
Research Article
A Comprehensive Skills Analysis of Novice Software Developers
Working in the Professional Software Development Industry

Imdad Ahmad Mian ,1 Ijaz-ul-Haq ,2 Aamir Anwar ,3 Roobaea Alroobaea ,4

Syed Sajid Ullah ,5 Fahad Almansour,6 and Fazlullah Umar 7

1Department of Science, SZABIST University Islamabad, Islamabad, Pakistan
2Faculty of Education, Psychology and Social Work, University of Lleida, Lleida, Spain
3School of Computing and Engineering, University of West London, London, UK
4Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099,
Taif 21944, Saudi Arabia
5Department of Information and Communication Technology, University of Agder (UiA), Grimstad N-4898, Norway
6Department of Computer Science, College of Sciences and Arts in Rass, Qassim University, Buraydah 51452, Saudi Arabia
7Department of Information Technology, Khana-e-Noor University, Pol-e-Mahmood Khan, Shashdarak 1001,
Kabul, Afghanistan

Correspondence should be addressed to Syed Sajid Ullah; sajidullah718@yahoo.com and Fazlullah Umar;
fazlullahumir@gmail.com

Received 1 May 2022; Revised 10 June 2022; Accepted 25 June 2022; Published 15 July 2022

Academic Editor: Muhammad Ahmad

Copyright © 2022 Imdad Ahmad Mian et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Measuring and evaluating a learner’s learning ability is always the focus of every person whose aim is to develop strategies and plans for
their learners to improve the learning process. For example, classroom assessments, self-assessment using computer systems such as
Intelligent Tutoring Systems (ITS), and other approaches are available. Assessment of metacognition is one of these techniques. Having
the ability to evaluate and monitor one’s learning is known as metacognition. An individual can then propose adjustments to their
learning process based on this assessment. By monitoring, improving, and planning their activities, learners who can manage their
cognitive skills are better able to manage their knowledge about a particular subject. It is common knowledge that students’ meta-
cognitive and self-assessment skills and abilities have been extensively studied, but no research has been carried out on the mistakes that
novice developers make because they do not use their self-assessment abilities enough.,is study aims to assess the metacognitive skills
and abilities of novice software developers working in the industry and to describe the consequences of awareness of metacognition on
their performance. In the proposed study, we experimented with novice software developers and collected data using Devskiller and a
self-assessment log to analyze their use of self-regulation skills. ,e proposed study showed that when developers are asked to reflect
upon their work, they become more informed about their habitual mistakes, and using a self-assessment log helps them highlight their
repetitive mistakes and experiences which allows them to improve their performance on future tasks.

1. Introduction

,e development of software is a logically complex task. ,e
main four components of software development and its
value ability are (i) the process applied, (ii) the tool used in
the development, (iii) stakeholders, and (iv) timeline and
budget [1]. Producing quality software is the key component
to the success of any software product. ,e implementation

of the best development process, quality characteristics, and
sophisticated technology have immense effects on the
quality of the software [2].

Software quality can be affected by two main compo-
nents: (a) software process quality and (b) software product
quality. Product quality is dependent on process quality [2].
,e process quality has received more attention from the
research community [3].Whereas the implementation phase

Hindawi
Complexity
Volume 2022, Article ID 2631727, 12 pages
https://doi.org/10.1155/2022/2631727

mailto:sajidullah718@yahoo.com
mailto:fazlullahumir@gmail.com
https://orcid.org/0000-0002-0933-3982
https://orcid.org/0000-0002-4935-2248
https://orcid.org/0000-0002-2891-7844
https://orcid.org/0000-0003-1585-2962
https://orcid.org/0000-0002-5406-0389
https://orcid.org/0000-0001-6307-5251
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2631727


of the development process has received less attention,
particularly from a behavioral perspective [4, 5]. ,e
implementation phase consists of coding, testing, installing,
and supporting the system [6]. As mature tools are available
for coding, testing, installing, and supporting (trouble-
shooting) the system, along with these tools, the pro-
grammer’s ability and skills have additional importance and
effect on the software quality.

,e programmer’s ability and skills can be commonly
viewed as the experience he/she has, different certifications,
products developed (portfolio), and communication skills of
the individual person [7]. ,ese are the common methods
that are generally applied to check the talent and capability
of a programmer and have positive measures [4]. However,
these factors do not show the individual thinking ability or
self-judgment of the programmer during development. To
achieve this goal, it is important to measure individual
metacognitive skills such as self-exploration, self-assess-
ment, understanding from example (example-based learn-
ing) [8], and most importantly learning from their mistakes.
,ese measures can have diverse effects on individual
performance and therefore require an in-depth analysis to
highlight their importance and influence on young software
programmers.

Since metacognitive skills are used subconsciously, many
people are either unaware of this phenomenon or unable to
manage them properly. Research shows that people who use
their self-assessment skills are more progressive than those
who do not use their self-assessment skills. Normally, people
ignore these types of learning skills in many learning en-
vironments. A programming job is a very mentally chal-
lenging job, where a programmer’s intellectual abilities,
knowledge, and cognitive and metacognitive skills are used
aggressively. Different types of studies have been carried out
to assess the metacognition skills of different learners in
different academic domains. However, minimal work has
focused on the industry and no such work has been pro-
posed for young professionals working in the software
industry.

Our research objective is to analyze the self-assessment
skills of novice developers, which affect their development
work and to evaluate their performance on awareness of
using self-assessment. ,e research will focus on

(1) Analysis of metacognitive abilities and their usage by
novice software developers.

