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Abstract: Universities and other educational institutions may find it difficult to afford the cost of
obtaining cutting-edge teaching resources. This study introduces the adoption of a novel open
prototyping framework in the context of mechatronics education, employing low-cost commercial
off-the-shelf (COTS) components and tools for the motion control module. The goal of this study is to
propose a novel structure for the motion control module in the engineering mechatronics curriculum.
The objective is to foster a new teaching method. From a methodology perspective, students are
involved in a series of well-organised theoretical lectures as well as practical, very engaging group
projects in the lab. To help students understand, draw connections, and broaden their knowledge,
the methods of surface learning and deep learning are frequently mixed thoroughly. The structure of
the course as well as the key topics are discussed. The proposed open framework, which consists
of an elevator model, is presented in details. Students’ early evaluation indicates that the course
organisation and subjects are successful and beneficial.

Keywords: education; mechatronics; hands-on learning; framework

1. Introduction

Motion control is a branch of automation that includes the systems and components
involved in the controlled movement of machine parts. Motion control systems are widely
utilised for automation in a variety of industries, including precision engineering, micro-
manufacturing, biotechnology, and nanotechnology [1]. One or more prime movers or
actuators, as well as an energy amplifier, are frequently used in motion control systems.
Motion control may be divided into two categories: open loop and closed loop. In systems
with an open loop, the controller sends a command to the actuator via the amplifier without
being able to verify that the desired motion was really achieved. Such a common setup
might control a fan or a stepper motor. For better control and accuracy, the system could
be upgraded with a measuring tool or sensor (usually near the end motion). In the latter
scenario, the system turns into a closed loop since the measurement is converted into a
signal and sent back to the controller, which then corrects for any inaccuracies. Typically,
some form of device, such as a hydraulic pump, linear actuator, or electric motor, often
referred to as a servo, is used to regulate the position or velocity of moving machinery.
Motion control is primarily concerned with automating the control of motion systems that
use electric actuators, such as DC/AC servo motors. Since most robotic manipulators are
powered by electrical servo motors and their main function is motion control, controlling
robotic manipulators is also seen as being under the umbrella of motion control [2].

In this work, a novel organisation of the motion control module for the engineering
mechatronics education curriculum is presented. The aim is to inspire a new approach to
teaching the course. Inspired by our previous work [3–5], this study intends to address the
following research question: can thoroughly alternating surface and deep learning sessions
increase understanding, activate relationships, and enhance students’ knowledge? The
basic idea is to organise the course into three parallel levels, as indicated in Figure 1:
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• Lectures that combine theory and exercises. This component of the module is systems
oriented and focuses on system requirements, modelling, methods for analysis and
design of motion control systems, and control. Exercises are given and done in
scheduled hours with close supervision;

• Laboratory. This component of the course is designed to be both hardware-oriented, by
focusing on selecting the necessary sensors and actuators, as well as software-oriented,
by focusing on programming, debugging and reviewing. The laboratory is based on a
group project;

• Applications. Both the theoretical lectures and the laboratory work are aimed at
providing students with an improved hands-on experience with rapid-prototyping of
motion control systems.

Lectures with exercises

Laboratories

Applications

Software-oriented

- Programming
- Debugging
- Code reviewing 

Hardware-oriented

- All in one Servo Lab 
(sensors and actuators)
- Arduino controller

Application-oriented

- Elevator model

System-oriented

- DC/AC servomotors and stepper motors with 
drive circuits
- Load analysis
- Mode of operation
- Characteristics, sizing and selection of trans‐
mission elements
- Principles for design of series compensators 
and cascade control
- Building programs in C
- Internal microcontroller functions

Figure 1. The proposed hands-on organisation of the motion control course.

The presented course is MAS246-G [6]. This course is a 5th semester module of
the three-year bachelor’s degree programme in Mechatronics given at the Department
of Engineering Sciences, Faculty of Engineering and Science, University of Agder (UiA),
Grimstad, Norway. Recommended previous knowledge for the course includes MAS239
Feedback Control Systems 1 [7], MAS134 Electrical circuits and digital engineering [8],
MA178 Mathematics 1 [9], MA-179 Mathematics 2 [10], or equivalent. This article outlines
the overall structure of the course as well as the primary themes.

