assistive solution
for sleep experts that reduces the manual labor involved and
results in a timely prediction of sleep disorders.

We summarize the main contributions of our proposed
approach as follows:

1. We introduce a modified Grad-CAM for multi-
class sleep labels to visualize a heatmap of specific
features learned on a univariate EEG signal. The
proposed method results in an explainable sleep stage
classification, leading to human-readable output. The
proposed approach can be used as an assistive solution
in sleep laboratories, addressing the trust gap in the
existing black-box models.

2. The proposed approach demonstrates a higher overall
classification accuracy than the comparative state-of-
the-art deep learning algorithms. Moreover, it only
requires a single-channel EEG signal instead of multi-
ple signals for performing the classification while main-
taining accuracy. Furthermore, the proposed approach
achieved the highest accuracy when classifying the
sleep stage N1, which has the lowest number of
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instances and serves as a transition stage from waking
to sleeping.

The rest of the paper is organized as follows. Section 2
describes research related to the proposed method. The pre-
liminaries and basic definitions are discussed in Section 3.
The proposed explainable deep learning approach, Sleep-
XALl, is explained in Section 4. The performance analysis
of the proposed study is presented in Section 4. The experi-
mental results are demonstrated and discussed in Section 5.
Finally, Section 6 concludes the work along with a discus-
sion of the future aspects of the proposed study.

2 Literature review

In this section, we review the research literature on the
following two categories:

1. Sleep stage classification;
2. Explainable machine learning in healthcare.

2.1 Sleep stage classification

Several studies have recently been conducted to automate
the task of sleep stage classification based on machine
learning. These studies can be divided into traditional and
machine-learning approaches. In the traditional approach,
raw PSG signals are extensively preprocessed to transform
them for feature extraction. After that, the various features
related to the time domain, frequency domain, and linear
features are extracted with the help of prior knowledge
from sleep experts. These extracted features are then
fed into traditional machine learning classifiers for the
sleep stage classification task. For example, [7] extracted
the time-frequency representation (TFR) images using
the Fourier-Bessel decomposition method (FBDM) and a
CNN classifier to classify a publically available library
of sleep EEG signals. Using EEG signals, the created
classification system has obtained a classification accuracy
of 91.90% for classifying six distinct sleep stages. Similarly,
[29] extracted the time, frequency, and fractional Fourier
transform (FRFT) domain features from a single-channel
EEG and fed those features into bidirectional Long short-
term memory (LSTM) to learn the rules for transitioning
between sleep stages. The proposed approach resulted in
an overall accuracy of 81.6% for the Fpz-Cz EEG channel
of Sleep-EDF. Many studies have thus been conducted
based on this approach, and the accuracy is relatively
high. However, there are many drawbacks related to these
approaches. The main drawbacks are the requirement for
extensive preprocessing and the domain expertise for feature
engineering. Moreover, this approach lacks a generalized

solution for automated sleep stage classification due to the
diversified sleep patterns of different patients.

The second approach is based on machine learning,
where deep learning models are implemented to extract
the features and classify them into respective sleep labels.
This approach can be further classified based on multiple
or single-channel PSG signals. For example, [24] explored
CNN for sleep stage classification based on EEG and EOG
signals and obtained an accuracy of 81.0%. Similarly,
[10] used a DeConvolutional Neural Network (DCNN)
that inversely maps features of a hidden layer back to the
input space to predict the sleep stage label at each times-
tamp using a multivariate time series of PSG recordings.
These recordings included six channels and two leg elec-
tromyogram channels. Much research has been conducted
based on multiple-channel PSG signals, and state-of-the-art
accuracy has been achieved, but some drawbacks deserve
mention. The main drawback is that subjects have to sleep
with different electrodes and wires attached to their bodies,
which affects sleep and introduces noise.

Nevertheless, multiple-channel-based approaches are
effective in the sleep laboratory environment, while the
single-channel approach is highly productive when design-
ing home-based sleep monitoring systems. Dut et al. [3]
used a time-distributed convolutional network architecture
to extract the features, capture the temporal information,
and label sleep stages with an accuracy of 85.0% from a
single raw-channel EEG signal. Eldele et al. [4] used the
multi-resolution convolutional neural network (MRCNN)
and adaptive feature recalibration (AFR) to extract the fea-
tures from the EEG channel. Then, they fed those into the
temporal context encoder (TCE) module, which captures the
temporal dependencies among the extracted features using
the multi-head attention (MHA) mechanism, achieving an
overall accuracy of 85.6% on the Sleep-EDF dataset. Yang
et al. [28] introduced 1D-CNN-HMM, an automatic sleep
stage categorization model based on a single EEG chan-
nel. A deep one-dimensional convolutional neural network
(ID-CNN) and a hidden Markov model are combined in
the 1D-CNN-HMM model (HMM). Experimental results
showed that the overall accuracy and kappa coefficient of
1D-CNN-HMM on Fpz-Oz channel EEG from the Sleep-
EDFx dataset could reach 83.98% and 78.0%, respectively.
[16] developed EEGSNet, a deep learning model based on
CNNs and two-layer bidirectional Long short-term mem-
ory networks (Bi-LSTM) to learn the transition rules and
characteristics from neighboring epochs and classify sleep
stages with an accuracy of 86.82%.

