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ABSTRACT From holistic low-dimension feature-based segmentation to deep polynomial neural networks,
Face Recognition (FR) accuracy has increased dramatically since its early days. The advancement and
maturity of open-source FR frameworks have contributed to this trend, influencing many open-source
research publications available in the public domain. The availability of modern accelerated computing
capabilities through Graphics Process Unit (GPU) technology has played a substantial role in advancing
open-source FR capabilities. The evolution and success of the open-source DL algorithms on FR, leveraging
GPU technologies, have benefited from open datasets, resulting in many FR open-source implementations.
This paper reviews the landscape of open-source FR frameworks, covering components of the FR pipeline
across open datasets, face detection, face alignment, face representation, identification and verification, and
deployment environments. We also discuss the current challenges and emerging directions in FR research.

INDEX TERMS Face recognition, face detection, face verification, face identification, open-source
software, deep learning, review.

I. INTRODUCTION
Face Recognition (FR) constitutes visual identification
and/or verification of a person using a face picture. Face
verification is ‘‘a one-to-one mapping of a given face against
a known identity (e.g. is this the person?)’’ [1]. Face
identification is ‘‘a one-to-many mapping for a given face
against a database of known faces (e.g. who is this person?).’’
FR technology is available through open-source projects and
commercial vendors providing services for biometric identifi-
cation, access control, video surveillance and contact tracing,
for instance, under pandemic outbreaks like COVID-19.
In FR, face images can be extracted from still photos or
video streams. Behind the state-of-art FR is Deep Learning
(DL), which is inspired by how the human brain functions
and tries to mimic its behaviour through artificial neural
networks. Popular DL architectures include Deep Neural
Networks (DNNs), Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs) and Generative Adver-
sarial Networks (GANs). Particularly, CNNs have proved
to be very good and popular in solving computer vision
problems. As such, they have been widely explored in FR
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research, starting with initial work done by LeCun et al. [2]
on handwriting recognition. A typical FR pipeline with
Deep Convolutional Neural Networks (DCNNs) is composed
of labelling face dataset for training, configuring loss
functions, optimizing network parameters during training,
and generating a trained model for inferencing.

The availability of Graphics Process Unit (GPU) tech-
nology, open datasets, and open-source implementations
have played substantial roles in advancing open-source FR
capabilities, resulting in a landscape of open-source FR
methods. There are several review papers published on
FR [3]–[8] comparing methods such as illumination and
pose invariance and reviewing various FRmethods, including
3D approaches. Except for some of the recent publications
[7], [8], most of these predate recent advances in FR and do
not cover some of the latest DL methods. Importantly, none
of these studies give any specific attention to open-source
frameworks on FR, the subject of our research. This study
presents a review of the landscape of open-source frameworks
in FR with the following contributions:
• We review open FR datasets, cover the different cate-
gories of these datasets, and highlight their constraints;

• We provide an analysis of some of the notable open-
source face detection and face alignment frameworks
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in the last decade that have been instrumental in the
evolution of FR;

• We review the evolution of the deep network archi-
tectures for FR, emphasizing open-source implementa-
tions; and

• We discuss gaps, emerging directions and challenges in
open-source FR.

The remainder of this review paper is organized as follows.
Section II provides a snapshot of the evolution of FRmethods.
Section III provides a review of open datasets that have
been instrumental in developing open-source FR frameworks
and their limitations. Section IV and Section V respectively
review the most commonly used face detection and face
alignment methods. Section VI covers face representation,
identification, and verification methods used in open-source
frameworks. SectionVII presents research gaps and emerging
directions. Finally, Section VIII concludes the paper.

II. FACE RECOGNITION EVOLUTION
FR has gradually evolved from holistic approaches to state-
of-the-art DL methods as summarized in Figure 1 [9].
Significant work in FR began in the early 90s into the 2000s
when Moghaddam et al. [10] published one of the earliest
methods using low-dimension feature-based segmentation:
Eigenfaces. In their approach, each facial image in the
training set is split into multiple small feature sections
called Eigenfaces. Facial classification is achieved by lin-
early projecting the subject image over the feature-space
of Eigenfaces and computing the difference in position
of each Eigenfaces for the subject image. Other early
works using holistic approaches with low-dimension feature-
based segmentation are presented in [11], [12]. Fischerfaces
by Belhumeur et al. [13], one of the outstanding works,
improved on Eigenfaces by introducing models that are
invariant to lighting direction and facial expression. The
major shortcoming of the holistic approach is the inability
to handle uncontrolled and unexpected facial changes outside
the variations captured in the training dataset. This shortcom-
ing motivated researchers to search for new solutions based
on handcrafted local facial feature representations. Many
significant studies emerged in the early 2000s, such as a
Gabor method for FR using local features [14], a local binary
feature-based approach [15], and the high dimension feature-
based compression [16]. These advances mainly focused on
high dimension feature representation and produced better
results in FR than holistic approaches. However, their reliance
on handcrafted features still limited their effectiveness in
practical, diverse, complex environments of FR.

The limitations of handcrafted features resulted in the
emergence of learning-based approaches [17], [18]. These
methods, however, underperform when faced with complex
variations in facial appearance outside the variations captured
in the training data. Faced with these challenges, the research
community increased efforts to address the fundamental
problem of poor performance of FR under non-linear
variations in facial appearances and expression. Most of the

research at this point focused on methods such as feature
codingwith histograms, dictionary atoms distribution, feature
transformation and use of local descriptors. Still, these did
little to address the problem.

DL, addressing the issues mentioned above, have dom-
inated the FR research in the last decade. DL imitates
how the human brain processes data, often implemented as
layered networks in CNNs as illustrated in Figure 2. CNNs
gained attention on image recognition tasks when a then-
impressive accuracy was achieved by AlexNet [19] at the
ImageNet competition in 2012. In 2014, a then never-before
FR accuracy of 97.35% was achieved by DeepFace [20]
on the Labeled Faces in the Wild (LFW) dataset, coming
quite close to the human performance of 97.53%. Not
long after this, human performance was surpassed on the
LFW dataset with DL-based methods such as FaceNet [21]
with an FR accuracy of over 99%. Research in CNN in
2015 saw the emergence of new network blocks such as
gated skip connections and cross-layer channel connectivity
to improve the convergence rate and performance of deep
CNN architectures [22], [23]. The year 2016 witnessed
that stacking multiple transformations in parallel as well as
depth-wise improved the learning representation for complex
problems [24]. From 2017 onwards, we see a focus on
improving the network representation through special blocks.
These blocks enhance network performance at any layer in
CNN architecture [25]. Recent works [26]–[28] focus on the
use of generic blocks that use feature maps to control infor-
mation assignment using attention. In 2018, Khan et al. [29]
introduced the concept of channel boosting through transfer
learning. We can see another demonstration of transfer
learning in 2019 by Kolesnikov et al. [30]. In 2020, we saw
the emergence of one of the top-performing models that use
polynomial neural networks [31]. Table 1 summarizes the
evolution chronologically, citing some of the notable works
in FR.

III. OPEN DATASETS
Accessibility of open datasets has played a crucial role in
advancing deep learning-based open-source FR frameworks.
The datasets have appeared in different forms, ranging from
those assembled from diverse sources to single sources,
from large scale to small scale. Others range from real-
world unconstrained conditions to laboratory-controlled,
from image-only content to videos. This section reviews the
most commonly used datasets that have been invaluable to FR
researchers for training and evaluating the performance of the
open-source frameworks and their limitations.

A. OVERVIEW
1) LABELED FACES IN THE WILD (LFW)
Labeled Faces in the Wild (LFW) [59] is a well-known
benchmark dataset for studying FR in unconstrained envi-
ronments, popularized with the advancement of CNNs in
FR tasks. The dataset consists of 13,233 face images with
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TABLE 1. The evolution of deep learning-based FR methods and their performances.

5,749 individuals. It provides labeled faces that exhibit
appearances of varying conditions in daily life, ranging from
pose, lighting, background, occlusions, race, and gender. The
images are presented as JPEG files of 250 × 250, mostly in
color, with a few exceptions in grayscale. The LWF dataset is
available on LFWWebsite [60].

2) CUHK FACE SKETCH FERET DATABASE
Based on the FERET dataset, CUHK Face Sketch
FERET (CUFSF) dataset was introduced for research
on face sketch synthesis and face sketch recognition by
Zhang et al. [61]. The dataset consists of paired images

of photos and the corresponding sketches. The dataset
features one image per subject for 1,194 images with varying
lighting conditions. CUFSF is featured by Fu et al. [62] for
heterogeneous FR.

