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ABSTRACT

Asteroid binaries found among the near-Earth objects are believed to have formed from rotational fission. In this paper, we study the
dynamical evolution of asteroid systems the moment after fission. The model considers two bodies the moment after a contact binary
separates due to rotational fission. Both bodies are modeled as ellipsoids, and the secondary is given an initial rotation angle about its
body-fixed y-axis. Moreover, we consider six different cases, three where the density of the secondary varies and three where the shape
of the secondary varies. The simulations consider 45 different initial tilt angles of the secondary, each with 37 different mass ratios.
We start the dynamical simulations at the moment the contact binary reaches a spin fission limit, and our model ensures that the closest
distance between the surfaces of the two bodies is always kept at 1 cm. The forces, torques, and gravitational potential between the two
bodies are modeled using a newly developed surface integration scheme, giving exact results for two ellipsoids. We find that more than
80% of the simulations end with the two bodies impacting, and collisions between the bodies are more common when the density of
the secondary is lower, or when it becomes more elongated. In comparison with observed data on asteroid pairs, we find that variations
in density and shape of the secondary can account for some of the spread seen in the rotation period for observed pairs. Furthermore,
the secondary may also reach a spin limit for surface disruption, creating a ternary or multiple system. We find that secondary fission
typically occurs within the first five hours after the contact binary separates, and is more common when the secondary is less dense or
more elongated.
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1. Introduction

Since the first binary asteroid system, (243) Ida and its moon
Dactyl, were discovered by the Galileo spacecraft (Chapman
et al. 1995), many more have been identified among near-Earth
objects, in the main belt, and in the Kuiper belt (see, e.g., Margot
et al. 2015, and references therein). Roughly 27 000 near-Earth
asteroids (NEAs) are currently known, the majority of them with
diameters less than 1 km (Harris & Chodas 2021). NEAs are
thought to originate from the main belt and, due to resonances
with Jupiter, to have migrated into Earth-crossing orbits with
perihelion distances of <1.3 AU (Morbidelli et al. 2002). It is
estimated that roughly 16% of near-Earth objects are binaries
(Margot et al. 2002).

It is believed that smaller binary systems among asteroids
are formed through rotational fission (Margot et al. 2002; Pravec
& Harris 2007). Small asteroids, typically with diameters ∼0.1–
10 km (Walsh 2018), are “rubble piles”, porous collections of
irregularly shaped boulders and finer grains held together by
gravity and possibly weak cohesion forces (Hirabayashi et al.
2015; Li & Scheeres 2021). In the rotational fission model
a rubble pile asteroid is spun up by the Yarkovsky-O‘Keefe-
Radzievskii-Paddack (YORP) effect (Rubincam 2000). Once the
asteroid reaches a critical spin rate, it will start to shed some
of its mass (Scheeres 2007; Walsh et al. 2008). This model also
matches the observations of rapidly rotating primaries of asteroid
pairs (Pravec et al. 2010, 2019).

Other binary creation processes have also been proposed,
such as binary creation by collisions and even creation via
tidal disruptions from nearby planets (see, e.g., Margot et al.
2002; Merline et al. 2002; Richardson & Walsh 2006). The first

mechanism is likely to describe formation of binaries of large
asteroid systems (see, e.g., Walsh & Jacobson 2015). However, it
is believed that creation of binaries among the NEA population
is highly unlikely through these mechanisms.

Various works have studied the dynamics of an asteroid
binary system during and after the fission process. Walsh et al.
(2008) modeled asteroids as rubble piles consisting of numer-
ous self-gravitating spheres. In their model, the YORP spin-up
would eject some of these spheres, and they found that the for-
mation of a satellite was more efficient for a spherical and oblate
primary. The work of Scheeres (2007) considered a slightly dif-
ferent scenario in which the asteroids are initially resting on
each other; these are known as contact binaries. Scheeres stud-
ied the limits in which fission would take place, considering
an ellipsoid–sphere model and extended this to a two-ellipsoid
model to study the stability of the binary system post-fission
(Scheeres 2009). However, the systems predicted by these the-
ories are highly energetically excited. In order to stabilize the
systems and prevent the secondary from escaping, a form of
energy dissipation mechanism is necessary.

Work by Jacobson & Scheeres (2011) studied the creation
of various NEA binary systems, including doubly synchronous
binaries, high-e binaries, ternary systems and contact bina-
ries. They introduced a new binary process, secondary fission,
as a mechanism to decrease the energy level of the system.
This was extended by Boldrin et al. (2016) to include non-
planar effects, and they found that secondary fission can take
place at higher mass ratios, compared to Jacobson & Scheeres
(2011), as a nonplanar configuration allows for higher energy
levels. They also found that the secondary acquired nonprin-
cipal axis rotations as a consequence of the nonplanar effects.
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Davis & Scheeres (2020) further studied post-fission dynamics
by including higher order gravity terms in addition to nonpla-
nar effects, and also included tidal torques. Davis and Scheeres
compared their results with Jacobson & Scheeres (2011), and
found that the formation processes remain unaltered, but that the
process itself is slower. Additionally, due to the possibility of
re-collision in their model, they found that the rate of escaping
secondaries is lower.

In this paper, we study the dynamical evolution of aster-
oid binary systems immediately after fission occurs. Our work
is similar to the work of Boldrin et al. (2016), who assumed
rotational fission of a contact binary where the secondary was
given different initial tilt angles about its body-fixed y-axis. We
investigate the outcome of the rotational fission for a number of
different mass ratios and configurations of the contact binary.
Whereas the Boldrin et al. study was restricted to systems with
mass ratios q ≤ 0.3 where the density and shape of the sec-
ondary was identical to that of the primary, we include the whole
range of mass ratios from 0.01 to 1, and also allow for dif-
ferent densities and shapes of the secondary. Our work applies
the method we recently developed that computes the forces and
mutual torques between two bodies without using approxima-
tions (Wold & Conway 2021; Ho et al. 2021). When expanding
the mutual potential, for instance through spherical harmonics,
higher order terms have a more significant role in the dynam-
ics of the system when the bodies are closer. Furthermore, Hou
et al. (2017) showed that higher order terms are required when
the bodies are also more elongated. This means that using an
exact method may provide more accurate results of the dynamics
of asteroid binaries or pairs after the initial separation.

The structure of this paper is as follows. In Sect. 2, we present
the mathematical framework and initial conditions used for our
models. In Sect. 3, we describe the models used and present the
results of the simulations. Finally, we summarize and discuss our
results in Sect. 4.

2. Dynamical model

The model consists of two triaxial ellipsoids. Initially they are
attached to each other as a contact binary. We assume that
the contact binary undergoes rotational fission, a process where
the two components separate when a certain limiting rotational
speed is reached (Bottke et al. 2002; Scheeres 2007; Walsh et al.
2008). The initial setup is shown in Fig. 1, and is similar to that
used by Boldrin et al. (2016), with the secondary centered on the
long semiaxis of the primary and rotated an angle θ0 about its
body-fixed y-axis.

