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ABSTRACT ARTICLE HISTORY
This study proposes a novel Digital Twin framework of heating, Received 20 June 2022
ventilation, and air conditioning (HVACDT) system to reduce Accepted 27 September
energy consumption while increasing thermal comfort. The 2022

framework is developed to help the facility managers better

understand the building operation to enhance the HVAC system g;mﬁ:,%s building
functlon.. The Dlgl'FaI Twin framevyork is based on Building information modelling;
Information Modelling (BIM) combined with a newly created building optimization;
plug-in to receive real-time sensor data as well as thermal thermal comfort; ANN;
comfort and optimization process through Matlab programming. MOGA

In order to determine if the suggested framework is practical,
data were collected from a Norwegian office building between
August 2019 and October 2021 and used to test the framework.
An artificial neural network (ANN) in a Simulink model and a
multiobjective genetic algorithm (MOGA) are then used to
improve the HVAC system. The HVAC system is comprised of air
distributors, cooling units, heating units, pressure regulators,
valves, air gates, and fans, among other components. In this
context, several characteristics, such as temperatures, pressure,
airflow, cooling and heating operation control, and other factors
are considered as decision variables. In order to determine
objective functions, the predicted percentage of dissatisfied (PPD)
and the HVAC energy usage are both calculated. As a result,
ANN'’s decision variables and objective function correlated well.
Furthermore, MOGA presents different design factors that can be
used to obtain the best possible solution in terms of thermal
comfort and energy usage.The results show that the average
cooling energy savings for four days in summer is roughly 13.2%,
and 10.8% for the three summer months (June, July, and August),
keeping the PPD under 10%. Finally, compared to traditional
approaches, the HVACDT framework displays a higher level of
automation in terms of data management.
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Nomenclature

n Efficiency

wo Humidity ratio of the air outside
Wy Humidity ratio of the air in a room
o Density

A Saturation water content

Cp Specific heat capacity

hg Evaporation heat energy

Vo volume flow rate

A Area

a Air

AHU Air handeling unit

ANN Artificial neural network

API Application Programming Interface
ASHRAE  American society of heating, refrigerating and air-conditioning engineers
BIM Building information modelling
BMS Building management system
Ccop The coefficient of performance

DT Digital Twin

FM Facility manager

GA Genetic algorithm

HVAC Heating, ventilation, and air conditioning
i In

IFC Industry foundation classes

inf Infiltration

loT Internet of things

lat Latent

Mai Supply airflow rate

Mcw Supply water flow rate in summer
Mcw Supply water flow rate in winter
Mhw Supply water flow rate in summer
Mhw Supply water flow rate in winter
MLP Multilayer perceptron network
MOGA Multi-objective genetic algorithm
o Out

PMV Predicted mean vote

PPD Predicted percentage of dissatisfied
Q Cooling/heating load

q Energy per unit of floor area

r Room

RH Relative humidity

RMSE Root Mean Square Error

s Sensible

Tai Ambient temperature

Thi Supply heating water temperature
Tho Return heating water temperature
Ti Temperature after rotary heat exchanger
Tui Supply air temperature to zones
Tuo Return air temperature

Twi Supply cooling water temperature
Two Return cooling water temperature
URL Uniform resource locator

VAV Variable air volume
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1. Introduction

A lack of clean and fresh air is a fatal flaw in human health. Our health may suffer if
we spend much time indoors working or studying, depending on our job. Having
properly-ventilated rooms in any populated building is therefore necessary. Depend-
ing on the time of year or the building’s purpose, it may be necessary to use heating
or cooling. It is impossible to maintain a suitable interior temperature without a prop-
erly functioning heating, ventilation, and air conditioning (HVAC) system. However, as
the world’s population expands, so does the world’s need for energy (Nasruddin
et al., 2016). The International Energy Agency (IEA) reported in 2013 that buildings
had become the third-largest worldwide energy user (International Energy Agency,
2013). Several researchers have stated that HVAC systems are the most common
source of energy use in a building, with more than half of the building energy (T.
Li et al, 2021; Poel et al., 2007). Therefore, an optimization process is needed for
the HVAC system to reduce energy consumption while keeping occupant comfort
in mind.

To make the optimization process more effective and user-friendly, Building Infor-
mation Modelling (BIM) can be utilized in this domain to digitally model complex
systems with correct information, which can then be used for various performance assess-
ments and design decision-making applications. Developing an Application Program-
ming Interface (API) in BIM will allow the user to add new functions to automate
repetitive operations, analyze deeper, and solve complicated issues (e.g. building
thermal performance optimization) (Lim et al., 2019; Mehndi & Chakraborty, 2020). As
an additional benefit of BIM, data from the Internet of things (loT), such as sensor net-
works, and occupants’ feedback may be connected with BIM to monitor the status of
the building’s equipment and the surrounding environment, which is helpful for the
optimization process. This connection is required to create what is referred to as the
Digital Twin of the HVAC system (HVACDT).

In the construction sector, the operations of Facilities Management (FM) are handled
by a large number of stakeholders. The ability of facility managers to make effective
and timely decisions is essential to the functioning of the FM industry. During this
process, facility managers present and leave at various times over the building’s operating
life cycle. This procedure can cause the information to be lost or misconstrued if it is not
managed effectively (ATD, 2010).

Because it plays such an essential part in the long-term viability of buildings and the
built environment, the energy consumption and performance of the HVAC system
need to be monitored with as much precision as possible. Facility managers’ inappropri-
ate decisions may lead to wasted energy, excessive expenses, and thermal dissatisfaction
(Sagnier, 2018). Thermal complaints are one of the most common complaints (Goins &
Moezzi, 2013), and the developed MLP model demonstrated that it could assist facility
managers in planning for the staffing resources needed to handle these complaints,
thereby improving both the satisfaction of occupants and the performance of the build-
ing (Assaf & Srour, 2021). Therefore, the sustainability context in the FM business has to
utilize advanced intelligent digital technologies since these technologies can assist
improve the flow of information and can also conclude forecasts based on sensor data
(Araszkiewicz, 2017; Xu et al., 2020). In this paper, the HVACDT was developed as a
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real-time system to assist facility managers in making better decisions during the oper-
ation phase of building life-cycle management.

The Internet of Things (loT), Artificial Intelligence (Al), and BIM are all used in Digital
Twin technology (Boje et al., 2020; Han et al., 2021; H. Hosamo et al., 2021; Mabkhot
et al., 2018; Madni et al., 2019; Rolfsen et al., 2021; Shabani et al., 2021). These technol-
ogies have enabled the digitization of many assets, allowing a virtual item to be inte-
grated with a physical object during its entire life span (Qi & Tao, 2018). There are
several definitions for Digital Twin in the literature. For example, Kritzinger et al.
(2018), Autiosalo et al. (2020), J. Lee et al. (2013), H. H. Hosamo and Hosamo (2022),
and H. H. Hosamo, Imran, et al. (2022); nevertheless, Grieves first articulated the
concept of Digital Twin in 2012. Grieves emphasized a few years later that he meant
a bundle of data that completely describes an asset, from its most fundamental geome-
try to its most particular function (Grieves & Vickers, 2017). The initial step in this paper
will be to create a BIM plug-in to accept real-time data from sensors as well as occu-
pants’ feedback. Then, all of the information from the BIM will be sent into the
Matlab-built Digital Twin model in Simulink. The Digital Twin model will be validated
using machine learning by comparing the energy consumption and thermal comfort
results with actual data. The Simulink model’s outputs will then be inputs to an optim-
ization algorithm to discover the best strategy for reducing energy usage while main-
taining occupant thermal comfort.