3) REPLAY-ATTACK
Replay Attack dataset [63] consists of 1,300 video clips that
feature photo and video attack attempts on 50 identities, all
under different lighting conditions. The videos are generated
by recording an actual person attempting to access a laptop
using a webcam or using a video recording of the same
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FIGURE 1. In the early days, popular FR methods used low-dimension holistic approaches. This evolved into handcrafted local
descriptors and local feature learning. Then deep learning revolutionised FR with emergence of frameworks such as DeepFace [20].

FIGURE 2. Typical layered view of a Convolutional Neural Network during training and inference processes. During the training process,
the kernel parameters of CNN and weights of fully connected layers are updated based on backpropagating gradients of loss function at
the end of the classifier. During the inference i.e forward propagation, the updated kernels and weights are used for inference.

person for a short time. Yang et al. [64] used the dataset for
CNN-based face anti-spoofing.

4) PARTIAL-REID
Partial Person Re-Identification dataset [65] consists of
600 images of 60 subjects, each subject having 5 partial
images and 5 full-body images, featuring different back-
grounds, viewpoints, and varying high levels of occlusions.
The dataset aims to address cases where a partial view
of a person is available and can be used to match with

other images from different viewpoints for identification. The
dataset is used alongside others in experimental biometric
recognition on partially captured targets [66], [67]. The
dataset is available on Google Drive [68].

5) CASIA-MSDF
CASIA-MSDF [69] is a dataset for face anti-spoofing
consisting of 50 subjects with 12 videos. The videos were
collected under different lighting conditions and varying
resolutions. Zhang et al. [69] used 600 video recordings from
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the dataset consisting of 240 videos from 20 identities for
training and 360 videos from 30 identities for testing. Three
different spoof attacks were used for experimentation: reply,
print, warp, and cut. CASIA-MSDF is one of the datasets used
in the Cross Central Difference Convolutions paper published
by Yu et al. [70].

6) MORPH
The MORPH dataset [71] contains 55,134 facial images
from 13,617 subjects, first introduced for academic and
development use. The commercial version of the dataset
consists of more than 400,000 images from approximately
70,000 subjects. TheMORPH dataset is annotated across age,
weight, gender, height, and eye coordinates. The dataset is
available upon license application to the University of North
Carolina, Wilmington. The dataset has been used in studies,
including face quality assessment and estimation work [72]
and a cross-age face synthesis framework [73].

7) CASIA-WebFace
CASIA-WebFace [74] is a large open facial dataset consisting
of annotated images of 10,575 unique people with over
494,414 images in total. CASIA-WebFace was collected by
crawling IMDb [75] website and extracting the identities of
celebrities born between 1940 to 2014. A multi-view face
detector processed the extracted images. FaceNet has an
inferencing model trained on the CASIA-WebFace dataset
and achieves an accuracy of 99.05% on the LFW benchmark.
AccordingArcFace [76]model, there exists evidence of racial
bias in the CASIA-WebFace. It was found that Caucasian
distribution has a margin that stands out from the other races
implying a higher probability of recognition errors in non-
Caucasian subjects.

8) EXTENDED YALE B
Extended Yale B dataset [77] consists of 16,128 images of
28 identities under 9 poses and 64 illumination conditions.
Georghiades et al. [77] used the dataset to closely crop
images for generative appearance under varying lighting
and viewpoint. Yale Face Database B is freely available for
research purposes and is available on Yale Database [78]
and [79].

9) ADIENCE
Adience dataset [80] was introduced in 2014 and is aimed
at studying age and gender recognition, consisting of 26,580
face photos of 2,284 identifies labeled in binary gender and
with a label from 8 different age groups of five splits. The
dataset is available on Yale Database [79] through a simple
request via an online form.

10) FaceScrub
FaceScrub [81] was released in 2014, consisting of over
141,000 faces of 695 public figures collected by scrubbing
the web. FaceScrub is one of the large datasets used in

OpenFace’s model, producing the best performing model
against LFW at a score of 92.92% ± 0.0134.

11) WIDER FACE
WIDER FACE [82] is an open face detection dataset first
published in 2015. It has 32,000 images of 393,000 labeled
faces with many variations. Face-API [83] face detection
model named ‘SSD Mobilenet V1’ is trained on the WIDER
FACE dataset.

12) UMDFaces
UMDFaces was introduced in [84] in 2016, consisting of
two batches of still images featuring 367,88 annotated faces
of 8,277 identities and an annotated set of video frames of
over 3.7 million of over 22,000 videos of 3100 identities.
The annotations cover estimated poses across yaw, pitch, roll,
21-keypoints, and gender information. The dataset is avail-
able on UMDFaces site [85].

13) MS-CELEB-1M
MS-Celeb-1M [86] dataset, appearing in 2016, contains 10M
images, becoming the largest open dataset at the time. The
dataset was used to recognize 1M celebrities from their face
images. Insightface [32], [87] uses MS-Celeb-1M as one of
the train datasets, available on Github [88].

14) VGGFace2
VGGFace2 [89] is a large public dataset published in
2017 containing 3.3M images of 9131 identities, averaging
about 362.6 images per identity. The dataset has large
diversity across illumination and other attributes like career
specialization, ethnicity, and age and contains images down-
loaded using the Google Image Search. FaceNet’s top-known
model is trained using the VGGFace dataset, achieving an
accuracy of 99.65% on the LFW benchmark.

15) RACIAL FACE IN-THE-WILD
Racial Face In-The-Wild (RFW) is a dataset aimed at
research on racial bias in FR, introduced by Wang et al. [90].
Featuring 40,607 images from a total of 3000 subjects, it is
available in 4 sets: African group consisting of 10,415 images
from 2,995 subjects, Asian group consisting of 9,688 images
from 2,492 subjects, Indian group consisting of 10,308
images of 2,984 subjects, and Caucasian group consisting
of 10,196 images of 2,959 subjects. RFW is one of the
datasets in FaceX-Zoo open-source project published in [91]
and in [92], a study on mitigation of FR bias through the use
of a false positive rate penalty loss.

16) IMDb-FACE
Consisting of approximately 1.7 million face pictures from
59,000 identities, IMDb-Face is one of the large-scale
controlled datasets introduced in [93]. The source of the
images is [75]. IMDb has been used in many face-recognition
projects, including works published in [94]–[96].
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17) IJB-A
IARPA Janu Benchmark A (IJB-A) [97] is a combination of
5,712 images and 2,085 videos collected from 500 identities
that aims to provide additional challenging tasks to FR across
the expression, pose, illumination, occlusion, and resolution.
IJB-A is used in various research studies such as face
clustering [98], 3D face-rotation framework for unsupervised
photo-realistic synthesizing [99] and discriminative 3D
morphing [100].

18) ARPA JANU BENCHMARK B (IJB-B)
IJB-B [101] is a template-based dataset of unconstrained
images and videos collected from the Internet across pose,
image quality, and illumination. The dataset has three
verification and identification protocols: 1-to-1 template
face verification protocol, 1-to-N open-set face identification
template-based protocol, and 1-to-N video face identifica-
tion protocol. The dataset consists of 1845 subjects with
17,754 images.

19) IARPA JANUS BENCHMARK-C
IJB-C [102] is a video-based FR dataset that extends the IJB-
A dataset and consists of approximately 11,000 face videos,
138,000 face images, and 10,000 non-face images. IJB-C is
used as a benchmark in many research works, including work
published on optimization of softmax-based on training with
large datasets and in [103] for large-scale noise management
in training datasets.

20) MeGlass
MeGlass [104] contains face images designed for eyeglass
FR. The dataset consists of 47,817 images collected from
1,710 different subjects, with each having a minimum of two
faces with an eyeglass and two without. The dataset can be
accessed via links at [105]. MeGlass dataset is used in a paper
published byGuo et al. [106] in a study for generalized FR on
unseen domains and a study by [107] on gaze preservation
with eyeglasses.

21) QMUL-SurvFace
QMUL-SurvFace [108] contains 463,507 images from
15,573 subjects from unconstrained real-world surveillance
scenes across time-wide location. The dataset can be found
at [109] from which test codes and evaluation protocols are
published. The dataset is licensed for research purposes.

