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The present paper aims to establish the local well-posedness of 
Euler’s fluid equations on geometric rough paths. In particu-
lar, we consider the Euler equations for the incompressible 
flow of an ideal fluid whose Lagrangian transport velocity 
possesses an additional rough-in-time, divergence-free vector 
field. In recent work, we have demonstrated that this sys-
tem can be derived from Clebsch and Hamilton-Pontryagin 
variational principles that possess a perturbative geometric 
rough path Lie-advection constraint. In this paper, we prove 
the local well-posedness of the system in L2-Sobolev spaces 
Hm with integer regularity m ≥ �d/2� + 2 and establish a 
Beale-Kato-Majda (BKM) blow-up criterion in terms of the 
L1

tL
∞
x -norm of the vorticity. In dimension two, we show that 

the Lp-norms of the vorticity are conserved, which yields 
global well-posedness and a Wong-Zakai approximation theo-
rem for the stochastic version of the equation.
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1. Introduction

Mathematical models of the interaction dynamics of disparate space and time scales 
in fluid flows remains one of the most active research areas, emboldened not just by the-
oretical considerations but also by practical applications such as the need to understand 
the dynamics of Earth’s oceans and atmosphere in the context of global climate change. 
Incorporating fine-scale perturbations into the fluid motion equations and then ana-
lyzing their effects on the coarse-scale flow has become one of the primary objectives of 
mainstream fluid models, particularly in the last two decades. Approaches toward this ob-
jective include deterministic perturbations [66,37,50,58,67] and stochastic perturbations 
[57,53,63,56,59,52,64,6,54,47,51,46,3,27,65,62]. Such perturbations can be exogenously 
introduced into the fluid model to account for (possibly unknown) external forces. They 
can also be introduced endogenously, for example, to model the effects of unresolved fast 
sub-grid scale physics or other uncertain processes. In geophysical fluid dynamics, this 
trend has led to many numerical developments, including the introduction of parame-
terization schemes used to represent model uncertainties in the interaction of disparate 
space and time scales to improve the probabilistic skill of the ensemble weather forecasts 
[64,3,65,14,15,61,60,16].
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Many fluid equations can be characterized as critical points of action functionals 
[1,42] that incorporate fluid physics via a Lagrangian whose kinetic energy is defined in 
terms of velocity vector fields which are right-invariant under the diffeomorphisms and 
whose potential energy is defined in terms of advected quantities which evolve under 
pushforward by the flows generated by these vector fields. Perhaps the most well-known 
fluid model that arises in this manner is the perfect incompressible Euler system [1], 
which describes geodesic flow on the manifold of diffeomorphisms endowed with the Hs-
topology, s > d

2 + 1, with respect to the weak L2-metric defined by the fluid kinetic 
energy, [28].

A natural framework for introducing parameterization schemes into fluid models that 
arise from variational principles is through the introduction of a parameterized per-
turbation at the level of the Lagrangian in the action functional. Critical paths of the 
parameterized action functional then satisfy modified fluid motion equations that pre-
serve the fundamental properties of the unperturbed model inherited from the variational 
principle. In particular, variational parameterization schemes for fluid models possess a 
Kelvin-Noether theorem which governs their circulation dynamics, as well as any other 
conservation laws arising from unbroken Lie symmetries of the original model [42]. The 
stochastic setting for this variational approach was introduced in [46], and many further 
developments of it have been made subsequently, [32,26,25,62,14]. In [18], the present 
authors extended [46] to obtain a class of variational principles for fluid dynamics on ge-
ometric rough paths [49,31,29]. This extension to geometric rough paths was achieved by 
constraining the advective transport equation to incorporate a temporally rough vector 
field. Critical points of the corresponding action functionals satisfy a system of rough 
partial differential equations (RPDEs) whose dynamics incorporate both the resolved-
scale fluid velocity and the modeled effects of the unresolved fluctuations. The paper 
[18] provides a bridge between fluid dynamics and rough path theory. It draws upon 
knowledge from both areas, and we hope that it will impact both areas.

