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Abstract: This article begins with a brief outline of recent advances in the application of computer
modeling to sustainability research, identifying important gaps in coverage and associated limits in
methodological capability, particularly in regard to taking account of the tangled human factors that
are often impediments to a sustainable future. It then describes some of the ways in which a new
transdisciplinary approach within “human simulation” can contribute to the further development of
sustainability modeling, more effectively addressing such human factors through its emphasis on
stakeholder, policy professional, and subject matter expert participation, and its focus on constructing
more realistic cognitive architectures and artificial societies. Finally, the article offers philosophical
reflections on some of the ontological, epistemological, and ethical issues raised at the intersection of
sustainability research and social simulation, considered in light of the importance of human factors,
including values and worldviews, in the modeling process. Based on this philosophical analysis, we
encourage more explicit conversations about the value of naturalism and secularism in finding and
facilitating effective and ethical strategies for sustainable development.
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1. Introduction

This Special Issue highlights the potential of computational modeling and simulation (M&S) to
contribute to research on human–environment interactions. Studying the intricate, multi-dimensional,
and nonlinear dynamics that characterize these interactions requires powerful analytic and synthetic
tools suited to understanding complex adaptive systems. This article explores some of the challenges
and opportunities involved in the computational modeling of sustainability from the perspective
of “human simulation,” a new transdisciplinary and collaborative approach to M&S, and offers
some reflections on philosophical issues surrounding the task of finding and facilitating more ethical,
effective, and efficient modes of adaptation and sustainable development in our increasingly pluralistic,
globalizing, and ecologically fragile environment.

In the next section, we describe some recent advances in sustainability modeling that use M&S
techniques. Here, we are using the term sustainability in a broad sense, inclusive of the wide range of
themes and tasks identified in the United Nations’ Sustainable Development Goals [1]. Problems related
to sustainability may be explored from the perspective of ecological, climate, biological, economic,
cultural, or social systems. Here, we explore ways in which M&S can help provide answers to questions
about the reciprocal causal relationships between human behaviors and the natural systems within
which they are entangled at all these levels. These methodological tools have been growing rapidly

Sustainability 2020, 12, 10039; doi:10.3390/su122310039 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-0588-6977
https://orcid.org/0000-0002-7571-1259
http://www.mdpi.com/2071-1050/12/23/10039?type=check_update&version=1
http://dx.doi.org/10.3390/su122310039
http://www.mdpi.com/journal/sustainability


Sustainability 2020, 12, 10039 2 of 16

in popularity in the social sciences more broadly [2–4], but their potential relevance for disciplines
such as development studies, which are increasingly organized around issues of sustainability [5],
has not yet been fully appreciated. In particular, we identify gaps in coverage and associated limits
in methodological capability in regard to taking account of human (all too human) factors, biases,
and tendencies that are often impediments to a sustainable future. The third section introduces
“human simulation,” a collaborative approach to M&S that engages subject-matter experts, policy
professionals, and stakeholders at all stages of the model construction process (including design,
implementation, and dissemination of results). With its explicit inclusion of insights from cognitive
science, moral psychology, and a rich variety of human sciences, human simulation opens up new vistas
for sustainability research, especially through its use of multi-agent artificial intelligence modeling
techniques, which are better capable of incorporating human factors relevant for navigating toward a
sustainable future into their computational architectures. The fourth section identifies and discusses
some of the key ontological, epistemological, and ethical topics that are raised at the intersection of
human simulation and sustainability research, focusing on the values and worldviews that tend to
advance or impede sustainability. In this connection, we show how approaching sustainability research
through human simulation highlights the positive potential of naturalistic explanations and secularistic
strategies in our shared struggle to adapt in the Anthropocene—that is, the current geological age,
during which human activity has become a dominant influence on the environment.