To compute the force and torque on body i in the gravitational
field of body j, we apply the surface integral equations described
by Conway (2016):

FG = Gρi

"
S i

Φ j(r)ndS , (1)

M = −Gρi

"
S i

Φ j(r)n × rdS , (2)

where the mutual potential between the two bodies is written as:

U =
Gρi

3

"
S i

(
rΦ j(r) −

1
2
|r|2g j(r)

)
· ndS . (3)

In these formulae ρi is the density of body i (assumed to be con-
stant throughout the body), and Φ j(r) and g j(r) = ∇Φ j are the
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Fig. 1. Contact binary before separation (top) and after separation (bot-
tom). Top: Configuration of the contact binary the moment of fission
where the gravitational force FG and the centrifugal force FC are equal.
The cross indicates the center of mass of the system. The long and short
semiaxes (a and c) are aligned with the body-fixed x- and z-axes of
the respective bodies. Bottom: Angular velocities of the bodies after the
contact binary separates.

scalar potential and gravitational field of body j at a position r
on the surface of body i. The vector normal to the surface of
body i at position r is n, and dS is the surface element at that
position. The gravitational constant is denoted as G.

It is customary to use second- or fourth-order approximations
of the mutual gravitational potential for two-body interactions
of nonspherical bodies, and from that compute force and torque
(Fahnestock & Scheeres 2008; Boldrin et al. 2016; Hou et al.
2017; Davis & Scheeres 2020). The mutual potential is thus
expressed as a sum of several terms, which in fact suffers from
a truncation error. However, our approach uses exact expres-
sions in the form of surface integrals, and will therefore not
suffer from truncation errors. For ellipsoids the potential of the
bodies (Φ) can be expressed using well-known analytical expres-
sions (MacMillan 1930). The surface integration scheme thus
becomes a surface integration over an ellipsoid surface (see
Wold & Conway 2021, for a more detailed outline of the surface
integration).

We propagate the binary after rotational fission by solving
the rotational and translational equations of motion in an inertial
frame of reference, formulating it as a standard initial value prob-
lem. The rotational motion of the bodies is solved in the body-
fixed reference frames using Euler parameters (e0, e1, e2, e3) in
order to avoid the singularities related to Euler angles. For the
integration of the equations of motion, we use the ninth-order
Runge–Kutta method by Verner (2010). While it is convenient to
use an adaptive time stepper, we use the solver with a fixed time
step of ∆t = 19 minutes in order to compare the time evolutions
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Fig. 2. How the secondary moves closer to the primary when the angle θ0 of the secondary is increased.

between various simulations. Furthermore, we do not make use
of an adaptive time stepper because our simulations are relatively
short. The end results did not have significant changes when the
time step was smaller, nor did an adaptive time stepper affect the
outcome.

2.1. Rotational fission

Throughout the rest of this paper, all variables with subscript
p and s correspond to variables describing the primary and
secondary, respectively.

Initially, before separation, the contact binary rotates about
an axis passing through the center of mass of the system and
perpendicular to the xy-plane of the primary, as shown in
Fig. 1. When the rotational speed reaches a certain limit ω0,
the centrifugal force on the secondary matches the gravitational
attraction between the primary and secondary, and the contact
binary fissions.

The initial angular velocity ω0, which we use to start our
simulations, is therefore the limit for rotational fission given by:

ω0 = β

√
FG

msr
, (4)

where ms is the mass of the secondary and r is the distance
between the centroid of the secondary and the center of mass of
the system (see Fig. 1). We found during our simulations that it
was necessary to assume a value of ω0 that is slightly higher than
the theoretical limit, hence we multiplied the theoretical limit
by the factor β = 1.01. The β-factor can be interpreted as some
cohesion between the two components, and small amounts of
cohesion may allow rubble pile asteroids to rotate faster than the
theoretical limit (Holsapple 2007; Sánchez & Scheeres 2014).

2.2. Initial conditions

As the system is not affected by external forces or torques, linear
and angular momentum is conserved. Furthermore, no energy
is added or removed at the instant of fission. Thus, immedi-
ately after fission the primary and the secondary both experience
the same angular velocity ω0. Therefore, the initial translational
velocities of these two objects right after fission can be found as:

v0,p = ω0 × (r0,p − rcm), (5)
v0,s = ω0 × (r0,s − rcm), (6)

where r0,p and r0,s are respectively the initial positions of the
primary and secondary in the inertial frame, rcm is the position
of the center of mass of the system, and ω0 = [0, 0, ω0] is the
initial angular velocity vector in the center of mass system. After
the bodies have separated, the angular velocities of the bodies in
the inertial frame are equal to those of the contact binary before
separation, as shown below the dashed line in Fig. 1. The angular
velocities in the body-fixed frames are determined as:

ω̂0 = RTω0, (7)

where RT is the transpose of the rotation matrix at the time of
separation.

The configuration is varied by changing simultaneously the
initial angle θ0 of the secondary and the centroid-to-centroid dis-
tance between the primary and secondary, under the condition
that the separation between the two surfaces at their closest point
is kept at ∆r = 1 cm. When θ0 = 0◦, the initial positions of the
primary and the secondary are:

r0,p = [0, 0, 0], (8)
r0,s = [as + ap + ∆r, 0, 0], (9)

where ap and as are respectively the long semiaxes of the pri-
mary and secondary and ∆r = 1 cm is the separation between
the surfaces.

When θ0 increases from 0 to 90◦, the surface-to-surface dis-
tance increases. In order to keep this distance at 1 cm, the
secondary’s centroid has to be moved closer to the primary’s
centroid, as illustrated in Fig. 2. In this manner, we ensure that
the initial separation between the surfaces is always 1 cm. In
practice, when θ0 changes, the initial position of the secondary
r0,s is recalculated by a separate algorithm.

By keeping the initial distance between the surfaces to 1 cm
regardless of the value of θ0, the limiting value of ω0 for the
initial fission will increase. This is a consequence of r becom-
ing smaller in Eq. (4). The variation in ω0 with θ0 is shown in
Fig. 3. The top panel shows that ω0 increases as a function of θ0
when ∆r = 1 cm (blue crosses). However, when the centroid-to-
centroid distance is kept constant, which leads to an increasing
gap between the surfaces, the value of ω0 decreases slightly as
a function of θ0 (red crosses). Our model therefore takes into
account that the limiting rotational speed for fission changes as
the tilt angle of the secondary changes. The bottom panel shows
the relative difference between these two cases for three different
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Fig. 3. How angular velocity changes with the initial tilt angle θ0 of the
secondary. Top panel: ω0 is affected when there is contact between the
surfaces (blue) and when the surface-to-surface distance increases (red)
as the secondary is tilted (see also Fig. 2). The mass ratio is q = 0.1 for
the data in the top panel. Bottom panel: relative difference inω0 between
the two approaches shown in Fig. 2, but for three different mass ratios
q. The mass ratio is defined as q = ms/mp.

mass ratios of the primary to the secondary. The relative dif-
ference amounts to ≈15–20% when θ0 approaches 90◦. We also
note that the relative difference grows larger as the mass ratio
increases.

