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Abstract: This paper presents new analytical expressions for the maximum power point voltage,
current, and power that have an explicit dependence on the series resistance. An explicit expression
that relates the series resistance to well-known solar cell parameters was also derived. The range of
the validity of the model, as well as the mathematical assumptions taken to derive it are explained
and discussed. To test the accuracy of the derived model, a numerical single-diode model with solar
cell parameters whose values can be found in the latest installment of the solar cell efficiency tables
was used. The accuracy of the derived model was found to increase with increasing bandgap and
to decrease with increasing series resistance. An experimental validation of the analytical model
is provided and its practical limitations addressed. The new expressions predicted the maximum
power obtainable by the studied cells with estimated errors below 0.1% compared to the numerical
model, for typical values of the series resistance.
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1. Introduction

Shockley’s diode equation describes how a solar cell responds to bias and illumi-
nation [1]. Analytical expressions for photovoltaic parameters, such as the open-circuit
voltage, Voc, or the short-circuit current, isc, can easily be derived from it. When series
resistance is accounted for, however, the diode equation becomes an implicit expression
of the current, which is not as straightforward to work with. Some work has been per-
formed aiming to quantify analytically the effect of series resistance on various solar cell
parameters. Banwell et al. showed that Lambert’s W function allows for a closed-form
expression of the current when the effect of series resistance is considered [2]. Jain et al.
derived, in [3], an analogue to Banwell’s expression that also accounted for the effect of
shunt resistance. The latter authors later made use of this expression to derive analytical
expressions for Voc and isc. The maximum power point (MPP) has been little explored
from an analytical perspective, although some exceptions exist [4–8]. The reason for this
lies in the fact that, when series resistance is considered, deriving an expression for the
maximum power point voltage, Vmpp, involves solving a transcendental equation. Such
equations often do not have closed-form solutions and need to be solved numerically.
It is worth mentioning the work presented in [4], where Singal was able to obtain an
approximate closed-form expression of Vmpp, in terms of Voc. In contrast with a numerical
model, an analytical model would allow identifying the physical parameters affecting
the MPP. Accounting for the series resistance in the analytical model for the MPP would
also allow for better characterization of real solar cells. In this sense, such a model would
describe the MPP with higher accuracy than other analytical models that do not account
for the effect of series resistance. The lack of an accurate analytical model for the MPP,
which includes series resistance, in the scientific literature represents a research gap that
this work aims to fill. To this end, a closed-form expression for the maximum power point
voltage that accounts for the effect of the series resistance is derived. The starting point
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of the derivation is the analytical expression for the current, derived by Banwell in [2],
in terms of Lambert’s W function. It is then argued that, at the maximum power point,
the argument of the W function is small enough to accurately approximate the function
value. This makes the transcendental problem analytically solvable. The accuracy of the
derived model was found to increase with increasing bandgap energy and to decrease with
increasing series resistance. From the new expression for Vmpp, an analytical expression for
the series resistance was then derived. Additionally, approximate analytical expressions
for the maximum power point current, impp, and power, Pmpp, were derived. Numerical
results were calculated using parameters typical for seven different solar cell technologies.
The accuracy of the model was tested through a comparison with reference values that
were obtained from a numerical single-diode model. The results showed that the analytic
model can predict the maximum power with relative errors below 0.1% when compared to
the numerical model, when typical values of the series resistance are used. Still, it must be
kept in mind that the analytical approach derived in the present work corresponds to a
one-diode model. This implies that it should not be used with solar cells that follow, e.g.,
the double-diode equation. For such cells, different techniques, such as those proposed
in [9], should be employed. Finally, the practical limitations of the model are discussed
based on its experimental validation, provided in [10]. Whereas the present work focuses
on the derivation, range of validity, and theoretical limitations of the model from a formal
perspective, in [10] the focus was on its experimental applicability.

To summarize, this work presents a novel approach based on the use of Lambert’s
W function to obtain closed-form analytical expressions for the MPP that account for the
effect of the series resistance.