2. Advances in Sustainability Modeling

In the broadest sense, all research on sustainability involves modeling—the construction and
testing of coordinated concepts and theories that aim to make sense of what is happening (or may
happen) in complex social systems. Nobel prize winner Elinor Ostrom, for example, developed an
influential theoretical model of the conditions for the sustainability of socio-ecological systems (SESs), in
which she put a heavy focus on the complexity and heterogeneity of such systems [6]. Such theoretical
models are obviously useful, but in this context, we are interested specifically in computational models
based on the formalization of theories such that they can be implemented in computer programs. In
fact, Ostrom herself worked with computer scientists to explore the usefulness of agent-based models
for analyzing the robustness of SESs [7,8].

There are pragmatic reasons for emphasizing the value of such models for sustainability research.
Computational models are uniquely able to express the dynamics of complex adaptive systems,
including the behaviors and interactions of agents within the simulated time and space of a virtual
ecological environment. Multidisciplinary research teams have developed social simulations aimed at
addressing a wide range of societal challenges that affect the sustainability of human groups, including
the COVID-19 pandemic [9,10] and the integration of economically, ethnically, and ideologically diverse
populations [11]. In this context, we focus on the application of M&S to more classical themes in
sustainable development.

Given the potential of M&S approaches, it is not surprising that they were applied relatively
early in their development to the task of understanding the conditions under which human societies
would remain sustainable in the face of major climate change. The (in)famous Club of Rome
system-dynamics models in the 1960s [12], for example, illustrated the limitations as well as the
opportunities involved in modeling sustainable futures. Over the decades, the accuracy, explanatory
power, and insight-generating capacity of computational models of climate change have increased
rapidly [13], as have the diversity of approaches to modeling human–environment interactions that
address the growing challenges of the Anthropocene [14–17]. The importance of linking models of
human behavior and models of climate has been poignantly brought home by a recent article showing
the significant extent to which including social processes (such as shifts in the perception of risk) can
alter projections in climate change modeling [18].

This suggests the need for renewed attention to the task of developing models that incorporate
the complexity and mutuality of human–environment interactions as we explore the challenges and
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opportunities for transitioning toward more sustainable societies. In fact, M&S has been increasingly
used in recent years to study sustainability transitions at a variety of scales from one (relatively) stable
socio-ecological equilibrium to another. For example, M&S has been employed to study the importance
of local communities and the role of local leaders in encouraging or discouraging low-carbon energy
transitions [19], and the importance of broader, collaborative, multi-level adaptive strategies for
managing regional and international sustainability transitions [20]. Other models have been able to
simulate some of the major historical shifts in human civilizational forms, such as the transition from
hunter-gathering to sedentary agriculture [21], the transition from pre-Axial to Axial Age civilizations
across the globe during the first millennium BCE [22], and the ongoing modern transition from cultures
in which supernatural beliefs play a dominant role in maintaining social cohesion to more naturalistic
and secular cultures [23].

The academic community is increasingly realizing the potential of agent-based models (ABMs)
in particular as a consolidated “bottom-up” multidisciplinary approach for studying the emergence
of collective responses to climate change policies and related issues by taking into account both
“adaptive behavior and heterogeneity of the system’s components” [24] (p. 17). One of the distinctive
features of ABMs is the capacity for linking the micro-, meso-, and macro-level factors at work in
complex adaptive systems. Appropriately verified and validated ABMs can shed light both on the
conditions under which and the causal mechanisms by which social (and other) macro-phenomena
emerge from micro-level behaviors and meso-level network interactions. This ability to “grow” social
phenomena within artificial societies has led some scholars to refer to such methods as generative
social science [25]. Although it is still not uncommon to find system dynamics modeling techniques
used to study the sustainability of such systems [26,27], ABMs seem to be gaining ground as the
computational methodology of choice especially when the primary purpose of the model is to inform
policy discussions in a way that takes human behavior into account.

