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Abstract: Emotion charting using multimodal signals has gained great demand for stroke-affected pa-
tients, for psychiatrists while examining patients, and for neuromarketing applications. Multimodal
signals for emotion charting include electrocardiogram (ECG) signals, electroencephalogram (EEG)
signals, and galvanic skin response (GSR) signals. EEG, ECG, and GSR are also known as physiologi-
cal signals, which can be used for identification of human emotions. Due to the unbiased nature of
physiological signals, this field has become a great motivation in recent research as physiological sig-
nals are generated autonomously from human central nervous system. Researchers have developed
multiple methods for the classification of these signals for emotion detection. However, due to the
non-linear nature of these signals and the inclusion of noise, while recording, accurate classification
of physiological signals is a challenge for emotion charting. Valence and arousal are two important
states for emotion detection; therefore, this paper presents a novel ensemble learning method based
on deep learning for the classification of four different emotional states including high valence and
high arousal (HVHA), low valence and low arousal (LVLA), high valence and low arousal (HVLA)
and low valence high arousal (LVHA). In the proposed method, multimodal signals (EEG, ECG, and
GSR) are preprocessed using bandpass filtering and independent components analysis (ICA) for
noise removal in EEG signals followed by discrete wavelet transform for time domain to frequency
domain conversion. Discrete wavelet transform results in spectrograms of the physiological signal
and then features are extracted using stacked autoencoders from those spectrograms. A feature vector
is obtained from the bottleneck layer of the autoencoder and is fed to three classifiers SVM (support
vector machine), RF (random forest), and LSTM (long short-term memory) followed by majority
voting as ensemble classification. The proposed system is trained and tested on the AMIGOS dataset
with k-fold cross-validation. The proposed system obtained the highest accuracy of 94.5% and shows
improved results of the proposed method compared with other state-of-the-art methods.

Keywords: emotion charting; EEG signals; physiological signals; ECG signals; ICA; stacked autoencoder;
ensemble classifier

1. Introduction

Human emotion is the complex feelings that result in physiological as well as psy-
chological changes [1,2]. These changes force us to respond to certain stimuli and make
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changes in our thoughts and behavior. Human emotions are recognized using physiological
and non-physiological signals [3]. Emotions are usually described as valence and arousal.
Valence describes positive and negative emotions and arousal describes the strength of
excitement [1]. In the literature, most of the methods of emotion recognition based on
physiological signals classify valence and arousal into low and high levels. However, many
researchers performed emotions classification using four categories, i.e., high valence and
high arousal (HVHA), low valence and low arousal (LVLA), high valence and low arousal
(HVLA), and low valence high arousal (LVHA) as depicted in Figure 1.

A lot of effort has been put into designing an intelligent emotion recognition system
using both physiological and non-physiological signals. Electroencephalogram (EEG),
electrocardiogram (ECG), galvanic skin response (GSR), and blood volume pulse (BVP)
are popular physiological signals while facial expressions, speech, and body gestures
are non-physiological signals [3]. Physiological signals are more effective for emotion
recognition as they are captured directly from the human body and cannot be manipulated
so they give a true perception of human intuitions. Therefore, emotion recognition using
physiological signals has become a hot topic in research because these signals represent
the internal emotional state of a human and they cannot be masked intentionally. Emotion
recognition has a wide range of applications such as physiological healthcare monitoring
especially human’s mental health [4,5], general security purposes [6], and various bio-
inspired human–machine interfaces, etc. [7].
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Figure 1. Valence arousal model [7].

Emotion recognition using physiological signals has gained much attention in recent
research and many of the physiological signals such as electrocardiogram (ECG), galvanic
skin response (GSR), electroencephalogram (EEG), and respiratory suspended particulate
(RSP) have been effectively used for emotion recognition. All these physiological signals
are captured and measured by body sensors and are more effective means for computing
emotional responses. A lot of struggles have been done in the literature to build a critical
relationship between the changes invoked by emotions and what impact they leave on
physiological signals. In particular, EEG and ECG exhibit strong associations between
their waveform and emotional characteristics [8]. Furthermore, the acquisition process
for ECG and EEG is inexpensive, non-invasive, and fast, which makes them suitable tools
for emotions recognition [9]. Many emotion recognition methods have been proposed in
the literature using EEG and ECG signals [3,10,11], where multimodal techniques give the