The paper is organised as follows: Section 2 provides an overview of the chosen edu-
cational tools. Section 3 depicts the course overview, while the laboratories are presented
in Section 4. Section 5 describes the selected elevator model. The proposed architecture for
the elevator model is presented in Section 6. Section 7, the course learning outcomes and
the students’ feedback are defined and analysed. Finally, Section 8 contains the conclusions
and recommendations for further studies.

2. Pedagogical Tools

The presented course (MAS246-G [6]) is designed by considering coordinated teaching
across the whole Bachelor’s Programme in Mechatronics [11].

The proposed course is built on the foundation of the unified modelling language
(UML) [12]. This decision is based on the fact that UML has the potential to be used to
create a strong educational and scientific foundation with mechatronic systems design as
the cornerstone, ensuring a methodical and even-handed integration of principles from
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mechanical engineering, electric/electronic engineering, control engineering, and computer
engineering [13].

The Arduino [14] platform is adopted as a developing tool. This choice is motivated
by a variety of reasons. Arduino is a free and open-source electronics prototyping platform
with a variety of hardware and software capabilities. The amount of hardware and software
development required to obtain a system up and running is minimised when using Arduino
boards [15]. On the software side, Arduino offers a wide range of libraries that make
programming the microcontroller simple. The use of Arduino boards simplifies the system
framework’s maintenance and allows for the addition of new features in the future.

3. Course Overview

The proposed course structure and primary themes are described in this section. The
course material includes theoretical lectures, laboratory classes, and one course project, as
depicted in Table 1. Each 6-hour theoretical lecture is held once a week and followed by a
weekly 6-hour laboratory session. The topics covered in each lecture are listed below.

Table 1. The organisation of the course content.

Lectures Laboratory Project

12 lectures 12 laboratories elevator project

3.1. Lecture 1: Introduction on Direct Current (DC) Machines

In this lecture, a description of the direct current (DC) machines working principles,
construction and commutation forms is presented and then the development of a mathe-
matical model of a DC motor as an electromechanical system with differential equations
and block diagrams for first-order and second-order control systems. A first order control
system is defined as a type of control system whose input–output relationship (also known
as a transfer function) is a first-order differential equation. A second-order control system
is a system whose transfer function is a second-order differential equation.

3.2. Lecture 2: DC Machine’s Various Drive Circuits and Operations

A review of the DC machine’s various drive circuits is introduced, such as linear
and pulse–width modulation (PWM), with an H-bridge for current velocity and position
control. Moreover, the four-quadrant operation mode is studied. A servo system capable of
controlling velocity and torque in both positive and negative directions is known as having
four-quadrant operation [16].

3.3. Lecture 3: Modelling of a DC Motor as a Thermal System

In this lecture, we consider the modelling of a DC motor as a thermal system and the
selection of speed profiles. Successively, load analysis with inertia friction and damping
reflected to the motor shaft is used as a basis for sizing and selection of DC motors to
specific applications.

3.4. Lecture 4: Stepper Motor Types and Working Principles

In this lecture, we present different stepper motor types, working principles, con-
struction and behaviour with different commutation forms, such as half, full and micro
stepping [17].

3.5. Lecture 5: Control Methods for Stepper Motors

Control methods for stepper motors are presented. Moreover, stepper motor drive
circus for unipolar and bipolar operation with L/R drives and chopper drives are also in-
troduced [18]. Open loop control of speed and position is outlined. Methods for sizing and
selection of step motors for applications based on torque/velocity curves are considered.
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3.6. Lecture 6: Brushless DC Electric Motors

In this lecture, brushless DC electric motors (BLDC motors or BL motors) are intro-
duced. A BLDC motor, also known as an electronically commutated motor (ECM or EC
motor) or synchronous DC motor, is a synchronous motor using a direct current (DC)
electric power supply. BLDC working principles are presented including construction and
commutation forms. Successively, the three-phase induction motors are presented. These
motors are based on the principle of electromagnetic induction. A three-phase stator’s
construction and operation are discussed including control of rotor field orientation and
measurement of the orientation of the rotor field. Finally, six-step commutation of BLDC
motors using sensor feedback is presented [19,20].