Throughout all the simulations the shape and density of the
primary are fixed. The semiaxes are (ap, bp, cp) = (1.0, 0.7, 0.65)
km, equal to the numbers used by Boldrin et al. (2016), and the
density is ρp = 2.0 g cm−3, which is a commonly used density
to model rubble pile asteroids (Pravec et al. 2010; Jacobson &
Scheeres 2011; Boldrin et al. 2016). Some observed asteroids
also have densities close to this value, for example 25143 Itokawa
(Fujiwara et al. 2006; Kanamaru et al. 2019), as do some pri-
maries of asteroid binaries, such as (66391) 1994 KW4 (Moshup)
(Ostro et al. 2006; Scheirich et al. 2021) and (88710) 2001 SL9
(Scheirich et al. 2021).

For each configuration defined by sets of θ0 (and conse-
quently r0,s), our aim is to study how the dynamics of the binary
system evolve while varying the mass ratio q = ms/mp. We ran
simulations for 37 different mass ratios q = 0.01, 0.05, 0.10, q ∈
[0.15, 0.30] in increments of 0.01 and q ∈ [0.32, 1.00] in incre-
ments of 0.04. For each mass ratio q, we considered 45 different
initial angles θ0 of the secondary in the range θ0 ∈ [0.001◦, 90◦].
All simulations were run with a time span of 4800 h (200 days),
unless they were terminated earlier due to collision (or impact)
between the two bodies.

3. Results

We examined the dynamics as a function of q and the initial tilt
angle θ0. The mass ratio can be written as:

q =
ρs

ρp

asbscs

apbpcp
. (10)

Because we keep the shape and density of the primary fixed,
varying the mass ratio of the system mainly affects the mass and
volume of the secondary. Moreover, increasing the mass ratio
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Fig. 4. Total energy of the system as a function of the mass ratio q,
for each model, using θ0 = 0.001◦. The gray dotted line shows the zero
energy line.

also changes the total energy of the system, as shown in Fig. 4.
The total energy is the sum of kinetic and potential energy. The
systems where the total energy is negative are bound; in sys-
tems where the total energy is positive the two components can
undergo mutual escape.

First, we consider models with three fixed values of ρs/ρp
while keeping the ratio of the secondary’s semiaxes equal to that
of the primary. In the next three models the secondary can take
different geometrical shapes, but now the density is kept constant
and equal to that of the primary.

In order to determine whether the secondary has escaped or
exists in an unstable orbit, we utilize its orbital eccentricity e.
The eccentricity is an osculating Keplerian element, and there-
fore changes with time. The secondary is considered to have
escaped when e ≥ 1 for at least 50 time steps. This is to ensure
that cases where e ≥ 1 for only a shorter period of time are not
classified as already escaped. Increasing this limit to more than
50 time steps did not change the outcome. If, however, the eccen-
tricity is less than unity at the end of the simulation, and the
total energy of the system is positive, we classify it as residing in
an unstable orbit. The secondary in systems with negative total
energies is classified as being in a stable orbit. If the ellipsoid
surfaces intersect at any time during the simulation, we consider
it a collision and end the simulation.

These definitions share some similarities with the defini-
tions provided by Scheeres (2002). For instance, the outcome
“eventual escape” outlined by Scheeres, where there are multi-
ple periapsis passages that will eventually terminate, is similar
to our definition of an unstable case scenario. The “nonim-
pacting and nonescaping” outcome is equivalent to our stable
orbit outcome. However, we do not classify immediate escape
scenarios, nor we do distinguish between different reimpact
events.

3.1. Varied densities, models D1–D3

The first set of models considered involves varying the density
of the secondary while keeping the semiaxis ratio equal to that
of the primary, that is as/bs = ap/bp and bs/cs = bp/cp. In this
case the semiaxes of the secondary can be derived from Eq. (10),
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Fig. 5. Model outcomes as functions of mass ratio q and initial tilt angle θ0. In the top row, the left, middle, and right panels correspond to models
D1, D2, and D3, respectively. In the bottom row, the left, middle, and right panels correspond to models S1, S2, and S3. The dashed lines indicate
the value of q where the total energy is zero.

with as written as:

as =

(
ρp

ρs
q
)1/3

ap. (11)

The equations of bs and cs take similar forms.
We examine models with three different density ratios:

– Model D1: ρs/ρp = 0.5;
– Model D2: ρs/ρp = 1.0;
– Model D3: ρs/ρp = 2.0.

As the density of the primary is fixed at ρp = 2.0 g cm−3, models
D1, D2, and D3 have secondaries with densities of 1.0 g cm−3,
2.0 g cm−3, and 4.0 g cm−3, respectively. Model D2 is identical
to the model discussed by Boldrin et al. (2016).

3.2. Varied shapes, models S1–S3

In these models, we investigate cases where we vary the axis
ratio of the secondary, but keep the density of the secondary

equal to that of the primary. We write the secondary’s semiaxis
ratios as:
as

bs
= f1, (12)

bs

cs
= f2. (13)

We select three combinations of f1 and f2:
– Model S1: f1 = 1.3, f2 = 1.03, a secondary that is fairly

spherical and almost an oblate spheroid;
– Model S2: f1 = 1.6, f2 = 1.2, a cigar-shaped secondary with

a ≫ b > c;
– Model S3: f1 = 2.5, f2 = 1.2, similar to model S2, but even

more elongated.

3.3. Outcome distribution

First we study the outcome of the secondary at the end of the
simulations. Figure 5 shows the distribution of the outcomes as
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functions of mass ratio and initial tilt angle for the six different
models. In all six models, most of the simulations (more than
80% of the case results) end up with the two bodies colliding
(red area in the figure). These collision events are typically found
when θ0 ≳ 15◦.

In general, there are two regions (θ0 ≲ 15◦ and θ0 ≳ 80◦)
where the components do not impact, but where the secondary
either escapes or orbits the primary. Most of these cases are
found for configurations with θ0 < 10–15◦ over the entire range
of q. Those found at higher initial angles mainly take place at
low mass ratios, and the number of them residing in this region
is low for most models. These two ranges of θ0 correspond to
regions near two configurations (θ0 = 0◦ and θ0 = 90◦) where
the contact binary is in a relative equilibrium (Scheeres 2009).