In this work, we consider Euler’s equations for perfect incompressible fluid flow on 
geometric rough paths. It was shown in [18, Section 4.1 and 4.2] that this system is a 
critical path of the Clebsch or Hamilton-Pontryagin action functionals and satisfies a 
Kelvin circulation balance law (see, also, Section 3.2.2). On the d-dimensional torus Td, 
the rough Euler system is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

du + u · ∇u dt− £∗
ξk
u dZk

t = −d∇qt − dht on (0, T ] × Td,

div u = 0 on [0, T ] × Td,∫
Td u dV = 0,

∫
Td q dV = 0 on [0, T ],

u = u0, q = 0, h = 0 on {0} × Td,

where Z = (Z, Z) ∈ Cp−var
g (R+; RK) is an RK -valued geometric rough path with vari-

ation p ∈ [2, 3), ξ : Td → {Rd}K is a collection of sufficiently smooth divergence-free 
vector fields, and £∗

ξ u = −(ξjk∂xjui + uj∂xiξjk)ei. Equation (3.1) is to be solved for an 

k
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unknown divergence and mean-free vector field (velocity) u : [0, T ] × Td → Rd, mean-
free scalar field (‘time-integrated’ pressure) q : [0, T ] × Td → R, and harmonic constant 
(time-integrated) h : [0, T ] → Rd. The pressure q and harmonic constant h should be 
understood as Lagrange multipliers associated with the divergence-free and mean-free 
constraints, respectively. The present paper aims to establish the local well-posedness of 
equations (3.1) in L2-Sobolev spaces Hm with integer regularity m ≥ �d/2� + 2.

The p-variation of the rough path provides a measure of roughness: the higher the 
value of p, the rougher the path. See Definition 2.1 for details. The analysis of the Euler 
equation perturbed by a bounded variation path (i.e., p = 1) follows the same steps 
as that of the (unperturbed) Euler equation (see, e.g., [5, Chapter 3] and [4, Chapter 
7]). We refer to [5, Notes for Chapter 3] and [4, References and remarks for Chapter 7]
for a historical account of the solution theory for the deterministic incompressible Euler 
equations.

For p ≥ 2, the classical integration methodology is no longer applicable and we enter 
the realm of rough path theory (see e.g., [29]). In this paper, we treat rough path per-
turbations with p ∈ [2, 3), in the first non-trivial regime. A similar treatment is possible 
for paths with variation p ∈ (1, 2) (i.e., the Young integration case) and p ≥ 3.

The case p = 2 includes the incompressible stochastic Euler system driven by Brow-
nian motion. See, for example, [55,36,8,17,7,48] for a non-exhaustive selection of papers 
covering various types of incompressible stochastic Euler systems. Having eliminated the 
need for stochastic integration, the RPDEs retain a pathwise interpretation. Unlike in 
the stochastic setting, though, no Burkholder-Davis-Gundy inequality is available to es-
timate the rough integral. Consequently, we will apply the method of unbounded rough 
drivers [9] (explained below). This method will enable us to establish a Wong-Zakai ap-
proximation for the solution. In addition, we will give an interpretation of the solution as 
a bona fide random dynamical system [13]. It is worth mentioning that it is possible to 
prove Wong-Zakai approximation results for SPDEs driven by Brownian motion without 
the use of the rough paths (see, e.g., [38,11]).

Our work also includes a solution theory for fractional Brownian motion driven equa-
tions, which enables memory effects to be introduced through our formulation. In our 
previous work [18], we explained how fluid models on geometric rough paths can be used 
in the context of stochastic parameterization schemes and uncertainty quantification 
(see, e.g., [14–16]. Our results also set the stage for investigating numerical schemes and 
developing geometric rough path parameterization schemes for fluid models to account 
for additional properties such as unknown Lagrangian trajectory roughness and system 
memory.

An intrinsic theory of transport-type RPDEs was developed in the papers [9,22]. In 
[9], the authors use a priori estimates based on Davies’ type expansions [21], doubling 
of variables, and commutator estimates in the spirit of DiPerna-Lions to establish well-
posedness and the analog of the renormalization property. In contrast, the authors of [22]
use a generalized Feynman-Kac formula and forward-backward duality type arguments. 
The method of unbounded rough drivers was extended in [23] to RPDEs with non-
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linear drift terms, which influenced a series of papers [39,43,40,41,44,34,33,45,19,30]. The 
most relevant to our current study are the papers [40,41,30] on the rough Navier-Stokes 
equations.