3.7. Lecture 7: Permanent-Magnet Synchronous Motors (PMSM)

Operating principles of permanent-magnet synchronous motors (PMSM) are intro-
duced [21]. Measurements of the rotor position (i.e., syncro, encoders) are discussed. We
also introduce a commutation system based on Field-Oriented Control (FOC) [22], and a
d-q reference frame with Park and Clarke variable transformation [23].

3.8. Lecture 8: Rotary to Rotary Motion Transmissions

An introduction of rotary to rotary motion transmissions is given. Different aspects
are discussed including gear determination, stiffness, efficiency, turnover, ratio, momentum
and speed. Gears as a transmission components are outlined. A review is then provided
about important characteristics of matching between engine and load, as well as specific
characteristics and requirements related to the operation of servo systems. Successively,
we consider sizing and selection of gears with regard to inertia matching between engine
and load. Then, a study regarding selection of gear ratio based on torque and angular
velocity matching is considered. Advantages and disadvantages of different gear types
are discussed.

3.9. Lecture 9: Rotary to Translational Motion Transmissions

An introduction to rotary to translational motion transmission mechanisms is pro-
vided. Successively, we introduce lead–screw, ball–screw mechanisms, and rack and pinion
mechanisms. Finally, sizing and selection of tangential and screw mechanisms are consid-
ered.

3.10. Lecture 10: Shaft Selection and Sizing

Methods for selecting and sizing the correct shaft dimension are considered. Succes-
sively, we consider the challenge of shaft coupling for motion control applications.

3.11. Lecture 11: Lead–Lag Compensators

We consider the frequency response design for lead–lag compensators [24]. Succes-
sively, we consider the design procedure to to fulfil performance specifications stability–
overshoot–set point tracking.

3.12. Lecture 12: Modern Motion Control Architecture

We introduce modern motion control architectures. A procedure to design multi-
loop motion control systems is discussed. The integration of cascade plus feed-forward
control can bring the system to obtain better results in terms of trajectory tracking and
disturbance rejection.

4. Laboratories Overview

The laboratory sessions run in parallel with the theoretical lectures introduced in
Section 3. The key laboratory subjects are outlined in the following section.
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4.1. Programming in Practice: Arduino

The goal of this lab is to introduce the use of Arduino [14] as a developing platform for
motion control. Arduino is a well-known tool for generating applications and deploying
educational content [25]. Motion control necessitates a number of skills and abilities that
can be easily developed using tools such as Arduino. Arduino can be used to create
interactive objects that accept input from various switches or sensors and operate lights,
actuators, and other physical outputs. Arduino projects can be self-contained or interfaced
with software running on a computer. The boards can be hand-assembled or purchased
pre-assembled, with the open-source IDE available for free download. The following topics
are introduced: functions, variables, structures (i.e., setup, loop, if, else, while, for, do while),
analog and digital signals, and PWM. Particular emphasis is then placed on the practical
implementation and tuning of a proportional integral derivative (PID) controller [26].

4.2. Unified Modelling Language (UML) and Class Exercise

An introduction of various paradigms and models for the development of embedded
systems is provided, with a focus on design strategies such as incremental and waterfall
approaches [27]. Successively, an introduction of UML is given with particular emphasis
on embedded systems. Different diagrams are introduced including use case diagrams,
class diagrams, sequence diagrams and state machine diagrams [12]. These diagrams are
meant to support the design and development of the course project.