2.2 Explainable machine learning in healthcare

The literature review has shown that most research for
interpretation and explanation has been conducted on 2D-
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CNN models in the medical domain, leaving a gap in
explanation in the medical time series data. Jiang et al.
[11] proposed a Grad-CAM-based multi-label classification
model that automatically locates different retinopathy
lesions using original DR fundus images. Li et al. [17]
introduced a novel recurrent-convolution network for EEG-
based intention recognition. Grad-CAM was used for the
channel selection to omit the unnecessary information
produced by redundant channels. Hata et al. [8] proposed
the classification of aortic stenosis using ECG images and
explored the relationship between the trained network and
its determination using Grad-CAM.

The primary motivation for conducting this study was
to overcome the mentioned drawback. First and foremost,
we created an architecture that can label sleep stages based
on a single-channel EEG signal, achieving state-of-the-art
accuracy with a primary focus on sleep stage N1, which in
most literature reviews has the lowest accuracy. Second, we
designed an architecture that can explain the model outcome
from univariate time-series data for multiple classes using
Grad-CAM, making it easier for patients and doctors to
interpret the results. Furthermore, we proposed structural
changes to Grad-CAM to interpret the univariate data,
improve EEG data visualization, and compare the results
with existing models.

3 Preliminaries

This section presents the basic definitions which were
utilized to develop the CNN-CRF model and which further
support the establishment of the SleepXAI architecture.
Furthermore, the motivation behind considering the CRF is
discussed in this section.

3.1 Basic definitions
The naive Bayes classifier, which is a generative algo-

rithm, indicates that to predict a class label y using a naive
Bayes algorithm, based on the independence assumption

P(s;|y,s1...S(—1, St41.--8) = P (s; | y), we can decom-
pose the conditional probability to solve
T
3 =argmax,P(y) [ [ P(s: | y) o))
t=1
where D61y
pPOYIPS1Y
pOyls)=———7"" @)
p(s)

However, in a discriminative model, such as the logistic
regression classifier, we replace P(y | s) with the Bayes
equation:

P(s | y)P(y)}

PGs) 3

y = argmax, {

Since the denominator P(s) does not contribute any
information in the argmax term, we obtain

y =argmaxyP(s | y)P(y) “

which is equivalent to the product of the prior and the like-
lihood. It must be observed that P(s | y)P(y) = P(s, y),
the joint distribution of s and y. Thus, by learning the
conditional probability distribution in discriminative mod-
els, the decision boundary can be learned for classification.
Therefore, given an input point, it can use the conditional
probability distribution to identify its class.

3.2 Motivation for conditional random fields
we can model the conditional

As discussed above,
distribution as follows:

y =argmaxy,P(y | s) (®)]

In CRFs, input data are processed sequentially. Further-
more, to model this behavior, we will use feature functions
that combine multiple input vectors s and additional infor-
mation, namely:

1. The position ¢ of the data point to be predicted,;
2. The label y,;_ of data point ¢ — 1 in input vector s;
3. The label y; of data point ¢ in s.

Thus, the feature function can be written as
®(s, y;—1, ¥:). The purpose of the feature function is to
express the characteristics of the input sequence. To build
the conditional field, we next assign each feature function
a set of weights (lambda values) which the algorithm is to
learn.