1.1. Artificial neural network (ANN) applications for HVAC

Numerous architectural and civil engineering challenges have been handled effectively
during the last three decades, thanks to the emergence of soft computing techniques
such as artificial neural networks (ANNs) and fuzzy systems. For instance, Abdo-Allah
et al. (2018) developed a fuzzy logic controller (FLC) for a central air handling unit
(AHU) in Canada. Numerous further investigations have incorporated Diagnostic Bayesian
network (DBN) (T. Li et al., 2021), Artificial Neural Network (ANN) (Seo et al., 2019), fuzzy
logic algorithm (Khan et al., 2015) were used to enhance HVAC performance. Additionally,
Beccali et al. (2017) have shown that ANN might be a valuable tool for energy-efficient
building renovation.

Table 1 summarizes a few studies that used machine learning to predict thermal
comfort and energy consumption in buildings, including some of the most used
Regression methods like SVR, LR, and DT. Out from the Table 1, it is obvious that investi-
gating the best energy use prediction remains a complex task, as there is no general
agreement on the most suitable algorithm for energy prediction. According to Olofsson
and Andersson (2002), ANN outperforms other approaches for calculating energy usage in
buildings. In a similar study (Bui et al., 2020) calculated the energy consumption, including
the heating and cooling load, by combining an ANN model and the firefly method (EFA).
Additionally, the EFA-performance ANN'’s was confirmed by comparing the acquired
findings to those obtained using other approaches. According to the research findings
mentioned in this paper, the ANN model can aid civil engineers and construction man-
agers in the early design of energy-efficient structures. Thus, in this paper, ANN will be
employed as a machine learning model to validate the Simulink Digital Twin model
(HVACDT).
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Table 1. Summary of machine learning approaches used in literature to predict the energy
consumption and thermal comfort in buildings.

Reference

Algorithm type

Description

H.-x. Zhao and
Magoulées (2012)

Amasyali and El-
Gohary (2018)

Mat Daut et al.
(2017)

Z. Wang and
Srinivasan (2015)

Edwards et al. (2012)

Rahman et al. (2018)

J. Xue et al. (2012)

Dong et al. (2016)

Fan et al. (2017)

Olu-Ajayi et al.
(2022)

Ahmad et al. (2014)

ANN,SVM, LR
SVM, ANN, Decision trees,
Data driven models
ANN, SVM, Hybrid ANN,

Hybrid SVM

ANN, SVM, Ensemble
model,LR

LR, FFNN, SVR, LS-SVM and
others

RNN, LSTM

Hybrid NN-SVM

ANN, SVR, LS-SVM, GPR,
GMM

DNN, RF, SVR, GBM, XGB,
MLR, ELN

DNN, ANN, GB, SVM, KNN,
DT, LR

SVM, ANN, LSSVM, GMDH,
GLSSVM

This paper focuses on applying new models to solve prediction
challenges and improving model parameters or input samples
for improved performance. Other factors of load prediction are
broken down into meteorological conditions, building
attributes, and occupancy behavior in the study.

This study examines the scopes of prediction, data attributes, and
pre-processing data methods, including machine learning
algorithms for prediction and performance metrics for
assessment.

According to this study, artificial intelligence is the most
appropriate strategy for managing nonlinear elements since it
can deliver higher predicting performance. A hybrid of two
forecasting methods, as opposed to a single forecasting
approach might potentially produce more exact findings than a
single forecasting method.

The authors evaluate Al-based building energy prediction
approaches, focussing on ensemble models. The ideas and
applications of multiple linear regression, artificial neural
networks, support vector regression, and ensemble prediction
models have been covered. This paper also discusses the
benefits and drawbacks of each model type.

Seven machine learning approaches were evaluated on two
different data sets. The authors evaluated each approach’s pros,
drawbacks, and technical advantages. The results indicate that
LS-SVM is the optimal approach for estimating the future energy
usage of each home.

Models for medium- to long-term projections of power
consumption patterns in commercial and residential buildings
are proposed in this work using two innovative deep RNN with
LSTM models. Compared to a 3-layer multi-layered perceptron
(MLP) model, the suggested RNN model fails to estimate
aggregate load profiles over a 1-year time horizon.

A unique method for forecasting hourly energy load in a short
time, as well as forecasting the daily consumption for the
upcoming montbhs, is presented in this paper. The technique is
based on the NN-SVM with RGA optimization. Based on the
findings, this new technique thoroughly depicts daily and
weekly load changes and a reliable prediction of upcoming
month consumption with high accuracy.

This paper aims to provide an innovative hybrid modelling
technique for estimating residential building energy use. This
study combines data-driven techniques with forward physics-
based models. The analysis described here predicts power
consumption using five-minute interval data. The results of the
final data analysis suggest that hybrid modelling is marginally
superior to conventional data-driven methods for hourly
forecasting.

The potential of deep learning in building cooling load prediction
is investigated using seven different algorithms. The results
demonstrate that the extreme gradient boosting (XGB)
technique demonstrates superior prediction to other methods.

The accuracy of nine machine learning approaches for forecasting
yearly energy usage was examined in this study. DNN
outperformed other models in predicting energy usage. ANN,
GB, and SVM are also considered efficient prediction methods in
this study.

This study demonstrates that NN and SVM are the most often
employed artificial intelligence models in building energy use
prediction. A GMDH-LSSVM hybrid model was suggested in this
research, and it was discovered to have a promising forecasting
potential when applied to different time series forecasting areas.

(Continued)
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Table 1. Continued.

Reference Algorithm type Description
@stergard et al. OLS, RF, SVR, GPR, NN, This study puts a variety of machine learning algorithms to the
(2018) MARS test in the context of ‘building performance simulations’. the

results show that GPR generated the most accurate models in
general, followed by NN and MARS.

1.2. Optimization methods

Green building design and performance optimization are two examples of large-scale
challenges for which optimization methods have been created (Elbeltagi et al., 2005).
Combining energy consumption modelling with other optimization methods, such as
simulation-based optimization for performance optimization, may be worth investigating
to minimize building energy consumption (Nguyen et al., 2014). As shown in past studies,
employing high-performance approaches can assist researchers in optimizing building
energy use (Griego et al,, 2015). Foucquier et al. (2013) assessed three alternative optim-
ization techniques: ‘white box’, ‘black box’, and ‘grey box'. On the other hand, Magnier
and Haghighat (2010) used TRNSYS and ANN to maximize thermal comfort and energy
usage in an office building. The resulting findings demonstrated that using a Genetic
Algorithm (GA) as an optimization tool may successfully minimize building energy usage.
Pombeiro et al. (2017) optimized the AHU system using a programming model and GA.
The GA model employed EnergyPlus to simulate interior temperature. To improve energy
efficiency and interior comfort, Alcald et al. (2003) developed evolutionary algorithms for
constructing cleverly tuned fuzzy logic controllers. Similarly, Congradac and Kulic (2009)
proposed a GA for typical HVAC systems. The GA design aimed to maximize performance,
especially power savings. A simulation model was created to show how much electricity
may be saved by controlling CO2 concentration in a standard HVAC system. Kusiak et al.
(2013) used data mining to reduce the HVAC system’s energy usage. The results revealed
a 23% reduction in energy use. Ferdyn-Grygierek and Grygierek (2017) utilized the Ener-
gyPlus toolbox to model and optimize building operations. The research is done for two
building types: heating and cooling and heating only. The life cycle expenses decreased
by 7-34%, depending on the case. Seong et al. (2019) employed the GA to optimize HVAC
system management. Using the optimum control factors, the building’s overall energy
usage was lowered by 5.72%. Qiao et al. (2021) employed the GA to improve HVAC
systems. The optimization was done using Fanger's comfort approach and GA (Fanger,
1973). Nassif et al. (2005) employed GA to optimize two AHU control objectives. Nasrud-
din et al. (2019) used ANN and multiobjective GA to optimize a two-chiller system.
Several other approaches have also been tested in addition to the genetic algorithm
for optimization. An innovative demand response management and thermal comfort
optimization control system for three buildings was devised by Korkas et al. using the
Principal Component Analysis Optimization (PCAO) algorithm (Korkas et al., 2016).
R-PCAO (Rule-based Parameterized Cognitive Optimization) was utilized by Baldi et al.
to improve building energy consumption and occupant comfort (composition of interact-
ing rooms, with the interconnection of HVAC sensing) (Baldi et al., 2018). A new Distrib-
uted Demand Management System (D-DMS) and multi-objective optimization were
presented by Korkas et al. to minimize energy consumption and fulfill thermal comfort
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levels to improve the user-driven energy performance of the building and the district
(Korkas et al., 2018). C. J. Lin et al. (2022) suggests combining ANN with a multi-objective
whale optimization algorithm (MOWOA) to maximize thermal comfort and reduce energy
consumption to regulate air-conditioning and mechanical ventilation systems. Thermal
comfort, operating costs, and system efficiency of a university campus in Tianjin, China,
were optimized using a multi-objective particle swarm optimization (PSO) method
(Ding et al., 2019). Yong et al. (2020) integrated a novel algorithm based on the basic par-
ticle swarm optimization and EnergyPlus to reduce energy consumption and enhance
comfort levels in many buildings in China. Kim and Hong (2020) employed multi-objective
optimization for an office building in Seoul to establish the ideal interior set-point temp-
erature that solves the trade-off between HVAC energy savings and labour productivity.
Using the Mode Frontier and the Passive House Planning Package (PHPP), B. Lee et al.
(2020) developed a combined automated simulation framework for reducing heating
demand in a passive house design approach. Dhariwal and Banerjee (2017) presented a
strategy to circumvent the heavy computing of building simulation-based optimization
by integrating the design of experiment (DOE) and response surface methodology (RSM).