Sensors 2022, 22, 9480 3 of 16

highest recognition precision than systems with a single modality. Topic et al. extracted
feature maps from EEG signals of four different datasets, i.e., DREAMER, AMIGOS, SEED,
and DEAP. Garg et al. came up with an overlapping sliding window (OSW) modeling
framework for emotion recognition using EEG signals of the AMIGOS dataset. While
Shukla et al. extracted EDA features from EEG signals of AMIGOS datasets and used
three different feature selection techniques for emotion recognition. However, on the other
side, many models have used the fusion of GSR and ECG signals such as [1,7,12]. Rahim
et al. used shimmer sensors for extracting ECG and GSR signals from the human body and
Granados et al. performed emotion detection using ECG and GSR signals of the AMIGOS
dataset. Similarly, Dar et al. classified emotions into four categories, i.e., HAHV, LALV,
LAHV, and HALV using GSR and ECG signals of AMIGOS and DREAMER datasets for
emotion detection.

Conventionally, emotion recognition is performed in three main steps, i.e., preprocess-
ing, feature extraction, and classification [13–15]. Preprocessing involves signal filtering
and noise removal which was addressed in many works such as [7,12], however, base-
line removal was completed along with basic preprocessing in [15]. Similarly, it is very
important to extract discriminant features from physiological signals to perform emotion
recognition in an efficient way. Garg et al. [3] extracted Fourier and wavelet transform-
based features, Shukla et al. [11] used EDA-based features, and Tung et al. [16] extracted
entropy-based features from EEG signals. Moreover, classification is a very important step
in emotion recognition, and in the literature, it has been observed that different classifiers
have been used for the detection of emotions [7,10,16]. Support vector machine (SVM) is
the most commonly use classifier in emotion recognition [3,8,10,11] and it results in binary
classification by giving an optimized hyperplane between the two classes. Convolutional
neural network (CNN) is the most efficient classifier used for emotion recognition and
it was used in many works, i.e., [17,18]. XGBoost model was used in [16] for emotion
classification, while many other works [7,18,19] involved hybrid classifiers using SVM,
CNN, Naïve Bayes, KNN, and LSTM [20–24]. In this study, we propose a novel method for
the classification of physiological signals using stacked autoencoders. The major contri-
butions of the proposed method are as follows: (1) an effective method for noise removal
of physiological signals with a common cutoff frequency for multimodal signals. (2) A
novel machine-learned feature extraction method for multimodal signals using custom
stacked autoencoder architecture. (3) A lightweight and accurate ensemble classifier for the
classification of emotions using multimodal signals.

The rest of the paper is organized as: Section 2 discusses state-of-the-art techniques for
emotion recognition using different physiological signals, Section 3 describes the proposed
methodology, Section 4 performs an analysis of experimental results and Section 5 concludes
the paper and presents future directions.

2. Literature Review

With the advancement in HCI technology in recent years, emotion recognition using
physiological signals has gained significant attention in the research. Researchers used
different training models and datasets for performing emotion recognition through physio-
logical signals. Commonly used physiological signals are EEG, ECG, and GSR which serve
the purpose of emotion recognition more efficiently. In recent research [7,18–32], researchers
have proposed different emotion recognition methods using EEG, ECG, and GSR signals
from different datasets including AMIGOS, DEAP, DREAMER, etc. The typical method
for classification of these physiological signals includes three steps, i.e., pre-processing of
physiological signals, features extraction, and classification.

Noise added to physiological signals during the acquisition process may degrade
the system’s performance; therefore, it is very important to clean the signals from all
noise effects through pre-processing [8]. Cross-talk, measuring instruments, and other
electromagnetic interferences make the physiological signals unsuitable for emotion recog-
nition. Therefore, Sharma et al. [8] used the sliding mode singular spectrum (SM-SSA)
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method for decomposing EEG and ECG signals into reconstructed components (RCs),
while Garg et al. [3] decomposed signals into equal-length samples using an approach of
overlapping sliding windows (OSW) where he used 512 sized windows with a shift of 32.
Window size and shift were calculated empirically. Raw physiological signals obtained
from different participants and from different contexts may contain different types of
artifacts, Klados et al. [21], Dar et al. [11], Tung et al. [16], and S. M et al. [32] performed
down-sampling and bandpass filtering to remove the noise artifacts from signals, while
Dar et al. [7], Zhao et al. [18] and Zhao et al. [14] further performed z-score normalization to
remove baselines from signals to improve recognition accuracy. Sarkar et al. [15] proposed
a self-supervised approach for ECG-based emotion recognition. Firstly, the former network
was trained on pretext tasks using unlabeled data to learn spatiotemporal features and
silent abstract representation of data. For the signal transformation recognition network,
six transformations are performed for ECG signals.