The separation between the positive and negative total energy
regimes in Fig. 5 occurs between the yellow and green areas. For
two spheres this separation occurs at q = 0.2, and for triaxial
ellipsoids, as in our case, the separateion fluctuates around this
value depending on both shape and configuration (see discus-
sion in Scheeres 2009 and Jacobson & Scheeres 2011). We find
that the separation occurs at q = 0.19–0.20, q = 0.22–0.24, and
q = 0.26–0.32 for models D1, D2, and D3, respectively. Hence
the separation occurs at successively higher mass ratios when the
density of the secondary increases. The separation shifts toward
slightly higher mass ratios when θ0 increases, as seen in the top
regions of the panels. This occurs because the total energy is
raised for these configurations, and also reflects an increased
value of ω0, as illustrated in Fig. 3. A similar trend is seen in
the varied shape models, where the separation between positive
and negative energy regimes occurs at lower mass ratios when
the secondary becomes more elongated.

At low mass ratios where the total system energy is posi-
tive, we find a mix of cases where the secondary has escaped
and where it is still orbiting the primary in an unstable orbit.
With a longer simulation time, we expect to see fewer cases of
secondaries in unstable orbits. Boldrin et al. (2016) call these
secondaries “escape survivors”, and only find them at q > 0.27
(they only include systems with q < 0.3) after a simulation time
of 200 yrs. As our simulations are 200 days long, they repre-
sent a snapshot of the situation after a fraction of this time. We
therefore have survivor cases also at the lowest mass ratios, as
opposed to Boldrin et al. (2016).

Of all the cases at θ0 ≳ 80◦ that do not collide, a relatively
large fraction have escaped compared to those at lower θ0, typi-
cally making up more than 70% for most models. This indicates
that the secondary may escape earlier the more tilted its initial
position is. A higher initial angle corresponds to a higher energy
configuration of the system, and may therefore be the cause of
an earlier escape for the high initial angle systems.

At higher mass ratios q ≳ 0.2 the system total energy is
negative, hence all secondaries are gravitationally bound to the
primary (unless sufficient energy is added to the system). These
are shown in green in Fig. 5. Some also appear when θ0 ≳ 85◦.

3.4. Collisions

The majority of the simulations end up with a collision. The col-
lisions tend to occur for configurations with θ0 ≳ 15◦, but can
also take place at lower initial angles when the density ratio ρs/ρp
is lower, when the secondary becomes more elongated, or when
the mass ratio increases. Allowing the secondary to become less
dense or more elongated also increases the overall number of
collision cases.
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Fig. 6. Distribution of mass ratio (top) and initial tilt angle (bottom) as
functions of time before collision. The left and right panels show the
models with varied density and varied shape, respectively. Collisions
that occur before 5 h have elapsed are excluded from this plot. For the
remaining simulations shown in the figure, the average time it takes to
collide is 143 h, 166 h, and 133 h for models D1, D2, and D3, respec-
tively, while the average is 171 h, 193 h and 79 h for models S1, S2, and
S3 models, respectively.

Although we find that collisions typically happen at θ0 ≳ 15◦
(with the exception of model S3, where collisions can happen
as low as θ0 ≳ 8◦), Boldrin et al. (2016) report that in their sim-
ulations collisions occur for initial tilt angles of θ0 ≳ 40◦. This
cannot be due to our study having a shorter simulation time, as
we would expect the opposite to happen if that were the case (as
we expect more systems to collide over time). The most likely
explanation is that the secondary in our study starts out closer
to the primary when it is rotated (see Fig. 2). By moving the
secondary closer, the probability of collision is also expected
to increase. This is especially true when θ0 is nonzero, as the
secondary will fall onto the surface of the primary due to the
gravitational torque. This also explains why there are signifi-
cantly more collisions for the more elongated secondaries, as
the gravitational torque is stronger when the secondary becomes
more elongated. The simulations that survive at high angles are
likely due to higher initial velocities as a result of higher system
energies, which thus prevent this type of collision.

There is a sharp horizontal division separating collision and
stable cases when θ0 ∼ 10◦−15◦. However, this is not found
at higher angles. This may be because when θ0 approaches
90 degrees, the secondary approaches an unstable equilibrium,
whereas a lower initial angle is closer to a stable equilibrium.

Most of the collisions take place very early in the simula-
tions. More than 95% of the impact events occur within the first
five hours. Some of these impacts can occur even within the
first two time steps, which make up 82% of the collision out-
comes. The collisions that occur between the first and second
time step may be considered the “immediate reimpact” events
that are mentioned by Scheeres (2002). These early impacts are
due to the secondary falling onto the primary as a result of the
gravitational torque.

Finally, we study the remaining collision cases that occur
later one in the simulation, at t > 5 h. These are shown in Fig. 6,
distributed as functions of both q and θ0. The top panels show
that cases that survive longest, in all six models, have interme-
diate values of the mass ratio, typically between 0.18 and 0.4.
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Fig. 7. Escape times, averaged over the 45 initial values of θ0, as func-
tions of the mass ratio. The left columns show the varied density models,
while the right columns show the varied shape models. The error bars
show the standard deviation of the escape times at the given mass ratio.

Compared to models D1 and D2, there is a tendency for model
D3 to survive longer at both lower and higher mass ratios than
this range. For instance, there are a few cases with q ≈ 0.5 and
q ≈ 0.1 with a survival time ≳500 h which is not found in models
D1 and D2. The collision time of model S1 is, on average, greater
than those in models S2 and S3. In model S2, there are only two
simulations that experience collision after 500 h, and only one
in model S3, that occur when q ≈ 0.25. The bottom panels in
Fig. 6 show that nearly all collisions that take place after 5 h have
elapsed have secondaries with large initial tilt angles θ0 > 80◦.
The one exception is for model D1, where the time before col-
lision is approximately 59 h for a case with θ0 ≈ 8◦ and q = 0.3
(corresponding to the “dent” in the green region in the top left
panel of Fig. 5). On average, the time before collision, for sim-
ulations that last longer than 5 h, is 133 h, 166 h, and 143 h for
models D1, D2, and D3, respectively, while for the varied shape
models the averages are 170 h, 192 h, and 79 h for models S1, S2,
and S3.

3.5. Escape cases

The escape cases are mainly found at the low end of the mass
ratio spectrum, typically q < 0.2 for most models, as these low
mass ratio systems have positive energies. Simulations that result
in the secondary escaping make up 1.38%, 2.40%, and 4.86% of
the simulations for models D1, D2, and D3, respectively. Thus,
it appears that the secondary escapes more easily when the sec-
ondary is denser than the primary. Meanwhile, for the varied
shape models we find that the escape cases make up 5.23%,
1.20% and 0.48% of the simulations for models S1, S2, and S3,
respectively. The lower number of escape cases in models S2
and S3 is likely a consequence of a lower energy configuration
in the system, due to the elongated shape of the secondary. How-
ever, the torque applied on the secondary, due to the primary, is
stronger when it becomes more elongated. It is therefore possible
that the small number of escaped secondaries is due to the early
collisions.

