
Temperature Coefficients of Solar Cell Parameters
at Maximum Power Point

Alfredo Sanchez Garcia, Sissel Tind Kristensen,
Sjur Narten Christiansen and Rune Strandberg
University of Agder, Grimstad, 4879, Norway

Abstract

Analytical expressions for the temperature coefficients of the maximum
power point voltage and current are presented. The temperature coefficients
are calculated assuming the bandgap to be a linear function of the temperature
and accounting for energy losses of non-radiative nature. The latter are intro-
duced in the model through the External Radiative Efficiency. The so-called γ
parameter, which has been shown to account for the thermal sensitivity of all
mechanisms determining the open-circuit voltage, appears to also play a role in
the temperature coefficient of the maximum power point voltage and current.
Numerical results and a comparison with experimental measurements are also
presented.

1 Introduction
Solar cells are generally characterized and optimized under standard test condi-
tions (STC), defined as a global standard solar spectrum AM 1.5G, an irradiance of
1000 W/m2, and a cell temperature of 298 K [1, 2, 3]. An increase in cell temperature
results in a linear decrease in efficiency for most semiconductor materials [1, 4]. In
order to optimize solar cells, it is therefore of high relevance to understand and being
able to quantify the effect of changes in temperature.

The temperature sensitivity of any solar cell parameter is described by its tem-
perature coefficient (TC) [1]. Some work has been done aiming to explicitly quantify
the TCs of the open-circuit voltage, Voc, and the short-circuit current, Jsc [2, 3], but,
so far, there has not been much focus on the TCs for the maximum power point
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voltage, Vmpp and current, Jmpp. In this work, we aim to find analytical expressions
for the TCs of these two quantities.

This work is structured as follows: we make use of the expressions for Vmpp and
Jmpp, previously derived by Sergeev and Sablon in Ref. [5], to derive analytical ex-
pressions for the respective TCs. Our approach is inspired by the work of Dupré et
al. in Ref. [3] and, therefore, energy losses related to non-radiative recombination
are also considered through the External Radiative Efficiency (ERE). The derived
expressions also account for temperature variations of the bandgap, which we model
as a linear function of the temperature. We discuss the limit case where only ra-
diative recombination occurs and where the bandgap is a constant with respect to
temperature variations. Additionally, we discuss how a more realistic temperature
dependence of the bandgap affects the derived expressions for the TCs. Finally, we
present numerical results and compare them with experimental measurements.

2 Theoretical Background
In the radiative limit and assuming non-degenerate conditions, so that we can approx-
imate Fermi-Dirac by Maxwell-Boltzmann distributions, the total current produced
by a solar cell is given by Shockley’s diode equation [6],

J = JG − J0 exp

(
qV

kT

)
, (1)

where JG is the generation current and J0 is the dark saturation current. Assuming
the Sun to be a black body radiating at Ts = 6000 K, JG is given by

JG =
2πq

c2h3

X

Xmax

∫ ∞

Eg

E2

exp
(

E
kTs

)
− 1

dE, (2)

with h, q, c and X being Planck’s constant, the elementary charge, the speed of light
and the Sun concentration factor, respectively. In the radiative limit, J0 is given
by [6]

J0 =
2πq

c2h3

∫ ∞

Eg

E2 exp

(
− E

kT

)
dE. (3)

2.1 Maximum Power Point

In Ref. [5], it was shown that an analytical expression for Vmpp can be obtained by
making use of Lambert’s W function, defined by z = W(zez) [7]. Consequently, an
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analytical expression for Jmpp could be obtained by evaluating Eq. (1) at V = Vmpp.
The obtained expressions were

Vmpp =
kT

q

[
W

(
e
JG
J0

)
− 1

]
, (4)

Jmpp = JG


1− 1

W
(
eJG
J0

)


 . (5)

2.2 Temperature Coefficient

The efficiency of a solar cell varies linearly with temperature for the majority of
semiconductor materials under normal operating temperatures [1]. This variation
may be characterized by making use of the TC. The relative temperature coefficient
of a photovoltaic cell parameter, X, as a function of the temperature, T , denoted
here βr

X(T ), is defined as the rate of change of X over the considered temperature
range and normalized by X, i.e.,

βr
X(T ) =

1

X(T )

∂X

∂T
. (6)