4.3. All in One Servo Lab (AIOSL)

Servo technology and servo-control are important components of motion control,
and working with servo systems necessitates the application of mechanics, mathematics,
electronics, and control systems’ engineering methods. Furthermore, the subject requires
microcontroller programming. To facilitate the learning process for students, a novel
platform is designed for doing practical laboratory assignments, simulations and demon-
strations. The development of this platform is based on the following key requirements:
(i) ease of use, plug and play (PnP), and (ii) student engagement, so that working with
the platform should be fun. To meet these requirements, we have developed a single unit
platform with servo and stepper motors, various inputs and feedback options. Moreover,
feedback front-end-software is provided, while laboratory assignments with solutions and
manuals are in development. This platform is named “all in one servo lab” (AIOSL) [28],
and it is shown in Figure 2.

Among other components, the AIOSL embeds two motors: a brushed DC motor and
a two-phase stepper motor, respectively. This allows students to develop multi-function
applications. The DC motor gives students the possibility to design software for motor
control and to utilise lead–lag regulation. For closed loop control, feedback from the
embedded encoder is necessary. This application challenges the students’ ability to regulate
micro-stepping. The components of the AIOSL are integrated in the chassis, while also
providing a functional design. In fact, the motors are exposed through the top panel, giving
a more visual perception of their status and allowing the students to affect their flywheels.
The AIOSL is equipped with a HC-05 Bluetooth serial module. This module allows the
Arduino controller to send serial strings over Bluetooth to another device that supports
Bluetooth serial data. The module can act both as a slave and a master.

In contrast to off-the-shelf devices, the customisation of the AIOSL enables the lecturer
to create specialised tasks for the students. In addition, it eliminates time-waste related to
setup, which may take away focus from the assignment itself.
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Figure 2. The all in one servo lab (AIOSL).

From a hardware perspective, an Arduino Mega [14] is integrated into the AIOSL. The
Arduino platform is an extremely versatile platform, and is supported through several
programming languages. The AIOSL is designed to be programmed mainly with C and
C++ languages, preferably with the Arduino integrated development environment (IDE).

Additional existing or custom-made libraries may be included. The libraries are
written in C++ and allow for the inclusion of objective-based programming, which enhances
the programming level from a logic perspective.

5. Elevator Model

The course project aims at designing a complete elevator system to be implemented
based on the AIOSL. This may be achieved by exclusively using the integrated actuators and
sensors, while displaying the simulated floors with the embedded liquid–crystal display
(LCD). Even though this approach is pedagogically solid, a more engaging approach for
the students consists of implementing a physical model of the elevator system. For this
purpose, it is important that the physical model can be controlled from the already existing
AIOSL, but also separately as a standalone system. If operated separately, the components
shall be as accessible as possible and produced with low cost tools. In the following of this
section, the design of the physical elevator system is presented. The elevator open source
repository is available as described in Appendix A.

System Requirements

As shown in shown in Figure 3, the system controls a single-cabin elevator that travels
up and down in a building with a set number of floors. The system requirements are
summarised in Table 2 [29].
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Figure 3. An elevator system model with 0 to N floors, including a car, cables, an elevator machine,
controls drive, cabin buttons and floor buttons.

Table 2. System requirements.

REQ 1 The system controls the movement of an elevator.

REQ 2 The number of floors is set.

REQ 3 The elevator is either going up or going down.

REQ 4 The elevator is driven by a motor which can be either WINDING, UNWIDING, or STOPPED.

REQ 5 If not at the top floor, the cabin moves up one floor if the motor is WINDING

REQ 6 If not at the bottom floor, the cabin moves down one floor if the motor is UNWINDING

REQ 7 The cabin has a door which can be OPEN, HALF, or CLOSED.

REQ 8 While the cabin is moving, its door must be closed.

REQ 9 On each floor except the top one, there is an “up” button.

REQ 10 On each floor except the bottom one, there is a “down” button.

REQ 11 Inside the cabin, there are floor buttons, one for each floor.

REQ 12 The cabin stops at a particular floor and opens the door if there is a request to serve at that particular floor.

REQ 13 The requests at one floor are cleared once the door is fully open.

REQ 14 The elevator should not move to leave a floor if there are requests to serve at that floor.

REQ 15 The elevator should stay stationary at a floor when there are no requests.