In [40], a rough Navier-Stokes equation with a pure linear rough transport perturba-
tion ξk ·∇udZk

t was considered, which at the formal level, conserves energy. At the present 
moment, the only method the authors know to obtain estimates (after passing to the 
limit) and the uniqueness of solutions of rough transport type PDEs in the highest spatial 
norm for which one has a uniform bound in time is through the method of doubling vari-
ables and commutator estimates. Unfortunately, the incompressibility constraint present 
in the velocity formulation makes it challenging to obtain solution estimates using this 
method. In [40], the existence of “weak” solutions (i.e., u ∈ L2([0, T ]; H1) ∩L∞([0, T ]; L2)
was proved in 2d and 3d by establishing an energy equality along a smooth-noise approx-
imating sequence, and thereby deriving an energy inequality for the solution by passing 
to the limit. In dimension two, uniqueness, continuity in L2, and an energy equality were 
only proved in the special case of constant vector fields ξ because of the difficulty that 
arises from the incompressibility constraint. It is worth noting that for constant ξ, scalar 
linear transport agrees with Lie transport.

In [41], a Navier-Stokes equation with Lie-advection in the noise, as in the present 
paper, was considered. In contrast with [40], the vorticity formulation of the Lie-advected 
equation does not include projections, which facilitated the use of the doubling of vari-
ables technique for “strong” solutions (i.e., u ∈ L2([0, T ]; H2) ∩ L∞([0, T ]; H1) (see 
Remark 3.6). In [41], the local existence of strong solutions was proved in dimension 
three, and global existence and uniqueness was proved for strong solutions in dimension 
two. Additional regularity was not investigated, and a rough version of an Aubin-Lions 
type compactness result was used in the proof of existence.

The present paper expands the scope of the theory of unbounded rough drivers. The 
main tool from this theory is Theorem 4.1, which extends the usual Davies’ remainder 
estimates for RDEs to RPDEs with linear rough transport structure. As in [41], we 
make use the vorticity formulation to obtain solution estimates. In the absence of the 
smoothing effect of viscosity (cf., [41]), we need to obtain bounds on the higher-order 
derivatives of the solution. Specifically, in Section 4, we derive a system of equations for 
the vorticity and its derivatives up to order m with m ≥ �d/2� + 2, which has a linear 
rough symmetric transport structure. We then derive an equation for the square of this 
system and apply Theorem 4.1. Next, we obtain solution estimates by applying a rough 
version of Grönwall’s lemma (see Appendix B). The additional regularity of the solutions 
allows us to avoid using doubling-of-variables (used in e.g., [9,23,41]) at the expense of 
having to assume ξ is slightly more regular whenever continuity in time in the highest 
norm is needed. This simplifies many of the techniques needed for obtaining a priori 
estimates (see Remark 4.3). As a result of the additional regularity, we use Arzela-Ascoli 
to obtain compactness, rather than Aubin-Lions as in [40,41]. In Section 6.2, we show 
how to construct a maximally extended solution in the rough path setting, which as far 
as we are aware is a new result. Further extensions of this work to bounded domains 
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with boundary conditions is the subject of future research. However, the extension to 
bounded domains will encounter technical difficulties involving, for example, the method 
of doubling of variables, or applying the equation for the square of the vorticity when 
boundary conditions are present (provided additional regularity is known).

Description of results. The goal of the present paper is to establish solution properties 
of the rough incompressible Euler system given in equation (3.1). Theorem 3.7 states that 
for an initial condition of Sobolev regularity Hm with m ≥ �d