ABMs have been utilized for research on a wide variety of issues related to the sustainability of
social systems, including the way in which: cultures arise, develop, and evolve through time [28],
norms emerge and shift within populations [29], cooperation is maintained and enhanced within
pluralistic contexts [30], diverse agents impact land-use and land-cover change [31], and different values
interact with the treatment of and public attitudes toward refugees [32]. The influential MedLand
model links an ABM to a landscape evolution model in order to provide a platform for “experimental
socioecology,” i.e., a platform for studying the interactions among social and biophysical processes
in order to inform decision-making strategies for land-use related to issues such as farming and
herding [33,34]. Multi-agent models have also been developed to study other probabilistic causal
processes in coupled human and natural systems (CHANS), including how interactions between
climate, built environment, and human societies could lead to permafrost thawing in Boreal and Arctic
regions, thereby greatly impacting human migratory movements [35]; and how interactions between
human decisions and natural systems could lead to the long-term sustainability of forest ecosystems in
areas such as north-central Texas [36]. Given the potential of ABM techniques to shed light on the
reciprocal relations between human behavior and ecological change, it is not surprising that calls for
their use in research on the sustainability of economic systems are increasing [37,38].

A recent state-of-the-art survey of methodologies and models for studying SESs summarized the
achievements of the field and articulated persistent challenges, such as the need to represent human
decision-making more accurately in light of knowledge from social psychology [39]. Other scholars
have called for more precise and formal ontologies in SES models that pay more attention to the pivotal
role that human actors play in such systems, which is often underrepresented in SES modeling [40].
One recently proposed framework calls for comparing ways in which different behavioral theories (e.g.,
rational actor, bounded rationality) impact SES outcomes. This opens up the possibility for “sensitivity
analysis of human behavior within a natural resource management context [;] such an analysis enables
assessing the robustness of the performance of policy options to different assumptions of human
behavior” [41] (p. 33); see also [42]. Understanding such human factors requires special attention to
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insights from biological and cultural evolution into the ways in which humans have adapted (and
might adapt) to changes in their environment [43]. This is why several of the leading scholars in
the application of ABMs to sustainability issues have attempted to develop models with agents who
are capable of adapting to (simulated) climate change challenges [44,45] and called for even more
behaviorally realistic agent architectures [46].

Most SES models that have explicitly tackled challenges related to sustainability have focused
on particular regions and specific policy intervention options such as pastoralist conflict in eastern
Africa [47,48], decision-making related to a watershed in Kansas [49], and sustainable practices for
grassland consumption in Mongolia [50]. ABMs have also been used to evaluate policies for promoting
“climate clubs” oriented toward facilitating cooperation among institutions and states in response to
the challenges of the Anthropocene [16,51–53]. Social simulation techniques are increasingly applied in
the study of sustainability transitions such as shifts toward low-carbon energy [19,54]. For reviews of
other uses of ABMs to address issues related to human adaptation and sustainability, see [17,24,55,56].

This growing interest among sustainability researchers and policy stakeholders in using ABMs
and other computational modeling techniques to identify “plausible and desirable futures in the
Anthropocene” [57] is obviously good news. Such tools are being used to pursue an “experimental
socioecology” that can enhance diverse decision-making strategies in cooperative processes such as
land-use [33], to optimize cooperation and information exchange [58], and to facilitate the construction
of “future safe and just operating spaces” for human societies [26]. Scholars in this sub-field of M&S
are quite aware of the limitations in the use of ABMs to study the sustainability of CHANS or SESs,
especially challenges related to verification and validation, but are striving to improve the state of the
art [39].