2. Background

Assuming nondegenerate conditions, the total current density, i, produced by a solar
cell is given by Shockley’s diode equation [11],

i = iG − i0 exp
[

V
Vt

]
, (1)

where V is the voltage and iG and i0 are the generation and thermal recombination [12]
currents, respectively. Here, the thermal voltage, Vt, given by qVt = kT with T, k, and q
being the cell temperature, Boltzmann’s constant, and the electron charge, respectively,
is introduced. The total power density, P, is given by the product P = Vi [13]. At the
maximum power point, it holds that:

d
dV

P = i + V
d

dV
i = 0. (2)

Khanna et al. found that Equation (2) is solved by [14,15]:

Vmpp = Vt

(
W
[

iG
i0

e
]
− 1
)

, (3)

where W(x), defined by x = W(xex), is Lambert’s W function [16]. An expression for
the maximum power point current, impp, can be obtained by inserting Equation (3) into
Equation (1), and an expression for the maximum power, Pmpp, is obtained from the
product Pmpp = Vmppimpp. This yields [14,15]:

impp = iG

1− 1

W
[

iG
i0

e
]
, (4)

Pmpp = iGVt

W
[

iG
i0

e
]
− 2 +

1

W
[

iG
i0

e
]
. (5)
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When series resistance is accounted for, Equation (1) becomes [13]:

i = iG − i0 exp
[

V + ir
Vt

]
, (6)

where r is the cell series resistance ([r] = Ω · cm2). Banwell et al. proved in [2] that
Lambert’s W function allows for an explicit expression for i. Defining the voltages VG and
V0 as VG = iGr and V0 = i0r, Equation (6) becomes [2]:

i = iG −
Vt

r
W
[

V0

Vt
exp

[
VG

Vt
+

V
Vt

]]
, (7)

from which it can be seen that in the limit r → 0, Equation (1) is recovered.

3. The Maximum Power Point

Let z(V) denote the argument of Lambert’s W function in Equation (7), and let
zmpp := z(Vmpp). Inserting Equation (7) into Equation (2) yields:

0 =

[
i + V

d
dV

i
]

V=Vmpp

= i(Vmpp) + Vmpp
−Vt

r
W(zmpp)

1 + W(zmpp)

[
d

dV
log z

]
V=Vmpp

= iG −
Vt

r
W(zmpp)−

Vmpp

r
W(zmpp)

1 + W(zmpp)

=
Vt

r
W(zmpp)

[
1

W(zmpp)

iGr
Vt
− 1−

Vmpp/Vt

1 + W(zmpp)

]

=
1

W(zmpp)

VG

Vt
−

1 + W(zmpp) +
Vmpp

Vt

1 + W(zmpp)
, (8)

where the derivative of Lambert’s W function, found in, e.g., [16], is used. Equation (8) is
a transcendental equation in Vmpp and does not have a closed-form solution. Values for
Vmpp can be calculated by solving Equation (8) numerically.

3.1. Maximum Power Point Voltage

The Taylor expansion of the principal branch of Lambert’s W function, W0, is given
by:

W0(x) =
∞

∑
n=1

(−n)n−1

n!
xn = x− x2 +

3
2

x3 − 8
3

x4 . . . (9)

which converges as long as x ≤ 1/e. The series expansion in Equation (9) can be used to
find an approximate analytical solution to Equation (8). To do so, notice that zmpp may be
small for typical solar cells. To see this, note that i0 is given by i0 ≈ qCVt exp[−Eg/qVt]E2

g,
where Eg is the bandgap of the semiconductor and C is a constant involving the speed of
light, Planck’s constant, and the external radiative efficiency (ERE) [17]. The latter is used
to account for nonradiative recombination. z(V) can then be written as:

z(V) = rCE2
g exp

[
V
Vt
−

Eg/q
Vt

+
iGr
Vt

]
. (10)