T

ZZ)‘J'@I(S”?)’FI,)’:) ©6)

t=1 j

1
P(y,s, L) = %exp

where the partition function Z(s) is

T
Zs) =) Y Y 2j®ils, ¥, ¥) (7)

yeyt=l j

In summary, we use CRFs by first defining the feature
function needed, initializing the weights to random values,
and then applying gradient descent iteratively until the
parameter values (in this case, lambda) converge. We can
see that CRFs are similar to logistic regression since
they use the conditional probability distribution, but we
extend the algorithm by applying feature functions as our
sequential inputs. The process of integrating the A and
learning the /ambda using iterative gradient descent for the
proposed CNN-CRF model is further explained in Section 4.
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4 Proposed SleepXAl architecture

An illustration of the proposed SleepXAl architecture is
presented in Fig. 2. It consists of three main parts: 1) sleep
encoder, 2) sleep labeler, and 3) N-class modified Grad-
CAM. First, the 30-second (time period) raw EEG signal
is fed into the sleep encoder part for feature extraction
using the time distributed layer. Next, the extracted features
are fed into the sleep labeler part, which utilizes the
benefits of both CNN and CRF layers to learn the temporal
dependencies with contextual information and generates the
probability scoring among different sleep labels. The sleep
encoder and sleep labeler network parameters employed in
SleepXAI can be seen in Table 1. Finally, we implement
the Grad-CAM part, which exploits the spatial information
preserved through the convolution layers, to create the heat
visualization of the characteristics of EEG signals that are
vital for a classification decision. The details of the primary
motivation behind the proposed architectural design of the
sleep encoder, sleep labeler, and Grad-CAM are discussed
in the next section.

4.1 Sleep encoder

The sleep encoder consists of convolution, maxpool, spatial
dropout, and global maxpool layers. The convolution layer
is implemented in pairs to extract specific characteristics
from the input EEG signal. The first layer extracts low-level
features, and the second allows the network to extract high-
level features. 1D-CNN performs convolution operations
on EEG signals to obtain one-dimensional features,
and various kernels extract unique EEG characteristics.
The forward propagation in 1D-CNN is expressed as
follows [14]:

Ni—i
x,{ Zbi‘F Zconle(wf,?l,sf_l) (8)

i=1

Fig.2 The overview of the
proposed SleepXAlI architecture

Convolution
Layer 1D

Maxpool

bi is kernel bias, sf ~Lis the output of the i’ neuron at layer
-1, wfk_l is the kernel from the i’ neuron at layer I — 1
and the k" neuron at layer [

= (xt) ©)

where y,l( is defined as the intermediate output, and the
activation function is denoted by f(-).

After that, the Max pooling operation is applied to down-
sample the feature maps generated by the filter by selecting
the maximum value, thus retaining the most prominent
features of the previous feature map and reducing the
dimensionality. Spatial Dropout [27] enhances indepen-
dence between feature maps by eliminating complete 1D
feature maps in favor of single parts when feature maps are
highly correlated. The global maxpool block is embedded
after the last convolutional layer to downsample the input
by taking the maximum value over the time dimension. The
dropout operation enhances the generalization of the neu-
ral network model by randomly selecting the neurons from
the model, solving the overfitting problem. Finally, we have
implemented a dense layer in the SleepXAI network, which
receives output from every neuron in its preceding layer,
changing the encoded sequence dimensions. The primary
function of the sleep encoder is to convert the time-invariant
patterns from the raw input time series EEG signals into an
encoded sequence, making it easier for the sleep labeler to
learn long temporal dependencies.

4.2 Sleep labeler

Sleep cycles throughout the night exhibit specific transitions
from one sleep stage to another [15], and the sleep
labelers attempt to capture these time-related transitions
by learning them. The encoded sequence from the sleep
encoder is fed into the sleep labeler, which identifies the
temporal information, such as transition rules, and generates
the probability scoring of each sleep label utilizing the
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Table 1 Network structure of SleepXAl

Model Layer Output Shape Parameters Kernel Size Activation

Sleep Encoder InputLayer (3000, 1) - - -
ConvlD (2991, 128) 1408 10 Selu
ConvlD (2982, 128) 163968 10 Selu
MaxPooling1 (1491, 128) - - -
Spatial (1491, 128) - - -
ConvlD (1482, 64) 81984 10 Selu
ConvlD (1473, 64) 41024 10 Selu
MaxPooling1 (736, 64) - - -
Spatial (736, 64) - - -
ConvlD (727, 32) 20512 10 Selu
ConvlD (718, 32) 10272 10 Selu
Glob (32) - - -
Dropout (32) - - -
Dense (64) 2112 - Selu
Dropout (64) - - -

Sleep Labeler InputLayer (3000, 1) - - -
TimeDistributed (64) 321280 - -
ConvlD (128) 24704 3 Selu
Spatial (128) - - -
ConvlD (128) 49280 3 Linear
Dropout (128) - - -
CRF 5) 680 - -

implementation of both CNN and CRF in a unified manner.
A detailed description of the CNN-CRF model and its
integration with the proposed problem scenario is explained
first in this section. Next, the development of explainable
sleep stage identification using Grad-CAM is described in
this section. Furthermore, an algorithm is presented which
enumerates the whole process of the proposed SleepXAl
approach.