(2) Correlation of different types of novice developer
groups and their performance on the basis of their
improvement/diminishment.

To resolve these issues, the following research question is
to be addressed:

(i) What role can self-assessment play in the lives of
novice software developers in minimizing repetitive
mistakes?

To answer this main question, we will ask further (sub)
research questions as follows:

(i) What are self-assessment skills?

(ii) How self-assessments skills help people perform
better?

(iii) How can self-assessment skills help novice software
developers in the field of programming?

(iv) What is the effect of self-assessment on novice
developers’ work?

(v) What is the difference between developers who use
self-assessment and those who do not?

(vi) What kinds of mistakes a novice developer makes
without analyzing their work?

2. Related Work

As like metadata can be defined as data about data, similarly
metacognition can be defined as cognition about cognition
[2]. Metacognitive learning involves specific knowledge of
knowing that what are the different aspects of individual
actions and what are the relations between these aspects that
affect the learning of that individual [9]. Research on
metacognition found that by applying different methods and
awareness of metacognition, the learner’s learning ability
can improve significantly. Özsoy and Ataman [10] argue that
metacognition practices are very important for successful
learning strategies for teacher training, students’ learning,
and content development [11]. Özsoy and Ataman [10]
conducted a study on students withmathematical disabilities
and revealed the importance of metacognition in adulthood.
He concluded that some students overestimated and some
underestimated their mathematics results. ,e study on
metacognition presents two different terms of mistake,
which affect the learning process, made by the learner during
learning: (1) Underuse: which means not asking for help
when the subjects need help and (ii) Overuse: the learner
asks for help repeatedly while not using his own mind to
think about some problem [12].

2.1.<e Social Cognitive<eory (SCT). In the paper [13], the
authors relate the different factors of person metacognition
as personal factors, behaviour, and environmental influence.
,e author [13] relates these factors and concludes that there
is a relation between these components which affect the
metacognition of students. ,ese factors described in Fig-
ure 1 describe the social cognitive theory (SCT). ,e SCT
describe that:

(i) ,e interaction between the person and their be-
haviour is influenced by their thoughts and actions
[14].

(ii) ,e interaction between the person and environ-
ment involves beliefs and cognitive competencies
developed and modified by social influences.

,e interaction between the environment and their
behaviours involves the person’s behaviour determining
their environment, which in turn affects their behaviour
[15].

,is SCT has got reputation because it explains indi-
vidual acts specifically point (i) above. More precisely, the

2 Complexity



SCT argue that the person’s cognition like self-assessment
can guide the behaviour without the actual skills an indi-
vidual has [4]. For example, the authors have defined a social
cognitive conceptual framework using SCT, to simplify
theory integration in the field of presenteeism research [16].

Metacognitive knowledge has been described as the
knowledge and a deeper understanding of the cognitive
process and product [6]. For example, a programmer knows
that they must test the function that has a specific task but
does not need to test a simply declared variable. Meta-
cognitive knowledge has three important components.
Declarative metacognitive knowledge was found to be “what
is known in a propositional manner” [17] or the assertion
about the world and the knowledge of the influencing factors
of human thinking. Procedural metacognitive knowledge
can be described as the awareness of processes of thinking
[17] or the knowledge of the methods for achieving goals and
the knowledge of how skills work and how they are to be
applied. Conditional or strategic metacognitive knowledge is
“the awareness of the conditions that influence learning such
as why strategies are effective, when they should be applied,
and when they are appropriate” [17].

2.2. Metacognitive Monitoring. Metacognitive monitoring
means the ability to successfully judge one’s own cognitive
process [7]. According to the author in [9], “metacognitive
monitoring is the conscious monitoring, control, and active
regulation of the self-cognitive activities in the whole process
of cognitive activity.” ,e author argues that metacognitive
monitoring is self-monitoring for which the individual must
have to require some knowledge and experience of meta-
cognition. ,e real taste of metacognition can be felt in
metacognitive monitoring. Metacognitive monitoring af-
fects the regulation of study, which in turn affects overall
learning [18].

2.3. Metacognitive Control. Metacognitive control can be
defined as the ability to regulate cognitive activity. Meta-
cognitive control is used to control the memory process and
to use strategy to improve comprehension. By using a
learning strategy, the learner gains knowledge in the area of
concentration. ,e learner will learn to ask themselves
whether they are looking for directly stated, implied, or need
to connect information from their own backgrounds with

the material [17]. Recently, the author in [19] found that due
to cognitive control training, the key neural region has been
improved in terms of active and proactive activities. To
understand the conceptual mapping of different learning
strategies, we have represented these different learning
strategies in Figure 2.

2.4. Self-Assessment. Self-assessment is defined by the au-
thor in [20] as “Self-assessment is a process of formative
assessment during which students reflect on and evaluate the
quality of their work and their learning, judge the degree to
which they reflect explicitly stated goals or criteria, identify
strengths and weaknesses in their work, and revise ac-
cordingly” (2007, p.160). Investigating the present abilities of
oneself is the basic step to learning. Self-assessment builds a
way to check out the progress of oneself, after that, one can
understand the further improvement in the learning process.
It can motivate the learner about his/her responsibility and
work. It makes the learner possible to focus on improvement
by awarding him/her about their cognition abilities.

Self-assessment abilities commonly can repair what
students do not see as superior to anything educators can, in
light of the fact that instructors for the most part cannot
analyze as absolutely the student comprehension problem
[21]. Mostly, learners do not assess themselves until they are
guided or made aware to do so [22]. Hence, it is important to
assess those individuals so that they can use their self-as-
sessment abilities to solve a problem in any situation.