Out of the above studies, several optimization approaches were used to enhance build-
ing performance and energy consumption. However, most studies have implemented the
genetic algorithm, which can be divided into Single Objective Genetic Algorithm and mul-
tiobjective genetic algorithms (MOGA). Using the Single Objective Genetic Algorithm
technique, Wright and Alajmi (2016) found the best HVAC system and building envelope
parameter set that produced the optimal yearly energy usage. Harun et al. (2017) identify
the optimum materials for minimal OTTV in building exterior retrofit optimization. Yigit &
Ozorhon's (2018) employed the Single Objective Genetic Algorithm technique using
MATLAB to discover the ideal building thermal design. However, despite Single Objective
Genetic Algorithm speed in tackling single-objective optimization issues, it is severely
constrained in solving complicated problems involving several competing criteria. Multi-
objective genetic algorithms (MOGA) are therefore utilized when a single goal approach is
not as practical as it may be. Compared to GA, MOGA offers a framework for handling
several conflicting objective functions (Vachhani et al., 2015). Another common use of
MOGA is to enhance the efficiency of a building’s mechanical systems. Jeong et al.
(2019) employed MOGA to optimize multi-family housing complexes and reduce
carbon dioxide emissions. In a case study, Nasruddin et al. (2019) coupled MOGA with
an Artificial Neural Network (ANN) to improve the performance of a two-chiller system.
Chang et al. (2020) determined the optimal materials for a renovated building based
on its current constructed form using MOGA. Hence, MOGA will be used as an optimiz-
ation algorithm in this paper.

1.3. Combine machine learning with a multi-objective optimization algorithm

An appropriate fitness function for MOGA is required to speed convergence and locate
the optimum solution. Empirical formulae or computer simulations are usually used to
determine the fitness functions. Zhang constructed mathematical models that serve as
a fitness function for a genetic algorithm based on empirical formulae to optimize the par-
ameters (K. Zhang, 2020). Naderi et al. used EnergyPlus to improve the design and control
characteristics of a smart shading blind (Naderi et al., 2020). Bruno et al. utilized the minor
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yearly energy usage and minimum construction cost from EnergyPlus as fitness functions
(Zemero et al,, 2019). However, the empirical equations cannot be changed to unique
building circumstances, and calculating the fitness values of several individuals using
simulation software is computationally costly while reducing optimization efficiency. In
order to overcome the restrictions of the previously utilized fitness functions, it was rec-
ommended that ML be used as the fitness function of the optimization method
(Dstergard et al, 2018). Lin et al. employed neural networks to generate thermal
comfort and overall energy consumption metamodels (Y.-H. Lin et al., 2016). Nasruddin
et al. used an artificial neural network and a multi-objective GA to optimize the operation
of a two-chiller system in a building (Nasruddin et al.,, 2019). Wang et al. used Gradient
Boosting Decision Trees (GBDT) to generate building performance metamodels (R.
Wang et al., 2020). In conclusion, intelligent algorithms as fitness functions can increase
optimization algorithms’ adaptability and efficiency (J. Zhang et al., 2019). The current
work provides a multi-objective optimization approach for HVAC energy consumption
and thermal comfort in buildings that combines machine learning and MOGA.

1.4. BIM as a tool for sustainability

There are several ways in which a BIM-based design process may be used throughout the
building life cycle to undertake various analyzes and enhance teamwork. Researchers
suggest that the BIM method and tools may be used to conduct early-stage sustainability
analysis and decision-making (Azhar et al., 2011; Carvalho et al,, 2019; H. H. Hosamo, Sven-
nevig, et al.,, 2022). It was argued by Freitas et al. (2020) that BIM may also be used to help
make decisions about the energy efficiency of existing structures. According to Lim et al.
(2021), BIM is still not utilized effectively in building activities. Hence, further research is
required in order to address many issues in the green building environment.

Recently, researches have shown a growing interest for using BIM with text-based pro-
gramming to advance their studies. Many research fields have benefitted from this com-
bination, including process automation (Liu et al., 2021), facility management (B. Wang
et al,, 2021), and building performance analysis (Abbasi & Noorzai, 2021). In addition,
text-based programming scripts allow designers to enhance the capabilities of current
BIM tools by designing new features to automate, extract, and manage the data of a
BIM model more efficiently.

Furthermore, BIM project property information cannot be transmitted directly between
BIM authoring tools and simulation software when using data interchange protocols like
Industry Foundation Classes (IFC) (Natephra et al., 2018). Consequently, in order to use
data collected from a BIM model in energy modelling programs, manual data entry is
necessary (Z. Chen et al,, 2020). Out from that, there is a significant benefit to building
a Revit API for automated BIM data extraction and administration.

1.5. Scope

It has been shown from the literature that many techniques can optimize the HVAC
systems. They vary between ANN, FLC, GA, data mining, and probabilistic method. That
would indicate the importance of using optimization toolboxes to enhance the perform-
ance of HVAC systems. However, it is of practical importance to develop a simple yet
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accurate and reliable model to match better the actual behavior of the subsystems and
overall system over the entire operating range. Moreover, ideally, it is almost impossible
to develop a model based on physical knowledge. Therefore, this paper proposes the
HVACDT method that integrates BIM, a new plug-in in Revit, Simulink, and a multiobjec-
tive optimization algorithm (MOGA) in one novel workflow for the HVAC system. Based on
the research gaps mentioned above, this study:

e Develops a new plug-in for Revit to receive the sensor data and occupants’ feedback
and then feed them to the optimization process in Simulink.

o Describes a Digital Twin framework for the optimization process using inputs from the
BIM model to Simulink in Matlab.

e Uses of ANN algorithm for validating the Simulink model based on loT data.

» Uses multiobjective optimization algorithm (MOGA) to find the optimal energy con-
sumption and thermal comfort solution.

e Streams the final results in BIM so the best operational conditions of HVAC can be
implemented.

2. Methodology

The novel HVACDT method is developed to reduce the energy consumption of HVAC and
increase the thermal comfort of occupants in buildings. The HVACDT method process
depicted in Figure 1 begins by extracting the appropriate data from the BIM model
and ends by sending the optimal design option data back to the BIM model. The
method was structured in several steps:

e The initial stage of the HYACDT method (the green area in Figure 1) consists of prepar-
ing the BIM model for data extraction. The preparation process involves checking that
all the required dimensions, materials, and installation year, are available in the BIM
model. In addition, a Revit plug-in is developed using C sharp to stream the data
from sensors in HVAC to the BIM model; for example, temperature, pressure, and
flow rate are collected from sensors in HVAC.