After preprocessing of physiological signals, features are extracted from cleaned phys-
iological signals for classification of signals into four classes (i.e., HAHV, HALV, LAHV,
LALV). It has been observed that different researchers extracted different domains of hand-
crafted features from preprocessed physiological signals [4,8,11,12,19,33–40]. Garg et al. [3]
extracted two features, i.e., normalized wavelet energy (NWE) and band-power (NBP),
and from the decomposed signals of EEG using Fourier and wavelet transform, respec-
tively. He created a combined feature vector by appending five features of NBP and five
features of NWE. Sharma et al. [8] extracted two different entropy-based features that
were computed from RCs of EEG/ECG signals namely: information potential (IP) and
centered correntropy (CEC). IP is invariant to the mean density of samples while CEC is the
correlation that abstracts higher-order information of joint distribution. Granados et al. [12]
and Shukla et al. [11] extracted different statistical features in the time domain, frequency
domain, and non-linear domain. Statistical features including amplitude, time of decay,
mean amplitude indices, rise time, and SCR peaks indices have also been computed for
ECG signals [4]. Shukla et al. [11] extracted event-related features and statistical and Hjorth
features in the time domain and many frequency domain features were extracted from five
bands of EDA signals in the frequency domain. In time-frequency domain features such as
discrete wavelet transform, stationary wavelet transforms features, Mel frequency cepstral
coefficients (MFCC) and their statistical features were extracted. Tejada et al. [19] extracted
different AMIGOS features from 14 channels of EEG signals. A total of 105 EEG features
were used which were reported with the AMIGOS dataset and they referred to PSD and
PSA features. Then, seven features were also utilized from age, sex, and five personality
traits. Therefore, a total of 112 features were used from the AMIGOS dataset in this work.
In total, 154 EEG features were added, and as a whole of total 266 features were used for
the classification model.

There are few researchers who used automatedly generated features for emotion
recognition [1,20]. Topic et al. [1] generated feature maps, i.e., TOPO-FM and HOLO-FM,
and applied the convolutional layer separately on each characteristic feature, resulting
in multiple feature matrices. These matrices were fused together in the form of a single
feature matrix and were given as an input to machine learning-based classifiers for emotion
classifications. Hu et al. [20] used a novel convolutional layer called the Scaling layer which
could extract spectrogram-like features from raw EEG signals. This multi-kernel layer
takes a 1D input signal and gives 2D spectrogram-like feature maps of a signal. Once the
features are extracted, the next step is classification. Researchers have used machine and
deep learning classifiers for the classification of four states of emotions based on valence
and arousal. Machine learning methods include SVM, KNN, NB, DT, and MLP, whereas
deep learning methods involve convolutional neural network variants and long-short-term
memory units (LSTM).

In recent studies, SVM was used for the classification of emotions in many works
proposed by different researchers [1,8,11,19,29–31]. Sharma et al. [8] used the KNN classifier
along with the SVM classifier, while Tejada et al. [19] used combinations of classifiers, i.e., SVM
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classifier, naïve Bayes, random forest, and artificial neural networks for the classification of
emotions into different categories. However, deep learning methods, i.e., CNN, its customized
versions, and DCNN have been proposed by multiple researchers [3,6,9,11,20]. Garg et al. [3]
used 1D and 2D CNN architectures with max-pooling layers followed by four output
dense layers. Granados et al. [12] used a deep convolutional neural network (DCNN) for
classification. Feature vector extracted from physiological signals is fed to the input of
fully connected layers (FCN) to train and validate the model. The last fully connected
layer consists of output neurons for the prediction of the state. Rahim et al. [1] used
the AlexNet architecture of CNN in their work where it has five convolutional layers
and three fully connected layers. Automated features were extracted by different filters
present in convolutional layers and there was a max pooling layer after the first and second
convolutional layers and the third, fourth, and fifth convolutional layers were directly
connected. Output was generated by the second fully connected layer and ReLU was
applied after the last convolutional and fully connected layer. Hu et al. [20] introduced
the ScalingNet, a network constructed by a series of scaling layers to perform emotion
recognition using raw EEG signals. Sarkar et al. [17] used the CNN model for classification
with 512 hidden layers in the architecture. Dar et al. [7] used two different architectures of
DNN for classification through the neural network, one for EEG (2D CNN architecture) that
would be used for the classification of images while the other one was for ECG and GSR
signals which were built with the combination of LSTM and 1D convolutional network.