3. The “Human Simulation” Approach

This brief review of the literature documents growing interest in the use of M&S methodologies
to address concerns related to our capacity to attain and maintain sustainable human–environment
interactions. However, it also suggests that those who engage in this endeavor are faced with at least
two major challenges. First, as we have seen, many scholars in this field are acutely aware of the
difficulty (and the importance) of constructing more cognitively and sociologically realistic simulated
agents and artificial societies in order to take account of the human factors that are important in
moving our civilizations toward a sustainable future. Computer modelers have been working on this
for decades and several models with relatively psychologically plausible and behaviorally realistic
agent architectures have recently been developed for simulating human decision-making in complex
environments [41,59,60]. Simulation results from one such “socio-climate” model designed to chart
optimal pathways to climate change mitigation suggest that the most efficient route to a reduced peak
temperature anomaly is to focus first on increasing social learning (better informing the population
about climate change) prior to reducing mitigation costs [61]. However, as the authors of that model
acknowledge, their approach assumed homogeneous agents in a socially unstructured artificial society,
and they point out the need for new models that involve heterogeneous agents nested in hierarchically
complex social structures.

Second, despite extensive efforts in recent decades to engage policy professionals, public
stakeholders, change agents, and subject matter experts in the process of model design, simulation
implementation, and interpretation of results, there is a broad consensus among computational social
scientists that we need to invest more energy into improving our strategies for (and practices in)
participatory modeling [27,62–66], including the modeling of CHANS [67,68]. This challenge grows
ever more salient as the ethical implications of the development and use of artificial intelligence for
human life and social order increasingly become a part of public policy discourse. This is not merely a
matter of training simulation engineers to be more sensitive and better able to engage and elicit wisdom
from stakeholders, though that will certainly help. It is also about paying attention to the limitations
of overly abstract sustainability simulations that seem irrelevant to stakeholders who spend every
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day thinking about the complexity of human responses to societal instability in the face of ecological
change. In other words, it is about registering within simulation models the very human factors that
experts know are crucially important in determining whether or not positive change occurs in our
struggle to forge a sustainable future.

The approach outlined and illustrated in Human Simulation: Perspectives, Insights, and
Applications [69] is intended as a response to these (and related) challenges. The introduction to
that volume articulates a transdisciplinary approach that is committed to involving scholars from
the humanities and the social sciences, along with subject matter experts, policy professionals, and
other stakeholder change-agents in the process of constructing computational simulations that address
pressing societal challenges. Human simulation strives to incorporate vital human factors into agent
architectures and the artificial societies they inhabit in order to account more adequately for the
cognitive and cultural complexity of our species within its models, as well as for the role of actual
humans in the ethical production and use of computational models. The overarching vision for the
participatory approach in human simulation is depicted in Figure 1.
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All of these components are oriented toward understanding and solving societal problems (e.g.,
cultural integration, religious conflict, pandemics, economic exploitation). The top circle is data,
indicating the seriousness with which the human-simulation approach takes the need for empirical
validation when modeling for explanatory or forecasting purposes. The upper-right circle represents
the wealth of resources that M&S methodologies can bring to the task. The lower-right circle indicates
the vital role of subject matter experts (SMEs), including from relevant disciplines in the social sciences
and the humanities (even philosophers, as we will see below). The lower-left circle points to the critical
role of policy professionals in informing research and translating its results into effective change at
the policy level. Finally, the upper-left circle expresses the importance of rigorous engagement with
stakeholders and change agents who may not be directly involved in public policy but can create the
conditions for sustainable development from the bottom-up. All five components of this approach to
problem-solving are crucial within human simulation.