,e authors in [23] argue that “the way in which self-
assessment is implemented is critical to its acceptance by
students”. Different techniques have been used to assess the
self-assessment of different types of learners. For example,
the authors in [21] use ACE in ITS to assess the student self-
exploration on rum time, Behlau et al. [24] used ques-
tionnaires to find the impact of voice problems on individual
life, Binali et al. [4] use PSE to assess the student of pro-
gramming, Boud [23] in their study used State University
data to measure self-assessment ads Questionnaire Tutors
and to assess the self-assessment of learners, also the Self-
Assessment Manikin [3, 25] used ELM-PE to measure the
self-assessment of a student in the ITS system [8], profes-
sional judgment and expertise oriented framework have
been developed by the authors in [26] by postulating on the
aspirant/developing coach’s capacity for and development of
metacognition within the reflective process, and a lot more.

2.5. Aspects of Self-Assessment. To promote the meta-
cognition aspects of novice developers working in the
software industry, we focused on the three well-known
aspects of self-assessment skills [10].

2.5.1. Planning. Learners plan better and learn when their
attention focuses on learning objectives [27]. A clear dis-
cussion of the learning goals starts the metacognitive process
by prioritizing the significance of thinking about the
learning process over the content. ,e authors [28] in their
study stated that goal setting and strategic planning

Environmental
Factors

Person

Behaviours

Figure 1: Social cognitive theory (SCT).

Complexity 3



positively anticipate objective fulfilment in Massive Open
Online Course [28]. It is important for every learner to
review what is already known about the topic or task on
which he/she is working [29]. Also, it is important for the
learner to assess the time it will take to complete this task and
also to have a clear idea of the resources needed for the
successful completion of that task to help him/her think
about the process of learning.

While solving a problem, we can divide the type of
learner into different categories:

(i) Learner with initial planning:
(ii) Learner with continuous planning or partial

planning.
(iii) Learner with no planning

2.5.2. Monitoring. Every learner benefits from monitoring
their understanding during learning activities [2]. Grainger
et al. [30] also originated that impaired metacognitive
monitoring in developmental disorders in children has
important educational implications. ,e importance of the
learning process can be reminded by monitoring learning
behaviors throughout the learning process. ,is can be done
by chunking, connecting, elaborating, and organizing the
materials in such a way that the learner can recognize
patterns and associations [31]. In the monitoring process
during the work/problem solving, it is easy to figure out the
errors and correct them in the thinking process.

2.5.3. Evaluating. By evaluating self-assessment skills, the
learner becomes more aware of the self-assessment process
and its direct impact on learning [32]. By evaluating

students, the authors describe and allocate value or merit to
the quality of their knowledge outcomes [33]. Different types
of evaluation methods such as a checklist, rating scales, and
questionnaires can help the learners evaluate their thinking
during problem-solving. ,e study conducted by Sierra and
Frodden [34] concluded that those learners who evaluate
their learning process can decide whether they want to
continue or need to change the learning process.

Students with self-evaluation judgment ability have
high-performance feedback from those who do not evaluate
their learning process [35].

2.6. Implicit <inking. Implicit thinking refers to uncon-
scious effects such as knowledge, perception, or memory that
impact a person’s behaviour even while the individual is
unaware of those influences [36]. ,ere are times when we
act on something and then consider how we might handle it
in a different setting or approach. ,at is implicit cognition
at work; the mind will then proceed based on ethical and
comparable scenarios when engaging with a certain notion.
Implicit cognition and its automatic cognitive process allow
a person to make a decision on the occasion. It is frequently
characterized as an automatic process in which actions are
easily performed without conscious awareness.

3. Analysis of Self-Assessment Skills

,is study followed a qualitative approach where we used
observation-based research to observe five novice developers
at coding tasks. ,ese developers were also required to fill in
self-assessment logs daily for five days.

,e design of the research is as follows:

Learning
Strategies

Connecting
information to

further
understanding

Forming
Relationships

Recognizing a
pattern

Identifying
characteristic pieces of
data that fit together

Generating
Hypothesis

Asserting tentative
Explanation that

account foe a set of

Drawing
Coherences

Reaching a decision of
forming an opinion

Providing
Explanation

Offering reasons for
actions, beliefs or

remarks

Figure 2: Learning strategies.

4 Complexity



(i) Define the target participants and select the sam-
pling process.

(ii) Task preparation
(iii) Tools used
(iv) Prepare experiment environment
(v) Procedure
(vi) Develop and design self-assessment log
(vii) Data collection

3.1. Defining the Target Participants and Select the Sampling
Process. ,e populations of our research were novice
software developers working in the professional software
development industry. ,e criterion was set to choose those
professional developers whose work experience is less than
two years. As it was not feasible to analyze the whole
population, we selected a convenience sample of five novice
developers for experiment and assessment. All these de-
velopers were working on Android game development using
C# as a development language at a local software firm.

3.2. Task Preparation. We assigned a set of tasks to each
developer for five days. ,e experiment included five tasks,
one task for each developer daily, divided into three
categories:

(i) Simple task (ST)
(ii) Intermediate task (IT)
(iii) Complex task (CT)

3.3. Tools Used. We selected the Devskiller for observation
assessment. Devskiller is a tool that records the time and
actions performed by the programmer while performing
their coding tasks. Devskiller has been used in other studies
for the same purpose [37]. It provides a 14-day trial which
was enough for us as our experiment was only five days. On
each day, we assigned a specific task in the Devskiller user
dashboard and sent invitations to each developer through
e-mail. We used Devskiller to investigate different attributes
of the developers. ,ese attributes will be discussed in the
following section.