: -
R LioscloEn o 4\ * ™% Digial Twin model (HVACDT) Eneicy.anduheraleamiort
p— SIMULINK”

Define inputs
0 [

— Simulink
Create HVAC BIM J :::)udg
“ model BIM model Q

Objective function

Optimization using
MOGA

Convert the results
to be input for the
BIM model

.‘ Simulink model
for energy
Sensor data ’—»l Plug in using C#

consumption

ANN validation

Optimal
solution

Survey |

Thermal comfort from
occupants’ feedback

Figure 1. The Digital Twin framework for the optimization process.
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e The second stage (the yellow area in Figure 1) involves extracting the input par-
ameters for the optimization problem from the BIM model. The same plug-in is
used to extract data from Revit. An Excel template is used to store the gathered
data. This data is used as inputs for the Simulink model. The output parameters
from Simulink using ANN is the energy consumption, which is validated with the
actual data from the building.

e Furthermore, a questionnaire survey about thermal comfort was distributed to get the
predicted mean vote (PMV) and the predicted percentage of dissatisfied (PPD), chosen
as the thermal comfort indexes. PMV and PPD are two popular indices of thermal
comfort (Deshko et al., 2020). The PMV scale ranges from —3 (very cold) to +3 (very
hot). Comfortable interior air conditioning has a PMV close to zero. PPD predicts the
percentage of occupants that are unhappy with the air conditioning. PPD drops as
PMV approaches zero, where PPD values vary from 0% to 100%.

o Following this stage (the blue area in Figure 1), MATLAB® was used for the optimization
process, using a multi-objective optimization algorithm (MOGA).

 Finally, the data output of the optimization is pushed back using the Revit plug-in
developed to update the design of the building envelope with the optimized option
automatically.

2.1. Building descriptions

The 14Helse office building (i4Helse, 2022) in Grimstad, Norway, has been chosen to model
the thermal comfort and energy performance of the HVAC system (Figure 2). Approxi-
mately 1900 m? of conditioned space is available in the building. The building is four
stories tall, and it is divided into zones for meetings and work. The building envelope fea-
tures, the HVAC system, and setpoints follow the Norwegian building code TEK10 (Direk-
toratet for byggkvalitet, 2010). Table 2 summarizes the features of the primary HVAC
system in the reference building. The meteorological data for this study was obtained
from the ASHRAE IWEC 2 database for the climate of Kjevik, Kristiansand, Norway. The
ASHRAE classification (Ashrae 90.1, 2013) provides further information about this city’s cli-
matic conditions.

2.2. HVAC system

A chiller and a heater are installed in the building utilized in this study to provide chilled
and hot water for variable air volume (VAV) systems. Using the air handling unit (AHU), the
fresh air is circulated and leaves through the exhaust system. The cooling and heating
load automatically controls the VAV system. Figure 3 depicts a schematic representation
of HVAC. This schematic depicts the proposed artificial neural network (ANN) models and
their interactions with the rest of the system. The HVAC system is composed of the follow-
ing components: return and supply fans, outside, discharge, and recirculation dampers, an
air handling unit (AHU) with filter and cooling and heating coils, pressure-independent
VAV terminal boxes, and local-loop controllers.

Numerous sensors have been used to collect the necessary data through the building
management system (BMS) and by building a restful API. Supply-air temperature for each
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Figure 2. BIM model of 14Helse building that located in Grimstad, Norway (a), and the plan of zones at
third floor in 14Hhelse building (b).

Table 2. The main features of the reference office building’s HVAC systems.

Operation

Features

Strategy for the ventilation system

Ventilation system operating
schedules

Cooling system

Heating system

Control method

Room temperature set point for
heating and cooling

Mechanical balanced ventilation system with a 80% efficient rotating heat
recovery system.
Monday-Friday: 12 h/day (from 06.00 to 18.00)

A centrally located water cooling system is used to chill the supply air in the
AHU.

A centrally located water heating system is used to heat the supply air in the
AHU.

Water temperature for space heating is supplied as a function of the outside
temperature. The temperature of the supply air is controlled in relation to the
temperature of the return air to the AHUs (air handling units).

21°C for heating and 24°C for cooling

thermal zone (Tui), the supply-air static pressure (SAP), the supply-airflow rate (Mai), the
supply-water flow rate in summer (Mcw), the supply-water flow rate in winter (Mhw), the
return air temperature (Tuo), the supply cooling water temperature (Twi), the return
cooling water temperature (Two), the supply heating water temperature (Thi), the
return heating water temperature (Tho), ambient temperature (Tai) and temperature
after rotary heat exchanger (Ti) sensors are used as input to the feedback control loop.
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Figure 3. A Schematic diagram of the proposed HVAC with the proposed ANN models and optimiz-
ation process.

The rest of the sensors are used to monitor operating conditions. Figure 4 depicts the data
sheet for the sensors. In addition, Regio controllers have been utilized to manage a wide
variety of variables, including but not limited to temperature, lighting, humidity, CO2
levels, and even blinds. In addition, Regio offers services related to the Internet and
online interaction. It is possible to control the temperature and other functions of a
room using a personal computer that is connected to the network at the office. The appli-
cation system is depicted in Figure 5, and the controllers are shown in Figure 6.

Figure 7 depicts the HVAC system’s local loop controllers (M1, M2, and M3), as well as
the BMS’s integrated optimization process. The controller regulates the supplied air temp-
erature (M1). The controller regulates the static duct pressure (M2). The controller (M3 (n))
controls the zone air temperature in every given zone n. The BMS collects measured data
(actual data) from components or subsystems. The ANN models are constantly trained
using real data to fit better the real behavior of the subsystems and overall system. The
ANN models give optimal total system performance by finding optimal set points and
operation sequences at each time interval, as supported in this study for optimal
control strategy (every 10 min).

2.3. BIM model data

In this paper, the BIM model will be utilized in two ways: as input for the Simulink model
(supply parameters for building performance) and to visualize the findings. A BIM model’s
geometric and semantic aspects (non-geometric), including component size, materials,
and installation year, will help facility managers during the optimization process. In
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Figure 4. AHU sensors datasheet.

addition, a Restful API (Application Programming Interface) has been developed as a layer
over a traditional Building Management System (BMS). The API allows collecting data from
any device in the building by using a unique URL (Uniform Resource Locator). The pro-
cedure begins with HVAC sensors for control and visualization, linked to the BMS,
which regulates the unit.

Moreover, with Microsoft Visual Studio Community 2019, a Plugin is embedded
into the BIM model, enabling the viewing and storing of real-time sensor data directly
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Figure 5. An example of the application system (Regio Midi, 2013).

in the BIM model. To construct the tab, ribbon, and plugin buttons, the Application
base class implements an external application interface. This feature-rich plugin is
ideal for facility managers since it enables them to obtain real-time sensor data
and record it in the relevant condition database while keeping BIM up to date. The
‘Sensor Data’ option allows FM managers to check the maximum and lowest values
of current sensor data and previous sensor data. The condition database also
allows facility managers’ management to confirm the average and historical values
of the sensor. The sensor data is saved in real-time by clicking the ‘Store’ button,
as shown in Figure 8(a). Figure 8(b) is a schematic illustration of the overall
system’s principle.

The BIM authoring tool utilized in this study was Autodesk Revit® 2022 (Autodesk,
2022). Autodesk Revit® is a widely used BIM-related program in research and practice
(Lim et al,, 2021). Additionally, several earlier studies (La Russa & Santagati, 2021) utilized
Autodesk Revit® because of its accessibility to academics and interaction with text-based
programming.

When utilizing the HVACDT system, data pushback is critical to the optimization
process. In contrast to the data extraction process, the data pushback procedure
imports data from MATLAB® to the BIM model for the optimum design choice. The
Revit plugin selects the best temperatures, air flows, and pressures from the Excel tem-
plate using sensor blocks (See Figure 8(c)). This method results in the production of
optimal solutions that consume less energy and produce less pollution.