The Human Simulation volume offers several methodological chapters as well as substantive
examples of collaborative social simulation involving a wide array of disciplines, including the
development of more cognitively and sociologically realistic computational models designed to study
human phenomena such as cultural integration, ritual participation, religious systems, and empathic
cooperation. They also show that not all five components (the outer circles in Figure 1) are equally
important in every application of the approach since their relevance depends on the problem and the
audience to which a model is directed. Typically, however, the pressing problems associated with
modeling sustainability require attention to all five components.
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The human-simulation approach has also guided the development of several earlier models
that incorporate human values or worldviews and are relevant for studying sustainability. We have
found that multi-agent artificial intelligence (MAAI) models, which incorporate more psychologically
realistic and socially networked simulated agents than traditional ABMs [70], are particularly useful
when factors related to human cognition and culture play a significant role in the target phenomenon.
For example, one MAAI model simulated the causal relationship between mortality salience and
religiosity within an artificial society whose networked agents had cognitive architectures informed
by the literature on terror management theory, and who were confronted by environmental threats
(including contagion and natural hazards) to which humans have evolved to react with anxiety [71].
A later model, which incorporated additional variables within the artificial society, further informing
the agent architectures with social identity theory and identity fusion theory, was able to simulate
the conditions under which—and the mechanisms by which—mutually escalating conflict between
religious groups tends to increase (or decrease) in a population [72]. Another MAAI model that utilized
the human-simulation approach was able to simulate the expansion of secularism in the populations
of 22 countries. Utilizing more psychologically realistic simulated agents in social networks, it was
able to “grow” macro-level secularization in artificial societies from micro-level agent behaviors and
interactions [73].

All of these models were constructed through extended collaboration among the various kinds of
experts described above, following a particular procedure (depicted in Figure 2).
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This procedure involves the navigation of a conceptual and computational model’s “insight
space,” which comprehends both its problem space and its solution space (see [69] for further details).
Under each of the steps in Figure 2, key tasks are listed on the left, and examples of human factors
that need to be considered are described on the right. Note that these examples of human factors are
relevant not only in the insight space of the model but also in the workflow of the modeling team.
The human-simulation methodology calls for managing human factors in the modeling process with
every bit as much energy and creativity as it seeks to incorporate human factors into simulated agent
minds and artificial societies.

Ideally, the types of expertise represented in the outer circles of Figure 1 will be included in the
key processes related to the design and implementation of models, as well as the dissemination of
their results. This makes sense not only because the SMEs, policy professionals, stakeholders, and
change agents have the knowledge necessary to help the simulation engineers construct more realistic
simulated agents and social networks but also because their participation helps to ensure that the
problem and solution spaces are as relevant as possible for addressing real-world societal challenges.
The human-simulation approach requires sensitivity and openness on the part of all collaborators,
and this sort of experimentation with transdisciplinary teams continues to lead to new insights for
participatory modeling [74,75].

4. Ontological, Epistemological, and Ethical Reflections

The human-simulation approach also takes seriously the ontological, epistemological, and ethical
issues associated with the process of model development and deployment [69] (p. 11). Many
sustainability researchers and M&S practitioners may find this sort of philosophical discussion
unfamiliar or even irrelevant. However, we argue that, because human values and worldviews do in
fact impact behavior in profound ways, it is worthwhile engaging in philosophical reflection on these
issues as part of the process of applying the human-simulation approach to sustainability modeling
and informing the discovery of more effective socio-ecological adaptive strategies for transitioning
toward sustainable human societies in our current pluralistic and ecologically fragile environment.

One can think of a person’s ontology as his or her inventory list of existing entities and relationships.
Assumptions about what belongs on this list may be more or less implicit, but they shape one’s
understanding and anticipation of potential causal interactions in the world. Computer modeling
forces us to make these assumptions explicit, that is, to articulate the ontologies of the artificial societies
we construct [40]. Some scholars in sustainability studies have expressed concern about the relative
lack of attention traditionally given in the field to ontology, a lacuna increasingly filled by growing
attention to and application of social scientific theories such as “assemblage theory”, which make
explicit claims about what really exists [76–78]. Assemblage thinking has recently been applied, for
example, to the analysis of policies related to promoting sustainability in urban and rural areas [79–81]
and to the study of aquaculture and agriculture sustainability [82–84]. Some scholars have even applied
the concept of assemblage to the process of sustainability policy formulation and implementation,
using phrases such as “response assemblages” [76,85] or “adaptation assemblages” [86,87] to refer to
the way in which humans attempt to engage and alter the socio-ecological systems in which they live.