3.4. Preparation of Experiment Environment. ,e five de-
velopers were provided seating on separate tables in the
same room. As the surrounding environment is also an
important factor in self-assessment, the environment was set
to be more comfortable and conducive. ,ey were briefed
about the purpose of the experiment, the 5-day activities, the
plan, and the ultimate goal of the research.

3.5. Procedure. ,e five tasks that the developers had to
complete were divided into three categories. For the first and
second days of the experiment, every developer was given a
simple task (ST) to complete. ,e reason to assign simple
tasks on days 1 and 2 was to help the programmer revise the

basics of coding. On the third and fourth days, some in-
termediate-level complex task was assigned. On the last day
of the experiment, a complex task was assigned to the de-
velopers. Table 1 shows the specific task against each day.
Aside from the practical task, the developers also filled out
the self-assessment log at the end of the daily task.

3.6.Develop andDesign Self-AssessmentLog. To complement
our findings from the data collected through Devskiller, we
used a self-assessment log that the developers had to fill out
at the end of the daily task. Figure 3 provides an overview of
the questionnaire. ,e log helped us to make our obser-
vations reliable. Both, Devskiller log data and data collected
through self-assessment log were used to answer our re-
search questions, which are given below:

(i) What role can self-assessment play in the lives of
novice software developers in minimizing repetitive
mistakes?

(ii) How can self-assessment skills help novice software
developers in the field of programming?

(iii) What is the effect of self-assessment on novice
developers’ work?

(iv) What is the difference between developers who use
self-assessment and those who do not?

(v) What kinds of mistakes a novice developer makes
without analyzing their work?

3.7. Data Collection. To analyze a developer in terms of self-
assessment, data could be obtained in two ways: direct
source or indirect source. Directly sourced data comes from
the developers’ first-hand, which means that the data are
collected through the log file of Devskiller and a self-as-
sessment log from developers. Indirect sources are the
managerial staff of the software house, where data can be
collected through interviews with the team managers and
team leads. We used the direct source to collect the data. All
the data were collected through the log file of Devskiller and
the self-assessment log in Figure 3.

,e process of self-assessment includes three main steps,
i.e., planning, monitoring, and evaluation. We have con-
sidered these three parameters for the self-assessment of
developers (see section 3.2.8). In the planning phase, the two
other parameters, time taken to make a plan and construct
used for planning, were assessed. In the monitoring phase,
the number of repetitive mistakes and the type of repetitive
mistakes were analyzed and measured, and in the evaluation
phase, the technique used by the developer to evaluate his/
her solution was analyzed. At the end of the task, the de-
velopers were asked to fill in the self-assessment log. ,e
experiment continued for five days.

4. Experiment Evaluation

4.1. Calculating the Attribute of Individual Developers. As
discussed, we selected the planning, monitoring, and eval-
uation phases of self-assessment. A total of seven attributes

Complexity 5



for these phases were used to assess the self-assessment skills
of individual developers. ,e data about these attributes
were collected from the log file of Devskiller and the self-
assessment log filled in by the developers on a daily basis.
,e different attributes that were selected for each phase are
shown in Figure 4.

,e data about the planning phase were collected from
two attributes.

(i) ,e time taken by the developer to plan for the task
(ii) ,e construct used by the developer for planning.

,is included any pen and paper planning and
workflow designs.

,e number of repetitive mistakes done by the developer
was gathered from the Devskiller log. ,e log data stores
information about all the actions performed by the devel-
oper including typos and edits.

,e evaluation phase was analyzed by the strategy used
by the developer to evaluate his solution. We categorized
these strategies into three types.

(i) Run code directly; the developer did not spend time
in evaluating his code before trying to run it.

(ii) Dry run: the developer did a dry run of their code to
ensure it would work as required.

(iii) Used test cases: the developer generated test cases to
test his solution for completeness.

4.2. Assessing Developers Based on Attributes. ,e self-as-
sessment log was designed to collect information regarding
the knowledge and ability of self-assessment of developers in
terms of planning, monitoring, and evaluation. Table 2
shows an overview of the data collected from the self-as-
sessment log.

Developer Survey Questionnaire

S.No Questions

1

Answer

What was your task?

2

Answer

How did you planned your task?

3

Answer

Did you used internet for help? If yes, what did you used it for?

4

Answer

While coding, did you make mistakes? If yes, did you solved them?

5

Answer

Did you completed your task?

6

Answer

If you completed your task? How did you evaluated you rsolution?

Figure 3: Self-assessment log.

Table 1: Developers’ daily tasks.

Day Task
1 Write a function that returns the largest element in a list.
2 Write a function that computes the list of the first 100 Fibonacci numbers.
3 Handle the switch statement for the buttons in the first scene for a game.
4 Show the complete panel in the game when an object reaches a specific point.
5 Lock and unlock the levels of the game on the basis of previous level conditions.

6 Complexity



Along with the data collected from the self-assessment
log, we also collected data from the Devskiller log file. Table 3
shows an overview of the data collected from the Devskiller
log file.

Collectively, the data gathered from the assessment log
and Devskiller log file is presented in Table 4.