3 The Model
To account for non-radiative recombination, Green introduced the concept of Exter-
nal Radiative Efficiency (ERE) in Ref. [8]. The ERE is defined as the fraction of the
total dark current recombination in the cell that results in radiative emission from
the cell [8]. Admitting that the ERE may depend on the temperature, let us denote
ERE := E(T ). Following Ref. [3], we modify Eq. (1) so that it also accounts for E(T )
and obtain

J = JG − 1

E(T )J0 exp
(
qV

kT

)
. (7)

From Eq. (7), we can derive an expression for Vmpp in the same way as in Ref. [5].
In order to do so, let us first assume that the ERE is not dependent on the voltage.
This is the case if, e.g., we restrict ourselves to a low-injection regime, or if we just
assume carrier lifetimes which are constant with the injection level [9]. Vmpp then
becomes

Vmpp =
kT

q

[
W

(
E(T )eJG

J0

)
− 1

]
. (8)
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3.1 Temperature Dependence of the Bandgap

Since both JG and J0 are functions of the bandgap, Eg, its temperature dependence
will be important for computing the TCs. The bandgap decreases when the temper-
ature increases for most semiconductors1 [1]. This effect was considered in Ref. [3]
by assuming a linear variation of the bandgap with the temperature, i.e.,

Eg(T ) ≈ Eg0 + T
∂Eg

∂T

∣∣∣∣
T=Tc

, (9)

with Eg0 being the bandgap at T = 0 K and the slope of the straight line resulting
from linear fits around T = 300 K [4]. We will also assume that the bandgap is a
linear function of the temperature and proceed to derive an expression for the TC of
Vmpp by making use of Eq. (6).

3.2 Dark Saturation Current

Before computing the TC for Vmpp, let us take a look back at the dark saturation
current, J0, given in Eq. (3). Performing the integral yields:

J0 =
2πq

c2h3
kT exp

(
−Eg

kT

)
(E2

g + 2kTEg + 2k2T 2). (10)

In Ref. [3], the polynomial in Eg in Eq. (10) is approximated by E2
g . We will refer

to this as the approximated form of J0, while Eq. (10) will be referred to as the full
form. This approximated form simplified the derivation of the analytical expression
for the temperature coefficient of the Voc. This is also the case for Vmpp and Jmpp. In
order to check the validity of this approximation, we display in Fig.1 a logarithmic
plot of J0 as a function of the temperature for the bandgap of silicon, which has been
considered linear, as in Eq. (9). We see that the full and the approximated form of J0
overlap. We will therefore make use of the approximated form of J0 to compute the
temperature coefficients of Vmpp and Jmpp. The numerical consequences of making
use of this approximation will be discussed in section 5.

3.3 Temperature Coefficients

Let Z := e E JG
J0

and W(Z) := W. From Eq. (8), we have

∂Vmpp

∂T
=

Vmpp

T
+

kT

q

∂W

∂T
. (11)

1Exceptions of this behavior are CH3NH3PbI3 and related perovskite compounds [4]
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Figure 1: Dark saturation, both in full (Eq. (10)) and approximated form, as a function of
the temperature.

Let us now explicitly compute the derivative of Lambert’s W function with respect
to the temperature. From Eqs. (3) and (9), we have

∂W

∂T
=

∂

∂T
log

(
E eJG

J0

)
W

1+W

=

(E ′

E +
J ′
G

JG
− J ′

0

J0

)
W

1+W

=

(E ′

E +
J ′
G

JG
− 1

T
− Eg0

kT 2
− 2

E ′
g

Eg

)
W

1+W

= − 1

T

(
γ +

Eg0

kT

)
W

1+W
, (12)

where the prime implies the derivative with respect to the temperature and

γ = 1 + 2T
E ′

g

Eg

− T
E ′

E − T
J ′
G

JG
. (13)

In Eq. (12), we have made use of the derivative of Lambert’s W function, which
can be found in, e.g., Ref. [7]. We obtain the absolute TC for Vmpp (βVmpp) by
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inserting Eq. (12) into Eq. (11). Let ω := W/(1 +W). We then can write βVmpp as

βVmpp =
Vmpp − ωEg0

q
− ω kT

q
γ

T
, (14)

which resembles the expression for βVoc in Ref. [3], which was

βVoc =
Voc − Eg0

q
− kT

q
γ

T
. (15)

The γ parameter in Eq. (13) is identical2 to the γ used in the expression for βVoc

in Ref. [3]. This parameter was first introduced by Green in Ref. [1] as a way to
account for the temperature sensitivity of all mechanisms determining Voc and was
later explicitly quantified in Ref. [3]. From the work presented here, we may conclude
that γ also plays a role in the temperature sensitivity of Vmpp.