REQ 16 The elevator can only change direction if it has no requests in the same direction but has some requests in the opposite
direction.
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Based on these system requirements, the system features are mapped to the hardware
and software components, as shown in Table 3. This is a design choice and therefore it is
subjective. Elevation controls the requirements of WINDING, UNWIDING. Physical doors
are implemented to more closely simulate a real elevator. Moreover, there is an external
cabin caller and floor buttons inside the cabin for positioning. The model is also equipped
with a floor indicator to visualise the current position. Although not strictly required, the
elevator also includes a path optimiser for a more efficient path planning.

6. Proposed Architecture

This section describes the proposed architecture for the elevator model, including
hardware, mechanical and software perspectives.

6.1. Hardware Design
6.1.1. Mapping

For the elevator to take use of its features, relevant hardware and software must be
included. For elevation (WINDING, UNWIDING), a stepper motor with a threaded rod is
utilised. A mechanical switch indicates when the elevator hits the ground floor. For the
doors, a servo motor is adopted. The floor buttons have sensors corresponding to each
floor. The cabin caller is equipped with a potentiometer to externally select the floor, and
with an LCD screen, also for floor indication. The path optimiser is ruled by a queuing
system implemented via software. The complete mapping is shown in Table 3.

Table 3. Mapping table for the elevator model.

Feature
Hardware

Software
Sensors Actuators

Elevation Ground floor switch Stepper with
threaded rod

Doors Servo

Floor buttons inside cabin Button (7-2)

Floor indicator LCD-Screen

Cabin-caller
Potentiometer for
selection, buttons

(1-0) for up and down
LCD-Screen

Path-optimizer Queueing system

6.1.2. Connection to All in One Servo Lab (AIOSL)

Wires are connected on a stand to the stepper, ground switch and servo wire. These
wires go through the bottom of a printed skirt and are plugged into the AIOSL. The stepper
motor is used in a four-pole configuration, although the hardware supports six poles. The
AIOSL have a built-in stepper motor drive (DRV8813) for directional control [28] and a
DAC (MCP4922) for control of the current, hence the torque of the motor. The stepper in
the AIOSL is connected with a one-by-four female wire head, which makes it easy to switch
it out with the wires coming from the elevator model. The schematic of the connection
from the AIOSL to the elevator model is shown in Figure 4.
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All in one servo lab (AIOSL) Elevator model

Figure 4. Schematic of the connection from the AIOSL to the elevator model.

6.2. Mechanical Design

The model’s availability is a crucial consideration. Components and production
methods that are readily available are used for the prototyping process. The floors are
made in acrylic sheets, which are laser cut in the right shape. The elevator cabin including
doors, the bottom skirt and a mounting spacer for the stepper motor are 3D printed. All
metal parts are easily available off the shelf in hobby shops and some components in
hardware stores.

In Table 4, all the components needed for setting up the elevator model and integrating
it with the AIOSL are described. An exploded view of the elevator model is shown in
Figure 5. The threaded rod with a diameter of 8 mm is the type used for controlling the
z-axis of 3D printers, and is usually available as a spare part in most stores selling 3D-
printers. The M5 is a standardised threaded rod, and four of them are used for holding the
assembly together. The V-slot is a standard RatRig profile. This part may be switched with
most profile rods. Small adjustments of the profile on the elevator cabin to fit the selected
profile would be necessary.

SOLIDWORKS Educational Product. For Instructional Use Only.

Figure 5. Exploded view of the elevator model: (1) Bottom skirt, (2) Stepper motor, (3) Tube spacer,
(4) Flex axle, (5) Bottom floor, (6) Cabin + Cabin door setup, (7) Mid floor, (8) Lead nut, (9) Threaded
rod, (10) V-slot RatRig profile.
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Table 4. Mechanical components for the elevator model.