M&S methodologies provide sustainability researchers with tools that encourage and enable
a more robust articulation of the ontological (including causal) assumptions that are shaping their
hypotheses and predictions. By forcing the breakdown of complex causal processes into component
parts, human simulation naturally surfaces assumptions latent within politico-economic practices
and renders them subject to more rigorous discussion and critique. Other modelers can substitute
alternative assumptions, which could potentially lead to very different outcomes in complex social
systems. The formalization of theories of sustainability in computational architectures provides what
we might call artificial ontologies that can then be tested and validated in relation to empirical data in
the real world. The credibility of these ontologies (including the causal relations implemented in the
model) depends on the extent to which simulation experiments can generate or “grow” the relevant
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macro-level social “wholes” from the local interaction of micro-level “parts.” We have argued elsewhere
that the successful development of MAAI and other simulation technologies lends plausibility to a
form of metaphysical naturalism involving what philosophers call “weak emergence” (for a fuller
statement of this aspect of the argument, see [88]).

Insofar as social simulation through computer modeling can actually generate wholes (e.g., more
or less sustainable artificial societies) with emergent properties, tendencies, and capacities that arise
solely from the interaction of parts (e.g., physical resources, individual humans), it strengthens the
claim that the mechanisms of morphogenesis that explain the causal forces at work in socio-ecological
systems are wholly naturalistic. The possible implications of these developments for the articulation
of a fully immanent metaphysics have been spelled out elsewhere [89,90]. Our point here is that
if something goes wrong with the simulation, simulation engineers do not hypothesize a ghost in
the machine; rather, they check the code, review the data, and run new simulations. Similarly, in
sustainability research, scholars qua scholars do not include hypotheses about supernatural entities
(such as sea gods, Jesus, or Allah) as potentially responsible for climate events such as hurricanes
or tsunamis. In other words, sustainability scholars typically exhibit methodological naturalism:
a preference for academic arguments that optimize the use of theories, hypotheses, methods, evidence,
and interpretations that do not appeal to supernatural agents. Their causal explanations are only
populated with “natural” entities or processes susceptible to empirical analysis such as geological
forces, biological organisms, electricity, or climate change.

The success of M&S lends credence to such naturalistic explanations of emergent phenomena.
Manuel DeLanda, one of the most well-known developers of “assemblage theory” as well as a computer
modeler [91,92], argues that computer simulations “are partly responsible for the restoration of the
legitimacy of the concept of emergence [in science and philosophy] because they can stage interactions
between virtual entities from which properties, tendencies, and capacities actually emerge. Since this
emergence is reproducible in many computers, it can be probed and studied by different scientists as if it
were a laboratory phenomenon. In other words, simulations can play the role of laboratory experiments
in the study of emergence complementing the role of mathematics in deciphering the structure of
possibility spaces. Furthermore, philosophy can be the mechanism through which these insights can be
synthesized into an emergent materialist world view that finally does justice to the creative powers of
matter and energy” [92] (p. 6), emphases added.

For DeLanda, assemblage theory is not only explicitly tied to metaphysical naturalism [93] but
also to epistemological insights linked to computer modeling and simulation [92]. We can think of
a person’s epistemology as his or her assumptions, again more or less implicit, about what counts
as knowledge and how to acquire it. As is the case in all scientific disciplines in the contemporary
academy, sustainability researchers and computer modelers are usually methodologically secularistic as
well as methodologically naturalistic. By methodologically secularistic, we mean that they (as scholars)
have a preference for academic practices that optimize the use of scholarly strategies that are not tied
to the idiosyncratic interests of a religious coalition. This includes not making appeals to supernatural
authorities to defend their knowledge claims. Most scientists assume (while doing science) not only
that the ontological components and explanatory causes in their theories are naturalistic but also that
the best way to acquire knowledge is through scientific methods that are not dependent on supernatural
revelation or the religious authorities of any specific ingroup. While not all scientists live up to this
ideal, the secular academy generally values arguments based on evidence that is accessible to any
research group across cultures, and not only to those who believe in the supernatural revelation of a
particular religious coalition. At least in part, this valuation is based on the fact that methodological
secularism has funded the most productive and progressive research programs in science.