It has been observed in the literature that most of the researchers have tested their
emotion recognition methods on AMIGOS [1,3,7,8,11,12,21,38–40], DEAP [10,14,18,20],
and DREAMER [7,8,10]. Furthermore, most commonly used physiological signals in
the literature are EEG, ECG, and GSR [3,8,11,18,20,21,33,41]. These physiological signals
have a complex and non-stationary nature. They are sensitive towards noise due to
cross-talk, measuring instruments, and other electromagnetic interferences and therefore
degrade the classification accuracy. Many preprocessing techniques such as bandpass
filtering [11,16] and z-score normalization [14,18] have been proposed in the literature
to address the issue of noise removal but still, there is significant room to improve this
mechanism for improving recognition results. Moreover, many hand-crafted [4,8,11,12,19]
and automated features [1,20] are discussed in the literature, but still, there is a need to
have more discriminating features that could have strong relationships with the emotional
changes in the human brain and human body when they are invoked with certain stimuli.
Similarly, the selection of the classifier is a very important step in performing emotion
recognition because the accurate results lead to the highest precision rate. Therefore, all
these issues are addressed in our proposed work by using an independent component
analysis (ICA) for preprocessing and stacked autoencoders for automated feature extraction.
Moreover, the deep learning technique of LSTM is used in the proposed work for the final
classification of emotions in a more efficient way.

3. Methodology

We propose a method for the classification of physiological signals that classify emo-
tions into four classes, i.e., HVHA, LVLA, HVLA, and LVHA. The flow diagram of proposed
system is shown in Figure 2. The proposed system mainly consists of three steps: prepro-
cessing, feature extraction, and classification. After performing different experiments with
varying window sizes an overlapping window of 30 s with an overlap of 15 s has been
selected to segment data into equal-sized segments. In preprocessing first bandpass filters
are applied on physiological signals to remove power lines and baseline noise. After noise
removal, ICA (independent component analysis) was applied to EEG signals followed by
the discrete wavelet transform (DWT). In features extraction, stacked autoencoder is used
to extract machine-learned features from the preprocessed signals and then SVM and LSTM
were used to classify the emotions into four categories. Three main phases of the paper are
discussed below:
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3.1. Preprocessing of Physiological Signals

The complex and sensitive nature of physiological signals towards noise from cross-
talk, measuring instruments, and other electromagnetic interferences invoke the need to
perform preprocessing for the efficient physiological signals-based emotion recognition.
Physiological signals have different types of noises including physiological artifacts and
powerline and baseline interferences. These noises result in inefficient emotion recognition;
therefore, it is important to eliminate these noises at the early stage of emotion recognition.
For this purpose, first physiological signals EEG and ECG are filtered using bandpass
filters (with cut-off frequency of 0.5 Hz to 45 Hz) to remove powerlines and baseline noise.
Similarly, bandpass filter with ranges between 0.04 Hz to 0.25 Hz has been applied to GSR
signals. After noise removal, independent component analysis (ICA) was applied only on
14 channels of EEG signals for further processing.

3.1.1. Independent Component Analysis

Then, filtered EEG signals are sent to independent component analysis (ICA) which
actually transforms the signal into a signal having mutually independent components [23].
Hence the independent components cannot deduce information from each other. Statis-
tically, independence is computed by finding out the joint probability of the particular
signal. Joint probability is computed by the product of probabilities of all the independent
components.