Article Material Size Qty. Comment

Threaded rod Steel Ø 8 mm–470 mm 1

Lead nut Brass Hole 8 mm 1

V-slot Rat Rig profile Aluminium 20 × 20 × 500 mm 1

Threaded rod Steel M5-500 mm 4

Nut Steel M5 8

Flex axle Steel 3 mm–8 mm 1

Lock nut Steel 5 mm 4

Tube spacer PLA 70 mm 24 3D-printed

Short tube spacer PLA 25 mm 4 3D-printed

Stepper spacer PLA 42 × 42 × 18 mm 1 3D-printed

Bottom skirt PLA 152 × 102 × 68 mm 1 3D-printed

Cabin + cabindoor setup PLA 1 3D-printed

M3 machine screw Steel 4

Bottom floor Acrylic 150 × 100 × 4 mm 1 Laser cut

Mid floor Acrylic 150 × 100 × 4 mm 6 Laser cut

Top floor Acrylic 150 × 100 × 4 mm 1 Laser cut

Door servo 1

Stepper motor 1 17HS4401

Wires

Assembly

The main tower part of the elevator model is assembled by first mounting the lock
nuts at the end of four M5 threaded rods, and placed in the corner holes from the underside
of the stand. The bottom floor plate is then threaded on the rods and placed down in the
fitted area in the stand. The stepper is then mounted from the underside with the M3 bolts
through the bottom plate and the stepper spacer. This is done to make sure that the shaft
has the correct height above the plate for the flex axle to be mounted. The ground switch
is mounted on the side of the spacer with two screws entered through pre-made holes,
making sure that the switch is triggered by the elevator at the bottom floor. Finally the
V-profile is attached to the bottom plate with a 5 mm screw from the bottom in a crescent
shaped trail on the stepper spacer.

The rest of the floors are then assembled by putting a spacer on each rod and a mid
floor section. This is repeated six times creating all the floors. The assembled elevator cabin
is then slipped on to the profile and screwed down into the lead nut. Finally, the short
spacers are mounted on the rods followed by the top plate, which is secured with two nuts
on each rod.

The elevator cabin consists of a main body, two doors and a top section, containing
the door mechanism and a servo. The door mechanism is operated by a servo pulling a
fishing line through guiding poles on the doors, which again are held up by two rubber
bands. The assembly is mounted to the cabin body with four M2 machine screws. The
servo is connected by a servo wire through a hole at the bottom two mid plates and then
the bottom plate.
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6.3. Software Design

The development of the software is based on the requirements for the elevator. A state
machine diagram is shown in Figure 6 to highlight the wanted response from the elevator,
based on its input.

Figure 6. UML state machine diagram for the elevator model.

In Figure 7, the UML Class Diagram of the elevator model is depicted. The Servo and
the LiquidCrystal libraries are third-party libraries, and are available as standard in the
Arduino IDE. The “DAC” class is specialised for using the DAC unit, which controls the
current connected to the stepper driver. This is necessary because of the old type of stepper
driver implemented in the AIOSL. A similar explanation applies for the “Jmstepper” class
too, as this is meant for a driver where the coils are activated separately. The remaining
classes are created to accommodate the remaining specifications. The “Elevatordoor” class
steers the door servo and keeps track of its current state simultaneously as it stores the set
boundaries for the door. The “Switch” class is used to set up multiple switch inputs as
elevator cabin buttons, as well as the floor buttons on the outside. These two are passed
along to the “Floorchooser” class, which together with the “Potensiometer” class, passes
the selected floor for the queue if up or down buttons are pushed. Note that the “Elevator”
class controls a single elevator object. The advantage of keeping this as an object is the
scalability of the code. With minor rewriting of the main control program, several elevator
objects could be included for more efficiency. The “Elevator” class is connected to both the
“Elevatordoor” and “Jmstepper” class, as well as the “LCD” class. As the “LCD” class is
used in both “Elevator” and “Floorchooser”, the LCD object has to be created in the main
control process and provided for both classes.