The voltage is limited by the bandgap, and therefore, it holds that V − Eg/q < 0.
As long as the value of r is not excessively large, the exponent in Equation (10) will be
negative, resulting in a small z. Assuming a reasonable cell quality, the series expansion in
Equation (9) can be used to approximate W(zmpp) by zmpp in Equation (8). To show this,
Figure 1 displays the values of W(zmpp) (continuous lines) and zmpp (crosses) as a function
of the bandgap for various values of r. There, it is confirmed that, for large bandgaps,
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W(zmpp) is well approximated by zmpp, even for values of r up to 5 Ω · cm2. As expected
from Equation (10), Figure 1 shows that the approximation is more accurate for lower
values of r. In this context, it is worth noting that typical values for area-normalized series
resistance usually are below 2 Ω · cm2 for both laboratory and commercial solar cells [18].
Therefore, W(zmpp) should be well approximated by zmpp for most solar cells. Figure 1 is
obtained assuming an AM1.5G spectrum and ERE value of 10−4. The displayed values
correspond to values of Vmpp that were obtained by solving Equation (8) numerically for
various values of r and Eg.
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Figure 1. W(zmpp) (continuous lines) and zmpp (crosses) as a function of the energy gap, Eg, for
various values of r. The graph is obtained assuming an AM 1.5G spectrum and ERE = 10−4. The
Vmpp values are obtained by solving Equation (8) numerically.

Approximating W(zmpp) by zmpp in Equation (8) results in:

1
zmpp

VG

Vt
=

1 + zmpp +
Vmpp

Vt

1 + zmpp
. (11)

Focusing now on the right-hand side of Equation (11), since zmpp needs to be small so
that the approximation W(zmpp) ≈ zmpp is accurate, the term Vmpp/Vt will dominate over
zmpp in the numerator. Equation (11) can then be simplified to:

1
zmpp

VG

Vt
=

1 + Vmpp
Vt

1 + zmpp
, (12)

which is analytically solvable. The first step in finding the solution is to insert zmpp. After a
bit of manipulation, Equation (12) becomes:(

1 +
Vmpp −VG

Vt

)
exp

[
1 +

Vmpp −VG

Vt

]
=

VG

V0
exp

[
1− 2

VG

Vt

]
, (13)

which has the closed-form solution:

Vmpp = VG + Vt

(
W
[

VG

V0
exp

[
1− 2

VG

Vt

]]
− 1
)

. (14)

Finally, inserting the definitions for VG and V0 yields:
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Vmpp = iGr + Vt

(
W
[

iG
i0

exp
[

1− 2
iGr
Vt

]]
− 1
)

, (15)

from which it can be seen that, in the limit r → 0, Equation (15) becomes Equation (3).

3.2. Maximum Power Point Current and Power

In order to obtain expressions for impp and Pmpp, Equation (15) has to be inserted
into Equation (7). This results in a composite of W functions that cannot be simplified. A
simpler approximate expression for impp can be obtained by noting that at the maximum
power point, the W function in Equation (7) is evaluated at z(V) = zmpp. Since zmpp needs
to be small for Equation (15) to be accurate, W(zmpp) can be approximated by zmpp here as
well. From Equation (7), this yields:

impp = iG −
Vt

r
W(zmpp) ≈ iG −

Vt

r
zmpp

= iG − i0 exp
[

Vmpp

Vt
+

VG

Vt

]
. (16)

An analytical expression for impp can now be obtained by inserting Equation (15)
into (16), and an analytical expression for Pmpp can be found by evaluating Vmpp · impp. To
shorten the notation, let α(r) denote the argument of the W function in Equation (15). The
approximate analytical expressions for impp and Pmpp then become:

impp = iG

(
1− 1

W[α(r)]

)
, (17)

Pmpp = i2Gr
(

1− 1
W[α(r)]

)
+ iGVt

(
W[α(r)]− 2 +

1
W[α(r)]

)
. (18)

Note that in the limit r → 0, Equations (4) and (5) are recovered.