4.2.1 CNN-CRF model integration with SleepXAl

As described in Section 3, generative architectures model
the joint probability distribution p(s, y) for classification,
where y = [y1, y2, ..., y7] is the output label vector and
s = [s1, 82, ..., sT] are input feature vectors. In the proposed
approach, the output labels consist of five sleep stages,
namely, y; € {W, N, N2, N3, REM}.

A general classification model without considering the
dependencies between the adjacent feature vectors and
different sleep stages is shown in Fig. 3. With this
consideration of independence between adjacent feature
vectors s,_1 and s;y1, the predictive model assigns a
probability to each label y; given its associated input S;, and
the conditional probability distribution for that is given by

pIS=[]r 0 Isn=[]exp (P (s1)y,) /Z(s1) (10)
t

t
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However, as discussed in the Introduction, there are
dependencies between different sleep stages that can be
modeled and identified by utilizing the CRF properties and
by learning the inter-dependencies of the input sequence of
30-second time periods and feature vectors in linear chains.
An illustration of this is presented in Fig. 4.

A mathematical representation of Fig. 4 can be given as
follows

T
exp Z D (Sr—1, 8, Sr+1)y, +
t=1

18 =

T-1
2 Vo
t=1

———
is y, followed by y;+1?

an

1
Z(S)

how likely the y, is?

---[P(Y(t-1)|5(t-1))} [ P(Y)ls) J [P(Y(t+1)|s(t+1))J“'
)
[ dlse) | [ bl | [ dlsen) |
t t 1

ey iy o~

St St St+1

Fig.3 Basic classification model
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[ =7 P(YIS) = P(Y15 Y2500 YTIS15 S25 cevneees sT) "~ J
t ) t
[ st | [ dls) | [ dlse) |
) ) t

o i o

St-1 St St+1

Fig.4 Sequence classification with linear chain

To implement this CRF model using neural networks,
a set of weights A can be assigned to feature vectors as
described earlier in (6), which can be learned or estimated
by neural networks. To estimate the parameters (lambda),
maximum likelihood estimation is utilized and applied to
the negative log of the distribution, in order to make the
partial derivative easier to calculate, which is given by

L(y.S, 1) = —log {1_[ POF | sk, x)} (12)

k=1

m T
1
:—Zlog exp szj¢j(5m,t,Yf_1,y;{)
Z(Sm) =1

k=1
(13)

To apply maximum likelihood to the negative log function,
we take the argmin (because minimizing the negative will
yield the maximum). To find the minimum, we can obtain
the partial derivative with respect to lambda, and get:

oL(y,s, A)

1 & ”
. om D 6,05 HY por 155 06,55
k=1

k=1
(14)

We use the partial derivatives as a step in gradient descent;
furthermore, in each incremental step of A, an update is
given by

r=+a [Zdn(y", S+ PG s 0,0, s")]

k=1 k=1
5)

This process of gradient descent occurs iteratively to update
parameter A, with a small step, until the values converge.
Thus, a CRF layer is added at the end of the sleep labeler
in the SleepXAI architecture. CRFs act as a probabilistic
graph model used to predict the sequences that use the
contextual information from a neighboring sample to add
information that the model uses to make correct predictions.
Therefore, in the context of sleep stage classification,
certain sleep stages are followed or perceived by certain

sleep stages. These transitions are very well learned by
CRFs, making the accuracy of the classification of classes
with small instances such as N1 and N3 much higher.

4.3 Explainable sleep stage classification
using N-class modified Grad-CAM

We utilized the well-known explainable model named Grad-
CAM, which utilizes class activation maps (CAMs) to
recognize the heatmaps in the input data. The CAM for a
particular class ¢ is the weighted-sum of activation maps
(A, A2 .. AR generated from k convolution filters, which
is given by

CAMC = w A" + wrA? + -+ 4+ we AL (16)

An illustration of CAMs is shown in Fig. 5. Furthermore,
global average pooling is applied over each activation map,
which is given by

1 u v
k_ L k
GAP for A® = Z E E Ajj- 17)
i=1 j=I

Thus, a class label is identified based on the following
equation:

K 1 u v
yel =Zw;‘EZZAf-‘j. (18)
k=1

i=1 j=1

A general vector-form for CAM is given as follows:

Ye — Xk:w;%ZZA{?j (19)
J

i

where Afj is the pixel at the (i, j) location of the kth feature
map.