6.4. The Queuing Operator

The “Queue” class is a queuing operator and makes up the core of the program. It
handles the input from the switch and the “Floorchooser” class by indexing the floor
request in a list. In addition, the direction of the request is saved in a second list. Requests
queued from the cabin buttons are prioritised and put at the front, while requests from
the buttons at each floor are put at the end. Furthermore, the next floor (which is sent to
the “Elevator” class) is chosen based on a range of requirements. The first object in the
list is used as a reference point, and the rest of the queue is searched through. If a lower
prioritised request is located between the current floor and the highest prioritised floor, this
will be used as the new reference point. Based on the search, the next floor is passed to the
“Elevator” class by the “nextFloor” function, as shown in Listing 1.
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Queue

-queueIndex : int
Queue ( ) : Queue
+mainLoop ( )
+mainSetup ( )
+updateInput ( )
+nextFloor
-floorQueue [20] : int []
-floorDirection [20] : int []
-addToQueue ( thefloor : int, direction : int, importance : int )

Elevator

-currentFloor : int
-stepsPerRevolution : int
-floorHeight : int
-heightPerRevolution : int
-mainMotorSpeed : int
-floorStepRatio : int
Elevator ( pinIn1 : int, pinIn2 : int, pinIn3 : int,
               pinIn4 : int, groundPin : int,
              servoPin : int, servoList[] : float ) : Elevator
+goToFloor ( desiredFloor : int, switchObj : Switch& ) : void
+goSteps (numOfSteps : int ) : void
+goToGround ( switchObj : Switch& ) : void
-calcNumStep ( floors : int ) : int

Elevatordoor

-servoOpen : float
-servoClosed : float
-servoFlag : bool
-doorServoPin : int
Elevatordoor ( servoPin : int ) : Elevatordoor
+openDoors ( ) : void
+closeDoors ( ) : void
-servoBegin ( ) : void
-angleCompfilter ( targetAngle : float,
          lastAngle : float, alpha = 0.02 : float ) : float

LCD

-pwmPIN : int
-currentFloor : int
-currentCFloor : int
LCD ( lcdPins [ ] : int[] ) : LCD
+updateFloor ( Floor : int ) : void
+updateFloorChooser ( cFloor : int ) : void

Potentiometer

-potPin : int
Potentiometer ( pin : int ) : Potentiometer
+potRead ( ) : int

DAC

+dac_init ( )
+set_dac ( a : int, b : int )

Servo

+attach ( pinIn : int )
+write (angle : int )

Jmstepper

-pin_1 : int
-pin_2 : int
-pin_3 : int
-pin_4 : int
-stepperDirection : int
-step_per_revolution : int
-step_delay : int
-step_number : int
Jmstepper ( numberRevolutionStep : int,
                  motor_pin_1 : int, motor_pin_2 : int,
                  motor_pin_3 : int, motor_pin_4 : int ) : Jmstepper
+setSpeed ( whatSpeed : int ) void
+step ( number_of_step : int ) : void
+version ( ) : int
-stepMotor ( step_sequence : int : void

LiquidCrystal

+begin ( x : int, y : int )
+setCursor ( x : int, y : int )
+print ( )

Floorchooser

-indDown : int
-indUp : int
Floorchooser ( potPin : int, buttonIndex1 : int,
                      buttonIndex2 : int ) Floorchooser
+updatePot ( screenObj_ : LCD&,
                   switchObj_ : Switch& ) : void

Switch

-pinList [10] : int
-previousValue [10] : int
-currentCFloor : int
Switch ( pinIn1 : int, pinIn2 : int, pinIn3 : int,
             pinIn4 : int, pinIn5 : int, pinIn6 : int,
             pinIn7 : int, pinIn8 : int, pinIn9 : int,
             pinIn10 : int ) : Switch
+switchButtonPressed (index : int ) : bool
+whileButtonPressed ( index : int ) : bool
+switchCase ( index : int ) : bool

Visual Paradigm Online Free Edition

Visual Paradigm Online Free EditionFigure 7. UML Class Diagram for the elevator model.