Rearranging terms in Eq. (14), we can express βVmpp as

βVmpp =
Vmpp

T

[
1 +

W

1−W2

(
γ +

Eg0

kT

)]
, (16)

from which it is trivial to find the relative TC for βVmpp . Likewise for Jmpp, we can
derive expressions for its TC from Eq. (5) by making use of Eq. (6). We obtain

βJmpp =
Jmpp

T

[
T
J ′
G

JG
+

1

1−W2

(
γ +

Eg0

kT

)]
. (17)

3.4 The Radiative Limit with Constant Bandgap

In the radiative limit, the total current produced by the cell is given by Eq. (1). The
maximum power point voltage, current and power are therefore given by Eqs. (4)
and (5). All energy losses are of radiative nature and, therefore, ERE = 1. Addi-
tionally, if the bandgap is a constant with respect to temperature variations, the
γ parameter given in Eq. (13) simplifies to γ = 1. Accounting for this, Eqs. (16)
and (17) become

βVmpp =
Vmpp

T

[
1 +

W

1−W2

(
1 +

Eg0

kT

)]
, (18)

βJmpp =
Jmpp

T

[
1

1−W2

(
1 +

Eg0

kT

)]
(19)

2The notation T X′

X is equivalent to ∂ logX
∂ log T .
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Figure 2: Temperature dependence of the energy gap, Eg(T ), for Green’s (Eq. (9)) and
Sze’s (Eq. (20)) models.

3.5 A More Realistic Bandgap

In this work as well as in Ref. [3], the bandgap of silicon has been assumed to be a
linear function of the temperature, as seen in Eq. (9). Sze determined in Ref. [10]
the temperature dependence of Eg from the absorption edge of silicon and showed
that it could be empirically described by

Eg(T ) = Eg0 −
αT 2

T + β
, (20)

where α and β are fitting parameters; and Eg0 is the bandgap extrapolated to T = 0
K. Sze’s model shows that at low temperatures, the bandgap has a rather quadratic
dependence with the temperature, in contrasts to the linear bandgap presented in
section 3.1.

Eq. (9) follows from the model for the temperature dependence of the energy gap
presented by Green in Ref. [11]. There, Green modeled Eg(T ) as a piecewise function
of the temperature, with a quadratic dependency for T < 300 K and a linear one for
T > 300 K [11]. Eq. (9) represents the linear part of Green’s model. Fig. 2 displays a
comparison between both models. Here, we have plotted Sze’s and Green’s bandgap
as a function of the temperature, for silicon. We see that, in the normal operating
temperature range of [300, 343] K, both functions overlap well.
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In order to introduce Sze’s bandgap in our model, we need to make use of Eq. (20)
when computing J ′

0. This results in one new term that should be added to the γ
parameter in Eq. (13), which yields

γ = 1 + 2T
E ′

g

Eg

+
αβT

k(T + β)2
− T

E ′

E − T
J ′
G

JG
. (21)

Since we always can collect this new term into the γ parameter, the expressions
for the TCs presented in this work are still valid.

Finally, as noted in Ref. [9], the deviation between Sze’s and Green’s models is
a measure for the uncertainty of the model used. In the relevant temperature range
up to 650 K, this uncertainty is below 1% and can be neglected.

4 Experimental Method
In order to validate the analytical expression for βVmpp and βJmpp , 18 cells with differ-
ent bulk resistivities (ρ) and cell architectures were studied. The cells were fabricated
from three different compensated p-type multi-crystalline silicon (mc-Si) ingots and
can be divided into three groups: (a) ρ = 0.5 Ω cm, Passivated Emitter Rear Cell
(PERC), (b) ρ = 1.3 Ω cm, PERC, and (c) ρ = 1.3 Ω cm, Aluminum Back Sur-
face Field (Al-BSF) cell. Each group contains six cells from various brick positions.
The βVmpp and βJmpp values were obtained from temperature dependent suns − Voc

measurements using a NeonSeeTM AAA Sun-simulator. Making use of suns − Voc

measurements allowed for TCs without the effects of series resistance.

5 Numerical Results and Discussion
In this section we present numerical results for the model presented in section 3 and
compare them to experimental measurements. For all numerical evaluations, the
bandgap is assumed to be a linear function of the temperature as stated in Eq. (9).