How long it takes for the secondary to escape varies with
both its density and its shape. In Fig. 7, we plot the escape time
te, averaged over the 45 initial angles, as a function of q. From

this figure, we can see that there is a trend that the secondary
takes longer to escape as the mass ratio increases, which is sim-
ilar to the findings of Boldrin et al. (2016). We find that the
average escape time is roughly twice as short in model D2 as in
the results of Boldrin et al. (2016) at corresponding mass ratios.
However, as described in Sect. 2.2, the value of ω0 becomes
larger when the secondary is moved closer, due to an increase in
θ0, and the probability of an early escape increases as the system
energy increases. The escape time trends of models D1 and D3
are similar to that of D2, but the escape times are slightly longer
when density of the secondary is lower. The average escape
times of models S1 and S2 are similar up to q = 0.11. How-
ever, the escape time increases significantly with mass ratio in
model S3.

For systems where the secondary takes longer to escape,
we expect that rotational energy gets transferred to translational
energy before the secondary is expelled. At the time of escape
(when the eccentricity exceeds 1), the separation between the
two bodies is large enough for the rotational and translational
motion to be decoupled (Scheeres 2002). Hence, we expect the
rotation of the bodies to slow down as time passes in our simula-
tions; after escape we expect the rotation period to stay roughly
constant. Because it takes longer for the secondary to escape in
systems with higher mass ratios, we expect the rotation of the pri-
mary to slow down more in systems with higher mass ratios. We
first investigate the rotation of the primary after mutual escape.
We calculate the (instantaneous) rotation period of a body as
T = 2π/ω, where ω is the magnitude of the angular velocity
of the body. The rotation period of the primary, at the time of
escape, is displayed in the two top left panels in Fig. 8, showing
the rotation period of the primary Tp at the final time step as a
function of q. In the figure it can be seen that Tp in all six mod-
els, is longer at higher mass ratios after escape of the secondary,
indicating a correlation between Tp and q. The Spearman corre-
lation coefficients between Tp and q are shown in Table 1. For
all models the correlation coefficients are rs > 0.9. Furthermore,
with the exception of model S3, the p-values are lower than 10−9.
The high p-value in model S3 is likely due to the smaller number
of escape scenarios for this model.

We also include the data of asteroid pairs from Pravec et al.
(2019) in the figure, for pairs with q < 0.3 (indicated with gray
crosses), and most of our results are within the range of the
observed data. However, some outliers also exist in the data pro-
vided by Pravec et al. (2019), where some asteroid pairs have
mass ratios that are too high and some pairs where the primary is
rotating too slowly. Pravec et al. believe that these outlier asteroid
pairs are not formed by rotational fission.

We also briefly studied the rotation period of the secondary
after escape, which is shown in the two bottom left panels in
Fig. 8. Unlike the primary, there are no obvious patterns of
an increasing rotation period of the secondary when the mass
ratio increases. We have also included the rotation period of the
secondary of asteroid pairs from Pravec et al. (2019). With the
exception of a few outliers in our results, most of the escaped
secondaries have rotation periods that are in the range of the data
from Pravec et al. (2019).

3.6. Unstable binaries

Some of our simulations, with positive total energy, are still in
orbit around the primary after 200 days (the orange regions in
Fig. 5). These systems are typically found near the same values
of θ0 as the escape cases, and we refer to them as “unstable”.
Of all non-collision systems with positive energy, the unstable
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Fig. 8. Distribution of rotation periods, as functions of mass ratio, for non-collision systems with positive total energy. The top and bottom rows
correspond to the rotation period of the primary and secondary, at t = 200 days, respectively. The first and second columns show the escape cases,
while the third and fourth columns show the unstable cases. The D and S models correspond to models D1–D3 and S1–S3, respectively. The gray
crosses are data from Pravec et al. (2019), and only asteroid pairs with q < 0.3 are included in the figure.

Table 1. Correlation between the rotation period of the primary Tp and
the mass ratio q, for all the escape cases.

Model rs (Tp and q) p-value

D1 0.943 1.828 × 10−11

D2 0.980 3.485 × 10−28

D3 0.964 2.996 × 10−47

S1 0.976 2.954 × 10−58

S2 0.924 5.958 × 10−9

S3 0.913 1.547 × 10−3

Notes. The second column shows the Spearman correlation coeffi-
cient rs between the two variables, while the third column shows the
corresponding p-values.

scenarios typically make up roughly one-half of them, with the
exception of model D3 where the unstable cases make up approx-
imately one-third of the simulations. However, we expect the
number of unstable scenarios to decrease and to become either
an escape or a collision case if a longer time span is considered.

In the third and fourth columns of Fig. 8, we give the rotation
periods of the bodies at the end of the simulations for all unstable
cases. The rotation periods of both bodies of these simulations,
similar to the scenarios where the secondary has escaped, are
also within the range of the observed data from Pravec et al.
(2019). The primary is again seen to have longer rotation periods
as the mass ratio increases.

3.7. Stable binaries

Finally, at mass ratios of q ≳ 0.2 the systems have negative total
energy, forming binary systems that are stable against mutual
escape. They correspond to the green regions in Fig. 5, and most
of them appear at θ0 ≲ 15◦. Although this is called a stable orbit,
the secondary may still collide with the primary if a longer time
span is considered. Some systems with negative total energies
do end up with an impact after 1000 h. The case with the longest
time before impact (as seen in Fig. 6) is actually a system with
negative total energy. However, we also saw in Fig. 6 that the
time before impact is generally shorter at higher mass ratios. It is
therefore possible that, for high enough mass ratios, systems that
survive longer than ∼100 h will never collide.

3.8. Rotational motion

In order to examine, the rotational state of the bodies at the end
of the simulation, we follow Boldrin et al. (2016) and utilize the
dynamic inertia ID, defined as:

ID =
L2

2Er
(14)

(Scheeres et al. 2000), where L is the magnitude of the angu-
lar momentum and Er is the rotational kinetic energy of the
body. A body has a uniform rotational motion when ID = Iz or
ID = Ix, which corresponds to rotations about the short and long
axes, respectively1. Nonuniform rotation (or tumbling motion)
1 This assumes that Ix ≤ Iy ≤ Iz.
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Table 2. Distribution of the rotation modes of the primary and secondary for all the non-collision cases.

Body Rotation state Model D1 Model D2 Model D3 Model S1 Model S2 Model S3

Primary
LAM 30.05% 27.59% 27.04% 26.91% 36.54% 32.56%
SAM 54.19% 51.29% 45.19% 48.02% 46.79% 51.16%

Uniform 15.75% 21.12% 27.78% 25.07% 25.07% 16.28%

Secondary
LAM 58.62% 59.91% 57.78% 65.70% 55.77% 58.14%
SAM 36.95% 34.91% 37.41% 25.07% 39.10% 39.53%

Uniform 4.43% 5.17% 4.81% 3.43% 5.13% 2.33%

Notes. The rotation mode is considered uniform if the difference between ID and Iz (or Ix) is smaller than 10−5.