The processes by which M&S practitioners clarify, calibrate, verify, and validate the scientific
knowledge, hypotheses, and theories formalized within their computational architectures through
simulation experiments render their methodological secularism more explicit. What we might call
the artificial epistemologies built into explanatory computer models are also tested and validated in
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relation to empirical data in the real world. Given the complexity of socio-ecological systems and
the diversity of challenges related to achieving the UN Sustainability Development Goals (SDGs),
we agree with the call by Sonetti et al. for a “transdisciplinary epistemology” that includes insights
from the humanities as well as the natural and social sciences within sustainability research [94]. As
we noted in Section 3, commitment to such an epistemology is at the heart of the human-simulation
approach. However, Sonetti et al. also briefly allude to the papal encyclical Laudato Si, which they argue
promotes an attitude of humility rather than domination and sets up “a sort of democracy of all God’s
creatures” [94] (p. 11). They do not point out that this encyclical is based on unfalsifiable assumptions
about disembodied supernatural entities, knowledge of which can only be allegedly acquired and
authorized by imaginatively engaging in the causally opaque rituals led by authorized officers of
a particular religious ingroup. While allusions to supernatural authorities might feel inspiring to
members of some religious coalitions, it is hard to see what epistemological relevance they have for the
increasingly urgent task of finding efficient strategies for adapting to the Anthropocene and pursuing
the SDGs here and now. At best, they can engender the support of religious-coalition members for
sustainability initiatives articulated and tested within the scientific domain.

However, accommodating supernaturalist epistemologies within the scientific discourse about
sustainability could be problematic for other reasons. Empirical research from a wide array of
disciplines that contribute to the bio-cultural study of religion has shown that cognitive and coalitional
biases related to supernatural worldviews interfere with sustainability movements, even when their
proponents intend to help, by promoting superstitious beliefs and segregative behaviors that exacerbate
rather than ameliorate the deleterious psychological and socio-economic conditions and can promote
intellectual obstruction and moral paralysis in the face of globally relevant societal challenges such
as climate change [95–103]. Supernatural beliefs and the ritual behaviors associated with them likely
played a crucial role in helping humans survive in early ancestral environments, but today they
have become maladaptive. Attempting to debunk claims about the existence or causal relevance
of supernatural agents is not likely the best strategy here, not only because such claims cannot be
definitively disproven (only rendered less plausible) but also because such attempts typically activate
confirmation biases and other forms of motivated reasoning that only makes things worse. These are
some of the all-too-human factors that impede change and need to be incorporated into computational
simulations. As social psychologists and policy-oriented climate scientists are discovering, prebunking
strategies that attempt to inoculate individuals against misinformation and superstitious reasoning are
more likely to succeed [104].

Thinking about ontology and epistemology may be fun (for philosophers at least), but what ought
we to do about all this? This brings us to the importance of ethical reflection before, during, and after
the process of developing computer models and experiments in human simulation. We can describe a
person’s ethics as his or her assumptions, more or less explicitly articulated, about what (if any) moral
dispositions or behaviors are normative or commendable. Sustainable adaptation to the challenges of
the Anthropocene, as well as success in achieving the SDGs, will require the widescale emergence
of norms and behaviors that promote global sustainability, many of which do not come naturally
to most members of our species. We humans are not “rational actors” who calmly calculate utility
functions. On the contrary, our moral reasoning is surreptitiously shaped by cognitive and coalitional
biases that all too easily activate superstitious inferences, ingroup preferences, and other biases of
the sort that promote resistance to naturalistic scientific explanations of (and secularistic policies for
responding to) sustainability crises. This is why it is important to incorporate insights from the sciences
of bio-cultural evolution about our phylogenetically inherited moral equipment into the ethical (and
metaethical) frameworks that guide reflections around the design and implementation of, as well as
the dissemination of results from, human-simulation modeling [105].