Let us suppose we have m independent signals say ai(t) for i = 1, . . . , m where signal
a is the function of t (1 ≤ t ≤ T). Hence a(t) is the vector that has zero mean and is
composed of m values. We further assume that signal a(t) has independent components
and is noiseless signal, therefore we generate a function called multivariate density function
using the probabilities of independent components which is written as

p(a(t)) = ∏m
i=1p(ai(t)) (1)

Let us suppose we have a d-dimensional data vector X which is observed at each
moment,

s(t) = Xa(t), (2)
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where X is m× d scalar matrix and d ≥ m. Independent component analysis actually needs
to recover the source signal from the recognized signal. More precisely, we obtain a real
matrix Y such that

w(t) = Ys(t) = YXa(t) (3)

where w is the estimate of source signal a(t). Moreover, Y can be calculated using above
equation as Y = X−1, but both X and its inverse are unknown, and it could be found by
using any of the determinant techniques of inverse. Then, estimate of source signal w(t) is
forwarded to DWT for converting it into 2D signal.

3.1.2. Discrete Wavelet Transform for Multimodal Signals

Then, the output signal obtained from ICA is given to discrete wavelet transform
(DWT). It is used to convert time domain to frequency domain signals. Discrete wavelet
transform (DWT) implements orthonormal wavelet transform in discrete time context [24].
In DWT mother wavelet determines the decomposition of wavelets which consists of
consequent low-pass and high-pass filtering. Wavelet function has two properties, i.e.,
scaling and translating which are represented in the equation given below:

∅j,k(t) = 2
j
2 ∅

(
2jt− k

)
, (4)

ψj,k(t) = 2
j
2 ψ

(
2jt− k

)
, (5)

where j represents dilation and k represents position. General equation of dilation is
shown below:

φ(t) = ∑
m

lφ[m]
√

2φ(2t−m), (6)

where lφ[n] is the discrete low pass filter.
The relationship of wavelet function ψ(t) and φ(t) is shown below:

ψ(t) = φ(t) = ∑
m

lψ[m]
√

2φ(2t−m) (7)

where relationship with wavelet coefficient and low pass filter is shown in given equation.

lψ[m] = (−1)mlφ[1−m] (8)

The wavelet transform is then forwarded to autoencoder for features extraction.

3.2. Feature Extraction from Multimodal Signals

Features extraction is a very important phase in emotions recognition method. Features
are extracted through autoencoder in our proposed method.

Customized Stacked Autoencoder

Autoencoder works on the basis of back propagation mechanism which is used to
learn low dimensional data into high dimensional data by using the significant information
from input data [25,26]. Generally, the model is built by minimizing the difference between
input and output; hence, the middle layer represents the compressed form of input [27].
Its architecture has three parts: input layers, hidden layers, and output layers which are
shown in Figure 3. Input and output layers have same dimensions so the network from
input to hidden layer is called “encoder network” (EN) and hidden layer to output layer is
called “decoder network”.
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In our proposed system the encoder network consists of set of 3 convolutional blocks
which take wavelet transform of EEG, ECG, and GSR signals as input. Each convolutional
block consists of convolutional layer with 15 × 15, 9 × 9, and 3 × 3 sized kernels, respec-
tively, for each block. After convolutional layer we have Batch normalization layer followed
by ReLU layer, max pooling layer, and dropout layer. The hidden layer which is also called
“bottleneck” layer contains the compressed output with its important features. Finally,
decoder network consists of up-sampling and convolutional blocks that reconstruct the
output of bottleneck. The convolutional blocks consist of transpose convolutional layer,
batch normalization, ReLU, and max-unpooling layers followed by dropout layer. The
transpose convolutional layer works exactly as convolutional layer but in a reverse manner,
hence increasing the width and height of input layers.

Autoencoder is trained according to the rule that minimizes the reconstruction loss
function between actual data and rebuilt data (wavelet). We have to make sure that the
derivative of the bottleneck activations is small than the input layer while training the
model. Mathematically,

derivative of bottleneck layer and input layer =
δb
δm

(9)

where b is the bottleneck (hidden layer) and m is the input layer.
However, the loss function could be represented as:

L−
∣∣∣m−m2

∣∣∣ = λ ∑
i
‖∆mab(m)

∥∥∥∥∥
2

(10)

where b is the bottleneck or hidden layer for which the gradient is calculated and repre-
sented with respect to the input m as ∆mab(m). Once the autoencoder is trained, the feature
vector is obtained from the bottleneck layer of stacked autoencoder which is given to the
classifiers as input for emotions classification.