22) iQIYI-VID
iQIYI-VID is a large dataset introduced by Liu et al. [110]
consisting of 600,000 video clips from 5,000 celebrities
extracted from diverse online videos that include movies,
TV series, news broadcasts, and various shows. The dataset
is used for multi-modal person identification which involves
jointly utilizing face, head, body, and voice features to
identify a person. The dataset is also used in a paper published

by [111] for large-scale multi-modal person identification
under an unconstrained environment.

23) DIVERSITY IN FACE (DiF)
Released by IBM research in 2019, Diversity in Face
(DiF) [112] is one of the latest (as of 2020) large open
datasets with annotations of one million publicly available
face images. It is released for the research community
to help researchers study biases in facial diversity across
race, ethnicity, culture, and geography. A ten-facial coding
scheme with human-understandable facial features was used
to generate the annotations.

24) FairFace
FairFace [113] consists of a racially balanced dataset of
108,501 images from seven race groupings: White, Black,
Indian, Latino, South East Asian, and Middle Eastern. The
dataset features age, race, and gender labels and was collected
from the YFCC-100M Flikr dataset.

25) DISGUISED FACES IN THE WILD
Disguised Faces in the Wild (DWF) [113] contains approx-
imately 1K images from 1K identities in different guises.
The images were collected from the Internet, exhibiting an
unconstrained real-world environment. The paper is featured
in the research published in [114] on active learning on
disguised faces with adversarial noise.

26) FACEBOOK DATA
In 2021 Facebook AI released a human-annotated dataset
consisting of 45,000 videos of 3011 identities for researchers
to use to study fairness across a diverse set of ages, genders,
and apparent skin tone [115].

B. CHALLENGES
Open datasets consist of photos of people from the Internet,
many of them celebrities. This does not accurately reflect
daily life realities. When DL algorithms use these datasets
for training, the bias reduces the accuracy of DL algorithms
outside lab environments.

Depending on source and cleaning methods used, the
datasets can also contain noise, affecting the accuracy of
trained models. A noticeable level of noise was found in MS-
Celeb-1M [32]. Wang et al. [93] show that when a dataset
contains noise, it severely affects the performance of the
trained models, especially for large datasets. They equally
show how the degradation caused by noise exponentially
increases when there are many classes, especially when
used with Softmax classification. Consequently, datasets
such as VGGFace2 and MS-Celeb-1M, containing data from
celebrities who are mostly young, facially beautiful, and with
makeup, are biased in age and facial appearance. Using pre-
trained models from these datasets directly can lead to poor
performance in the audience that differs from the training
dataset.
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Klare et al. [116] also report demographic bias in ethnicity
for black females. The FR systems find it harder to classify
the black female faces accurately. Another challenge with
datasets is cross-pose face verification and recognition.
There have been many efforts in addressing this issue. For
instance, Zhao et al. [117] published a method for learning
pose-invariant faces by jointly learning frontal images and
posed versions to produce high-quality frontal reference
images, and Chen et al. [118] introduced feature extraction
using multi-view subspace for improved accuracy. However,
these studies do not entirely solve the challenge of cross-
pose FR. As discussed by Sengupta et al. [119], algorithms
still degrade as much as 10% when faced with profile view
verification, showing just how hard the cross-pose is still a
challenging problem, and public datasets are not yet diverse
enough to provide satisfactory results. Some of the datasets
that have focused on cross-pose and cross-age domains
include CALFW [120], MORPH [71]. Photo-sketch dataset
CUFS [62] has been used to address the gap in matching faces
across diverse environments. Other common challenges in
open datasets include the distribution of images per identity,
as evidenced in MS-Celeb-1M [86] where the number of
images per person is small.

While researchers have made an effort to create open
datasets that reflect diverse real-life situations, the challenges
still persist due to unpredictable, complex nonlinear facial
appearance.

IV. FACE DETECTION
In FR, face detection is one of the fundamental steps in
the recognition pipeline. There are many existing studies
on face detection, ranging from keypoint annotation [87],
[122], [123] to data augmentation methods [124]. Inherently,
FR is built on the essentials of object detection, sharing the
same history as generic object detection. Before DL, face
detection was based on handcrafted features using methods
like Haar-like features [125]. This rapidly evolved into more
complex approaches that focused on overcoming variability
problems across pose, expression, illumination, occlusion,
etc. WIDER FACE [82], one of the most challenging
datasets in face detection, has played an important role
in accelerating the development of newer methods of face
detection, spawning works such as PyramidAchors [124],
Dual Shot Face Detector (DSFD) [126], RetinaFace [87] and
one of the latest face detectors as of 2021, TinaFace [127].

Face detection methods typically use two approaches [121]
as shown in Figure 3: feature-based and image-based
approaches. Feature-based approaches extract features from
an image and match these against a database of known
face features. On the other hand, image-based approaches
compare training and testing images for the best match.
Please refer to [121] for a detailed literature survey on face
detection methods. The rest of this section explores some
notable works on face detection that are either open-sourced
or have been used in open-source FR frameworks.

A. OVERVIEW
1) TinaFace
TinaFace [127] is an open-source face detection framework
using a state-of-the-art average precision test time augmenta-
tion. In their paper, Zhu et al. [127] show how face detection
can be achieved through implementation of methods based on
generic face detection. TinaFace uses ResNet [128] for the
backbone architecture. It is reported that TinaFace models
trained on WIDER FACE [82] achieve a score of 92.4%
average precision. The source code for the implementation is
available on Github [129]. TinaFace consists of a seemingly
simple yet powerful architecture consisting of a feature
extractor, an inception block, classification, regression, and
Intersection over Union (IoU) [130] module.

2) AInnoFace
AInnoFace [131] is another top-performing face detection
framework with state-of-the-art performance on the challeng-
ing face detection benchmark WIDER FACE with average
precision scores of Easy at 97.0%, Medium at 96.1% and
Hard at 91.8% on validation subset. Based on the RetinaNet,
it is reported the framework uses IoU loss function [132]
for regression and applies a two-step classification and
regression for detection. During training, the data-anchor-
sampling method for data augmentation [133] is used in
training with max-out operation for classification [134].
Although it appears AInnoFace does not directly provide the
full source code, it uses open-source code for testing available
on Github [135].

3) MTCNN
Multi-Task Cascaded Convolutional Neural Network
(MTCNN) [136] is a state-of-the-art face detection frame-
work for detecting faces and facial keypoint locations using
a coarse-to-fine approach. A TensorFlow implementation
by David Sandberg is available on Github [137] and
another excellent implementation by Ivan based on Keras
in Python3.4+ is available on Github [138]. David’s
implementation shows the capabilities of the MTCNN and
is provided with pre-trained face detection models.

4) RetinaFaceMask
RetinaFaceMask [76] is an open-source face detector that
appeared in 2020 and is hosted on GitHub [139]. The source
code is available in Python. It can detect face masks, one of
the first dedicated face mask detectors in the wake of the
COVID-19 outbreak. RetinaFaceMask architecture is based
on a feature pyramid network enhanced with an algorithm
for attention detection. Transfer learning is used to train
the representations on face masks dataset using baseline
pre-trained models from ImageNet and WIDER FACE
increasing detection accuracy by 3-4% against the backbone
architecture results. The project is licensed under the MIT
License terms.
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FIGURE 3. Face detection methods broadly fall into one of two categories: feature-based and image-based approaches [121].
Feature-based approaches focus on active shape models, low level analyses, and feature analyses, while image-based approaches focus
on neural networks, linear subspace methods, and statistical approaches.

5) PyTorch-JAANet
PyTorch-JAANet is a Python project for facial action unit
detection and alignment [140], also hosted on GitHub [141].
It appeared in 2020 and used an adaptive attention learning
module to enhance local features’ extraction for integration
into the global feature map for action unit detection. PyTorch-
JAANet achieves competitive performance against the state-
of-art benchmarks on partial occlusion and non-frontal faces.
The code for the project runs under PyTorch 1.1.0 and Python
3.5. BP4D [142] was used for training. There is no licensing
information available on the code repository.

6) KPNet
KPNet [143] is a lightweight face detection and alignment
framework that detects facial keypoints using a bottom-
up approach in which facial keypoints are detected from a
low-resolution image without the use of anchor boxes. The
face bounding boxes are then inferred from the key points.
Two backbone CNN architectures are used: the hourglass
network and DRNet for fast inferencing speed. KPNet was
implemented using PyTorch, supporting a 68-point semi-
frontal and 39-point profile keypoint detection. The source
code is available on GitHub [144].