2.4. Post-occupancy evaluation (POE)

One of the most frequent methods to evaluate a building’s inhabitants’ satisfaction is a
questionnaire survey known as a post-occupancy evaluation (POE). In this work, SurveyX-
act forms were used to create a user satisfaction survey based on comfort considerations
(e.g. thermal comfort, acoustic comfort, indoor air quality, visual comfort, and space ade-
quacy) (Bluyssen et al., 2011; de Bakker et al., 2017).
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This research included both physical and non-physical comfort. The questionnaire
survey was designed to obtain occupant feedback as follows: Occupants have to
choose their workplace by building, floor, and room. In addition, occupants have to
answer questions about thermal comfort in winter and summer, indoor air quality in
winter and summer, visual comfort, acoustical comfort, and workplace space adequacy.
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The questionnaire also featured a text entry field for responders to offer additional
reasons for dissatisfaction. Finally, occupants were also asked to score their happiness
with thermal, auditory, visual, and spatial characteristics of the building’'s common
areas (e.g. corridors, conference rooms, toilets, and dining rooms). The survey results
were statistically analyzed to identify the cause-effect of some variables.

Rooms in BIM were used to organize the spatial data collected for this investigation.
However, there was no complete BIM model of the rooms in the building; therefore, it
was necessary to use a laser scanner (Topcon GLS-2000, 2016) to scan the building and
then export the point clouds model (Figure 9(a)) to ReCap pro (ReCap, 2019) and finally
to Revit (ReCap, 2019) to make a correct model as possible to receive the occupants’
feedback.

The sensor block in rooms was a suitable host for the user satisfaction survey using the
plugin in Revit since the spaces provided occupant feedback. The results can be seen in
Figure 9(b), where the blue colour refers to a good indoor environment.

All 14Helse building spaces were surveyed for user satisfaction, including office spaces,
hallways, kitchens, and labs. Before being put into the machine learning model, each
room’s occupancy density (measured in m2/person), movable windows (yes/no), and ven-
tilation type were all incorporated into the BIM model.

Now, to calculate the thermal sensation values, Equations (1)-(4) offer the mathemat-
ical formulas for Fanger's PMV-PPD model:

PMV = (0.303 . €%93M 4 0.028) - L (1)
L =M —0.00305 - (5733 — 6.99 - (M — W) — Pa) — 0.42(M — W — 58.15)

—0.0017(5867 — Pa) — 0.0014 - M - (34 — Ta) — 3.96 - 1078 . Fcl - (Tcl + 273)*  (2)
— (Tr 4+ 273)%) — Fcl - hc - (Tcl — Ta)
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Tcl = 35.7 — 0.028 - (M — W) — 0.155 - Icl - (3.96 - 1078 . Fcl(Tcl + 273)*
(3)
— (Tr + 273)*) + Fcl - he - (Tcl — Ta))
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(b)

Figure 9. A part of the point clouds model and measurements (a), and An example of BIM visualiza-
tion of occupant comfort (b).
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Where: M stands for metabolic rate, L for body thermal load, W (Wm~2) stands for exter-
nal work, Ta (°C) is the average indoor temperature, Tc/ (°C) is the clothing’s tempera-
ture, Pa (kPa) is the partial vapour pressure, and fcl/(—) is the body’s surface area when
fully clothed to its surface area while bare. In addition, Tr (°C) represents the average
radiant temperature, Ic/ ((m?)°C W™') represents the thermal resistance of clothing,
var (ms~") represents the relative air velocity to the human body, and va (ms™") rep-
resents the air velocity.

All the necessary calculations to find the thermal sensation were made based
on Norwegian construction details 421.501 (Aage et al, 2015; Byggforskserien,
2017). During the survey, we register the occupants’ answers, and we take measure-
ments at the same time. The air velocity was measured at 1.1 m (the height of the
sitting occupant’s head). Figures 10, 11, 12 show the survey and measurements
results.

2.5. HYACDT components

Simulink models of HYAC components based on artificial neural networks with self-learn-
ing capabilities are developed and used to conduct sophisticated, intelligent operations
and to depict the HVAC system’s Digital Twin model (Figure 13). An endless number of
network topologies may be utilized for this purpose, but the simplest structure should
be chosen to conserve computing time.

The following are the key equations for the mathematical modelling utilized in Simu-
link based on Byggforskserien (2017) and Aage et al. (2015), where Table 3 shows the
general information regarding the reference case building:

Cooling load (kW):

Qcooling = (Mcw x Cpwater x (Two — Twi)) (5)
Heating load (kW):
Qheating = (Mhw x Cpwater x (Thi — Tho)) (6)
In summer (kW):
Quir = (Mai x Cpair x (Tui — Tai)) (7)
In winter (kW):
Quir = (Mai x Cpair x (Tui — Ti)) 8
Qcooling/hearing
— <cooling/heating )
Qair
Q . .
onwer = % (10)

C pwatersummer = (4.218103) + [( — 0.0050041 x (Two — Twi)) + (0.000827196(Two — Twi)'®)
+ (—7.44273%107° x (Two — Twi)*?)
+ (4.15557 x 1077 x (Two — Twi)3)] (11)
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Figure 10. Air temperature (°C) vs. thermal sensation in winter (a), Air temperature (°C) vs. thermal
sensation in summer.
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Table 3. The values of building envelope data and specific heat capacity.

Parameter Initial value
External wall U-value (W/(m?2-K)) 0.22
Roof U-value (W/(m?-K)) 0.18
External window, doors and glass U-value (W/(m?-K)) 1.6
Ground floor U-value, W/(m?-K) 0.06
Normalized thermal bridge (W/(m?.K)) 0.03
Airtightness nsy (1/h) 0.35
External shading strategy Qsol (klux) > 40
Internal wall U-value, (W/(m?-K)) 0.62
Cpa,', (kJ/kgK) 1.018
Chwater (kJ/kgK) at 20°C 4.186

C pwaterwinter = (4.218103) + [( — 0.0050041 x (Thi — Tho)) + (0.000827196(Thi — Tho)')
+ (— 7.44273%107° x (Thi — Tho)?*®)

+ (4.15557 x 10~ x (Thi — Tho)3)] (12)
Cpair = 1.005 + (x x 1.82) (13)
X = RH x 6, (14)

Where: Cpgjr in kl/kgK, x is kg per kg dry air. By using measurement data from Landvik
station (LMT, 2022), we can calculate monthly averages for temperature and relative
humidity, which are converted to x-values using saturated air table. Also, 1.005 in
Equation (13) is the dry air heat capacity in kJ/kgK.

The outside dry bulb and wet bulb temperatures affect the load component caused by
ventilation or infiltration. This load is computed for the summer, winter, occupied, and
unoccupied periods based on the following formulas:

Gintes = Pa X Cpair X Vg,', x(To—T,) (15)

AI’OOI’TI
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While the latent component of infiltration is computed by the following:

Pa % hgy x Vg,-, X (wg — wy)

Qinf Jat = (16)

Aroom
d p X Vair

VFan

OFan = (17)
Where, vrq, is fan efficiency, d,, is total pressure (Pa), Vy; is air volume delivered by the fan,
Qran power used by the fan (kW)

A further relation exists between the mean radiant temperature of the building envel-
ope (Tr) in and the thermal performance of the building envelope, which can be
expressed as in Equations (18), and (19) based on NS-EN ISO 7730 (2006) and Osborn
(1985):

T AT A Ty A YK (A Ty)

Tr = = (18)
A +A+ - 4+ Ay Zl;Anj

Where: A,; and T, are the building envelope’s surface area and temperature, respectively.

Ta — Tout
T=Ta-U.-—— (19)
o
Where: Ta is the indoor air temperature, Tout is the outdoor temperature, U is the heat
transfer coefficient of the envelope, and a is the heat transfer coefficient of the inner
surface of the envelope.