Table 4 shows the use of self-assessment skills of de-
veloper 1 for five days from three perspectives. ,e first

subcolumn of the planning phase tells us that if the de-
veloper made any plan to solve the task assigned. If the
developer made any plan, the value will be YES, and if they
did not make any plan the value will be NO.,e next column
shows the time taken by the developer for planning. If no
plan was made, then the value will be 0. ,e next column of
the planning phase tells us about the strategy used by the
developer for making their plan. ,e specific value was

Table 2: Developer planning, monitoring, and evaluation data from the assessment log.

Developer Days
Planning Evaluation

Planned or not Construct used for planning Evaluate solution or not ,e method used for evaluation

1

1 No Search Internet Not Run
2 No Search Internet Not Run
3 No Search Internet Not Run
4 Yes Implicit thinking Yes Dry run
5 Yes Implicit thinking Yes Dry run

Table 3: Developer planning, monitoring, and evaluation data from the Devskiller log.

Developer Day Planning Monitoring Evaluation
Time taken for planning Number of repetitive mistakes Task completed?

1

1 0 15 No
2 0 14 No
3 0 13 No
4 1 minute 12 Yes
5 2 minutes 8 Yes

Table 4: Developer planning, monitoring, and evaluation data.

Developer Days

Planning Monitoring Evaluation

Plan made
for the task

Time taken
for planning

Construct used
for planning

Number of
repetitive
mistakes

Solution
evaluated before

running

,e method used
for evaluation

Task
completed

1

1 No 0 Search Internet 15 No Run No
2 No 0 Search Internet 14 No Run No
3 No 0 Search Internet 13 No Run No

4 Yes 1 minute Implicit
thinking 12 Yes Dry run Yes

5 Yes 2 minutes Implicit
thinking 8 Yes Dry run Yes

Planning

Time taken for
planning

Construct used
for

Monitoring

Type of
repetitive

Type of
repetitive

Evaluation Run the code Dry run Used test cases

Figure 4: Selected attributes for self-assessment phases.

Complexity 7



populated using the strategy used by the developer. ,e next
column monitoring has one subcolumn “Number of re-
petitive mistakes.” ,is column shows the number of re-
petitive mistakes made by the developer. ,e value of this
parameter was retrieved from the Devskiller log file. For the
evaluation phase, we checked whether the developer eval-
uated their code before trying to run it. If they did, the next
column specifies the method used by the developer to
evaluate his solution. ,e last column task completed or not
shows the status of the task given to the developer on the
corresponding day. All the collected data from five devel-
opers are presented in Table 5.

4.3. Effect of Self-Assessment on Task Completion. From
Table 5 and the self-assessment log, we generated Table 6 to
show the effect of self-assessment on the task completion of
the developers. For self-assessment, it is important that the
individual uses his self-assessment abilities uniformly in all
the important phases of assessment such as planning,
monitoring, and evaluation. ,e table shows the values of
self-assessment and status of task of Developer 1 for five
days.

Table 6 shows a positive correlation between the use of
self-assessment skills and task completion. ,e data for the
rest of the developers are presented in Table 7.

From the data in Table 7, it is evident that there is always
a positive correlation between the use of self-assessment and
task completion status. However, there was an exception in
the case of developer 3 where on the first day, he did not use
any self-assessment ability but still completed the task. On
further investigation, it was revealed that the developer had
actually used an Internet source and copy-pasted the code
that he had found online to complete his task. ,is does not

stand true for all situations in the professional industry since
there are many situations for which readily available code is

Table 5: All developers planning, monitoring, and evaluation data.

Dev Days
Planning Monitoring Evaluation

Plan made for
the task

Time taken for
planning

Construct used for
planning

Number of repetitive
mistakes

Solution evaluated
before running

,e method used for
evaluation

2

1 0 0 Search Internet 10 No Run
2 1 2 minutes Implicit thinking 5 Yes Dry run
3 1 3 minutes Mind mapping 3 Yes Dry run
4 1 5 minutes Mind mapping 3 Yes Used test cases
5 1 1 minute Mind mapping 2 Yes Used test cases

3

1 No 0 Search Internet 15 Not Run
2 No 0 Search Internet 14 Not Run
3 Yes 2 minutes Implicit thinking 8 Yes Dry run
4 Yes 3 minutes Implicit thinking 5 Yes Dry run
5 Yes 2 minutes Mind mapping 2 Yes Used test cases

4

1 No 0 Search Internet 15 Not Run
2 Yes 1 minute Implicit thinking 8 Not Run
3 Yes 2 minutes Implicit thinking 7 Yes Dry run
4 Yes 3 minutes ,inking 3 Yes Dry run
5 Yes 2 minutes Mind mapping 2 Yes Used test cases

5

1 Yes 2 minutes Implicit thinking 5 Not Dry run
2 Yes 2 minutes Implicit thinking 4 Not Dry run
3 Yes 3 minutes Implicit thinking 2 Yes Dry run
4 Yes 2 minutes Mind mapping 2 Yes Used test cases
5 Yes 4 minutes Mind mapping 1 Yes Used test cases

Table 6: Effect of self-assessment on task completion.

Days Self-assessment Task status
1 No Not completed
2 No Not completed
3 No Not completed
4 Yes Completed
5 Yes Completed

Table 7: Effect of self-assessment on task completion.

Developer Day SA Task status

2

1 No Not completed
2 Yes Completed
3 Yes Completed
4 Yes Completed
5 Yes Completed

3

1 No Completed
2 No Not completed
3 Yes Not completed
4 Yes Completed
5 Yes Completed
1 No Not completed
2 No Not completed
3 Yes Completed
4 Yes Completed
5 Yes Completed

5

1 Yes Completed
2 Yes Completed
3 Yes Completed
4 Yes Completed
5 Yes Completed

8 Complexity



not available and the developer needs to use their experience
and skills to solve such problems.