7) YOLOFace
YOLOFace is a face detection library for DL, implementing
the YOLOv3 [145] algorithm. The project first appeared on
GitHub [146] in 2018. It consists of an OpenCV module
that can be used for face detection tasks using pre-trained
DL models from popular frameworks such as TensorFlow,
Darknet, Caffe, and Torch. The implementation requires
a Python 3.6 environment in Ubuntu, with dependencies

FIGURE 4. Facial appearance changes posing challenges to face detection.

including TensorFlow. The pre-trained models were trained
on the WIDER FACE dataset. The project is provided with
an MIT License.

8) RetinaFace
RetinaFace [87] is a face-detection library that uses a single-
shot multi-level face localization approach that combines
bounding box detection and localization of keypoints. The
annotation is achieved by combining manual and semi-
automatic annotation on the WIDER FACE dataset. Reti-
naFace source is available on Github at [147]. The project
is available under the MIT License.

9) SeetaFace
SeetaFace is a CPU-based open-source face detection engine
for real-time multi-view face detection [148]. It is written in
C++. Face detection is implemented as a real-time compo-
nent using a funnel-structured (FuSt) cascaded schema. The
released code currently works only on Windows.
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FIGURE 5. Illustration of a typical face alignment process comprising face
detection, face keypoints mapping, and finally face alignment.

B. CHALLENGES
Face detection encounters challenges ranging from expres-
sions, poor illumination, skin tone and color, background
interference, and even crowded faces in a viewpoint. These
challenges reduce detection accuracy and decrease the rate of
detection. See Figure 4 for a view of some facial appearances
that create challenges for face detection as summarized
below:

• Expression: Humans are capable of odd expressions
that alter their facial appearance making it challenging
for accurate face detection.

• Illumination: Irregular and poor illumination can
change facial appearance reducing the detection
accuracy.

• Viewing distance: If the subjects’ faces are too far from
a camera in an uncontrolled environment, the detection
rate and accuracy may be reduced.

• Skin color: Certain skin colors can be a challenge for
face detectors depending on the algorithm used.

• Occlusion: When parts of a face are hidden by an
object such as a hand, glasses, hats, etc., face detection
accuracy may be reduced.

• Resolution: An image with poor resolution may chal-
lenge face detection, reducing accuracy.

• Pose and Orientation: The pose of a face at an angle
will hide some sections of a facial image, creating a
challenge for face detection systems. Barra et al. [149]
present a pose estimation method using an adaptation of
quad-tree representation of facial keypoints that interest-
ingly does not need the use of neural networks. Starting
from face detection and alignment, the authors use quad-
tree decomposition resulting in facial representation
that is used for pose estimation. Given a sequence of
face frames in a video, the authors published a method
for selecting best fitting pose that would increase the
accuracy of recognition. We acknowledge the positive
contribution.

• Crowded faces in view point: A face detection
systemmay encounter challenges in accurately detecting
crowded faces from a viewpoint.

• Background interference: Many visible objects in
the background can be a challenge for a face
detection system, reducing the rate and accuracy of
detection.

V. FACE ALIGNMENT
Face Alignment is another crucial component in the FR
pipeline. It localizes facial keypoints on a given facial image
and aligns it with a standard face template.

A. OVERVIEW
At the heart of a typical alignment process is facial fiducial
points, which refer to predefined facial keypoints on a face
typically located around the nose, mouth, and the chin,
as illustrated in Figure 5. FR algorithms predominantly use
face alignment to reduce the impact of pose variations by
affine-warping the input facial image to a standard frontal
face template based on facial fiducial points. Face Alignment
is also used as a pre-processing method to detect facial
accessories such as glasses and model facial deformations.
For instance, Kumar et al. [150] used 6 facial fiducial points
to localize and compute smiles used for face verification in
unconstrained conditions.

B. FACE ALIGNMENT METHODS
Face alignment research has progressed over the last
years with increasing success. A typical face alignment
process aims at progressively aligning a standard face
shape template to an input facial image, searching for
predefined facial fiducial points on the input. Typically, this
commences with an initial coarse shape refined iteratively
through several steps and stops when convergence criteria
are satisfied. As the search progresses, information on
facial appearance and the standard face shape model is
jointly utilized to locate facial fiducial points. There are
several excellent review papers [151]–[154] covering the
progress in face alignment from traditional methods to
recent deep learning-based methods. The most popular
approaches to face alignment are categorized as either
generative or discriminative. Generative methods typically
approach a face alignment problem as an optimization task
that generates shape and appearance parameters that fit the
input facial image. Some of the generative methods include
regression-based fitting, gradient descent-based fitting, and
part-based generativemodels [155]–[157]. On the other hand,
discriminative methods take each facial fiducial point and
use an independent local detector to determine the target
location from a facial appearance directly. Some of the
discriminative methods include constrained local models
(PCA shapemodel, exemplar shapemodel), constrained local
regression, deformable part models, ensemble regression-
voting, cascaded regression (two-level boosted regression,
cascaded linear regression), deep neural networks, 3D shape
regression and dense 3D model fitting [158]–[161].

One of the mainstream approaches to face localization
is the use of heatmap regression [162], [163]. AdaptiveW-
ingLoss is a Pytorch Implementation of a heatmap regression
published by Wang et al. [164]. It appeared on GitHub [165]
in 2019. It is implemented in Python 3.5.7 and Pytorch
1.3. AdaptiveWingLoss is evaluated on face-alignment with
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FIGURE 6. Facial appearance changes across expression, illumination, occlusion and pose.

pre-trained models provided. It is trained on datasets
300W [166] and WFLW [167]. The repository does not
appear to have any updates since its publication. The code
is licensed under Apache License 2.0. Deep Alignment
Network (DAN) is a multi-staged face alignment framework
that uses keypoint heatmaps based on deep neural network
architecture, introduced in [163]. DAN begins with an initial
coarse estimate of the face, with subsequent iterations that
refine the results. A single-stage deep neural network is used
for feature extraction and regression at each iteration through
a sequential staged training. During experimentation, DAN
was trained on the 300W dataset, achieving an average failure
rate of 1.16 with data augmentation.

There is considerable attention on unconstrained face
alignment fueled by changes in facial appearance in extreme
poses, exaggerated expressions, and heavy occlusions.
An implementation geared towards improving face alignment
under unconstrained conditions that uses 3D facial keypoint
localization is published by Guo et al. [168] using U-Net as
the backbone CNN architecture. SeetaFace Alignment [159]
cascades some Stacked Auto-encoder Networks (SANs)
to improve accuracy on the keypoint detection progres-
sively. The keypoint detection framework is trained on
23,000 images and detects 5 facial fiducial keypoints: two
eyes, nose tip, and mouth corners. Currently, it only runs on
a CPU and is only tested on Windows. The source code is
hosted on GitGub [88] under a BSD2 license.

C. CHALLENGES
While the face alignment methods can perform well under
controlled facial deformations and environments [150],
[169], accuracy is significantly affected negatively by
variations in facial expressions and environments. The
common challenges include pose, occlusion, expression,
and illumination. Pose influences face appearance and local
facial features. A face appearance can change depending on
whether the pose is frontal, upside, profile, or down, leading
to occlusion. Facial expressions also change the appearance
of facial features such as eyes and mouth, e.g., deformation of
the mouth caused by laughing. Lighting is also known to alter
the appearance of a facial image, depending on the intensity,
spectra, or source distribution. Figure 6 shows such different

facial appearances across expression, illumination, occlusion,
and pose.

VI. FACE REPRESENTATION, IDENTIFICATION, AND
VERIFICATION
This section reviews open-source frameworks for face repre-
sentation, identification, and verification. Our review looks
at the architecture of each of the libraries/frameworks, the
source code location, programming environments, datasets
used, and the type of open license available.