The mean radiant temperature can then be written as follows:

Ta—Tout, Ta—Tout Ta—T
[Awalls “Ta « Uwas - e Tou )] + [Awfndows “ Ta * Unindows - o Tou )] + [Aroof “Ta = Uroof W]

[¢3 a

Awalls + Awindows + Aroof

Tr =
(20)

Each model contains 20 neurons in each of its two hidden layers. The output layer has two
neurons and an activation function (tanch) that sums the weighted neurons in the hidden
layer (see Section 2.6).

Each component in the HVAC system (e.g. rotary heat exchanger, filters, etc.) had to be
validated in Simulink to produce a proper and accurate model. The most energy-intensive
components are the fans, cooling units, and heaters, all of which are the subject of this
study. Those models may be utilized for various purposes, but the inputs and outputs
must first be defined. The models given in Figure 14 are required for such a procedure.

Fans, chilled water supply temperature, dry-bulb temperature (supply air temperature
setpoint), and airflow rate are all inputs to the model of a cooling unit, whereas cooling
load is the result. System airflow rate and static pressure (duct static pressure setpoint) are
inputs to the fan model, which returns fan power. The inputs to the heating unit model
are the same as those for the cooling unit: fan airflow rate, heated water supply tempera-
ture, entering air dry-bulb temperature, supply air dry bulb temperature (supply air temp-
erature setpoint), and the output is the heating load. Section 2.6 explains how the
Simulink model processed and treated sensor data.

Moreover, the minimum airflow rate required by NS 3701:2012 (2012) is considered
during the optimization process. Adding the minimal outdoor standard technique in
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Figure 14. Component model flow chart.

the overall optimization process reduces energy consumption while still meeting the
current standard’s ventilation requirements. The outside air is determined using a
multi-zone approach based on real zone airflow rates in Norwegian standard. The stan-
dard specifies two ventilation rates, one to dilute pollutants created by occupants (R,)
and the other to dilute contaminants generated by building-related sources (R;). The
number of zone occupants P, and the zone floor space A, determines the needed
minimum breathing zone outside air rate. When the economizer is turned off, the follow-
ing is the minimal outside airflow rate V;:

Vot = \% (21)
The following are the uncorrected outside air intake flow V,, and the system ventilation
efficiency E,:

Vou = Y ((Rpi X Pz) + (Rai x Az) (22)

£, — min<1 " Vou  ((Rpi X Pzi) + (Rai X Azi))) (23)

Vs Vi

The optimization technique finds the best zone airflow rates V,; and fan airflow rates V; in
Equation (23). For each zone i, the term inside the parentheses is computed, and the E, is
equal to the minimal value.

2.6. ANN modelling

In order to anticipate yearly HVAC energy consumption and the building PPD values, a
multilayer perceptron network (MLP) is constructed. As can be seen in Figures 15 and
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16, all inputs are connected to the neurons, and all neurons are connected to the output
of the MLP network, which is displayed as a three-layer structure (input layer, hidden layer,
and output layer).

In the MLP network, the correlation between the input u(k) and output y(k) may be
expressed mathematically as follows:

y(k) = H(w’x(k)) + by) (24)
x(k) = fi(w'u(k) + by) (25)

Where x(k) is the hidden layer’s output. w? and w' are the weight matrices for the con-
nections between the hidden layer, the output layer, and the input layer. To denote
input and output bias, the symbols b; and b, are used (Ren et al., 2009). f; and f, indicate
the transfer functions of the hidden and output layers, respectively.

This study employs a tangent sigmoid transfer function, which can be represented as:

(1—e%)
O tvem 0
A mathematical expression for z is z = f(>_ w;x;) where i is the neuron'’s input index, x; is
the input to the neuron, w; is the weighted factor attached to the input, z is the weighted
input (Mohanraj et al., 2012).

The correlation coefficient (R) has been used to measure the correlation between
outputs and targets. An R-value of 1 means a close relationship, while a value of 0
signifies a random relationship. The R is defined as Cadenas and Rivera (2009) and
X. Xue (2017):

R— Yl =Xy —Y)
VI 0 =27 0 (i — 77

Where x; and y; are the predicted and desired output values from model data, respect-
ively. x and y are the mean of the predicted and desired output values, respectively. n
is the number of data samples (95,000 samples). The Levenberg-Marquardt backpropaga-
tion technique will be used to train the network.

Performance of the chosen ANN configuration is assessed by completing training, vali-
dation, and testing on various data sets and comparing the results. The data sets were
separated into three groups randomly: 80% for training, 10% for validation, and 10%
for testing. Throughout the training, a Levenberg-Marquardt optimization technique is

(27)

Input layer Hidden layer Output layer

A A
———r v N

b

by
u(k) X @_@( ) y(k)

Figure 15. The inputs and outputs in the ANN's structure.
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Figure 16. The multilayer perceptron network (MLP).

used to modify the network in response to the error it generates. Figures 17, 18 and 19
depict the results of the study’s training, validation, and testing phases, respectively.
The model’s energy consumption and PPD estimated and forecasted are very consistent
with the results. The PPD value ranges from 5% to 62.44%, while the energy consumption
for the heating unit ranges from 3.12 kW to 60.93 kW, and for the cooling unit, it ranges
from 1.84 to 62.05%, respectively. One fan consumes between 0.27 and 3.65 kW of energy,
depending on its size. The straight lines in the the above mentioned figures represent a
one-to-one relationship, suggesting that the measured (target) and simulated (output)
fan power are in accord. This demonstrates that the intended network arrangement is
practical and can accurately forecast the performance of the building under a variety of
scenarios. Figure 20(a) shows the results of the total energy consumption of the HVAC
system using ANN compared to the real measurements from sensors (with 88.67% accu-
racy). Data normalization is used to reduce the size discrepancy between each data col-
lection. Using the StandardScaler approach (Brownlee, 2020), the data is translated into
arange of 0 to 1. Finally, the occupants’ thermal sensation prediction results are displayed
using the confusion matrix approach (MathWorks Nordic, 2022) in Figure 20(b). The
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Figure 17. The power consumption results of ANN heating unit model.

algorithm could correctly predict the thermal sensation in most situations (with 92.58%
accuracy), as shown in Figure 20(b). By that, our algorithm can predict the total
system’s energy consumption and thermal sensation with high accuracy.

Additionally, the wavelet neural network (WNN), random forest (RF), and support
vector machine (SVM) forecasting models’ accuracies have been compared to those of
the ANN model using R? and Root Mean Square Error (RMSE) to confirm ANN correctness.
Figure 21 shows the learning curve of ANN where the training time was 36.27 s. Figure 22
comparative results lead us to conclude the following conclusions;

o The R? for the ANN model is the greatest. The SVM, RF, and WNN models have R? values
of 0.93, 0.88, and 0.83, respectively, showing that the ANN model has the best predic-
tion fitting outcomes.
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Figure 18. The power consumption results of ANN fan model.

e The RMSE of the ANN model is the least. The RMSEs of the ANN, WNN, SVM, and RF
models are 0.027, 0.282, 0.084, and 0.153, respectively, in Figure 22, demonstrating
that the ANN model has the lowest forecast fitting error.

As the ANN energy consumption prediction model has the most significant prediction
accuracy and best forecast outcomes, its relationship may be employed as the fitness
function of multi-objective optimization, conducive to better achievement of optimiz-
ation objectives.

2.7. Algorithm and strategy for optimization

The optimization procedure forecasts system performance over a 10-min timeframe
(optimization period). As shown in Figure 2, the optimization process is assessed using
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Figure 19. The power consumption results of ANN cooling unit model.

data from an existing VAV system servicing offices with a total of 30 zones. The loads and
external air conditions are considered constant during this short optimization phase and
are calculated using the measured data gathered during the prior time. The energy con-
sumed by each component and subsequently the overall energy used in response to the
controller setpoints and operating modes are calculated using ANN models. The ANN
model for each zone was trained to replicate the real case during the real-time optimiz-
ation accurately. The ANN training data set of the zones were realistic with a different
heating setpoint schedule in zones that will allow the ANN to produce reasonably accu-
rate results throughout the range of possible setpoint schedules.