3.3. Practical Note

For practical applications of Equations (15), (17) and (18), it is worth noting that iG
is well approximated by isc, even though the latter is dependent on the series resistance.
In the case of, e.g., silicon under an AM 1.5 G spectrum, iG and isc practically overlap
for values of r up to about 11 Ω · cm2. Additionally, note that the quotient isc/i0 can be
expressed as exp(Voc/Vt). Equation (15) then becomes:

Vmpp = iscr + Vt

(
W
[

exp
[

1 +
Voc

Vt
− 2

iscr
Vt

]]
− 1
)

. (19)

These practical substitutions may be also applied to Equations (17) and (18).

4. Analytical Expression for the Series Resistance

From Equation (19), it is possible to obtain r as a function of Vmpp. To see this, note
that Equation (19) can be rewritten as:

1 +
Vmpp − iscr

Vt
= W

[
exp

[
1 +

Voc

Vt
− 2

iscr
Vt

]]
, (20)

which is equivalent to:(
1 +

Vmpp − iscr
Vt

)
exp

[
1 +

Vmpp − iscr
Vt

]
= exp

[
1 +

Voc

Vt
− 2

iscr
Vt

]
, (21)

which is seen by applying Lambert’s W function to both sides of Equation (21) and using
the definition x = W(xex). Multiplying both sides by exp[−2Vmpp/Vt + 2iscr/Vt] yields:
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exp
[

1 +
Voc

Vt
− 2

Vmpp

Vt

]
=

(
1 +

Vmpp − iscr
Vt

)
exp

[
1−

Vmpp − iscr
Vt

]
. (22)

Finally, multiplying both sides by −e−2 gives:

− exp
[
−1 +

Voc

Vt
− 2

Vmpp

Vt

]
=

(
−1−

Vmpp − iscr
Vt

)
exp

[
−1−

Vmpp − iscr
Vt

]
, (23)

which can be inverted by making use of Lambert’s W function. After some manipulation, r
can be expressed as:

r =
Vmpp

isc
+

Vt

isc

(
W
[
− exp

[
−1 +

Voc

Vt
− 2

Vmpp

Vt

]]
+ 1
)

. (24)

4.1. Validity of the Approximate Expression

Equation (24) sets the limit for the range of r where Equation (19) describes the physical
behavior of Vmpp. As the exponential function only yields positive values, the argument of
Lambert’s W in Equation (24) is negative. The principal branch of Lambert’s W function,
W0(z), is only defined for z ≥ −1/e, which implies that W(z) /∈ R for z ≤ −1/e. Since
the series resistance is a real-valued physical quantity, the argument of the W function in
Equation (24) must fulfill:

exp
[
−1 +

Voc

Vt
− 2

Vmpp

Vt

]
≤ 1

e
, (25)

which implies:

Vmpp ≥
1
2

Voc. (26)

Equation (26) sets an upper limit for the series resistance, as having Vmpp less than
1
2 Voc would require a complex-valued r. This translates into Equation (15) not describing a
physical Vmpp for any value of the series resistance, which would make Vmpp smaller than
Voc/2. This maximum value of the resistance, which is denoted in the present work by rmax,
is found by evaluating Equation (24) at Vmpp = Voc/2. This yields:

rmax = r
[

Voc

2

]
=

Voc/2
isc

+
Vt

isc

(
W
[
−1

e

]
+ 1
)
=

Voc

2isc
.

Note that at r = rmax, the parentheses in Equation (19) cancel out. For r ≥ rmax, the W
function tends asymptotically to zero. This results in Vmpp increasing linearly with r with
slope isc, which is not physical.

4.2. Accuracy of the Approximation

The accuracy of Equation (15) decreases with increasing series resistance. For suf-
ficiently large r, the term involving zmpp in the numerator on the right-hand side of
Equation (11) will not be small in comparison to Vmpp/Vt, implying that Equation (15) will
be less accurate. Therefore, it is relevant to determine the value of the series resistance, rL,
until the derived model gives the acceptable results. The value rL = rmax/3 is proposed as
a rule of thumb. This corresponds roughly to zmpp ≈ 1/e, which seems a natural choice
since for zmpp ≥ 1/e, the Taylor expansion in Equation (9) should not be applicable as zmpp
would be larger than the convergence radius of the expansion. Determining the actual
value of r that makes zmpp = 1/e would require solving simultaneously zmpp − 1/e = 0 and
Equation (8), which is rather counterproductive, since the main point of making use of
Equation (15) is to avoid solving Equation (8) numerically.
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5. Numerical Results