A. FaceNet
FaceNet [21] is a TensorFlow face recognizer developed by
Google researchers in 2015 and achieved then top accuracy
score of 99.6% on the LFW dataset. FaceNet has open-
source implementations enabling it to be used by many
people and has pre-trained models for extracting high-
quality face embeddings. FaceNet uses a deep convolutional
network to produce compact 128-D embeddings from face
images mapped from euclidean space. The framework
implements Zeiler&Fergus [170] (220 × 220 input image
size) and Inception [22] (224 × 224 input image size) as
backbone architectures. FaceNet training uses the Large
Margin Nearest Neighbor (LMNN) [171] triplet-based loss
function consisting of two matching face images and a
third non-matching thumbnail. It groups similar vectors for
the same identity to enhance similarity and pushes away
vectors for different identities. David Sandberg provides a
mature FaceNet implementation in TensorFlow, available
on GitHub [172]. The repository provides source code and
pretrained models, Inception Resnet (V1), trained using
the datasets CASIA-Webface and VGGFace2 and available
under MIT license. Pretained models were evaluated under
the standard protocol for unrestricted, labeled outside data
reporting a mean classification accuracy on the LFW
academic test of 99.63% +− 0.09 accuracy. Classification
accuracy of 95.12% +−0.39 was reported on the Youtube
Faces DB. Hiroki Taniai [173] also provides a notable
FaceNet implementation with a pre-trained Keras model that
can be readily used. It is provided with utilities that can
convert the Inception ResNet model from TensorFlow to
Keras. It was trained on MS-Celeb-1M dataset for input
160 × 160 color images.
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B. InsightFace
InsightFace [32], [168], [174]–[178] is presented as a
framework for analyzing faces both in 2D space and 3D
space, available on Github [88], for the most part based on
MXNet (version 1.2 – 1.6 at the time of writing this review
paper), with a number of third party implementations across
TensorFlow and recently Keras. InsightFace [32] uses deep
convolutions neural network to implement a loss function
with arc-cosine functions for discriminative FR. Normalized
112 × 112 face images are generated during training based
on five facial fiducial points in the prepossessing phase.
ResNet50 and ResNet100 are used as backbone CNN
architectures, with batch normalization used to generate the
final 512-D embedding feature. InsightFace implementations
also include backbone architectures such as Dense and
MobileNet. The loss functions used are Softmax, SphereFace,
CosineFace, ArcFace, and Triplet (Euclidean/Angular) Loss.
An original implementation for InsightFace is available on
GitHub at [173]. InsightFace’s source code is available
with an MIT License that has no limitations for use in
academic research and commercial projects. It is reported
that InsightFace is best trained with GPU servers with Python
3.x and MXNet installed at the time of writing. An accuracy
of 99.82% is reported against the LFW benchmark and an
accuracy of 98.02 on Youtube Faces. A 94.2% accuracy is
reported against IJB-B and 95.6% against IJB-C. InsightFace
provides a simple API and sample scripts for testing FR and
can easily be used to implement a full-production FR system.

C. IVCLab
IVCLab [180] presents an adaptive threshold-based imple-
mentation of face verification. Chou et al. [180] employ
MTCNN for face detection and L2 normalization for training.
The most interesting aspect of this project is the principle of
adaptive threshold setting, which can be useful for adaptively
selecting optimized thresholds for FR. Evaluation is carried
out on LFW (76.46%), Aidance (84.30%), and Color Feret
(83.79%). Source code is implemented in Python and uses
pre-trained FaceNet models for generating face embeddings.
The code is hosted on GitHub [181]. However, the code is
only licensed for research purposes and cannot be used for
commercial ventures.

D. OpenBR
OpenBR [182] is an open-source framework designed to
facilitate rapid algorithm prototyping and includes pre-
packaged algorithms for FR, age estimation, and gender
estimation. It includes face detection, normalization, repre-
sentation, feature extraction, and face matching modules. It is
built using C/C++ on top of Qt 5.4.1, OpenCV, and Eigen.
Integration is achievable via C/C++ API. OpenBR is trained
on various data sources. These are FERET [183] and CASIA
Web. FR is implemented using the Spectrally Sampled
Structural Subspaces Features (4SF) algorithm [184]. Face
detection is implemented as a custom wrap on OpenCV

2.4 using the Viola-Jones object detector for frontal face
detection with Cascade, with a C++ port of ASEF [185]
for eye detection. Normalization uses faces cropped to
128× 128 and employs Gaussian methods in the prepossess-
ing steps. LBP [15] and SIFT [186] descriptors are used for
face representation with 8×8 pixel local binary patterns with
a sliding window of 6-pixel step with PCA decomposition.
Feature matching is implemented on a custom algorithm
(Lbyte1 distance) based on the L1 distance for vectors. The
project’s website [182] lists a stable version 1.1.0 released in
2015. However, the source code repository on github [187]
shows some sporadic activity, the latest commit appearing
in 2021 at the time of writing. OpenBR framework includes
clear instructions for building the source code across Linux,
OSX, and Windows. OpenBR is licensed under Apache
License, Version 2.0.

E. DeepFace–1
DeepFace [188] was created by a Facebook research group
for FR. At its release, it achieved an impressive 97.35%
accuracy on LFW, comparable to a human accuracy of
97.53%. DeepFace has 8 convolutional neural network
layers, a max-pooling layer, a locally connected layer, and
a fully connected layer. DeepFace consists of a massive
137,774,071 trainable parameters, only second to VGGFace.
The original DeepFace model was trained on the Social
Facebook Classification (SFC) dataset comprising 4.4 mil-
lion photos of 4030 identities. Swarup Gosh [189] also
trained models on VGGFace2 dataset. DeepFace model
works with face images of size 152 × 152 resulting in a
4096-dimensional vector. Therefore, an embedding vector
generated by DeepFace is of size 4092, and Euclidean
distance in L2 can be used to determine the similarity
between two vectors. The implementations we found most
mature are built-in Python using Keras. One of the notable
implementations using DeepFace is deepface [190] discussed
in the next section, titled DeepFace-2. A TensorFlow/Keras
implementation is available on Github [191]. At the time of
writing, this particular implementation uses OpenCV-Python
3.4.4, TensorFlow 1.9.0, and Keras 2.2.0. There are also
implementations for Realtime detection [192].

F. Deepface–2
Deepface [190], not to be confused with Facebook’s Deep-
Face, is a relatively recent light-weight hybrid FR framework
written in Python in Keras and TensorFlow with additional
facial attribute analysis capabilities for emotion, gender, and
age. It wraps models from VGG-Face, FaceNet, OpenFace,
FaceBook’s DeepFace, DeepID, and Dlib. The recognition
pipeline follows the classic face detection, alignment, repre-
sentation, and verification stages. Face detection is achieved
through a combination of OpenCV’s Haar cascade, Single
Shot Multibox Detector (SSD), Dlib, andMTCNN. Deepface
can detect faces from still pictures as well as real-time videos.
The default FR model is VGG-Face, and verification uses
cosine similarity. The framework has an API exposed as a
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FIGURE 7. An overview of attention-guided Progressive Mapping for Profile Face Recognition framework [179], a light-weight FR
framework that uses a step by step pose normalization with attentive pair-wise loss that addresses the common problem of pose
variation in FR.

REST service, making it easy to integrate it with a web or
mobile app. The source code is available on GitHub at [192]
and appears to be under active development as of 2020. It is
licensed under MIT License.

G. DeepID
DeepID is a FR model built by researchers from the Chinese
University of Hong Kong, published in [193] in 2014. There
are two models of DeepID: 1st generation model using
39 × 31 input 1-channel (grayscale), DeepID1, and 2nd
generation model using 55 × 47 3-channel (RGB) input,
DeepID2. It consists of 4 convolutional layers and one
fully-connected layer. The softmax layer, used in training,
is usually replaced with an early fully connected later
represented with 160-dimensional vector for prediction tasks.
There are pre-trained models for TensorFlow published by
Roy Ruan [194]. A good implementation of DeepID2 is
found in the Deepface project. There is also a minimalist
implementation by Serengil, published as a notebook [195].
Pre-trained models for the notebook are also available
online [195].

H. FACE-API
Face-API is an open-source javascript-based FR API for web
browsers implemented on Node.js using TensorFlow.js. Face-
API has a face detection model called SSD Mobilenet V1
and is trained on the WIDER FACE dataset. The project
also features a lighter version of a Tiny Face Detector
detector derived from Tiny YOLO V2 and trained on a
custom dataset consisting of approximately 14 thousand
images. Face-API implements a lightweight, fast 68-point

face keypoint detector. There are two keypoint detectors
actually: the default 350kb and the tiny model of 80kb.
They all employ depthwise separable convolutions and blocks
with dense connections. The models are trained on 35K face
images with 68 face keypoint points. A 128-feature vector
is used for feature extraction employing an architecture with
the same characteristics as the ResNet-34 architecture during
FR. Trained models achieve 99.38% on the LFW benchmark.
Face-API provides an easy-to-use high-level API, tutorials,
live demos, and examples on GitHub [196].