There are two basic types of optimization algorithms: traditional gradient-based
methods and gradient-free direct methods (Zhou & Haghighat, 2009). The performance
of the gradient-based approach is heavily reliant on the given starting values. This
approach cannot be used in the building since the interaction between the building
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Figure 20. Comparison of total energy consumption of HVAC system between the optimal ANN
model and measurements from sensors (a), and confusion matrix of thermal sensation prediction (b).

parameters is nonlinear, resulting in discontinuous functions (Wetter & Wright, 2004).
Hence, most gradient-based approaches cannot handle discontinuous functions properly.
On the other hand, the gradient-free direct technique is suitable for optimization in
construction applications (Zhou & Haghighat, 2009). This is useful for solving complex
issues to tackle with gradient-based approaches. The genetic algorithm, which is one
of the gradient-free direct approaches, has been used effectively to optimize buildings
components (M. Hosamo, 2018, july; Huang & Lam, 1997; W. Wang et al., 2005).

A genetic algorithm (GA) solves both constrained and unconstrained optimization pro-
blems based on a natural selection process that mimics biological evolution. GAs search
for the optimum solution from one set of possible solutions with various decision-variable
values (Goldberg, 1989). This set of potential solutions is called a population. There are
several populations in a GA run, and each of these populations is called a generation. Gen-
erally, better solutions (i.e. decision-variable values) closer to the optimum solution than
the previous generation are created at each new generation (Rajasekar et al., 2015). In the



32 (&) H.HOSAMO HOSAMO ET AL.

Train
= Validation

DA Test

Root Mean Square Error (RMSE)

0 200 400 600 800 1000
Epochs

Figure 21. ANN learning curve.

GA context, the set of possible solutions (array of decision-variable values) is defined as a
chromosome, while each decision-variable value present in the chromosome is formed by
genes (Wardlaw & Sharif, 1999). Population size is the number of chromosomes in a popu-
lation. The fundamental procedure of the genetic algorithm for the optimization process
is shown in Figure 23.

Analysis of Variance (ANOVA) and Support Vector Machine (SVM) are used together in
this work (Megantara & Ahmad, 2021; SVM-Anova, 2021) to demonstrate the most critical
variables of the optimization process (Table 4). Hence, the ideal point value of optimal
variables obtained from the multi-objective optimization approach, which can be con-
trolled, is shown in Table 6. Based on the current requirement for the Norwegian building
code TEK17 (TEK17, 2017), a good PPD should be less than 10% for optimal thermal
comfort. It is, therefore, possible to increase thermal comfort while ensuring low
energy usage by using the method presented in this paper.

In this work, multi-objective optimization using two objective functions is used. The
first and second goal functions are building energy consumption and PPD. As seen in
Figure 16, many factors are chosen as decision variables because they influence energy
consumption and PPD when the HVAC system is running. Table 5 shows the range of
choice factors created based on the behavior of the current HVAC system in the selected
building. The value ranges are based on the Building Management System’s measured
parameters (BMS) that comes through the BIM model using the previously mentioned
plugin.

In Figure 24, the optimization approach used in this work is briefly presented. The
method starts with gathering the essential data sets for energy consumption and PPD uti-
lizing real-world sensor measurements through API via the BMS and surveying the
comfort of the building’s inhabitants. The optimization issue is then solved using a
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Figure 23. The Overall GA operational process.

combination of ANN and MOGA. ANN was used to correlate the data sets between vari-
ables and two objectives. Using the new input combination formed by iteration of
decision variables in the specified range, the network obtained from the initial training
predicts PPD and HVAC energy usage. The lower and upper bounds of optimization are
determined by each decision variable’s minimum and maximum values. In addition, the
evolutionary algorithm will determine the best option for minimizing PPD and HVAC
energy usage.
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Table 4. Top important variables in the optimization process based on the
ANOVA-SVM method.

Ranking Variable Importance (%)
1 Relative humidity (%) 23.66
2 Air temperature (°C) 21.82
3 Clo 21.42
4 Air velocity (m/sec) 11.67
5 Met 8.18
6 Air flow (I/sec) 3.25
7 Season_Summer 2.71
8 Year 2.65
9 Sex_Female 2.13
10 Sex_Male 2

11 Season_Winter 0.51

Table 5. Input data ranges for optimization that can be controlled by the BMS system (see Figure 7).

Range

Variables Summer Winter Unit
Supply air temperature 20-25 20-25 °C

Supply cooling water temperature 10-14 - °C

Supply heating water temperature - 22-45 °C

Duct static pressure setpoint 100-250 100-250 Pa

Air humidity 40-60 30-60 %

Outside airflow rate According to Equations (21), (22), and (23)

The following equation can be used to define a multi-objective problem (Shirazi et al.,

2012):
Find
x=0)Ai=1,2, ....Npa (28)
Minimizing
fiOA = 1,2, ... .Nop; (29)
gix)=0, Aj=12 ....m (30)
hx) =0, A¢=1,2,....n (31)

where x denotes the vectors of the decision variables, N, determines the number of
decision variables, fi(x) is objective function, Ny is number of objective functions, g;(x)
and hg(x) outline equality and inequality constraints, while m and n display the number
of equality and inequality restrictions, respectively.

3. Results

The Pareto optimum solution for minimizing energy consumption and PPD in the refer-
enced building is shown in Figure 25, where the optimization process took around
7.055 h. It denotes the incompatibility of the two objective functions. The decrease in
energy consumption ranging from 62.8 kW to 46.4 kW led to a rise in PPD from 6.2% to
27% in winter, and ranging from 59 kW to 42.9kW led to a rise in PPD from 3.4% to



ADVANCES IN BUILDING ENERGY RESEARCH 35

Prepare data sets
Train ANN model Updatec! Vel )
/ variables
‘rj'f '7‘7/ A
- fu |
Eenergy /’ [
consumption and | |
PPD prediction [
T |
Optimization
(MOGA) /
NO
//
/
//

Optimum
solution?

H
yes

Solution -

Figure 24. The framework for optimization.

22.4% in summer. The minimum PPD is 6.2% for winter and 3.4% for summer, represent-
ing the maximum thermal comfort. However, this is associated with the highest energy
consumption, 62.8 kW in winter and 59 kW in summer. The lowest energy consumption
is 46.4 kW in winter and 42.9 kW in summer but with high PPD (27% for winter and
22.4% in summer). The best solution to choose depends if energy, thermal comfort, or
both were considered the main priority.

The results of the Pareto front are non-dominated in the multi-objective optimization
approach (Aminyavari et al., 2014). A practical approach would be to choose a solution
that corresponds to the intended operating point. To select the optimal solution, the
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Figure 25. Optimization results for (a) winter and (b) summer.

approach for order preference by similarity to an ideal solution (TOPSIS) has been selected
(Abdo-Allah et al,, 2018; Ahmadi et al., 2013). As a result, the shortest distance to the ideal
solution and the longest distance to the non-ideal solution may be used to determine the
best option (Yue, 2011).

In Figure 25 and Table 6, the best solution (ideal point) between the two objectives is
when the energy consumption and a PPD of 42.9 kW and a PPD of 3.4%, respectively, for
summer, and when the energy consumption and a PPD of 46.4 kW and a PPD of 6.2%,
respectively for winter. This means a reduction in energy consumption of around 22%
in summer and 15.6% in winter compared to the average energy consumption of 55
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Table 6. Optimal variables related to the optimal solution (ideal point) in summer and winter
(considering the most important variables that affect the results significantly and can be controlled).

Optimized scenario

Variable Summer Winter Unit
Relative humidity 49.4 346 %
Supply air temperature 20.6 224 °C
Supply heating water temperature - 32 °C
Supply cooling water temperature 12 - °C
Duct static pressure setpoint 120 120 Pa
Outside airflow rate 2500 2400 I/s
PPD 34 6.2 %
Energy 42.9 46.4 kw

kW. The same for PPD, where the original value is 15.7% in winter and 10.6% in summer,
which means a reduction of 6.05% in winter and 6.7% in summer.