4.4. Effect of Self-Assessment on Repetitive Mistakes. ,e
overall effect of self-assessment on repetitive mistakes is
reported in Figure5.

Figure 6 shows the effects of self-assessment on repetitive
mistakes. From the results, it can be analyzed that the use of

self-assessment skills is negatively correlated to the number
of repetitive mistakes. Taking the case of developer 2, on the
first day, he did not assess himself and made 10 repetitive
mistakes. Since he was more informed on the second day, he
was careful to assess himself and be vigilant about what was
expected of him. As a result, the number of mistakes he
made during the coding exercise decreased to 5. Developer
1’s performance showed the least effect of using self-as-
sessment skills on task performance. His number of mistakes

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Developer 1 Developer 2 Developer 3 Developer 4

NRM without SA
NRM with SA

Figure 5: Comparison of NRM with SA status.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Developer 1 Developer 2 Developer 3 Developer 4 Developer 5

Day 1
Day 2
Day 3

Day 4
Day 5

Figure 6: Number of repetitive mistakes of five developers.

Complexity 9



did not see a very big change; however, this number con-
tinued to decrease with every passing day, which was a
positive sign. ,is result showed that while still not assessing
himself thoroughly, there was still some improvement in his
performance due to the awareness of self-assessment. ,is
could also have been affected by the notion of the experiment
and therefore would require further investigation which was
not the scope of this study.

4.5. Types of Repetitive Mistakes. From the programming
perspective, we analyzed only three types of mistakes which
were frequent to occur. ,ese were

(i) Syntax errors
(ii) Semantic errors
(iii) Logical errors

,e complete data about these mistakes made by de-
velopers are shown in Table 8.

For the purpose of analysis, we compared the data on the
number of repetitive mistakes (NRMs) for each developer
from day 1 and day 5. ,is was done to investigate whether
the experiment had any effect on the use of self-assessment
skills by developers and whether this affected the frequency
of repetitive mistakes. Table 9 shows the number of mistakes
repeated by developers on both day 1 and day 5, respectively.

Figure 5 visualizes the data of Table 9 with categories:
NRM (number of repetitive mistakes) without using SA
(self-assessment) and NRM with SA.

5. Results and Findings

From the above-performed experiments, we tried to find
answers to the following questions.

5.1.What Role Can Self-Assessment Play in the Lives of Novice
Software Developers in Minimizing Repetitive Mistakes?
,e analysis of the results from the experiment conducted
revealed a negative correlation between the use of self-as-
sessment abilities and the number of repetitive mistakes.,e
results showed a clear diminishment in the number of
mistakes made by the developers as the experiment pro-
gressed. One of the major factors influencing this trend was
the awareness of the intent of the experiment which im-
plicitly led the developers into engaging self-assessment
activities. ,e results provide a clear insight that developers
who used self-assessment made fewer repetitive mistakes
compared to those who did not assess their work. It is also
clear from the results that the awareness of self-assessment
has a greater impact on the developer’s aptitude.

5.2.WhatKindsofMistakesaNoviceDeveloperMakeswithout
Analyzing <eir Work? ,ere are three types of mistakes
that every developer makes repetitively in everyday work.
,ese mistakes along with their repetition times are pre-
sented in Table 9 and visualized in Figure 5. Syntactic
mistakes have more frequency compared to other types of
mistakes. Syntax mistakes are mostly related to the

knowledge of a certain language. Since all the developers
involved in this experiment were fresh graduates, they were
expected to have an acceptable level of knowledge of the
language syntax. Most of the syntax errors that were seen
were due to negligence and the fact that the developer did
not monitor their own coding practice. ,e developers
showed haste to finish the task and in doing so made plenty
of syntax errors. Another important aspect that was dis-
covered here was the dependence on the Integrated De-
velopment Environment (IDE) tool. Most of the developers
were unsure about their mistakes because of their experience
with IDEs. Since all current IDEs provide the IntelliSense
feature which highlights syntax errors, most young devel-
opers depend upon such tools to keep track of syntax errors.
,is affects their performance as this allows them to be
careless which is why they do not monitor their own coding
while performing tasks.

5.3. What Is the Difference between Developers Who Use Self-
Assessment and <ose Who Did Not? ,e experiment was

Table 8: Number of repetitive mistakes of 5 developers.

Developer Day Syntax Semantic Logical

1

1 8 4 3
2 7 5 2
3 8 3 2
4 9 2 1
5 3 3 2

2

1 6 2 2
2 3 1 1
3 3 0 0
4 2 0 1
5 2 0 0

3

1 8 4 3
2 9 3 2
3 5 2 1
4 4 1 0
5 2 0 0

4

1 7 5 3
2 4 2 2
3 4 2 1
4 3 0 0
5 2 0 0

5

1 3 1 1
2 3 1 0
3 2 0 0
4 2 0 0
5 1 0 0

Table 9: Developers’ NRMs on days 1 and 5.