I. face.evoLVe
face.evoLVe [197] is an open-source library for FR tasks such
as detection, localization, normalization, and data processing
procedures such as augmentation. It uses various backbones
such as ResNet and DenseNet, with loss functions such as
AmSoftmax, ArcFace, Softmax, Focal, and Triplet. It is built
with PyTorch and supports distributed training with multiple
GPUs. The source code on the GitHub [198] contains detailed
instructions on how to train a model from scratch across a
large number of different data sources. There is a reported
accuracy of 99.85%±0.217% on the LFW dataset.

J. SphereFace
SphereFace [44] is a framework that includes face detection,
face alignment, and FRmodules. The source code is hosted on
GitHub and provided under MIT License. SphereFace imple-
mentations use various architectures. One such architecture is
SphereFace-20, a 20-layer CNN used for training and testing
FR on the CAISA-WebFace dataset. The architecture’s
building blocks are residual units. SphereFace uses Caffe as

50612 VOLUME 10, 2022



D. Wanyonyi, T. Celik: Open-Source Face Recognition Frameworks: Review of Landscape

the implementation platform. Other major libraries required
to use the framework are MatLab, MTCNN, and Pdollar
toolbox. There are pre-trained models for SphereFace-20
hosted on Google Drive [199] or Baidu [200]. The pre-trained
models for SphereFace-4 and on SphereFace-6 are available
online at [201]. A top accuracy of 99.30% is reported against
the LFW benchmark.

K. SeetaFace
SeetaFace Engine [202] is a CPU-based open-source FR
engine developed by the Visual Information Processing and
Learning (VIPL) group for face detection, alignment, and
recognition written in C++. Multi-view face detection is
implemented as a real-time component using a funnel-
structured (FuSt) cascaded schema. The face detection code
currently works only on Windows. Stacked Auto-encoder
Networks [159] are cascaded to achieve facial fiducial
points detection. FR is achieved with a modified AlexNet
CNN named VIPLFaceNet. This consists of 7 convolutional
layers and two full-connected layers having an input size of
256 × 256 × 3, achieving an accuracy of 97.1% on the
LFW dataset. It is trained on 1.4 million faces of Mongolians
and Caucasians. The code is available on Github [203]
under BSD2 license. VisualStudio2013-based examples are
provided in the source.

L. AGPM
Attention-guided Progressive Mapping for Profile Face
Recognition(AGPM) is a 2021 light-weight FR framework
that uses a step-by-step pose normalization with attentive
pair-wise loss, introduced in [179] to address the common
problem of pose variation in FR. While pose transformation
from profile to frontal face can be smooth, it is non-linear
along with latent manifolds, posing a large computational
cost required to find optimal points for mapping the
transformation for FR systems. Huang and Ding [179]
approached this problem by decomposing the task into
smaller tasks performed at intervals, designed as progressive
stacked transformational blocks, as illustrated in Figure 7.
An attentive pair-wise loss is used for the supervision of
the feature transformation process. The L2 loss is used for
channel attention, enabling enhancement of important feature
vectors, thus effectively moving profile features closer to
frontal ones. Huang and Ding [179] used the MS-Celeb-
1M dataset for training the framework, employing MTCNN
for face detection, cropping each of the detected faces to
230× 230. The framework is implemented in Pytorch, using
ResNet for the backbone architecture, with the source code
hosted at [204]. Experimental results recorded an accuracy
of 89.37% on the CFP dataset. The training data can be
downloaded at [205] with pre-trained models available on
Baidu [206].

M. PI-NETS
A new group of neural networks that produce outputs
of a higher order polynomial of the inputs, referred to

TABLE 2. Pi-Net verification performance (%) of ResNet50 and
Prodpoly-ResNet50 on LFW, CFP-FF, CFP-FP, CPLFW, AgeDB-30, CALFW
and RFW (Caucasian, Indian, Asian and African) [120].

as PI-Nets, are introduced in [120]. Chrysos et al. [120]
formulate the problem as a learning function approximation
with a polynomial of input elements. The Pi-Nets, being
polynomial networks, can be architectured as generative
networks or discriminative networks. The backbone architec-
ture is ResNet for face verification, which is converted into
a polynomial network using NCP-Skip. MS1M-RetinaFace
is used as training data with images pre-processed to
112 × 112, with RetinaFace for face detection. Evaluation
on the LFW dataset using ResNet50 reports an accuracy of
99.73% with Prodpoly-RestNet reporting 99.83%. Table 2
shows verification performance on other datasets. The
authors publish the source of their implementation at [207].
The repository contains implementations inMXNet, PyTorch
and Chainer.

N. MagFace
MagFace is a FR framework by Meng et al. [58] for learning
universal and quality-based face representation. MagFace
encourages minimizing intra-class distances and maintaining
a cone-like relationship within the classes by learning
a universal embedding that pushes ambiguous samples
away from class centers. Specifically, MagFace exploits the
magnitude property of feature vectors, which is used for
quality assessment of faces by adaptively rewarding features
with large magnitude and pushing away less learned feature
vectors using MagFace loss. MS1M-V2 dataset is used to
train and analyze MagFace feature magnitude on 8 (eight)
x nVidia 1080i GPUs using stochastic gradient descent.
Training data is augmented with random horizontal flips.
Results on LFW show a verification score of 99.83% while
achieving 98.46% on CFP-FP. The authors released the
source code of their work at [208], implemented in Pytorch
with an Apache-2.0 license.

VII. RESEARCH GAPS AND EMERGING DIRECTIONS
Major technology companies and research universities drive
emerging trends in open-source FR technologies. One of the
emerging trends in FR research is 3D FR which builds on the
advantages of 2D FR. It is becoming a trend due to its ability
to overcome poor lighting conditions or variations in facial
expressions and poses. Zhou and Xiao [209] present some
of the recent developments in 3D recognition, specifically
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covering trends in invariant recognition capabilities across the
expression, pose, and occlusion. Another trend is continuous
improvement in the accuracy of FR. A NIST report [210]
shows that there has been an upward trend in FR accuracy
since 2013; these gains are so massive that they surpass
any improvements made between 2010 and 2013. The FR
recognition algorithms developed in 2018 all outperform
the then top-performing algorithms of 2013. According to
the NIST report, there has been a 20x improvement in FR
accuracy between 2013 and 2018.

A. LAW ENFORCEMENT
Recent technologies like 4G/5G networks are increasingly
helping users experience richer online services. Availability
and relatively affordable complimentary infrastructural tech-
nologies, such as Raspberry Pi and other nano smart devices
which can host face detection and recognition software,
enable law enforcement and security agencies to rapidly
deploy services such as public surveillance and detection of
suspects, even where there has been challenges related to
budgets. Such technology can be valuable to law enforcement
agencies by providing FR capabilities for identifying or
finding people who are missing. The technology can allow
police to capture a photo, detect a face and run it against
a face image database of known criminals for matching,
an invaluable process for investigators. Because of the
portability of nano-devices such as Raspberry PI, wireless
cameras can be easily concealed on police clothing and
connected via a wireless network to a cloud solution to
provide FR capabilities. Early works, such as that published
by Chowdhury et al. [212] and Shah et al. [213] invested
a significant amount of research on the capabilities of
Raspberry Pi and other resource-constrained devices with a
key focus on deploying applications that take advantage of
services deployed in the cloud. This foundation has been
enhanced, leading to publications such as [214] that show
how law enforcement agencies can deploy FR technologies
publicly in a cost-efficient manner. Other uses of FR in law
enforcement include border checks, where FR technologies
are now deployed in some airports, such as Roissy Charles
de Gaulle airport in Paris, France. Many states in the US
allow law enforcement to use FR for database searches on
driver’s licenses and ID photos. Deployment of hovering
drones in mass events that incorporate FR technologies are
used to identify suspects. FR is also increasingly being used
to help with identifying and tracking criminals, supporting
investigations, and finding missing and exploited children.