From Grad-CAM, it is established that gradients of the
last layer in the NN model led to weights w’c‘ of the classes.
Thus, we can be computationally efficient while training the
model. This established fact is also described herein.

From CAM, we obtained Y€, Furthermore, let F¥ =
% 22 Af.‘j; then, Y¢ = 3", w¢ - F; we then have:

aY¢
oYe¢ BAff,.
oFt 3 @
aAk.
ij
which turns out to be
aYe¢ . aYe¢

Furthermore, we can write
aYe¢

22 wi=2) s ? (22)
j i ij

i
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Fig.5 Class activation maps
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By rearranging the above equation, we obtain
wé =
k Z Z aAk

Using gradient flowing from the output class into the
activation maps of the last convolutional layer as weight
(wf) w.r.t class ¢, we do not need to perform retraining
to obtain weights, which is a potential reason to integrate
Grad-CAM with the proposed SleepXAI architecture.

For integrating Grad-CAM in the proposed model, the
multi-class labeled hypnograms obtained from the sleep
labeler are fed into Grad-CAM. To realize Grad-CAM,
the input is fed to a set of convolutional layers and class
activation maps. This provides us with coarse localization
maps highlighting the crucial waves corresponding to
particular sleep stages, which makes it a self-explanatory
model named SleepXAI herein.

(23)

5 Experimental results

In this section, we first discuss the dataset used for
the performance evaluation of the proposed approach.
Furthermore, different performance metrics are described.
Then, we demonstrate the results and discuss the accuracy
and explainability achieved by the proposed SleepXAl
architecture. Furthermore, several existing methods are
considered for comparative analysis.

5.1 Dataset

In this study, we evaluated our model on the Sleep-EDF
(Sleep-EDFx, 2013 version) [6, 13] dataset and compared
its performance with other state-of-the-art algorithms in
Section 5.4. The dataset consists of two subsets: (1) the
Sleep Cassette (SC) subset of 20 healthy participants aged
25-34 to explore the effects of age on sleep; and (2) the
Sleep Telemetry (ST) subject of 22 Caucasian people to
study temazepam’s effects on sleep. We used the two EEG
signals (Fpz-Cz and Pz-Oz) extracted from the PSG of the
SC subset, which contains two nights of sleep recorded
for each subject, except for subject 13, who had only
the first night recorded. Sleep experts manually annotated
the recordings into specific sleep labels. There were long

@ Springer
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periods of wakefulness during the beginning and end of each
recording, and periods of body movement and unclassified
periods were omitted from the data used in the evaluation
process. Each signal was annotated with its specific sleep
label based on a 30-second window called an epoch, and the
total number of epochs is shown in Table 2.

5.2 Evaluation approach and metrics

There are two primary evaluation approaches to assess a
machine learning approach deployed in the medical domain.
The first one is the intra-patient approach, where the data
from the same subject can be used during the training and
testing of the model. In the second inter-patient approach,
the data for training and testing the model comes from
different subjects. Since the dataset on which the model
is trained in the medical domain differs from the dataset
on which it is evaluated, the inter-patient approach is a
more practical assessment approach. Therefore, we used the
inter-patient approach in this study to assess the proposed
approach’s performance.

To implement this approach, we used k-fold cross-
validation, with k set to 20 based on the total number of
subjects. Each subject has two nights of sleep recording,
except for one subject with a single night of sleep recording.
Each recording contains a whole night of EEG data split
into 30-second time windows called epochs. We used the
sleep recordings of 19 subjects to train and validate the
model, and the remaining subjects’ recordings to test the
trained model. This procedure was repeated 20 times so that
the model could be evaluated against each subject. Then,
we aggregated the results from each fold and computed the
performance using the evaluation metrics described below.

We used overall evaluation metrics such as accuracy,
precision, recall (sensitivity), and the F1 score (per class) to
assess the proposed approach performance.

TP+TN
TP+TN+FP+FN

x 100

Accuracy = (24)

Table 2 Distribution of EEG epochs for each sleep label in the dataset

Wake N1 N2 N3 REM

EEG-Epochs 8285 2804 17799 5703 7717
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Table 3 Classification report of CNN-CRF on Fpz-Cz

Table 5 Classification report of CNN-CRF on Pz-Oz

Precision Recall F1 score Support Precision Recall F1 score Support
Wake 91.65 92.04 91.84 8285 Wake 87.52 89.22 88.36 8285
N1 63.05 62.94 62.99 2804 N1 45.74 42.30 43.95 2804
N2 88.85 87.51 88.17 17799 N2 86.18 86.36 86.27 17799
N3 85.44 88.32 86.85 5703 N3 82.93 82.96 82.94 5703
REM 86.63 87.15 86.88 7717 REM 82.49 82.60 82.54 7717
Accuracy 86.81 Accuracy 82.86

where TP = true positive (predicted output true and actual
output also true), FP = false positive (predicted output true
and actual output false), TN = true negative (predicted
output false and actual output also false), and FN= false
negative (predicted output false and actual output true).