5.1 Temperature Coefficient of Vmpp

In Fig. 3, βr
Vmpp

is plotted as a function of Vmpp for E ′
g = −0.27× 10−3 eV K−1, i.e.,

the temperature sensitivity of the silicon bandgap [4]. Here, Eq. (14) is represented
by a dashed line and our experimental values by crosses. Note that Vmpp and βr

Vmpp

are increasing functions of the ERE (see Eq. (8)). The points of the dashed line
in Fig. 3 are obtained by evaluating Eqs. (8) and (14) for several values of the ERE
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Figure 3: Relative temperature coefficient of the maximum power point voltage as a function
of Vmpp. Eq. (14) is represented by the dashed line. The crosses represent experimental
measurements of Vmpp of the three sets of mc-Si samples described in section IV: (a) PERC:
ρ = 0.5 Ω cm, (b) PERC: ρ = 1.3 Ω cm and (c) Al-BSF: ρ = 1.3 Ω cm

within the interval E ∈ [3, 15] × 10−5. The ERE of each measurement can be
calculated by subtracting the ideal and the measured Voc as

E(T ) = exp
[ q

kT
(Voc − V id

oc )
]
, (22)

where V id
oc is the open-circuit voltage in the radiative limit, given in, e.g., Ref. [12].

For the samples presented in this work, we find an average value of the ERE of
E = 6.99× 10−5. A rather low value of the ERE is expected since silicon is dominated
by non-radiative recombination [1, 12]. In the light of Fig. 3, we may conclude that
Eq. (14) gives food predictions of the temperature behavior of Vmpp.

5.2 Dark Saturation Current

As mentioned in section 3, we have been making use of the approximated form of J0
to simplify the derivation of βVmpp and βJmpp . We have numerically computed these
TCs by making use of both the full and approximated form J0 to check whether there
is a significant difference. The results show a difference of 12 ppm K−1 at T = 300 K
and E = 1 up to 66 ppm K−1 at T = 343 K and E = 10−7 for βr

Vmpp
and, 0.5 ppm K−1

at T = 300 K and E = 1 up to 10 ppm K−1 at T = 343 K and E = 10−7 for βr
Jmpp

.
From the measured values, as well as from Fig. 3, we see that typical values of βr

Vmpp
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Figure 4: Relative temperature coefficient of the maximum power point current as a function
of the temperature calculated from Eq. (17) for several values of the ERE.

range from -3500 to -4000 ppm K−1. We can therefore conclude that having made
use of the approximated form of J0 for computing the TCs does not have significant
effects in βVmpp and βJmpp , in our cases.

5.3 Temperature Coefficient of Jmpp

In Fig. 4, we have plotted Eq. (17) as a function of the temperature for different values
of the ERE. Here, we can see that the temperature behavior of Jmpp changes with a
decreasing ERE. For E = 1, βr

Jmpp
(T ) has positive values, implying that Jmpp increases

with temperature. But when the ERE starts decreasing, we encounter negative values
of βr

Jmpp
(T ), implying that Jmpp is decreasing with increasing temperature. Fig. 4

shows that βJmpp is not a constant but rather temperature dependent, which implies
Jmpp does not vary linearly with the temperature. Note that for E = 6.99 × 10−5,
i.e., the average ERE of our samples (sec. 5.1), we have βr

Jmpp
< 0 (red line in Fig. 4)

and, particularly, βr
Jmpp

(avg. ERE) = −122 ppm K−1 for T = 300 K. Let us also note
that, for E = 10−3, βr

Jmpp
crosses zero at a temperature, denoted here Tcrit, which

equals 284 K in this specific case. J(Tcrit) therefore is a maximum Jmpp. Note also
that for E = 1, βr

Jmpp
is decreasing with the temperature and will eventually cross

zero. Fig. 4 therefore suggests that Tcrit is decreasing with the ERE.
Our experiments show a variety of temperature behaviors for the measured Jmpp.

In Fig. 5, we display our measurements of Jmpp for three of the six investigated Al-
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Figure 5: Measurements of Jmpp of the Al-BSF cell for different temperatures. Each color
represents a position within the brick.

BSF cells (group (c) in sec. 4). The cells are numbered according to their position
within the brick starting from the bottom, i.e., position 005 will be lower in the brick
than 009. In Fig. 5, we can see that in brick position 005, Jmpp is clearly decreasing
with the temperature. This is also the case for three other cells in positions 012,
022 and 027. These are not displayed in Fig. 5. In positions 009 and 034, Jmpp

appears to increase with temperature, reach a maximum and then decrease. In our
measurements of the PERC cells (groups (a) and (b) in sec. 4), Jmpp is increasing
with the temperature in most brick positions. There are however a few positions
where the measured values Jmpp vary in a non-systematic manner, and it is hard
to see any increasing or decreasing trend. A similar behavior as the one found in
positions 009 and 034 of group (c) is found in positions 012 and 041 of group (a).