0

20

40

60

80

0 -
 [d

eg
]

s/ p = 0.5 (D1)
Uniform SAM LAM

0

20

40

60

80

s/ p = 1 (D2)

0

20

40

60

80

s/ p = 2 (D3)

0.01 0.2 0.3 0.68 1.0
q

0

20

40

60

80

0 -
 [d

eg
]

f1 = 1.3, f2 = 1.03 (S1)

0.01 0.2 0.3 0.68 1.0
q

0

20

40

60

80

f1 = 1.6, f2 = 1.2 (S2)

0.01 0.2 0.3 0.68 1.0
q

0

20

40

60

80

f1 = 2.5, f2 = 1.2 (S3)

Fig. 9. Distribution of the rotation state of the primary, at the end of the simulation, as functions of q and θ0. The white regions correspond to
simulations that result in collisions. The dashed lines indicate the value of q where the total energy is zero.

happens when Ix < ID < Iz. This can be categorized as long-axis
mode (LAM) when Ix < ID < Iy, and as short-axis mode (SAM)
when Iy < ID < Iz (Scheeres et al. 2000). Here we only take into
consideration the rotational motion in simulations that do not
result in the two bodies impacting.

Initially, the primary has uniform rotational motion, where
the dynamic inertia is equal to Iz, while the secondary starts
off in a tumbling state. For low values of θ0 the initial dynamic
inertia of the secondary is close to Iz, and approaches Ix as θ0
increases.

At the end of the simulations, we find that both the primary
and the secondary, in most cases, are in some state of tumbling.
Table 2 summarizes the final rotation state of the two bodies.
The primary is mainly found with SAM rotation, which is close

to its initial state. For q ≲ 0.25, the primary may be able to
retain its uniform rotational motion throughout the whole sim-
ulation, and these are mainly found at mass ratios of q ≲ 0.2, as
shown in Fig. 9. Most of these situations are found among the
escape cases; however, some are also found among the unstable
cases. This is a consequence of the secondary being unable to
act with a gravitational torque on the primary due to the large
separation between the bodies. This is similar to the results of
Davis & Scheeres (2020), as they found that the spin state of
the primary is, for the most part, unaffected when the secondary
escapes. Moreover, simulations where the primary ends with a
LAM rotation are more common at high mass ratios.

The secondary is also mostly in a tumbling state. Unlike
the primary, LAM rotation is more common for the secondary
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Fig. 10. Same as Fig. 9, but for the secondary.

because most simulations have a secondary with initial LAM
rotation. Typically, the initial rotation mode of the secondary is
SAM when θ0 ≲ 27◦ and LAM otherwise, but it also depends on
its shape. For the non-collision cases when θ0 > 60◦, nearly all
simulations end with the secondary in a LAM rotation, as shown
in Fig. 10, with one exception found in model D3. In some of the
simulations (≲5%), the secondary has uniform rotational motion
at the end of the simulation, either along the short or the long
axis. These are mainly found when q ≤ 0.1, when the secondary
has escaped, and when θ0 = 0.001◦. Uniform rotational motion
is less common among the stable cases because both the primary
and secondary act with torques on each other for a longer time
period.

If we isolate the escaped secondaries in this analysis, we find
that approximately 35–50% have SAM rotation at the end of the
simulation for every model except the S3, where the percent-
age is 63% instead. Boldrin et al. (2016) found in their study
that most escaped secondaries are SAM rotators. Our results
are therefore slightly different in that we seem to find fewer
with SAM rotation. In particular, we find fewer SAM rotators
as the secondary becomes less dense. Davis & Scheeres (2020)
also investigated the rotational state of escaped secondaries, and
found that every escaped secondary is in tumbling motion.

We also wanted to study how the rotation period of the bodies
changes with time when the secondary is still in orbit around
the primary. Figure 11 shows the average rotation period of the
primary and secondary as functions of time in the top and bottom
rows, respectively. The left and right panels correspond to stable
and unstable cases, respectively. The averaged data are binned in
48 hour periods.

In the figure, it can be seen that the average rotation period of
the primary increases over time, both for the stable and unstable
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Fig. 11. Average rotation period of the primary (top) and the secondary
(bottom), averaged over all the stable (left) and unstable (right) cases,
as functions of time. The averages, for t > 0, are binned over 48 hour
intervals.

cases. Furthermore, the rotation period of the unstable cases are
lower than the stable cases, which is a consequence of the large
separations between the bodies, effectively decoupling the trans-
lational and rotational motions, similar to the escape cases. The
secondary, as shown in the bottom two panels, has rotation peri-
ods of typically 10–15 h in the stable systems and, similarly to
the primary, rotates slightly faster, typically 8–12 h in the unsta-
ble systems. The time evolution of the rotation period of the
secondary is far more volatile within the first ∼2500 h of the
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Fig. 12. How the separation between bodies and rotation periods
changes over time, for four selected simulations. The top row shows the
separation, while the middle and bottom rows show the rotation period
of the primary and secondary, respectively. The mass ratios of the col-
lision, stable, escape, and unstable examples are q = 0.29, 0.32, 0.15,
and 0.19 respectively, with corresponding initial rotation periods of
T0 = 4.87, 5.87, 5.42, and 5.56 h.

simulations, and the figure shows that it experiences frequent
speed-ups and slow-downs during this time period. After this,
the rotation period of the secondary stabilizes.

We also see that the rotation period of the primary increases
with mass ratio for the escape cases. Because the escape times
are longer at higher mass ratios, the secondary can act with a
gravitational torque for a longer time period.

We also show how the rotation periods change over time
for four simulations with different outcomes for model D2.
This is illustrated in Fig. 12. As previously mentioned, when
the separation between the two bodies becomes large enough,
the translational and rotational motion will decouple. As seen in
the figure, for the escape and the unstable cases, when the bodies
are sufficiently far apart, their rotation periods become approx-
imately constant. For the stable and collision cases, the rotation
periods vary far more as the bodies are relatively close to each
other.

3.9. Secondary fission

Jacobson & Scheeres (2011) introduced secondary fission as
a mechanism to form stable binaries from systems with low
mass ratios. During secondary fission, the secondary disrupts or
fissions when it is spun up by gravitational torques. Through sec-
ondary fission, parts of the energy in the system can be removed
if the newly fissioned component escapes or impacts with the
primary.