Another performance evaluation metric used was the F1
score, which is given by

Precision x Recall
Fl=2x — 25)
Precision + Recall

where
TP
Recall = ———— (26)
TP+ FN
and
. TP
Precision = —— 27)
TP+ FP

5.3 Performance analysis

The performance of the SleepXAl approach was evaluated
on the two EEG signals (Fpz-Oz and Pz-Oz) of the PSG
recordings of the Sleep-EDF dataset. In addition, we also
compared the sleep stage classification of accuracy between
CNN-CNN and CNN-CRF implementation in the sleep
labeler. Tables 3, 4, 5, and 6 demonstrate the classification
report of both these architectures on the respective signals.

The CNN-CRF model has shown a higher accuracy
for classifying different sleep stages for both the signals
when compared with the CNN-CNN model. For example,
the SleepXAI achieved the highest accuracy of 86.81%
on the EEG Fpz-Cz channel, which is around 2% more

Table 4 Classification report of CNN-CNN on Fpz-Cz

than the CNN-CNN implementation. This may be because
there are specific transitions that the sleep stages follow
during the complete sleep cycle. The CRF layer can learn
this contextual information by considering the neighboring
sleep stages, thus increasing the amount of information to
make current sleep label predictions. Furthermore, it helps
the CNN-CRF model capture the sleep stages with fewer
instances with higher accuracy. For example, an accuracy
of 63% was achieved by SleepXAl for sleep stage N1,
which is 15% more than that achieved with the CNN-CNN
implementation.

The CNN-CNN and CNN-CRF implementations showed
higher classification accuracy on the EEG Fpz-Cz signal
than on the EEG Pz-Oz signal. We can hypothesize that
this can be due to electrode placement for both these
channels [12]. Certain characteristics are present in specific
sleep stages, such as K-complexes, delta activities, and
sleep spindles, which predominantly occur in the brain’s
frontal lobe, and the Fpz-Cz channel placed in the frontal
region can easily capture them. Furthermore, alpha activities
are occipital phenomena, but they can easily manifest
themselves in the brain’s frontal area, allowing the Fpz-Cz
channel to capture them. On the other hand, the placement
of the Pz-Oz electrode is on top of the parietal region of the
brain, and theta and higher-frequency sleep spindle activity
are mostly parietal phenomena. Therefore, the presence of
theta activities in the multiple sleep stages does not make
it beneficial when distinguishing between different sleep
classes lowering the classification accuracy.

Figure 6 shows the confusion matrices of CNN-CNN
and CNN-CRF implementation on the Fpz-Cz and Pz-Oz

Table 6 Classification report of CNN-CNN on Pz-Oz

Precision Recall F1 score Support Precision Recall F1 score Support
Wake 90.10 91.82 90.95 8285 Wake 89.61 87.28 88.43 8285
N1 48.46 48.32 48.39 2804 N1 50.21 30.14 37.66 2804
N2 87.78 86.78 87.28 17799 N2 84.59 83.78 84.18 17799
N3 83.98 85.69 84.83 5703 N3 81.34 79.73 80.53 5703
REM 85.92 85.21 85.56 7717 REM 72.12 87.26 78.97 7717
Accuracy 84.79 Accuracy 81.12
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Fig.6 Confusion matrices of
~ ~ Wake 435 119 31 93 Wake 325 188 24 122
CNN-CNN and CNN-CRF on
the Fpz-Cz and Pz-Oz channels
using the aggregated results NI| 399 | 1355 | 637 15 398 N1| 193 1765 | 513 27 306
o o«
from 20-fold cross-validation | s
©oN2| 292 591 885 585 C N2 388 435 [WEREM 803 597
2
= e
N3| 35 18 761 | 4887 2 N3| 18 11 624 | 5037 13
REM| 110 397 633 1 6576 REM | 95 263 629 4 6726
Wake NI N2 N3  REM Wake NI N2 N3  REM
Predicted Class Predicted Class
(a) CNN-CNN Fpz-Cz. (b) CNN-CRF Fpz-Cz.
Wake Z 525 145 27 357 Wake D 498 208 32 155
N1| 563 845 700 22 674 NI 457 | 1186 | 659 26 476
© N2 o134 249 942 1562 © N2 37 449 915 706
= =
= =
N3| 29 3 1114 | 4547 10 N3 74 10 872 | 4731 16
REM | 112 61 758 52 6734 REM 166 450 726 1 6374
Wake N1 N2 N3 REM Wake N1 N2 N3  REM
Predicted Class Predicted Class