3.3. Classification

An ensemble classifier based on the majority voting of the three classifiers including
LSTM with 32 repeating units, Random Forest (RF), and SVM with linear kernel function
has been applied. RF combines the decision trees, whereas SVM draws a hyperplane
for decision boundary. LSTM works very much like RNN at a very high level [28,41]. It
consists of three parts which are known as gates of LSTM namely forget gate, input gate,
and output gate.

Forget gate: in the first gate of LSTM network, it checks the relevancy of input data and
decides whether we should retain our information or forget it from the previous timestamp.
Here is the equation for forget gate:

yt = σ
(
at ∗Af + ht−1 ∗Hf

)
, (11)
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where
at: input to the current timestamp
Af: input weight matrix
ht−1: hidden state of the previous timestamp
Hf: weight matrix associated with hidden state
Later, sigmoid function is applied over the function yt to make the output in 0 and 1.

This yt is then multiplied with previous cell state which are as shown:

Ct−1 ∗ yt = 0, if yt = 0 (forget everything) (12)

Ct−1 ∗ yt = Ct−1, if yt = 1 (forget nothing) (13)

If yt = 0 then the network will forget everything, if yt = 1, then the network will
forget nothing.

Input gate: input gate quantifies important information carried by the input. Here is
the equation of input gate:

It = σ(at ∗Ai + ht−1 ∗Hi), (14)

where
at: input in the current timestamp
Ai: weight matrix of input
ht−1: represents hidden state at time t − 1
Hf: hidden state weight matrix
The function It is passed through sigmoid function so it will result in either 0 or 1.
Now new information is expressed as:

nt = tanh(at ∗Uc + ht−1 ∗Hc), (new information) (15)

New information needs to be passed to next state is the function of input state at
current timestamp and function of hidden state at previous time stamp. It is the function of
tanh which could be either −1 or 1. If the value of function nt is negative the information
will be deducted from the cell state and if nt is positive the information will be added to
the cell state.

The equation used to add nt in the cell state is shown below:

ct = yt ∗ ct−1 + It ∗ nt, (updating cell state) (16)

ct−1 is the cell state at current timestamp while rest of the values are calculated previously.
Output gate: the output gate is equated as:

ot = σ(at ∗Ao + ht−1 ∗Ho) (17)

As the activation function used is sigmoid function, so ot will result either 0 or 1.
The current hidden state is the function of long-term memory (ct) and current output

(ot) and it could be calculated
ht = ot ∗ tanh(ct), (18)

Feature vector generated from the previous step is fed to classifiers SVM, LSTM and RF.
Then, single output is generated by using the approach of majority voting which constitutes
the ensemble classifier.

4. Results and Discussion

We have trained the proposed system on the AMIGOS dataset which consists of ECG,
EEG, and GSR signals from 40 participants which were recorded in two experimental
settings. k-fold cross-validation has been used with k = 10 and each subject has multiple
samples. Experiments were repeated for 10-fold validation and the average of all folds has
been reported. Therefore, in every fold test and train, data are different in each fold. We
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performed multiple experiments to carry out the systematic evaluation of our proposed
system using k-fold cross-validation for splitting samples of all classes into train and test
with 2000 samples in the test. The performance measures used for the assessment of
proposed system are accuracy, specificity, and sensitivity. Accuracy is calculated for each
experiment; however, specificity and sensitivity are calculated for each label, i.e., (LAHV,
HALV, LALV, and HAHV). The values of these performance measures are calculated using
the given equations [18]:

Accuracy =
TP + TN

Total numbers of samples
(19)

Specificity =
TN

TN + FP
(20)

Sensitivity =
TP

TP + FN
(21)

TP − True positive
TN − True negative
FP − False positive
FN − False negative

In our system, we have two main categories, i.e., arousal and valence, which are further
divided into four categories (i.e., HALV, HAHV, LALV, LAHV). Let us suppose arousal
is true class and valence is false class. Yet for four classes one vs. all approach is used
where three classes will become one class and rest will be another class. Therefore, true
positive is when system predicts the true class accurately and true negative is when system
predicts false class accurately. Similarly, a false positive is when system predicts a true class
inaccurately and a false negative is when system predicts a false class inaccurately.