2� +2 there exists a unique 
Hm solution of the d-dimensional rough Euler system on the interval [0, T∗], where the 
time T∗ > 0 depends on the initial condition of the equation, the driving rough path, and 
the coefficients of the rough driver. This solution can be extended to a unique maximal 
solution (Corollary 3.8). Theorem 3.9 gives a blow-up criterion in terms of the L1

tL
∞
x -

norm of the vorticity, which extends the well-known Beale-Kato-Majda criterion [10]. In 
dimension two, we show that the Lp-norms of the vorticity are conserved for all p ∈ [2, ∞]
and thereby establish global well-posedness (see Theorem 3.10). Corollary 3.11 states that 
the solution, the pressure term, and harmonic constant are jointly continuous as functions 
of the initial condition, the driving rough path, and the coefficients of the rough driver. 
In Section 3.2.1, we discuss applications of our results to stochastic partial differential 
equations (Sades), including Theorem 3.13, which gives a Wong-Zakai approximation 
result for the corresponding Stratonovich driven SPDE. In Section 3.2.2, we explain how 
our main results yield critical points of the Clebsch and Hamilton-Pontryagin action 
functionals introduced in [18]. To do this, we derive a generalized Weber representation 
formula (3.19) of smooth (in space) solutions.

Structure of the paper:

• Section 2 introduces the basic notation and summarizes the standard results that 
will be required throughout the paper.

• In Section 3, we formulate the rough incompressible Euler equation in velocity form 
and as well as vorticity form and state the main results of the paper: local well-
posedness in any dimension, the Beale-Kato-Majda blow-up criteria, global well-
posedness in 2d, and continuous dependence on data. We discuss various applications 
to stochastic equations, including a Wong-Zakai approximation result. Finally, we 
explain the correspondence of solutions with critical points of the action functionals 
presented in [18].

• Section 4 contains a priori estimates for remainders, the solution, and differences of 
solutions.

• Section 5 contains the proof of local well-posedness.
• Section 6 contains the proof of the remaining results.
• The appendices A and B contain technical results that are used in establishing the 

a priori estimates.
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2. Preliminaries

2.1. Basic notation, function spaces, and inequalities

Let d ∈ {2, 3, . . .} and Td = Rd/(2πZ)d ∼= (S1)d denote the d-dimensional flat torus. 
The Riemannian covering map π : Rd → Td induces global orthonormal frames {∂xi}di=1
and {dxi}di=1 of the tangent TTd ∼= Td×Rd and cotangent bundle T ∗Td ∼= Td× (Rd)∗, 
respectively, and a normalized Haar measure dV = Vol(Td)−1dx1 ∧ · · · ∧ dxd.

Let V denote an arbitrarily given finite dimensional real vector space with inner 
product (·, ·)V and norm | · |V . Denote by C∞(Td; V ) the Fréchet space of smooth V -
valued functions on Td. For given m ∈ N, let Cm(Td; V ) denote the Banach space of m-
times continuously differentiable V -valued functions on Td. We will blur the distinction 
between 2π-periodic functions and functions on Td. Let L(Rd; V ) denote the space of 
linear maps from vector space Rd to V and D : C∞(Td; V ) → C∞(Td; L(Rd; V )) denote 
the derivative operator. Let Δ : C∞(Td; V ) → C∞(Td; V ) denote the Laplacian, which 
is defined by Δf = ∂2

xif . Here and below we use the convention of summing repeated 
indices over their range of values.

For given p ∈ [1, ∞], denote by Lp(Td; V ) = Lp((0, 2π)d; V ) the Banach space of 
equivalence classes of V -valued of Lp-integrable functions on Td with norm | · |Lp . We 
denote by (·, ·)L2 the inner product on the Hilbert space L2(Td; V ). Since it will always be 
clear from the context where a function takes its values, we drop the dependence of norms 
and inner products on V . It is well-known that the sequence {ψn}n∈Zd ⊂ C∞(Td; C)
defined by for all n ∈ Zd and x ∈ Td by ψn(x) = ein·x forms an orthonormal basis of 
L2(Td; C).

Denote the Fourier transform F : L1(Td; V ) → �∞(Zd; V ) by F f(n) = f̂(n) =∫
Td fψndV and its inverse F−1 : l∞(Zd; V ) → L1(Td; V ) by F ∗f̂ =

∑
n∈Zd f̂(n)ψn. 

Let S(Zd; V ) = {{cn}n∈Zd ⊂ V : supn∈Zd(1 + |n|)N |cn| < ∞, ∀N ∈ N} denote the 
Fréchet space of rapidly decreasing multi-sequences. It follows that F : C∞(Td; V ) →
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S(Zd; V ), F−1 : S(Zd; V ) → C∞(Td; V ), and moreover that F extends to an isometric 
isomorphism F : L2(Td; V ) → �2(Zd; V ).