Listing 1: The prioritising section of the “Queue” class.

void Que : : nextF loor ( ) {
i f ( queIndex > 0 ) {
i n t theNext , F loor = floorQue [ queIndex − 1 ] ;
i n t theNext , Direc = f l o o r D i r [ queIndex − 1 ] ;
i f ( queIndex > 1) {
f o r ( i n t i = queIndex − 1 ; i >= 0 ; i −−) {
i f ( f l o o r D i r [ i ] == theNext , Direc ) {
i f ( ( ( floorQue [ i ] > theNext , Floor ) and
( floorQue [ i ] < J m S k y l i f t _ . c u r r e n t F l o o r ) ) ||
( ( floorQue [ i ] < theNext , Floor ) and
( floorQue [ i ] < J m S k y l i f t _ . c u r r e n t F l o o r ) ) ) {
i n t theNext , F loor = floorQue [ i ] ;
i n t theNext , Dir = f l o o r D i r [ i ] ;
f o r ( i n t j = i ; j < queIndex ; j ++) {
floorQue [ j ] = floorQue [ j + 1 ] ;
f l o o r D i r [ j ] = f l o o r D i r [ j + 1 ] ;
}
floorQue [ queIndex − 1] = theNext , Floor ;
f l o o r D i r [ queIndex − 1] = theNext , Direc ;
}
}
}
}
floorQue [ queIndex − 1] = 0 ;
f l o o r D i r [ queIndex − 1] = 0 ;
J m S k y l i f t _ . goToFloor ( theNext , Floor , Switchrow_ , Mainscreen_ ) ;
queIndex − −;
}
re turn ;
}
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The result of a test with a pre-made queue provided for the optimiser code can be
seen in Figure 8. The blue line represents the requested floor in the queue, and the orange
line represents the travel of the cabin. In real-life operations, the queue would be updated
simultaneously, which would affect the optimisation. Nevertheless, the test shows that the
optimised path has less oscillation than the requested queue.

Figure 8. The path of the requested path compared to the optimised path of the elevator.

7. Course Learning Outcomes and Feedback from the Reference Group

Upon successful completion of the course, the student should: be able to apply
methods for analysis and design of motion control systems; be able to explain the most
commonly used components for such systems; be able to design and select components for
this type of system; be able to design controls based on stability and accuracy requirements;
be familiar with the microcontroller’s design and programming in C and be able to develop
servo system control programs.

The usefulness of the proposed methodology for teaching motion control is confirmed
by the collected students’ feedback in terms of engagement. The students consider the
theoretical lectures quite engaging, as shown in Figure 9. Particularly positive is the
students’ perception of the laboratory work, as shown in Figure 10. Equally well perceived
by the students is the project work, as shown in Figure 11.

Figure 9. Feedback collected from students: on a scale of 1–10 with 1 being not engaging at all and 10
being extremely engaging, how engaging do you consider the theoretical lectures?
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Figure 10. Feedback collected from students: on a scale of 1–10 with 1 being not engaging at all and
10 being extremely engaging, how engaging do you consider conducting the laboratory work?

Figure 11. Feedback collected from students: on a scale of 1–10 with 1 being not engaging at all and
10 being extremely engaging, how engaging do you consider conducting the elevator project?

8. Conclusions and Future Work

This authors proposed a detailed syllabus of the motion control module for the engi-
neering mechatronics education curriculum. The proposed module combines organised lab-
oratory tasks with a number of structured theoretical sessions. The course culminates with
a group project that focuses on the implementation of an elevator model. The students are
engaged in a learning process that includes system-oriented, hardware-oriented, software-
oriented, and application-oriented components of motion control systems in a highly
integrated structure. The analysis of results from student surveys indicates that the course
organisation and topics are compelling and helpful. In the future, this same educational
approach could be applied to new modules for the engineering mechatronics education
curriculum. Moreover, the possibility of integrating virtual reality (VR)/augmented reality
(AR) with haptics into these modules for multi-sensory learning may be considered [30,31].
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Abbreviations
The following abbreviations are used in this manuscript:

AIOSL All in one servo lab
PWM Pulse–width modulation
IDE Integrated development environment

Appendix A

The elevator open source repository is available online at https://github.com/Microttus/
Elevator-model/, accessed on 25 September 2022.
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