(¢) CNN-CNN Pz-Oz.

channels, and SleepXAI demonstrates the highest accuracy
on the Fpz-Cz channel, as shown in Fig. 6(b). We will
discuss the potential reason for most misclassified sleep
stage pairs according to the AASM sleep scoring transi-
tion rules [2]. Both the sleep stages N1 and Wake have
shown misclassification due to similarity in EEG charac-
teristics, alpha, and low-voltage activities. In addition, the
sleep spindles are among the defining characteristics of
sleep stage N2, but these spindles can persist in sleep stage
N3, contributing to misclassification between these two
stages. The EEG characteristic K-complexes can be seen in
both sleep stages, N1 and N2. The classification between
these two classes mostly depends on the body and slow

Fig.7 The comparison between

(d) CNN-CRF Pz-Oz.

eye movements, which are difficult to capture with EEG
signals, leading to misclassification between the pair. The
sleep stages N1 and REM demonstrate mixed EEG fre-
quency rates and low amplitude, making the classification
difficult.

Figure 7 shows the comparison between the hypnogram
of the sleep cycle of two nights of sleep of two different
subjects annotated by the sleep expert and predicted by the
CNN-CREF (SleepXAlI approach) and CNN-CNN. It can be
clearly seen that the CNN-CRF model captures the sleep
stages with a lower number of instances due to minimal
transition periods. As a result, there was a significant
increase in the prediction of sleep stage N1, which can be

CNN-CNN

—— Original
~—— Predicted

the hypnogram annotated by REM

sleep experts (original) and that s
predicted by the CNN-CRF and P

CNN-CNN models P
v]

N1

Wake

0
REM} __ Original
—— Predicted

N3

% N2
3]
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Number of 30 seconds epochs (120 epochs = 1 hour)
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Table 7 Comparison of accuracy across different sleep stages between CNN-CNN and CNN-CRF models for a single fold in a test dataset

comprising two nights of sleep

Wake N1 N2 N3 REM
CNN-CNN 89.75 64.52 90.37 92.71 90.83
CNN-CRF 98.27 95.34 96.64 96.89 98.72

seen in Table 7. The F1 score for detecting sleep stage N1 by
CNN-CRF was around 95.34%, more than 30.82% greater
than that by CNN-CNN. Similar results can be seen in the
classification of other sleep stages. This demonstrates that
the unified CNN-CRF approach increased the accuracy.

5.4 Comparison with other state-of-the-art
algorithms

To further evaluate the performance of the SleepXAl
approach, we compared the results achieved by other
state-of-the-art sleep stage classification methods. Table 8
compares our proposed approach and these methods across
total accuracy and F1 score for each class. In addition,
we compared the performance with two different channels,
EEG Fpz-Cz and Pz-Oz. Again, the results showed that our
proposed approach achieved the highest overall accuracy
and significantly increased the accuracy of detecting sleep
stage N1 for both channels.

5.5 Analysis of Grad-CAM visualizations

The explainable part of the SleepX Al approach is the imple-
mentation of the Grad-CAM. This section demonstrates the
result obtained by Grad-CAM for multi-label sleep stage
classification. Using Grad-CAM, we can visually validate
where the SleepXAI model is looking in the EEG signal

and verify that it looks at the correct EEG characteristics
mentioned in the manual scoring of the sleep stages in the
AASM manual. In addition, Table 9 shows specific char-
acteristics of the 30-second time period that a sleep expert
looks into for scoring specific sleep labels. Finally, Fig. 8
demonstrates the output of the Grad-CAM in the Sleep-
XAI approach, highlighting the regions of the signal which
are impacted most when making the classification decision
using the proposed approach.