Denote by D′(Td; V ) = {f : C∞(Td; C) → V ; f islinearandcontinuous} the 
Fréchet space of V -valued distributions. Equivalently, D′(Td; V ) may be characterized 
as 2π-periodic distributions D′(Rd; V ) or as distributional Fourier series. Indeed, the 
Fourier transform extends via duality to an isomorphism F : D′(Td; V ) → S′(Zd; V ), 
where S′(Zd; V ) = {{cn}n∈Zd ⊂ V : ∃N ∈ Ns.t. supn∈Zd(1 + |n|)−N |cn| < ∞}
denotes the space of slowly increasing multi-sequences. Clearly, for all p ∈ [1, ∞), 
C∞(Td; V ), Lp(Td; V ) ⊂ D′(Td; V ). The differential operators ∂α, D, and Δ extend 
to distributions via duality.

Denote by C̊∞(Td; V ), ̊Lp(Td; V ), and D̊′(Td; V ) the corresponding subspace of dis-
tributions f with f̂(0) = 0. If f ∈ D′(Td; V ) is such that Δf = − 

∑
n∈Zd |n|2f̂(n)ψn =

0V (i.e., harmonic), then f̂(n) = 0 for all n ∈ Zd − {0}, which implies KerΔ = V .
For given s ∈ R, define (I − Δ)− s

2 : D′(Td; V ) → D′(Td; V ) by

(I − Δ)− s
2 f =

∑
n∈Zd

〈n〉−sf̂(n)ψn ,

where 〈n〉 = (1 + |n|2) 1
2 . Let s ∈ R and Hs(Td; V ) = (I − Δ)− s

2L2(Td; V ) denote the 
Bessel potential spaces, which are Hilbert spaces with inner products and norms given 
by

(f, g)Hs :=

⎛
⎝ ∑

n∈Zd

〈n〉s(f̂(n), ĝ(n))V

⎞
⎠

1
2

and |f |Hs,p :=

∣∣∣∣∣∣
∑
n∈Zd

〈n〉sf̂(n)ψn

∣∣∣∣∣∣
Lp

.

The duality pairing 〈·, ·〉Hs : H−s(Td; V ) ×Hs(Td; V ) → R given by

〈f, g〉Hs = ((I − Δ)− s
2 f, (I − Δ) s

2 g)L2

induces an isomorphism H−s(Td; V ) ∼= Hs(Td; V )′. It follows that for all m ∈ N0, 
Hm(Td; V ) = {f ∈ L2(Td; V ) :

∑
0≤n≤m |Dnf |2L2 < ∞}. For m ∈ N, denote by 

Wm,∞(Td; V ) the Banach space of functions f ∈ L∞(Td; V ) such that |f |Wm,∞ :=
max0≤|α|≤m |∂αf |L∞ < ∞.

For given s ∈ R, we let H̊s(Td; V ) = {f ∈ Hs(Td; V ) : f̂(0) = 0V } and for m ∈ N0, 
let W̊m,∞(Td; V ) = {f ∈ W̊m,∞(Td; V ) : f̂(0) =

∫
Td fdV = 0V }.

Henceforth, we use the notation �c1,...,cd to denote less than equal to up to a constant 
C = C(c1, . . . , cd) depending only on parameters c1, . . . , cd. Throughout the paper, we 
will make regular use of the following facts:

• For given N ∈ N, define P≤N : D′(Td; V ) → C∞(Td; V ) by P≤Nf =∑
|n|≤N f̂(n)ψn. If s0 < s1, then for all f ∈ Hs0(Td; V ), |P≤Nf |Hs1 ≤ Ns1−s0 |f |Hs0

and for all f ∈ Hs1(Td; V ), |(I − P≤N )f |Hs0 ≤ Ns0−s1 |f |Hs1 .
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• If s > d
2 + m for some m ∈ N0, then Cm(Td; V ) ⊂ Hs(Td; V ).

• (Poincaré) For all f ∈ H̊s+1(Td; V ), |f |Hs �d,s |Df |Hs . For all f ∈ W̊m+1,∞(Td; V ), 
|f |Wm,∞ �d,m |Df |Wm,∞ .