The TC of Jmpp in each position is calculated by least-square fitting the measured
values of Jmpp to a straight line. βJmpp will therefore be the value of the slope. This
method gives reasonable fitting errors in those brick positions where Jmpp shows a
clear increasing, or decreasing, trend. In the case of position 005 in Fig. 5, we find
βr
Jmpp

= −156± 16 ppm K−1. In the case of positions 009 and 034, where Jmpp shows
both an increasing and a decreasing behavior, the fit gives βr

Jmpp
= 147± 96 ppm K−1

and βr
Jmpp

= 85± 180 ppm K−1, respectively. The non-linearity of Jmpp originates
these large uncertainties. It is therefore reasonable to conclude that making use of a
single TC to describe the temperature behavior of Jmpp may be misleading.

Our model has limitations that may be able to explain the discrepancy with our
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experiments. First, the spectral response of the solar cell. Eq. (7), assumes unit
absorptivity [6]. In real solar cells, the absorption coefficients are not step-functions
but rather smooth functions of the incoming wavelength which also depend on the cell
temperature [13] and, therefore, they will play a role in the temperature coefficients.
Particularly, the spectral response of the cell will affect the value of J ′

G. Second,
whereas our model assumes an ideality factor of 1, the IV-curve of real cells are often
better described by a larger ideality factor [14]. A temperature dependent ideality
factor, n(T ), will possibly also affect the TCs.

These two factors may not be sufficient to explain the discrepancies, so let us
focus now on the experiments. The biggest source of uncertainty in our measure-
ments comes from the difficulty in stabilizing the temperature during the relatively
long data-acquisition times. This results in not only uncertainty in the temperature,
but possibly also in the measured values of Vmpp and Jmpp. The uncertainty of the
temperature propagates in the calculation of the TCs further increasing the fitting er-
rors. Within the investigated temperature range, βJmpp varies with temperature (see
Fig. 4) while βVmpp is nearly constant. Small temperature fluctuations will therefore
cause a bigger, and significant, effect on βJmpp than on βVmpp .

Finally, Tcrit may be the last piece of the puzzle to explain the discrepancies
between Eq. (17) and our experiments. A Tcrit dependent on the brick position
and the cell architecture may explain the variety of temperature behaviors that our
experiments show. Jmpp has not reached Tcrit in the cells that show an only increasing
Jmpp. At the same time, those cells only showing a decreasing Jmpp have a Tcrit lower
than the temperature range in which the measurements were performed, as seen,
for example, in Fig. 5 in the measurements of the cell from position 005. Finally,
the positions where Jmpp first increases and then decreases with the cell temperature
reach their correspondent Tcrit within the investigated temperature range. This is
the case for brick positions 009 and 034 in Fig. 5, where we can see that their
correspondent Tcrit is around 328 K and 318 K, respectively.

6 Conclusion
In this paper, we have presented analytical expressions for the TCs of Vmpp and
Jmpp. It was discussed in Ref. [3] that the γ parameter, first introduced in Ref. [1],
accounts for the temperature sensitivity of all mechanisms determining the Voc. From
the results presented in section 3, we conclude that γ may also determine the thermal
sensitivity of Vmpp and Jmpp.

Numerical results as well as a comparison with experimental measurements of
βVmpp and βJmpp have also been presented and discussed. We have found that our
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model gives good predictions of the temperature behavior of the measured values of
βVmpp . The mismatch between the experimental measurements of βJmpp and Eq. (17)
suggests that there are one or more factors, which are not accounted for in our model,
that affect the temperature sensitivity of Jmpp. The solar cell spectral response and
a temperature dependent ideality factor have been proposed as possible explanations
to the discrepancy. The uncertainty of the measurements due to small temperature
fluctuations may also contribute to the discrepancy between the experiments and
Eq. (17). Finally, Fig. 4 shows that βJmpp is not a constant within the investigated
temperature range. Additionally, it can be seen in Fig. 4 that βJmpp(T ) crosses zero
at an ERE-dependent critical temperature, implying that Jmpp reaches a maximum
at this temperature.
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