We wanted to investigate whether fission of the secondary
can take place in our simulations, and similarly to Boldrin et al.
(2016), we applied the rotation limit for surface disruption of the
secondary as the critical limit for achieving secondary fission.
We define this critical limit Tr as the rotation rate at which a
point mass is lifted off the surface by centrifugal forces. We use
Eq. (4) with β = 1.0 to determine this limit. The value of Tr
depends on the density, shape, and rotation state of the body. The
rotation period required for secondary fission becomes longer
when the density becomes smaller or when the body becomes
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Fig. 13. Percentage of cases that experience secondary fission as a func-
tion of mass ratio.

more elongated. Tumbling motion may further increase the spin
rate required for fission, and is taken into account during our
analysis.

As is evident from the previous section, the average rotation
period of the secondary has frequent speed-ups and slow-downs.
The secondaries of some systems might obtain rotation periods
short enough for secondary fission to occur. Figure 13 shows
the percentages of simulations that experience secondary fission
as functions of the mass ratio, based on the rotation criterion
described above. Secondary fission events are most common
when q = 0.01, and decrease as the mass ratio increases. These
events may take place up to q = 0.4, with the exception of mod-
els S3, where the secondary can still disrupt at mass ratios as
high as q = 0.72. The work of Jacobson & Scheeres (2011) and
Sharma (2014) also suggests disruption events are more common
if the body is more elongated. However, unlike the findings of
Jacobson & Scheeres (2011), we find that secondary fission may
occur also in systems with positive total energy.

As previously seen, the rotation of the secondary slows down
rapidly during the first few hours of the simulation, and spins
up again further into the simulation. It is therefore likely that
secondary fission events occur early on in the simulation, but
they may also take place toward the end of the 200-day simula-
tions. We find that roughly half the secondary fission events may
occur before 5 h have elapsed for most models, and for D1 and
S3 the percentage is even higher, at 100% and 82%, respectively.
Many of these events belong to simulations where the two bod-
ies impact. Thus, for these systems, a ternary (or multiple) can
be created early on, and may change the dynamics of the system,
possibly preventing the early collisions.

Cases where secondary fission may occur after the initial 5 h
are spread out in time. For some models the secondary can dis-
rupt at t > 3000 h as the secondary’s rotation slowly speeds up
over time, although the number of these events is small (less than
ten in total).

4. Discussion

Table 3 shows a summary of the percentage of each end-case
scenario for the models presented. The collision cases make up
approximately 80% of the simulations, while the remaining cases
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Table 3. Summary of the percentage of end-case results for each model presented.

Model Submodel Collisions Stable Escape Unstable

Varied densities
D1 87.81% 9.13% 1.38% 1.68%
D2 86.07% 9.49% 2.40% 2.04%
D3 83.78% 8.47% 4.86% 2.88%

Varied shapes
S1 77.24% 13.81% 5.23% 3.72%
S2 90.63% 6.73% 1.20% 1.44%
S3 94.84% 4.02% 0.48% 0.66%

are categorized as stable, unstable, or escape. The collisions typ-
ically occur when the secondary has a tilt angle in the range
θ0 = 15◦–80◦. However, for tilt angles smaller or larger than this
the system can develop into a stable binary, an unstable binary,
or a system with an escaped secondary.

The difference in the end-case distribution does not change
significantly when the density of the secondary is changed, but
rather when the secondary take different shapes. By allowing the
secondary to become more elongated, the number of collisions
increases. In the model where the secondary’s shape is close to
spheroidal (model S1), ∼77% of the simulations end with an
impact. This percentage increases to above 90% for the model
with the most elongated secondary (model S3).

Most of the collision events take place very early in the sim-
ulations. We find that 90% of the collisions occur before 5 h
have elapsed. This occurs because we move the secondary closer
to the primary when it is rotated with an angle θ0, such that
the surface-to-surface distance is always 1 cm, as described in
Sect. 2.2. One consequence of this is that the secondary rotates
into the primary early in the simulation, due to the gravitational
torque. The gravitational torque is also stronger on the secondary
when it is more elongated, and hence the increased fraction of
collision events in model S3 compared to S1 and S2. The early
impact between the two bodies may help contribute to stabi-
lizing the system. The energy dissipation from these collision
events may prevent the secondary from escaping, and thus allow
formation of asteroid binaries with low mass ratios. The early
collisions we find are similar to the 1996 HW1 simulations and
also shorter than the Moshup simulations of Davis & Scheeres
(2020), who found that the median collision time is 2.1 h and
0.52 days, respectively.

One of our models is the same as the model used by Boldrin
et al. (2016), and when comparing with their work, a larger per-
centage of our simulations end up with the two bodies impacting.
This is another consequence of keeping the surface separation
to 1 cm. Furthermore, because the surface-to-surface distance is
always 1 cm, we find that collisions can occur at angles as low
as θ0 ∼ 8◦, while Boldrin et al. (2016) find that collisions do not
occur when θ0 ≲ 40◦.

Escape scenarios, which is the likely mechanism behind the
formation of some asteroid pairs (Pravec et al. 2010), exist for
systems with low mass ratios, and we find that the time it takes
for mutual escape to happen is longer when the mass ratio is
higher. However, there are cases where the escape time is longer
than 1000 h at low mass ratios, but these cases are not fre-
quent. At the lowest mass ratios the escape time tends to be the
longest when the secondary has a more elongated shape, as it
was seen in model S3, because the energy configuration in S3 is
lower than the other models at equal mass ratios. We also found
that escape cases were more frequent when the secondary has

a higher density, and asteroid pairs with secondaries of higher
density may therefore be more frequent in the asteroid pair
population.

Because we consider relatively short simulation times, some
of the systems will remain as unstable systems throughout the
duration of the simulation (200 days). These systems are gen-
erally found at intermediate mass ratios, but this will also vary
based on the density of the secondary as well as its shape. If
a longer time span is considered, such as 200 years as done by
Boldrin et al. (2016), these unstable cases either become escape
cases, or end up with an impact between the two bodies.

We find that the rotation period of the primary increases
with time, hence it loses rotational energy because the rotational
energy is converted to translational energy (Scheeres 2002). The
rate at which the rotation period increases is slower for the unsta-
ble cases compared to the stable cases as the average separation
between the bodies is larger for the former case. This is also seen
among the escape cases. Higher mass ratios result in both longer
escape times and longer rotation periods of the primary. More-
over, changing the shape of the secondary has a larger effect
on the rotation of the primary in the stable cases, compared to
changing its density. The average rotation period of the primary
in model S3 can be nearly twice as long as in model S1.