Deve
loper

NRMs without SA for day 1 NRMs with SA for day 5
Syntax Semantic Logical Syntax Semantic Logical

1 8 4 3 3 3 2
2 6 2 2 2 0 0
3 8 4 3 2 0 0
4 7 5 3 2 0 0

10 Complexity



conducted for five days, and during these five days, we saw a
clear pattern emerge in terms of the developers who used their
self-assessment skills and those who did not.,e self-assessment
log provided us with first-hand data about the understanding of
self-assessment by each developer. It was noted that the de-
velopers who were not sure about their metacognitive abilities
provided short answers and were reluctant to share more details
about the procedures they followed. In contrast, the developers
who were more confident about the use of self-assessment were
also able to describe their processes more clearly. ,e perfor-
mance evaluation also increased with the experiment since the
developers started producing fewer errors in their code because
they were continuously monitoring and evaluating their work.

6. Conclusion

,epurpose of this researchwas to evaluate novice professional
software developers in terms of planning, monitoring, and
evaluation to assess their self-assessment skills to improve their
work by minimizing repetitive mistakes they make every day. A
thorough literature review, a planned experiment and an as-
sessment log were used to identify the factors affecting the
performance of developers and reasons for repetitive mistakes
and verify the effectiveness of self-assessment on repetitive
mistakes through an experiment.

,ere is a need for self-assessment awareness in the
professional software development industry to enhance the
self-assessment skills and work of novice software devel-
opers. By applying different methods to analyze the self-
assessment skills of novice developers like collecting the log
data from Devskiller, use of self-assessment log and static
observation of developers during a planned experiment. We
identified important factors of self-assessment that can in-
fluence the work of young developers. From the Devskiller
log, self-assessment log data and results can be extracted that
self-assessment has a positive correlation with the perfor-
mance of novice software developers.

,is research also addresses the type of mistakes that
novice software developer makes repetitively during coding.
From the Devskiller log file and static observation of the
experiment, it is concluded that most of the developers make
syntactic mistakes repetitively because they do not monitor
themselves while coding. One of the main reasons for this
was found to be their dependence on the latest IDEs which
provide them with the facilities of syntax highlighting syntax
errors [38–40].

Data Availability

,e data used in this research can be obtained from the
corresponding author.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

“,e authors are grateful to the Taif University Researchers
Supporting Project number (TURSP-2020/36), Taif Uni-
versity, Taif, Saudi Arabia.

References

[1] D. Emiliano de Souza, C. Favoretto, and M. M. Carvalho,
“Knowledge management, absorptive and dynamic capacities
and Project success: a review and framework,” Engineering
Management Journal, vol. 28, pp. 1–20, 2021.

[2] I. U. Haq, A. Anwar, I. Basharat, and K. Sultan, “Intelligent
tutoring supported collaborative learning (itscl): a hybrid
framework,” Learning, vol. 11, no. 8, 2020.

[3] S. Aamir and Q. Rifat, “A study of metacognitive knowledge
and metacognitive regulation among biology teachers at
secondary level,” Journal of Science Education, vol. 2, no. 2,
2021.

[4] T. Binali, C. C. Tsai, and H. Y. Chang, “University students’
profiles of online learning and their relation to online met-
acognitive regulation and internet-specific epistemic justifi-
cation,” Computers & Education, vol. 175, Article ID 104315,
2021.

[5] A. Little, J. Tarbox, and K. Alzaabi, “Using acceptance and
commitment training to enhance the effectiveness of be-
havioral skills training,” Journal of Contextual Behavioral
Science, vol. 16, pp. 9–16, 2020.

[6] M. Z. Khan, R. Naseem, A. Anwar et al., “A novel approach to
automate complex software modularization using a fact ex-
traction system,” Journal of Mathematics, vol. 2022, 2022.

[7] S. Surakka, “What subjects and skills are important for
software developers?” Communications of the ACM, vol. 50,
no. 1, pp. 73–78, 2007.

[8] P. Brusilovsky, E. Schwarz, and G. Weber, “ELM-ART: an
intelligent tutoring system on World Wide Web,” in Intel-
ligent Tutoring SystemsSpringer, Heidelberg, Germany, 1996.

[9] J. H. Flavell, “Metacognition and cognitive monitoring: a new
area of cognitive-developmental inquiry,” American Psy-
chologist, vol. 34, no. 10, pp. 906–911, 1979.

[10] G. Özsoy and A. Ataman, “,e effect of metacognitive strategy
training on mathematical problem-solving achievement,”
International Electronic Journal of Environmental Education,
vol. 1, no. 2, pp. 67–82, 2017.

[11] E. Railean, “Metacognition in higher education,” in Meta-
cognition and Successful Learning Strategies in Higher Edu-
cation, pp. 1–21, IGI Global, Pennsylvania, PA, USA, 2017.

[12] I. Roll, V. Aleven, andMcl, “Improving students’ help-seeking
skills using metacognitive feedback in an intelligent tutoring
system,” Learning and Instruction, vol. 21, no. 2, pp. 267–280,
2011.

[13] A. Bandura, Self-Efficacy, Socialfoundations for <ought and
Action: A SocialCognitive <eory, Prentice-Hall, New Jersey,
NJ, USA, 1986.

[14] J. E. Maddux, “Self-efficacy,” Interpersonal and Intrapersonal
Expectancies, pp. 55�60, Routledge, England, UK, 2016.

[15] R. Yılmaz and HafizeKeser, “,e impact of interactive en-
vironment and metacognitive support on academic
achievement and transactional distance in online learning,”
Journal of Educational Computing Research, vol. 55, no. 1,
pp. 95–122, 2017.

[16] C. Cooper and L. Lu, “Presenteeism as a global phenomenon:
unraveling the psychosocial mechanisms from the perspective
of social cognitive theory,” Cross Cultural & Strategic Man-
agement, vol. 23, no. 2, pp. 216–231, 2016.