B. HEALTH
Face analysis has made significant advances in health.
We are increasingly seeing applications that use FR to track
patients’ use of medication, detect genetic diseases, such as
DiGeorge syndrome, and manage pain-related procedures.
Remote monitoring of patients is increasingly becoming
popular, owing to the maturity of cloud-based health services
and increasingly capable handheld devices. FR technologies

have been explored in remote patient monitoring to enhance
service delivery. The technology can be used to acquire
patients’ facial images, which could then be sent off to a
cloud-based service for analysis in real time. Hossain and
Muhammad [215] published a cloud-based face-recognition
framework enhanced with speech recognition for remotely
monitoring the elderly through the use of portable devices that
collect face images which could then be sent over to a cloud-
based FR back-end for realtime analysis. Alkawaz et al. [216]
used FR and cloud computing in conjunction with augmented
reality to enable rich access to patient information, especially
in emergency cases where such information might be readily
available on hand. They present a system that enhances
the availability of information to medical practitioners and
patients. The technology can also be extended to enable
more efficient remote monitoring. FR has also been deployed
in mental health monitoring and intervention. FR is well
suited for detecting and recognizing human emotion and
can be used to predict behavior by analyzing face images.
Realtime emotion tracking is equally a useful way of emotion
analysis in FR. This can be useful for the mental healthcare
industry. Tracking facial keypoints can give useful insight for
interpreting patients’ inner feelings. Wang [217] published
a campus suicide prediction system that can be deployed
in schools to identify students with mental problems that
are likely to lead to suicide. Data collected from such
a system can aid engineers and mental health specialists
in designing systems that can monitor and predict suicide
behavior and analyze the mental health status of people
on the verge of committing suicide. FR is also being
deployed for patient check-in and check-out processes at
busy hospitals, effectively freeing hospital personnel from
paperwork. Such solutions are deployed to help correctly
identify patients and eliminate wrong procedures and wrong-
patient errors, a mistake that can result in severe temporary
or permanent harm or death. Facial recognition software
in healthcare is also useful for fraud prevention, especially
in cases that could result in patient impersonation. It is
often incorporated into a video surveillance system on
the hospital premises and can efficiently track criminals
such as drug dealers. FR can also be exploited to infringe
medical research participants’ privacy indirectly. According
to Schwarz et al. [218], magnetic resonance imaging (MRI)
images often contain sufficient data that can be used to
reconstruct a participant’s face through the use of 3D face
reconstruction software. When this happens, it is possible to
use FR to establish the identity of the participant in question.
Schwarz et al. [218] reported that in about 83% of the cases,
a FR software could correctly identify a participant from
publicly available images using the reconstructed image from
the MRI. Figure 9 illustrates how this can be achieved.

C. COVID-19 PANDEMIC
Artificial Intelligence (AI) and FR technologies are at the
forefront of tackling the devastating effects of the Covid-19
pandemic. The solutions have been used to track people in
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FIGURE 8. A typical 3D face recognition pipeline [211].

quarantine through mobile apps. Operationally, this could
include regularly asking users to verify that they are staying
inside through self-taken photos or video clips. FR is also
being safely used for verification in access-controlled areas in
public areas due to its non-contact nature. Other applications
include deployment in identifying disease clusters, case
monitoring and prediction of future outbreaks, and mortality
risk and diagnosis. The advent of COVID-19 led to most
people wearing masks, introducing an interesting challenge
for FR systems previously trained on non-masked faces.
Montero et al. [219] highlighted what is likely to be a
new feature for FR systems: the ability to detect a face
behind a mask with high accuracy. The paper presents Multi-
Task Archface (MTArchFace), a new implementation based
on Arcface [32], using ResNet-50 as the base architecture,
with experimental results showing an increased accuracy
averaging 99.78% with mask-use classification

D. RETAIL
Retailers are currently experimenting and deploying FR in
retail by placing cameras on shelves and other strategic
locations to support analysis of shopper’s behavior based
on FR and face analysis. Major commercial giants such
as Facebook and Amazon are behind some deployments.
FR provides enhanced capabilities that allow retail shops
to analyze consumer behavior using rich data in real-time.
Such analysis could help influence consumer loyalty and
consumer satisfaction and increase purchasing probability.
Generosi et al. [220] described how facial expressions and
associated biometric information could be captured and

analyzed in retail stores across age, ethnicity, and gender.
The authors’ system consists of facial expression and emotion
recognition modules, gaze detection, and speech recognition
modules that utilize CNNs. OpenCV is one of the open-
source technologies used in the system. The system can
analyze consumers’ behaviors and emotions, which can
help understand typical and crucial customer actions. The
results of such analysis can be used to improve customer
experiences in retail spaces. FR has also been applied in the
retail banking sector, as reported by Generosi et al. [221],
citing a number of banks in Russia that have used the
technology to prevent violations related to clients’ photos.
The same technology is used for visual identification
when offering services to customers. Generosi et al. [222]
published technology-enabled personalization research that
combines a face-to-face offline personalization with online
data-driven personalization in retail spaces. FR is identified
as one of the technologies used for enabling consumer-
based personalization. The research identifies drivers (such
as enhanced control, interaction, integration) and hurdles
(such as privacy) to technology-enabled personalization in
smart retail. The research also outlines that consumer data
is doubling yearly, offering massive opportunities to improve
technology-enabled personalization in retail.

E. FACE RECOGNITION COMPUTING
The availability of modern accelerated computing capabil-
ities has played a massive role in the advancement of FR.
Specifically, the ever-evolving Graphics Process Unit (GPU)
technology makes it possible to quickly carry out massive,
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FIGURE 9. Face recognition from reconstructed MRI scans [211].

expensive computations. GPUs are very good at scaling
the processing capabilities of FR algorithms and, through
parallelism, can churn through a large amount of image data
in a reasonable amount of time [223]. GPUs achieve this by
highly optimizing computations of matrix operations, a core
element of DL algorithms. One of the most popular GPU
manufacturers is NVIDIA [224]. NVIDIA provides software
accelerated libraries that developers can take advantage
of. Computing Unified Device Architecture (CUDA) [225]
is one such popular parallel computing & programming
framework for GPUs. Available as NVIDIA CUDA Toolkit,
the tools expose accelerated computing modules for image
and video processing, including mathematical domains of
linear algebra. NVIDIA CUDA Deep Neural Network
library (cuDNN) is a highly optimized GPU-accelerated
implementation of DNN operations such as convolutions,
pooling, and normalization, making it suitable for DL
training. The implementations are available for frameworks
such as Deeplearning4j, TensorFlow, and PyTorch [226].
Other hardware solutions are also dedicated to accelerated
computing in the field of FR, such as Google’s Tensor Pro-
cessing Units (TPU) [227], Field Programmable Gate Array
(FPGA) [228], IBM’s TrueNorth chip [229] and Microsoft’s

BrainWave [230] among others. A comprehensive list of DL
accelerated computing can be found at [231].

F. CLOUD COMPUTING
Cloud computing offers environments that enable conve-
nient, ubiquitous, and on-demand network access to a
configurable shared pool of computing resources that are
easily provisioned, making it a suitable environment for
continuously developing and training FR solutions. Cloud
services for artificial intelligence are increasingly being
offered as Infrastructure As A Service (IAS), Platform As A
Service (PAS), and Software as A Service (SAS). All major
computing companies offer FR capabilities packages, often
IAS at the highest cost, PAS at a lower fee, and SAS for
free. Some of the research work published on the subject
include [232], which presents a distributed FR system using
support vector machines in a cloud platform. The system
uses Hadoop’s MapReduce to achieve parallel computing to
improve recognition efficiency. The vector machine model
reported higher recognition accuracy under cloud computing
on Yale B, ORL, and FERET datasets. There are special
cases when FR needs intensive computing power that can
be dynamically harnessed in a cloud environment. But as
reported by Zhang et al. [233], cloud computing for FR raises
privacy issues.

G. 3D FACE RECOGNITION
The evolution of 3D FR is fueled by the limitations of 2D FR,
such as lighting and pose. The ever-improving capabilities of
3D sensors are equally one of the core factors contributing to
the advancement of 3D FR. 3D facial data contains more rich
geometric information that improves recognition accuracy
compared to 2D [234]. As a result, there is an increasing
trend of many researchers turning their focus to 3D FR [211].
3D FR generally consists of training and testing phases
with five stages, as illustrated in Figure 8. Training includes
data acquisition and pre-processing. 3D face acquisition
requires special hardware that can be deployed actively or
passively. Active acquisition often uses infrared laser beans
to illuminate the target face and use reflection to detect
the subject face features. Such systems accomplish their
tasks using either triangulation-based or structured light-
based [211]. After 3D data is acquired, feature extraction is
then used to store face features for later inferencing.