As the potential (and actual) impact of artificial intelligence (AI) on human life becomes increasingly
clear, computer modelers, philosophers, and others are highlighting the importance of discussions
about artificial ethics. The approach to human simulation described above is heavily invested in
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these debates. In fact, the focus on MAAI modeling and other social simulation techniques can help
bring a distinctive focus on artificial social ethics into the conversation [106]. By constructing and
validating “digital twins” of real-world societies, populated by simulated agents and groups with
divergent and changing norms, multi-agent AI can provide tools for testing hypotheses about the
impact of policy proposals and environmental changes on human social behavior. In fact, whether or
not one accounts for the actual divergent norms within the pluralistic cultures one is attempting to
model has a significant effect on the outcomes of social simulation experiments [107]. This is why the
human-simulation approach puts so much attention on minding morality, that is, on incorporating
variables such as shared norms and divergent worldviews into the computational architectures of
artificial societies [11,108].

Ethical reflection on the application of human simulation to sustainability research is tied to the
issues related to naturalism and secularism discussed above. We illustrate this briefly with reference to
Rumy Hasan’s transdisciplinary analysis of Religion and Development in the Global South [109]. As Hasan
notes, “adherence to religious doctrines is necessarily in tension with cognitive thinking . . . Criticism,
curiosity, critiquing, hypothesizing, theorizing, experimentation and the search for evidence all appear
to be suppressed or discouraged” (p. 198). The capacities and skills of contemporary human populations
are linked to the presence (or absence) of naturalistic education about the actual (non-supernatural)
causal mechanisms at work in the world. Hasan concludes that high levels of religious beliefs in the
Global South suppress the capacities and skills needed for sustainable development and exacerbate
conflict, a claim that is widely supported in the relevant literature [110–113].

The extent to which our ontological, epistemological, and ethical reflections have explicitly
highlighted the value of methodological naturalism and secularism in sustainability research, and
explicitly criticized the obstructive effects of “religion,” may come as a surprise. The goal here has
not been to provide a comprehensive philosophical argument designed to compel scholars to take a
more aggressive public posture against supernaturalist worldviews and the unsustainable parochial
behaviors they promote, though it should be obvious that we think doing so might be a condition
for finding and implementing more effective adaptation strategies in the Anthropocene. We have
confined ourselves here to the more limited claim that there are at least some good reasons to include
philosophical reflection about issues such as metaphysical naturalism and secularism as part of broader
conversations among computer modelers, sustainability researchers, and the wider public.

5. Conclusions

We began this article by sketching some recent developments within the application of computer
modeling to sustainability research, noting the pressing need to take better account of human factors.
We went on to describe some of the ways in which the “human simulation” approach can contribute to
the further advancement of sustainability modeling, especially through its emphasis on stakeholder,
policy professional, and subject matter expert participation and its focus on constructing more realistic
cognitive architectures, both of which help to facilitate the incorporation of human factors (such as
values and worldviews) into the modeling process. Finally, we offered some philosophical reflections
on the ontological, epistemological, and ethical issues raised at the intersection of sustainability research
and computer simulation. We stressed the importance of having more explicit conversations about the
relevance of metaphysical naturalism and secularism in finding and facilitating effective and efficient
strategies for sustainable development.

Like all methodologies, computational tools and techniques have their limitations. However, we
have attempted to show some of the reasons for hoping that the application of human simulation
within sustainability research will continue to be increasingly useful for the purpose of analyzing
and forecasting changes in socio-ecological systems as we attempt to respond to the challenges of
the Anthropocene.
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