The sleep stage is scored as Wake by a sleep expert when
more than 50% of the time period has an alpha rhythm,
and it can be clearly seen that the Grad-CAM output when
SleepXAlI distinguishes a time period as Wake has most
of the alpha rhythm as highlighted regions. For a time
period to be classified as sleep stage N1, there are theta
waves (4-7Hz) and vertex sharp waves. The same regions
are highlighted by Grad-CAM when making a classification
decision of sleep stage N1. The sleep stage N2 has the
presence of K complexes and one or more sleep spindles,
and the SleepXAI model also emphasizes these regions
when classifying a time period as sleep stage N2, which
is validated by Grad-CAM output. The sleep stage N3
time period, also known as deep sleep, has 20% or more
regions containing slow-wave activity. The same regions
are highlighted by the Grad-CAM output of the SleepXAl
model when it classifies a time period as sleep stage N3.
Finally, the REM stage has the presence of sawtooth waves,

Table 8 Comparison of SleepXAI with other state-of-the-art algorithms using single-channel EEG signals on the Fpz-Cz and Pz-Oz channels of

the Sleep-EDF dataset

Methods Channel Acc W N1 N2 N3 REM
Ref [18] Fpz-Cz 79.8 77.0 333 86.8 86.3 76.4
Ref [5] Fpz-Cz 81.2 - - - - -
Ref [25] Fpz-Cz 82.0 84.7 46.6 85.9 84.8 82.4
Ref [19] Fpz-Cz 83.1 87.9 335 87.5 85.8 80.3
Ref [23] Fpz-Cz 83.6 87.1 39.2 87.7 87.7 80.9
Ref [28] Fpz-Cz 83.9 87.8 35.1 86.6 90.5 86.8
Ref [4] Fpz-Cz 85.6 90.3 479 89.8 89.0 85.0
Ref [16] Fpz-Cz 86.8 89.8 59.8 89.0 86.4 86.5
Our Study Fpz-Cz 86.8 91.8 62.9 88.1 86.8 86.9
Ref [5] Pz-Oz 80.7 - - - - -
Ref [25] Pz-Oz 79.8 88.1 37.0 82.7 71.3 80.3
Ref [20] Pz-Oz 80.7 87.2 36.8 85.2 81.3 80.1
Our Study Pz-Oz 82.8 88.3 439 86.2 82.9 82.5
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Table 9 Visual rules (AASM manual) for manual sleep stage
classification

Wake More than 50% of the time period has an alpha rhythm.

N1 Low-amplitude and mixed-frequency activity.
Activity in the range of 4-7 Hz (theta waves).

N2 One or more K complexes not associated with arousal.
One or more trains of sleep spindles.

N3 Time period with slow wave activity (delta waves).
Sleep spindles may persist.

REM Sawtooth waves.

Low-amplitude and mixed-frequency EEG.

and the sawtooth waves are captured by the proposed
approach when making the classification decision of REM.

For the ML model to be implemented in the clinical
environment, some explainability parts must emphasize
why the decision has been made. For example, from the
output generated by the Grad-CAM part of the SleepXAl
approach, a sleep expert can validate whether the model
looks into the same EEG characteristics they look for while
scoring the sleep stages.

6 Conclusion and future work

Artificial intelligence can be crucial in automating and
revolutionizing the health sector. In this context, this study
proposed an explainable deep learning approach named
SleepXAl, which performs the automatic classification of
multiple sleep stages. To the best of our knowledge, this
is the first study to report the characteristics influencing
the classification decisions of deep models for the multi-
class classification of sleep stages only using single-channel
EEG signals. The SleepXAI introduces explainability by
generating a heatmap visualization of salient features
learned for the predicted sleep stage on a univariate EEG
signal. It allows the sleep experts to correlate the learned
features visually with the AASM manual sleep scoring
rules, thus improving trust in black box systems with
explanations. This study substantially contributes to the
medical field by explaining decision-making and can act as
an aid to clinicians.

As shown in Table 8, the proposed approach outper-
forms other state-of-the-art sleep-scoring algorithms based
on the Sleep-EDFx 2013 dataset. However, this dataset is
too small, and a much larger dataset is necessary to test the

Fig.8 The Grad-CAM output of 2
SleepXAl for different sleep “
stages highlights the parts of the o
EEG epoch that are most o0
emphasized in the e
decision-making process s
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model’s performance in terms of explainability and accu-
racy. In addition, a diversified dataset comprising data col-
lected over a more extended period to simulate emotional,
stress, and health circumstances is required to demonstrate
the algorithm’s adaptability. Furthermore, the dataset should
be compiled from a large geographical area to include indi-
viduals of various races and ethnicities. Finally, the algo-
rithm has been tested on only two EEG signals (Fpz-Cz and
Pz-0z) and must be tested on the other physiological signals
collected during PSG. The adaptability and robustness of
the proposed approach are currently being explored against
other publically available datasets based on different phys-
iological signals collected during PSG. The model inter-
pretability and other practical challenges can be explored as
an extension of the proposed approach in future work.
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