In this section, the accuracy of Equation (19) is tested. For this, the focus is on Vmpp
and Pmpp, given by Pmpp = Vmppi(Vmpp), with i being given by Equation (7). The label
“mod” is used to denote the values of Vmpp and Pmpp obtained from Equation (19). The
label “ref” is used to denote the reference values to which Vmod

mpp and Pmod
mpp are compared.

The “ref” quantities are obtained by numerically solving Equation (8). The accuracy of
Equations (17) and (18) is also tested, and the label “app” is used to denote these.

For all numerical calculations, the AM 1.5G spectrum was assumed. The numerical
single-diode model used to test the accuracy of Equation (19) was fed with cell parameters
corresponding to six different technologies found in the latest installment of the solar
cell efficiency tables [19]. The parameters corresponding to these cells are summarized
in Table 1. As a seventh case, the derived model was also tested against a numerical
single-diode model using Eg = 1.125 eV and ERE = 10−4. These values are typical for
silicon cells. This case is therefore referred to as a numerically modeled silicon cell. All
cells were assumed to be at a temperature of 300 K. Figure 2 displays (a) Vmpp, (b) impp,
and (c) Pmpp as a function of the series resistance. Additionally, the corresponding current–
voltage characteristic (Figure 2d) is shown for several values of the series resistance. All
curves correspond to the numerically modeled silicon cell described above. In Figure 2d,
dotted lines show how the maximum power point changes with increasing series resis-
tance. The red dotted line was obtained by solving Equation (8) numerically, for multiple
values of the series resistance, and evaluating Equation (7) with the obtained Vmpp val-
ues. The purple dotted line was obtained from Equation (15). The values for rL and rmax
(Figure 2a–c) and their correspondent values of Vmpp (Figure 2d) are displayed with black
vertical dashed lines. From Figure 2a–c, it can be seen that the values calculated with the
new analytical model were in good agreement with the numerical reference model for
r ≤ rL. For r ≥ rL, Vmod

mpp appears to be underestimated (Figure 2a) and imod
mpp overestimated

(Figure 2b). As a result, Pmod
mpp overlaps well with Pref

mpp (Figure 2c). Finally, for r ≥ rmax,
Vmod

mpp appears to increase with increasing series resistance.

Table 1. Parameters for selected single-junction solar cell technologies. The ERE values were
estimated from Equation (27).

Device Eg (eV) Voc (V) 1 isc (mA/cm2) 1 ERE (%)

InP 1.34 0.939 31.15 0.365
GaAs 1.42 1.107 29.60 14.510
CdTe 1.51 0.876 30.25 10−4

CIGS 1.08 0.734 39.58 1.750
a-Si 1.69 0.896 16.36 1.96 ×10−7

PSC 2 1.60 1.042 20.40 0.002

1 The Voc and isc values were measured under the AM 1.5 G spectrum at T = 300 K [19]. 2 Perovskite solar cell.

The accuracy of the expression for Vmod
mpp , Equation (19), decreases with increasing

resistance. This can be seen in Figure 3, where Vmpp is plotted as a function of the series
resistance for the six technologies presented in Table 1. The dashed lines correspond to the
reference values, Vref

mpp and the continuous lines to Vmod
mpp . The points corresponding to a

series resistance equal to rL are marked with crosses. Focusing on the graphs representing
the CIGS cell, the mismatch between Vref

mpp and Vmod
mpp becomes noticeable for r ≥ rL. For

additional comparison, the Vmpp calculated from Equation (3) (i.e., without series resistance)
for the GaAs cell is displayed in Figure 3. This is represented by the blue straight line with
zero slope. At r = 0 Ω · cm2, Vref