Table 1 shows the results obtained with different experiments. First of all, the system
was assessed without performing preprocessing and CNN was used to classify emotions
into four classes, i.e., LAHV, HALV, HAHV, and LALV. In this experiment, with no pre-
processing, an accuracy of 81.5% was observed with an average specificity of 91%. In the
second experiment system, preprocessing was performed using a bandpass filter. It has
been observed that the system’s accuracy has been improved by doing preprocessing and
it is equal to 84%. Therefore, it is important to remove signals baseline and other types of
noise for emotion recognition. In the third experiment, preprocessing is further enhanced
by using Independent component analysis (ICA) which removes powerlines, etc., and
improves the system’s overall performance.

Table 1. Results obtained on AMIGOS dataset by varying different experimental setups.

Methodology Accuracy (%) Sensitivity (%) Specificity (%)

No preprocessing
DWT
CNN

81.5

80 97
78 95
82 91
86 89

Bandpass filtering
DWT
CNN

84

80 100
82 91
84 92
82 90

Bandpass filtering
ICA

DWT,
CNN

88.5

82 99
86 98
88 94
98 93
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Table 1. Cont.

Methodology Accuracy (%) Sensitivity (%) Specificity (%)

Bandpass filtering
ICA

DWT
Autoencoder

CNN

89

84 99
88 96
88 94
96 95

Bandpass filtering
ICA

DWT
Stacked Autoencoder, CNN

89.5

82 99
88 97
90 94
98 95

Bandpass filtering
ICA

DWT
Stacked Autoencoder

RF

90.5

88 99
88 97
88 96
98 94

Bandpass filtering
ICA

DWT
Stacked Autoencoder

SVM

92.5

84 99
96 96
90 97

100 97

Bandpass filtering
ICA

DWT
Stacked Autoencoder

LSTM

93.5

94 99
96 97
84 99

100 96

Bandpass filtering
ICA

DWT
Stacked Autoencoder
Ensemble Classifier

94.5

94 99
96 98
88 99

100 97

In this experiment, system obtained an accuracy of 88.5%, which is a significant
improvement as compared to the conventional preprocessing. In fourth experiment, after
preprocessing features are extracted using autoencoder which gives a feature vector in its
bottleneck layer. The feature vector is then forwarded to fully connected layer of CNN.
It has been observed system achieved an accuracy of 89% and specificity of 94%. In
fifth experiment, stacked autoencoder was used for feature extraction which consists of
multiple CNN layers and maxpooling layer in its encoder network. Therefore, feature
vector obtained from its bottleneck layer is then forwarded to FC layer of CNN. It has
been observed in this experimentation that system’s performance gets improved by 1–2%
in terms of accuracy. In sixth experiment, CNN classifier has been replaced by random
forest (RF) which increases system’s accuracy which is equal to 90.5%. However, in the next
experiment, classification was performed by an SVM classifier which increases system’s
accuracy significantly by 2–3% and is equal to 92.5%. In seventh experiment, LSTM
was used to classify emotions. System’s accuracy is further increased by using LSTM as
compared to other classifiers which are equal to 93.5%. Finally, ensemble classifier is used
in last experiment which takes the outputs of SVM, RF, and LSTM and results the best
accuracy out of the three outputs. Overall system’s performance is improved by 1% with
ensemble classifier.

Figure 4 shows confusion matrix for all experiments where diagonal values in each matrix
are correctly classified samples and off-diagonal values are incorrectly classified samples.
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Figure 4. (a) Confusion Matrix for Experiment 1 (No preprocessing, DWT, CNN), (b) Confusion
Matrix for Experiment 2 (Bandpass filtering, DWT, CNN), (c) Confusion Matrix for Experiment 3
(Bandpass filtering, ICA, DWT, CNN), (d) Confusion Matrix for Experiment 4 (Bandpass filtering,
ICA, DWT, Autoencoder, CNN), (e) Confusion Matrix for Experiment 5 (Bandpass filtering, ICA,
DWT, Stacked Autoencoder, CNN), (f) Confusion Matrix for Experiment 6 (Bandpass filtering, ICA,
DWT, Stacked Autoencoder, RF), (g) Confusion Matrix for Experiment 7 (Bandpass filtering, ICA,
DWT, Stacked Autoencoder, SVM), (h) Confusion Matrix for Experiment 8 (Bandpass filtering, ICA,
DWT, Stacked Autoencoder, LSTM), (i) Confusion Matrix for Experiment 9 (Bandpass filtering, ICA,
DWT, Stacked Autoencoder, Ensemble Classifier).