H. LEGISLATION, LEGALITY AND PRIVACY ISSUES
While FR technology can be helpful for efficient bio-metric
identification in law enforcement, it can also suffer from bias,
leading to potential adverse consequences for the affected
individual in the event of mistaken identity. This can cause
cases such as mistaken arrests. According to Singer and
Metz [235], there has been an increase in concerns about how
far government surveillance is permissible by police when
using FR technology, prompting the need for legislation.
While law enforcement agencies try to address this through
stipulated operational processes that are meant to safeguard
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against bias, these have often proved not adequate, leading
to harm and misuse of FR technology [236]. While there
are some legislative components covering FR in places such
as the United Kingdom (UK) and South Africa, such as the
Protection of Personal Information Act 4 of 2013 (POPI)
(South Africa), many countries do not yet have clear laws
for regulating the use of facial recognition software or other
related surveillance technologies. As a result, FR technology
can face legal disputes. TheQueen (on application of Edward
Bridges) v The Chief Constable of South Wales Police (2020)
EWCA Civ. 1058 (R-Bridges) is one of the first cases in
the world where the legality of FR technology was decided
in the UK. In South Africa, components of the POPI Act’s
stipulation point to a regulator’s ability to issue a code
of conduct applicable to specific conditions, similar to the
UK’s Surveillance Camera Code of Practice. There was an
unreported judgment in South Africa, Vumacam v Johannes-
burg Road Agency 2020-08-20 case no. 14867/20, in which
Johannesburg Road Agency (JRA) accused Vumacam [237]
of using facial biometric information to spy on peoples’
movements, effectively infringing on their right to privacy.
The court argued that a legal framework must be in place
first; before such technology can be used to collect sensitive
bio-metric data, individuals’ privacy rights must be respected.
In the absence of clear national legislation on regulating
FR technology, some countries like the United States of
America (USA) have introduced local legislation meant
to address and regulate the use of FR technology in law
enforcement [236]. But due to competing viewpoints on FR
technology, law makers could face a dilemma when deter-
mining which regulations to implement. Some cities like San
Francisco have enacted local laws banning FR technology by
law enforcement and similar agencies. The same enactments
are locally in place for Oakland (California) and Somerville
(Massachusetts). We also see similar enactments at the state
level in the USA (California, New Hampshire, and Oregon),
prohibiting the police from using FR footage that is captured
on body cameras [236].

In conclusion, FR technology can be used for legitimate
investigatory purposes to protect society, but due to lack
of uniform regulation, it can be easily abused too, such
as bias toward people of color, especially women [238].
Comprehensive regulation needs to be passed in the affected
countries where FR is used in law enforcement, with laws
mandating public disclosure regarding the deployment of the
technology by police.

I. SPOOFING AND ANTI-SPOOFING
Face anti-spoofing involves the prevention of verification
of a false photo or video impersonating an authorized
person’s face. Face spoofing attacks include replay/video
attack, which emulates facial movements to achieve a
natural look of a face, often achieved by carefully looping
over a victim’s face. Face spoofing can also involve a
straightforward process, such as an attacker presenting a
victim’s printed or digital photo for verification. A more

sophisticated attack consists of using a 3D mask inserted in
a face video, introducing fake layers that can deceive depth
sensors, emulating natural face movements. Traditionally,
anti-spoofing is treated as a binary classification problem
involving crafted features detection followed by liveness
classification through support vector machines or random
forest [239], [240]. Newer methods are CNN-based and can
extract more rich features than the traditional hand-crafted
approaches [241]–[243]. With FR increasingly moving to
mobile and embedded devices, so are face-antispoofing
methods. Zhang et al. [244] presented a lightweight CNN-
based framework for environments that use less computing
resources and achieve good accuracy. Central Difference
Convolution (CDC) has recently emerged with promising
results in face anti-spoofing [245]. Yu et al. [70] introduced
an improved CDC, Cross Central Difference Convolutions
(C-CDC), that utilize differences in local features, employing
fewer parameters that result in less computational cost. The
methods involve augmenting samples for a wider-ranging
domain distribution, delivering state-of-the-art performance
on benchmark datasets, Replay-Attack [63] and CASIA-
MSDF [69].

J. CHALLENGES
• Expression: In FR, face expression is used detect
emotions of the subject; for example, in the medical
field face expression can be used to analyse how
a patient is feeling pain. However, in uncontrolled
environments, a person can alter face appearance
in an unpredictable way through face expressions,
creating a challenge for FR systems not designed
and trained for such unpredictable changes. Several
studies have been published for building face-expression
invariant platforms; Martins et . [246] published a 3D-
based system that produces 3D-disparity energy models
that are face-expression invariant with an experimental
recognition rate of 89.33%. A 3D FR system that uses
subject-specific curves that are insensitive to intra-face
differences is published in [247] with experimental
recognition rate of 85% on GavaDB dataset and 88.9%
on BU-3DFE datset. Revina and Emmanuel [248]
published a method that uses enhanced modified
decision based unsymmetric trimmed median filter
with additional application of local directional number
patterns, dominant gradient local ternary pattern with
support vector machines. They report an experimental
performance accuracy of 88% on CK and JAFFE
datasets.

• Pose Variation: In uncontrolled environments where
a face can take a wild pose, FR systems still face
challenges trying to accurately classify faces in never-
before-seen poses. This is especially a challenge if
the training data did not have diversified database of
images across different poses, degrading classification
accuracy [249]. To reduce the negative effects of
uncontrolled change in pose, FR systems should be build
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to exhibit pose-tolerant features. One way of achieving
this is including large-pose variations in the training set,
as reported in [250]. Oloyede et al. [251] report a number
ofmethods such as local binary feature extraction, divide
and rule, 3D reconstruction and others to address the
challenge of pose variation using datasets with pose
variations such as FERET, MIT and Yale B datasets.

• Plastic Surgery: Facial plastic surgery changes appear-
ance of a user depending on the extend of the
process. Rhytidectomy is one example where the facial
appearance is significantly altered, changing skin texture
including eye appearance for youthful appearance.
Methods for aiding FR system work over plastic surgery
are published in [252]–[254].

• Illumination: Illumination is one of the challenging
problems still affecting FR. Illumination can cause
variations in face appearance creating a challenge for
a FR system. Oloyede et al. [251] report how early
research demonstrated the effects of lighting; changes
in illumination can lead to a big difference in image
appearance, and these changes can even be bigger
compared to inter-face variation. Illumination can also
affect the performance of FR system depending on
how it affects images used in training and inference.
Oloyede et al. [251] further report how methods such as
image normalization through Gamma intensity correc-
tions, histogram equalisation and 3D face modelling can
be used to counter the effects of illumination.

• Occlusion: Occlusion can occur in uncontrolled envi-
ronments when a face is partially blocked for a
number of reasons, making accurate FR a challenge.
Occlusion can also occur intentionally; a person wearing
a hat, sunglasses scarves, etc. Methods developed for
dealing with occlusion include a pixel-level occlusion
method [255], locally-constrained coding method [256]
and a CNN based double-occlusion method in which
images with occlusions are present in both training and
testing [257].

VIII. CONCLUSION
FR technology is available through numerous open-source
projects and commercial vendors providing biometric identi-
fication, access control, and other services. This paper looked
at FR frameworks landscape in the last ten years. A review
of open datasets used by open source projects was carried
out. We have identified the following issues: (1) due to
privacy, some open datasets consist only of photos of people
from the internet (in some cases, only celebrities) and are
not a true representative of ordinary life; (2) data noise
and demographic bias is also prevalent in some datasets;
and (3) cross-pose verification remains a challenge to many
datasets. These issues reduce FR accuracy in unconstrained
environments.

The open-source face detection and alignment frame-
works review revealed that typical face detection methods
used are either image-based (often with neural networks)

or feature-based. Face detection still encounters challenges
across pose, expression, illumination, skin color, orienta-
tion, occlusion, etc. However, methods such as 3D facial
alignment are poised to overcome some of these issues.
The review of open-source frameworks for end-to-end
face representation, identification, and verification revealed
implementations available via popular environments and
tools such as TensorFlow, Pytorch, OpenCV, and Keras, with
open-source implementations hosted on platforms such as
GitHub. We have observed an upward trend in FR accuracy
since 2012, from low-dimension feature-based segmentation
implementations to more efficient nets such as deep polyno-
mial neural networks. The majority of contributions to these
projects come from top commercial technology companies
and research universities. We also found that the increased
use of efficient algorithms, 3D technologies, GPUs, and cloud
computing has accelerated the upward evolution of these
frameworks. These frameworks have implementations that
are useful in areas like health, retail, and law enforcement.

In spite of the impressive strides made, FR technologies,
including open-source implementations, still face challenges
across legislation, legality, privacy, and well-known facial
appearance changes due to the environmental factors such as
expression, pose, illumination, and occlusion.
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