mpp, Vmod
mpp , and Equation (3) overlap, but as soon as r starts

increasing, Equation (19) predicts the value of Vref
mpp with higher accuracy. Finally, it is

worth mentioning that the overlap between Vmod
mpp and Vref

mpp is particularly good with the
perovskite (PSC) and the amorphous silicon (a-Si) solar cells due to their large bandgaps.
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Table 2 displays the values of Vmpp and Pmpp corresponding to the numerically modeled
Si cell shown in Figure 2 for various values of the series resistance. From the left, the first
column presents five values of area-normalized series resistance. In the second column,
the values of Vmod

mpp and Vref
mpp are presented, followed by their relative discrepancy in %.

The three remaining columns follow the same structure, but with the values of Pmod
mpp and

Pref
mpp. Table 2 shows that the higher the series resistance, the higher the discrepancy is.

Nevertheless, the model derived in the present work has a reasonable accuracy and is able
to predict the value of Pmpp with an error below 0.75% for series resistance up to 5 Ω · cm2

for this numerically modeled cell.

Vmpp
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0.50
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V
m
p
p
(V

)

(a)

impp
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impp
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1 rL2 4 5 rmax6 83
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r (Ω·cm2)

i m
p
p
(m
A
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m
2
)

(b)

Pmpp
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Pmpp
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1 rL2 4 5 rmax6 83
0

1

2

3

4

5

r (Ω·cm2)

P
m
p
p
(W

)

(c)

r = 1.3 Ω·cm2
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0.2 Vmpp(rL)0.4Vmpp(rmax) 0.6
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45

V (V)

i(
m
A
/c
m
2
)

(d)

Figure 2. Vmpp (a), impp (b), and Pmpp (c) as a function of the series resistance. For (c), a typical Si
solar cell size of 6× 6 inch2 (0.0232 m2) was assumed. (d) Current–voltage characteristics for three
different values of series resistance. The dotted lines (Equation (15) in purple and Equation (8) in red)
represent the maximum power point changing with increasing series resistance.

0 2 4 6 8 10
r ( cm2)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V m
pp

(V
)

CIGS CdTe a-Si PSC InP GaAs

Figure 3. Vmpp as a function of the series resistance at T = 300 K. Vmod
mpp (Equation (15)) is represented

by continuous lines and Vref
mpp (Equation (8)) by dashed lines.
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Table 2. Comparison of Vmpp and Pmpp for various values of area-normalized series resistance. The
values correspond to a numerically modeled Si cell (Eg = 1.125 eV) with ERE = 10−4 at T = 300 K.

r (Ω · cm2)
Vmpp (V)

Error (%)
Pmpp (W)

Error (%)
Vmod

mpp V ref
mpp Pmod

mpp Pref
mpp

0 0.559 0.559 10−4 5.414 5.414 10−8

0.5 0.539 0.540 0.153 5.213 5.213 0.003
1.5 0.500 0.503 0.629 4.813 4.815 0.034
2.0 0.480 0.485 1.032 4.615 4.618 0.066
5.0 0.371 0.390 4.906 3.477 3.502 0.728

Figure 4 displays the base-10 logarithm of the relative discrepancy (in %) between
Pmod

mpp and Pref
mpp as a function of the bandgap energy and the ERE for r = 2 Ω · cm2. The

relative discrepancy between Pmod
mpp and Pref

mpp for the six solar cell technologies presented in
Table 1 is also shown. The white dotted lines represent levels of fixed relative discrepancy.
To compute this figure, the ERE values of the solar cells presented in Table 1 were estimated
by making use of:

ERE = exp

[
Voc −Vrad

oc
Vt

]
, (27)

where Vrad
oc can be calculated from Equation (1) by assuming that i0 results only from

radiative recombination. Figure 4 shows that, for a given series resistance, the accuracy
of Equation (15) increases with increasing bandgap and decreases with decreasing ERE.
Note that the Pmpp of all the investigated cases was predicted with a discrepancy below
0.07%. Finally, Figure 5 displays the base-10 logarithm of the relative discrepancy (in %)
between Pref

mpp and Pmod
mpp (Figure 5a) and between Pref

mpp and Papp
mpp (Figure 5b) as a function

of the series resistance for the six devices presented in Table 1. Here, it can be seen that
the discrepancy between Pref

mpp and Papp
mpp is around one order of magnitude larger than

between Pmod
mpp and Pref

mpp. Papp
mpp could still predict Pmpp in most of the studied cases with

errors below 1% for values of the series resistance up to 5 Ω · cm2.
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Figure 4. Logarithm of the relative discrepancy (in %) between Pmod
mpp (Equation (15)) and Pref

mpp
(Equation (8)) as a function of the bandgap energy and the ERE at T = 300 K and r = 2 Ω · cm2. The
small bends in the dashed lines originated from the irregular shape of the AM 1.5G spectrum.
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Figure 5. Logarithm of the relative discrepancy (in %) between (a) Pref
mpp (Equation (8)) and Pmod

mpp
(Equation (15)) and (b) Pref

mpp and Papp
mpp (Equation (18)) as a function of the series resistance at

T = 300 K.

6. Experimental Validation and Remarks

Now that the analytical model has been numerically validated, its applicability in
real cells should be tested. This was performed in [10], where 18 multicrystalline silicon
solar cells with different bulk resistivities and cell architectures were measured at multiple
temperatures. For the studied cells, Equations (18) and (19) predicted the experimental
Pmpp and Vmpp with relative discrepancies below 0.2% and 0.7%, respectively. It is worth
mentioning that low relative discrepancies were obtained at all the measured temperatures.

Besides the numerical limitations that the model derived in the present work may
have (e.g., Equation (26)), practical limitations of the model should be addressed. These
may include factors that real cells will eventually experience, for instance, degradation
due to aging or shunt resistance effects. Although the derived model cannot account for,
e.g., cell degradation, it is worth noting that neither can the diode equation in Equation (1),
nor the modified diode equation in Equation (6). The analytical expressions derived in
the present work were subjected to the same practical limitations that the modified diode
equation was. The advantage that the derived model presents with respect to Equation (6)
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is that it allows seeing how the series resistance affects the MPP analytically. On the other
hand, shunt resistance effects do not usually have a relevant impact in laboratory cells, as
these typically appear due to defects in manufacturing. In fact, in [10], the shunt resistance
in the measured cells had only a negligible effect on the comparison between the model
and the experiments. Although it might be possible to obtain an expression analogous
to Equation (19) that also accounts for the effect of shunt resistance, this goes beyond the
scope of the present work.

7. Conclusions

In this work, a new analytical expression for the maximum power point voltage that
explicitly accounts for the effect of the series resistance was derived. Approximate analytical
expressions for the current and power at the maximum power point were also presented.
To derive these expressions, it was shown that Lambert’s W function may be approximated
by its argument, as long as the value of the series resistances is not excessively large. This
makes what otherwise would be a transcendental problem analytically solvable. The
accuracy of the new expressions was tested with a numerical single-diode model. It was
shown that the new model accurately predicts the maximum power of all the investigated
cases with small discrepancies between the analytical model and the numerically simulated
values. This was the case even when considering values of the series resistance above
2 Ω · cm2, which is larger than typical values for laboratory and commercial cells [18]. The
accuracy of the approximation was shown to decrease with increasing series resistance,
but also to increase with increasing bandgap energy. This makes the derived model of
particular interest for semiconductors with large bandgaps such as perovskite or organic
solar cells. Based on the results presented in this work, together with the results published
in [10], it may be concluded that the derived analytical model can successfully be utilized
to predict the maximum power point for solar cells that follow the diode equation when
series resistance is accounted for. Moreover, the employment of Lambert’s W function
allowed for accurate and simpler expressions than what is currently found in the scientific
literature. With respect to new developments, the derived model opens the possibility of
analytically studying the effect of the series resistance on the temperature coefficients of
the maximum power point. Further enhancements may also include attempts to generalize
the model derived in the present work to also include the effect of the shunt resistance.
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