Figure 5 shows performance of proposed experimental settings in terms of accuracy. It
can be clearly seen that system performs better with ensemble classifier. Figure 6 shows
overview of sensitivity and specificity of proposed experimental settings against each
class label.
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Table 2 shows the comparative analysis of the proposed method with previous state-
of-the-art methods on emotion recognition. It is clearly observed in the table that methods
with preprocessing give improved results as compared to methods with no preprocessing.
Moreover, proposed method achieved the highest accuracy of 94.5% as compared to other
state-of-art methods on emotion recognition which is also clearly seen in bar charts shown
in Figure 7.

Table 2. Comparison of proposed approach with existing methods.

Method Year Dataset Preprocessing Feature Extraction Classifier Accuracy (%)

Topic et al. [10] 2021
DEAP
SEED

DREAMERS
AMIGOS

–
TOPO-FM, HOLO-FM,
deep learning features

extractor (CNN)
SVM 85.07%

Sharma et al. [8] 2021 DREAMER
AMIGOS

Decomposition of
signals into

reconstructed
components (RCs)

Entropy based features:
Information potential

(ip) and centered
correntropy (CEC)

KNN
SVM 92.38%

Hu et al. [20] 2021 DEAP
AMIGOS – Spectrograms such as

feature maps
Scaling net neural

network 73.77%

Sarkar et al. [17] 2020
AMIGOS

DREAMER
WESAD
SWELL

Down sampling, high
pass IIR filter and

z-score normalization
–

SVM,
Fully supervised

CNN,
KNN,

RF,
LDA

93.8%

Klados et al. [21] 2020 AMIGOS –
Cross-spectrum,

coherence, betweenness
centrality (BC),

SVM 86.5%

Tejada et al. [19] 2020 AMIGOS Bandpass filter

PSD, PSA, fractional
dimension (FD),

differential entropy
(DE), rational

asymmetry (RASM),
differential asymmetry

(DASM)

SVM, Naïve
Bayes, RF, ANN 68%

Rahim et al. [1] 2019 AMIGOS SMOTE technique Scalogram, spectrogram CNN 92.70%

Tung et al. [16] 2018 AMIGOS Noise removal using
different filters

ANOVA statistical
analysis XGBoost model 84%

Proposed
Method 2022 AMIGOS

Bandpass filter,
Independent

Component Analysis
(ICA), DWT

Stacked Autoencoder Ensemble
Classifier 94.5%
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5. Conclusions and Future Work

Emotion recognition is one of the most captivating topics in recent research. Many re-
searchers came up with emotion recognition as discussed in the literature, but physiological
signals-based methods are rarely implemented specifically with EEG, ECG, and GSR sig-
nals. Moreover, it has been found in the literature that many researchers have not addressed
preprocessing and feature extraction phases efficiently. As the physiological signals are
non-stationary and have powerline and baseline noise, this needs to be addressed properly.
Moreover, there was a need to have the most discriminating features, which could draw the
relation between human body signals and emotions. Therefore, this paper addressed these
issues and proposed a method in which preprocess signals with independent component
analysis and features are extracted using a stacked autoencoder using their bottleneck
layer. For the classification of emotions into four categories (HALV, LAHV, LALV, HAHV),
majority voting has been applied to the outputs of the three classifiers including SVM, RF,
and LSTM. The system achieved the highest accuracy of 94.5% which outperforms the
previous methods. There are certain limitations in our work as well, for instance, analysis
of frequency bands has not been completed for the physiological signals and more deep
learning models could be used for emotion recognition. This can be extended in the future
to overcome the aforementioned limitations. Moreover, in the future, this work could be
a great step towards the invention of wearable devices which will help in assessing the
emotions of the person suffering from depression and other brain disorders. Moreover,
these devices can be installed in hospitals as well which can assist doctors in the treatment
of patients with depression and autism. Cut-off frequencies for bandpass filtering for EEG,
ECG, and GSR signals can be varied to observe the changes in the emotions for improved
classification. Real-time data acquisition could be completed in the future and the proposed
system could be tested on real-time datasets as well, which would add more excellency to
the proposed work.
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