• For all m1, m2 ∈ N0 and f, g ∈ L∞(Td; V ) ∩Hm1+m2(T ; V ),

||Dm1f ||Dm2g||L2 �d,m1,m2 |f |L∞ |g|Hm1+m2 + |f |Hm1+m2 |g|L∞ . (2.1)

• For all m ∈ N0, f ∈ L∞(Td; V ) ∩Hm+1(T ; V ) and g ∈ L∞(Td; V ) ∩Hm(T ; V )

∑
0≤|α|≤m

|∂α(f∇g) − f∂α∇g|L2 �d,m (|∇f |L∞ |g|Hm + |f |Hm+1 |g|L∞) . (2.2)

Let (E, | · |E) be an arbitrarily given Banach space. For an interval I ⊂ R+, denote 
by C(I; E) (resp. Cw(I; E)) the space of continuous (resp. weakly-continuous) E-valued 
functions. For p ∈ [1, ∞], let Lp(I; E) the Banach space of equivalence classes of E-valued 
Lp-integrable strongly measurable E-valued functions on I.

2.1.1. Hodge and Helmholtz decomposition and the Biot-Savart operator
Let {ei}di=1 denote the standard basis of Rd and let {ei}di=1 denote the dual basis. We 

identify vector fields u = ui∂xi ∈ Γ(Td; TTd) with Rd-valued maps u = uiei : Td → Rd

and k-forms α =
∑

i1<···<id
αi1...ikdx

i1 ∧ · · · ∧ dxik ∈ Γ(Td; ΛkT ∗Td) with Λk(Rd)∗-
valued maps α =

∑
i1<···<ik

αi1...ike
i1 ∧ · · · ∧ eik : Td → Λk(Rd)∗. Denote by � the map 

that sends vector fields to one-forms given by u� = uie
i, where ui = ui since the metric 

is locally Euclidean. Let 	 denote the inverse of �.
For a given diffeomorphism φ : Td → Td and α ∈ Γ(Td; ΛkT ∗Td), denote the pullback 

and pushforward by

φ∗α = k!
∑

i1<...<ik
j1<···<jk

αj1...jk ◦ φ∂xi1φ
j1 · · · ∂xikφ

jkei1 ∧ · · · ∧ eik

and φ∗α = φ−1;∗α, respectively.
Denote by d, δ, and −Δ = dδ + δd the exterior derivative, co-differential (i.e., 

adjoint of d), and Hodge Laplacian operators, respectively. In particular, using the 
above identification, for f ∈ D(Td; Rd), α ∈ D′(Td; (Rd)∗), ω ∈ D′(Td; Λ2(Rd)∗), and 
γ ∈ D′(Td; Λ3(Rd)∗),

df = ∂xifei, dα =
∑
i<j

(∂xiαj − ∂xjαi)ei ∧ ej ,

dω =
∑

i<j<k

(∂xiωjk − ∂xjωik + ∂xkωij)ei ∧ ej ∧ ek,

δf = 0, δα = −∂xiαi, δω = ∂xjωije
i, δγ = −

∑
∂xkγijle

i ∧ ej ,

i<j
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−Δf = −∂2
xjf, −Δα = −∂2

xjαie
i, −Δω = −∂2

xkωije
i ∧ ej .

We recall that dφ∗ = φ∗d, d2 = 0, and δ2 = 0.
Let s ∈ R be arbitrarily given. For arbitrarily given α ∈ Hs(Td; Λk(Rd)∗), k ∈

{0, 1, 2}, there exists a unique β ∈ H̊s+2(Td; Λk(Rd)∗) such that −Δβ = α− α̂(0) given 
by β = (−Δ)−1(α− α̂(0)) =

∑
n∈Zd |n|−2α̂(n)ψn, which yields the Hodge decomposition

α = dδβ + δdβ + α̂(0) = dδ(−Δ)−1(α− α̂(0)) + δd(−Δ)−1(α− α̂(0)) + α̂(0).