[17] E. P. Ross and B. D. Roe, “,e case for basic skills programs in
higher education,” Phi Delta Kappa, Eighth and Union, Box
789, Article ID 47402, Indiana, IN, USA, 1986.

[18] M. Baars and VD, “Effects of problem solving after worked
example study on secondary school children’s monitoring

Complexity 11



accuracy,” Educational Psychology, vol. 37, no. 7, pp. 810–834,
2017.

[19] K. D. Vohs and R. F. Baumeister,Handbook of Self-Regulation:
Research, <eory, and Applications, Guilford Publications,
New York, NY, USA, 2016.

[20] H. Andrade and Y. Du, “Student responses to criteria-ref-
erenced self-assessment,” Assessment & Evaluation in Higher
Education, vol. 32, no. 2, pp. 159–181, 2007.

[21] C. Conati and V. Kurt, “Toward computer-based support of
meta-cognitive skills: a computational framework to coach
self-explanation,” International Journal of Artificial Intelli-
gence in Education, vol. 11, pp. 389–415, 2000.

[22] J. B. Biggs, Teaching for Quality Learning at university: What
the Student Does, McGraw-Hill Education, Chennai, Tamil-
nadu, 2011.

[23] D. Boud, Enhancing Learning through Self-Assessment,
Routledge, England, UK, 2013.

[24] M. Behlau, G. Madazio, F. Moreti et al., “Efficiency and cutoff
values of self-assessment instruments on the impact of a voice
problem,” Journal of Voice:Official Journal of the Voice
Foundation, vol. 30, no. 4, pp. 506–e18, 2016.

[25] G. McBeath and S. Webb, “Cities, subjectivity and cyber-
space,” Imagining Cities: Scripts, Signs, Memory, pp. 249–260,
Routledge, London, UK, 1997.

[26] L. Collins, H. J. Carson, and D. Collins, “Metacognition and
professional judgment and decision making in coaching:
importance, application and evaluation,” International Sport
Coaching Journal, vol. 3, no. 3, pp. 355–361, 2016.

[27] I. U. Haq, A. Anwar, I. U. Rehman et al., “Dynamic group
formation with intelligent tutor collaborative learning: a novel
approach for next generation collaboration,” IEEE Access,
vol. 9, Article ID 143406, 2021.

[28] R. F. Kizilcec and Pérez, “Self-regulated learning strategies
predict learner behavior and goal attainment in Massive Open
Online Courses,” Computers & Education, vol. 104, pp. 18–33,
2017.

[29] J. Ehrlinger, A. L. Mitchum, and C. S. Dweck, “Understanding
overconfidence: theories of intelligence, preferential attention,
and distorted self-assessment,” Journal of Experimental Social
Psychology, vol. 63, pp. 94–100, 2016.

[30] C. Grainger, D. M. Williams, and S. E. Lind, “Metacognitive
monitoring and control processes in children with autism
spectrum disorder: diminished judgement of confidence ac-
curacy,”Consciousness and Cognition, vol. 42, pp. 65–74, 2016.

[31] A. Macb, A. Gumley, M. Schwannauer, A. Carcione, R. Fisher,
and Mcl, “Metacognition, symptoms and premorbid func-
tioning in a First Episode Psychosis sample,” Comprehensive
Psychiatry, vol. 55, no. 2, pp. 268–273, 2014.

[32] L. M. Blaschke, “Heutagogy and lifelong learning: a review of
heutagogical practice and self-determined learning,” Inter-
national Review of Research in Open and Distance Learning,
vol. 13, no. 1, pp. 56–71, 2012.

[33] E. Panadero, G. T. L. Brown, and J.-W. Strijbos, “,e future of
student self-assessment: a review of known unknowns and
potential directions,” Educational Psychology Review, vol. 28,
no. 4, pp. 803–830, 2016.

[34] A. M. Sierra and C. Frodden, “Promoting student autonomy
through self-assessment and learning strategies,” HOW
Journal, vol. 10, no. 1, pp. 133–166, 2017.

[35] S. Stolp and K. M. Zabrucky, “Contributions of metacognitive
and self-regulated learning theories to investigations of cal-
ibration of comprehension,” International Electronic Journal
of Environmental Education, vol. 2, no. 1, pp. 7–31, 2017.

[36] S. Braun, S. Stegmann, A. S. Hernandez Bark, N. M. Junker,
and R. van Dick, “,ink manager-think male, think follower-
think female: g,” Journal of Applied Social Psychology, vol. 47,
no. 7, pp. 377–388, 2017.

[37] 2015, https://devskiller.com/37-best-articles-from-2015-on-
recruiting-programmers-and-tech-talents/.

[38] J. E. Jacobs and G. P. Scott, “Children’s metacognition about
reading: issues in definition, measurement, and instruction,”
Educational Psychologist, vol. 22, no. 3-4, pp. 255–278, 1987.

[39] D. Mukherjee and T. Singh, “Effects of metacognitive
awareness, self-efficacy and goal orientations on program-
ming performance of software professionals,” Recent Ad-
vances in Psychology: An International Journal, vol. 3, p. 116,
2016.

[40] A. Desoete, “Mathematics and metacognition in adolescents
and adults with learning disabilities,” International Electronic
Journal of Environmental Education, vol. 2, no. 1, pp. 82–100,
2017.

12 Complexity

https://devskiller.com/37-best-articles-from-2015-on-recruiting-programmers-and-tech-talents/
https://devskiller.com/37-best-articles-from-2015-on-recruiting-programmers-and-tech-talents/