The average rotation period of the primary is much longer
in our simulations compared to that in some of the observed
asteroid binaries. For instance, the rotation period of Moshup is
estimated to be 2.76 h (Ostro et al. 2006) and 2.26 h for Didymos
(Naidu et al. 2020), where the mass ratio of the former system
is estimated to be q = 0.057 (Ostro et al. 2006) and q = 0.048
for the latter (Pravec et al. 2006). Observations by Pravec et al.
(2016) estimate that the primary bodies have rotation periods of
less than ∼4.4 h. Meanwhile, the average rotation periods of the
primary we find, for the stable cases, are in the range 15–25 h.
Although, our simulation time span is very short, adding other
physical effects such as tidal torques and the YORP effect may
be able to allow the primary to spin up after a longer time period.
On the other hand, rotation periods of the secondaries observed
by Pravec et al. (2016) range from ∼14 h all the way up to ∼37 h,
which is within the range of what we find in our results for the
stable cases. However, the mass ratio of the binary systems pre-
sented by Pravec et al. (2016) are lower than 0.125 (assuming
equal bulk densities), while our stable cases are found when
q > 0.2. Energy dissipation of the system is therefore required,
for example from collision or secondary fission.

We compare rotation periods from our simulations with that
of observed asteroids pairs by Pravec et al. (2019), and find that
there is an overall agreement for systems with q < 0.3, as illus-
trated in Fig. 8. The primaries of low mass ratio asteroid pairs
were observed to be rapidly rotating, which indicates that the
secondary may have escaped very early after the initial fission
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process. However, some systems observed by Pravec et al. (2019)
have mass ratios that are too high or have a primary with a
rotation period that is too long. These systems are considered
outliers, and the rotational fission theory is unable to explain
their existence (Pravec et al. 2019). Kyrylenko et al. (2021) sug-
gest that the mass ratio of the asteroid pair 1999 XF200 and
2008 EL40, which reside in the main belt, is q < 0.01. The rota-
tion period of 1999 XF200 is estimated to be 4.903 h2, which
is within the range of the escape rotation periods of the primary
for q = 0.01 in our models. Furthermore, Kyrylenko et al. (2021)
estimate that the age of this asteroid pair is 265.8 kyr. Under this
time period, the rotation period of the bodies have likely changed
by a significant amount due to the YORP effect and possibly also
via collisions with other bodies in the main belt.

Jacobson & Scheeres (2011) find that the separation between
positive and negative energy regimes can be approximated to
q ≈ 0.2, and that it should not change much if the bodies are
more elongated. We find that this separation regime can go as
high as q = 0.29 when the secondary has twice the density of
the primary (model D3), and as low as q = 0.17 when the sec-
ondary is more elongated (model S3). This indicates that asteroid
pairs formed through rotational fission may occur at higher mass
ratios, up to q ∼ 0.3, if the secondary has a higher density than
the primary, or if it becomes less elongated.

If the secondary also fissions, then ternary or multiple sys-
tems may be formed. If any of the components escape or collide
with the primary, this can stabilize the system (Jacobson &
Scheeres 2011). We find that this process generally occurs at low
mass ratios, as predicted by Jacobson & Scheeres (2011), and
also fits the findings of Boldrin et al. (2016). On the other hand,
unlike the work of Jacobson & Scheeres (2011), we find that sec-
ondary fission may still occur in systems where the total energy
is negative. We also find that it is more likely for the secondary
to disrupt when it has a lower density or when it is more elon-
gated. The latter possibility is in agreement with the work of
Sharma (2014), who shows that more elongated bodies are less
stable to finite structural perturbations compared to the less elon-
gated ones. Observations of Pravec et al. (2016) find that there
is a scarce number of binaries with secondary elongations of
as/bs ≳ 1.5. This suggests that elongated secondaries may expe-
rience multiple fission events, and may thus reshape over time.
The results of Davis & Scheeres (2020) also suggest a form of
energy dissipation, such as secondary fission, is required to sta-
bilize the 1994 KW4 and 2000 DP107 systems in their current
state.

Boldrin et al. (2016) used second-order spherical harmon-
ics to study the dynamical evolution of fissioned systems, while
we use an exact expression. Higher order terms become more
important when the bodies are more elongated (Hou et al. 2017)

2 Obtained from the JPL Small-Body Database,
https://ssd.jpl.nasa.gov/sbdb.cgi

or when the bodies are close. A future study that compares an
exact method with an approximation may give better insights
into the importance of exact mathematical expressions used to
study asteroid systems immediately after fission.
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Appendix A: Ellipsoid potential

For any general ellipsoid with semiaxes a > b > c and con-
stant density ρ, the gravitational potential is given by (MacMillan
1930)

Φ(r) =
2πρabc
√

a2 − c2

( [
1 −

x2

a2 − b2 +
y2

a2 − b2

]
F(ωκ, k)

+

[
x2

a2 − b2 −
(a2 − c2)y2

(a2 − b2)(b2 − c2)
+

z2

b2 − c2

]
E(ωκ, k) (A.1)

+

[
c2 + κ

b2 − c2 y
2 −

b2 + κ

b2 − c2 z2
] √

a2 − c2√
(a2 + κ)(b2 + κ)(c2 + κ)

)
,

where F(ωκ, k) and E(ωκ, k) are respectively the elliptic integrals
of the first and second kind, κ is the largest root of the equation

x2

a2 + κ
+
y2

b2 + κ
+

z2

c2 + κ
= 1, (A.2)

and

ωκ = sin−1

√
a2 − c2

a2 + κ
(A.3)

k =

√
a2 − b2

a2 − c2 . (A.4)

The components of the gravitational field g = ∇Φ then become

gx =
4xπρabc
√

a2 − c2

E(ωκ, k) − F(ωκ, k)
a2 − b2 , (A.5)

gy =
4yπρabc
√

a2 − c2

[
F(ωκ, k)
a2 − b2 −

(a2 − c2)E(ωκ, k)
(a2 − b2)(b2 − c2)

+
(c2 + κ)
b2 − c2

√
a2 − c2√

(a2 + κ)(b2 + κ)(c2 + κ)

]
, (A.6)

gz =
4zπρabc
√

a2 − c2

[
E(ωκ, k)
b2 − c2 −

(b2 + κ)
b2 − c2

√
a2 − c2√

(a2 + κ)(b2 + κ)(c2 + κ)

]
.

(A.7)

Despite being functions of x, y, and z, the variable κ is treated as
a constant when the partial derivatives are taken (see MacMillan
1930, for details).

Appendix B: Verification of accuracy

The accuracy of the integration scheme can be demonstrated
by inspecting the conservation of total energy E, total linear
momentum p, and total angular momentum J. This is shown in
Fig. B.1 for one of the models (D2 with q = 0.32, θ0 = 6.1◦).
In the figure we plot, for each of these three quantities, the dif-
ference between the initial value at t = 0 and the value at each
subsequent time step. For the energy and angular momentum,
the difference is normalized by the initial values E0 and J0. We
find that these quantities are conserved to the 11th decimal place;
the error on the linear momentum fluctuates between the 4th and
7th decimal places.
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Fig. B.1: Illustration of energy, angular, and linear momentum
conservation for one of the simulations.
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