Let

H̊s
d(Td; Λk(Rd)∗) = dH̊s+1(Td; Λk−1(Rd)∗) = {α ∈ H̊s(Td; Λk(Rd)∗) : dα = 0},

which is understood to be ∅ if k = 0,

H̊s
δ (Td; Λk(Rd)∗) = δH̊s+1(Td; Λk+1(Rd)∗) = {α ∈ H̊s(Td; Λk(Rd)∗) : δα = 0},

and Hk = Ker Δ = Λk(Rd)∗. Thus, we obtain the following orthogonal decomposition 
for k ∈ {0, 1, 2}:

Hs(Td; Λk(Rd)∗) = H̊s
d(Td; Λk(Rd)∗) ⊕ H̊s

δ (Td; Λk(Rd)∗) ⊕Hk. (2.3)

For given u ∈ D′(Td; Rd), denote div u = ∂xiui = ∂xiui = −δu�. Moreover, let

H̊s
σ(Td;Rd) = {u ∈ H̊s(Td;Rd) : div u = 0},

Wm,∞
σ (Td;Rd) = {u ∈ Wm,∞(Td;Rd) : div u = 0},

C̊∞
σ (Td;Rd) = {u ∈ C∞(Td;Rd) : div u = 0},

D̊′
σ(Td;Rd) = {u ∈ D′(Td;Rd) : div u = 0}.

Henceforth, we will simply write H̊s
σ, W

m,∞
σ , C̊∞

σ , and D̊′
σ. Applying the sharp operator 

	 to (2.3) in the case k = 1, we derive the d-dimensional Helmholtz decomposition of 
vector fields:

Hs(Td;Rd) = ∇H̊s+1(Td;R) ⊕ H̊s
σ(Td;Rd) ⊕Rd.

Let Q ∈ L(Hs(Td; Rd); ∇H̊s+1(Td; R)), P ∈ L(Hs(Td; Rd); ∇H̊s
σ), and H ∈ L(Hs(Td;

Rd); Rd) denote the projections associated with the decomposition so that I = P+Q +H.
Let

BS = 	(−Δ)−1δ = 	δ(−Δ)−1
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denote the inverse of d� : Hs+1
σ (Td; Rd) → Hs

d(Td; Λ2(Rd)∗). The operator BS is 
called the Biot-Savart operator. Owing to Propositions 7.5 and 7.7 of [4], for all 
ω ∈ H̊s−1(Td; Λ2(Rd)∗) such that s > d

2 + 1, we have

|BSω|Hs �d |∇BSω|Hs−1 �d,s |ω|Hs−1 �d,s |BSω|Hs , (2.4)

|∇BSω|L∞ �d,s ln (e + |ω|Hs−1) |ω|L∞ , ∀ω ∈ H̊s−1(Td; Λ2(Rd)∗). (2.5)

2.1.2. The Lie derivative
Let s > d

2 + 1 so that |∇f |L∞ < ∞ for all f ∈ Hs(Td; V ). For v ∈ Hs(Td; Rd) and 
k ∈ {0, 1, 2}, the Lie derivative £v ∈ L(Hs(Td; Λk(Rd)∗); Hs−1(Td; Λk(Rd)∗) acts on 
f ∈ Hs(Td; R), α ∈ Hs(Td; (Rd)∗), ω ∈ Hs(Td; Λ2(Rd)∗) by

£vf = v · ∇f = vj∂xjf, £vα = (vj∂xjαi + αj∂xivj)ei,

£vω =
∑
i<j

(vq∂xqωij + ωqj∂xivq + ωiq∂xjvq)ei ∧ ej .

Indeed, it is a direct consequence of (2.1) that the range of the Lie derivative lies in 
Hs−1. A simple computation shows that d£v = £vd. Moreover, if dω = 0, then

£vω =
∑
i<j

(∂xi(vqωqj) − ∂xj (vqωqi)) ei ∧ ej = d[ω(v, ·)],

which is just a special case of Cartan’s formula.
The Lie derivative and covariant derivative £v, ∇v = v · ∇ ∈ L(Hs(Td; Λk(Rd)∗);

Hs−1(Td; Rd) act on u ∈ Hs(Td; Rd) by

£vu = (vj∂xjui − uj∂xjvi)ei, ∇vu = v · ∇u = vj∂xjuiei.

Stoke’s theorem implies that for all w, u, v ∈ Hs(Td; Rd),

(£vw, u)L2 = −
∫
Td

wi(vj∂xjui + ui div v + uj∂xivj)dV =: (w,£∗
vu)L2 .