As previously indicated, the dynamic ANN models used in the optimization process use
information from an existing VAV system that serves workplaces with 30 zones. In
response to the controller setpoints and operating modes, the ANN models calculate
the energy consumed by each component before calculating the overall energy con-
sumption. The optimization procedure forecasts system performance over a 10-min time-
frame (optimization period). The loads and outside air quality during this brief
optimization phase are approximated from the last measured data and are presumed
to be constant. The models estimate the goal function (total energy use) and transmit
it back to the MOGA to be eliminated, evolved, and passed on to the next generation.
The MOGA delivers a series of individual solutions comprising trial controller setpoints.
This procedure is repeated until near-optimal or optimum solutions are found where
the non-optimal setpoints are gathered from the system'’s real functioning.

The optimal and non-optimal total energy usage for four days in summer are shown in
Figure 26. The sum of the fan, electric reheat, and chiller powers equals the total energy
used. As a consequence of the optimization procedure, the average cooling energy
savings for those four days is roughly 13.2%, and 10.8% for the three summer months
(June, July, and August), keeping the PPD under 10%.

The ideal static pressure levels vary according to the operating conditions, as illustrated
in Figure 27, where the system typically runs from 07:00 to 19:00. Three restrictions on the
static duct pressure are applied during the optimization process: (1) the maximum static
duct pressure based on the design condition; (2) the minimum static duct pressure based
on the fan performance specifications to avoid the instability region; and (3) the zone
airflow rate is limited to be less than the maximum available zone airflow rate as deter-
mined by Equation (23).

Due to the operation at the low duct static pressure setpoint (Figure 27), the fan may
save much energy. Furthermore, increased supply air temperature raises chilled water
return temperature, improving chiller efficiency. The whole-system optimization
method identifies the solution that uses the least amount of total energy. Furthermore,
based on a constant minimum damper setting, the recommended outside airflow rate
is lower than the actual outdoor airflow rate (150 I/s). The multi-zone ventilation approach
of Equations (21), (22), and (23) are used to determine the appropriate outside airflow rate.
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Figure 27. Supply duct static pressures with optimization results during 4 days in summer.

3.1. Stream the results to the BIM model

In the optimization process, data pushback is critical. In contrast to the data extraction
process, the data pushback procedure imports the data from the optimum design
option from MATLAB into the BIM model (Figure 28). The optimal sensor data variables
from the Excel template are selected using a plugin, and the design loop is closed
using the whole framework shown in the Figure 1.
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Figure 28. Stream the results from the optimization process to BIM.

4. Discussion

A Pareto-optimal front may be generated using MOGA for multi-objective building energy
consumption optimization and the ideal point approach to arrive at the optimum solution
for building energy consumption and thermal comfort.

Several previous studies have been conducted on building energy consumption and
thermal comfort optimization (Ascione et al., 2020; Chang et al., 2020; Chaturvedi et al.,
2022; B. Chen et al,, 2021; R. Chen et al,, 2022; Dela¢ et al., 2022; Himmetoglu et al.,
2022; H. Li & Wang, 2019; Lu et al., 2020; Rabani et al., 2021; Rosso et al., 2020; Seghier
etal, 2022; Q. Xue et al., 2022; J. Zhao & Du, 2020). Those studies focussed on specific par-
ameters that affect building energy consumption. However, non of these studies con-
ducted a comprehensive HVAC system optimization. In addition, our study used real
data from sensors and developed a real-time optimization process in a Digital Twin frame-
work. Furthermore, in this study, a huge database has been used to cover various possible
solutions for the optimization process. Also, the suggested HVACDT framework in this
research can be applied to any building system, including VAV systems, radiant cooling
systems, all-air systems, etc. This is because the HVACDT has been built to import the
data from any API system and integrate the results exported from the BIM with the
BMS systems. Furthermore, this study implemented all the results in the BIM environment
so that it can interact with the BIM environment immediately and stream the best solution
in both directions (to and from BIM). As a result, the optimization technique suggested in
this study gives valuable insights into the value of various control methods of HVAC set-
points change in enhancing building energy performance and thermal comfort.

The enhancement of building performance with an all-air system in terms of energy
usage as well as thermal and visual comfort criteria might be explored in future work
on the optimization process. Additionally, it is crucial to utilize a dynamic visual
comfort measure, such as usable daylight illuminance or daylight autonomy, to position
the shade device.
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Speaking about the building’s cost-effectiveness in light of the information related to
energy savings is equally noteworthy. The building’s energy usage was much lower due to
the optimization process than it was for the reference building. Eventually, the facility’s
overall life cycle costs may be most significantly influenced by lower operational expenses
brought on by enhanced building energy performance. Parallel to that, it's critical to
research other machine learning and optimization techniques for forecasting and improv-
ing energy consumption in buildings, such as particle swarm optimization (PSO), GLSSVM,
ANN-SVM, and non-domination-based genetic algorithms (NSGA II, NSGA IlI).

Additionally, establishing ways for integrating BIM data into the building energy
system has grown crucial as open data standards such as COBie (2021) and Industry Foun-
dation Classes (IFC) (2021) emerge. A possible approach is to use suitable semantic web
standards, which control the creation of ontologies and provide a more lightweight sol-
ution than monolithic data interchange techniques (Rezgui et al., 2011). For instance, the
BrickSchema adds a semantic framework to describe physical, logical, and virtual assets
(BrickSchema, 2021). Sensors are defined in the Semantic Sensor Network (SSN) ontology
as components of a system deployed in a building with specified measurement capability
(Dibowski et al., 2018). The Building Topology Ontology (BOT) enables the representation
of any building’s topology (Rasmussen et al., 2017). However, there is a lack of research on
using ontology techniques to integrate BIM, energy management, and thermal comfort
data in one framework.

5. Conclusions

This study provides an HVACDT framework for an office building designed and examined
to assess energy consumption and thermal comfort. The HVACDT prototype system was
created to address the need for an integrated BIM-based system by merging C# program-
ming and multi-objective algorithm optimization into a single workflow to make the
HVAC system more efficient.

The HVACDT system’s development includes creating and preparing the BIM model for
data extraction, MATLAB programming which focuses on customizing ANN and MOGA to
suit the case study and generate optimization solutions, and pushing back the optimized
solution to the BIM model.

The current research methods can tackle complicated optimization challenges in HVAC
systems and building designs. A multi-objective optimization approach that combines
ANN and MOGA has been effectively employed in Matlab to define the ideal building
operation. For energy usage and PPD, the suggested ANN configuration has a high fore-
cast accuracy. According to the optimization results, compared to the actual design, the
multi-objective optimization significantly improves HVAC operation for thermal comfort
while maintaining low energy usage. The Pareto front's spreading solution generates a
plethora of design possibilities. The findings of this study can assist facility managers in
designing and selecting a control strategy for efficiently operating HVAC systems.

Integrating BIM, C# programming, and multi-objective optimization techniques into
HVACDT's design process allowed for a more thorough examination of HVAC design
configurations and improved support for designers’ decisions. In addition. A new
data management process based on Application Programming Interfaces (Revit API)
in a programming environment (C# and Windows Presentation Foundation (WPF)
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instead of utilizing the existing exchange data format, such as IFC, is provided in this
study.

According to the findings, the average cooling energy savings for four summer days is
around 13.2%, 10.8% for the three summer months (June, July, and August), helping to
maintain the PPD below 10%. The minimum PPD is 6.2% for winter and 3.4% for
summer, corresponding to 46.4 and 42.9 kW, respectively.

In this research, the HVACDT focussed on the HVAC system exclusively. The decision-
making process can be improved in the future by including more variables, such as the
energy usage index (EUI), daylighting, life cycle costs, and the efficiency of natural
ventilation.
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