In particular, if div v = 0, then

£∗
vu = −(vj∂xjui + uj∂xivj)ei

and

−£∗
vu = 	£vu

� ⇒ −d�£∗
uw = d£vu

� = −£vdu�, (2.6)

P£∗
vu = P£∗

vPu. (2.7)

Moreover,
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u · ∇u = −£∗
uu + 2−1∇|u|2. (2.8)

If d = 2, then the Hodge Star (see, e.g., Section 6.2 of [2]) map � : Hs(Td; Λ2(R2)∗) →
Hs(T 2; R) defined by ω̃ = ω12 is an isomorphism and for all v ∈ Hs

σ(Td; Rd), we have

�£vω = £v � ω = v · ∇ω. (2.9)

Moreover, if d = 3, then the Hodge Star map 	 � Hs(Td; Λ2(R3)∗) → Hs(T 3; R3) given 
by 	 � ω = ω23e1 + ω31e2 +ω12e3 is an isomorphism and for all v ∈ Hs

σ(Td; Rd), we have

	 � £vω = £v	 � ω = [v, 	 � ω]. (2.10)

2.2. Geometric rough paths and the sewing lemma

For an arbitrarily given closed interval I = [a, b], denote

ΔI := {(s, t) ∈ I2 : s ≤ t} and Δ2
I := {(s, θ, t) ∈ I3 : s ≤ θ ≤ t}.

If the interval I = [0, T ], we write ΔT = ΔI .
Let (E, | · |E) be an arbitrarily given Banach space with norm | · |E . We say a two-

parameter function g : ΔI → E has finite p-variation for some p ∈ (0, ∞) on I if

|g|p−var;I;E := sup
p=(ti)∈P(I)

(#p−1∑
i=1

|gtiti+1 |pE

) 1
p

< ∞,

where P(I) is the set of all finite partitions of I and #p denotes the number of points in a 
given partition p ∈ P(I). Denote by Cp−var

2 (I; E) the set of all continuous functions with 
finite p-variation on I equipped with the seminorm | · |p−var;I;E . Denote by Cp−var(I; E)
the set of all paths z : I → E such that δz ∈ Cp−var

2 (I; E), where

δzst := zt − zs, (s, t) ∈ ΔI .

For an arbitrary interval I ⊂ R that is not necessarily closed, denote by Cp−var
2,loc (I; E)

the set of all continuous functions g : ΔI → E such that there exists a countable sequence 
of closed intervals {Ik} such that ∪kIk = I and g ∈ Cp−var

2 (Ik; E).
A continuous mapping � : ΔI → [0, ∞) is called a control on I if ω(s, s) = 0 for all 

s ∈ I and if for all (s, θ, t) ∈ Δ2
I ,

�(s, θ) + �(θ, t) ≤ �(s, t),

which is referred to as superadditivity. If �1 and �2 are controls, then for all α, β ∈ R+
such that α + β ≥ 1, �α

1 �
β
2 is a control (see, e.g., [31, Ex. 1.9]).
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If g ∈ Cp−var
2 (I; E) for a given p ∈ (0, ∞), then �g : ΔI → [0, ∞) defined for all 

(s, t) ∈ ΔI by

�g(s, t) = |g|pp−var;[s,t];E

is a control (see, e.g., [31, Prop. 5.8]). Moreover, it is straightforward to check that for 
all (s, t) ∈ ΔI

inf{�(s, t)
1
p : �isacontrols.t.|grθ|E ≤ �(r, θ)

1
p , ∀(r, θ) ∈ Δ[s,t]},

is an equivalent semi-norm on Cp−var
2 (I; E).

For an arbitrarily given two-index map g : ΔI → R, define the increment operator

δgsθt = gst − gθt − gsθ, (s, θ, t) ∈ Δ2
I .

We will now give the definition of a rough path and geometric rough path. We refer the 
reader to [49,31,29] for more thorough expositions.

Definition 2.1. Let K ∈ N and p ∈ [2, 3). A p-variation rough path is a pair

Z = (Z,Z) ∈ Cp−var(I;RK) := Cp−var
2 (I;RK) × C

p
2−var
2 (I;RK×K)

that satisfies the Chen relations

δZsθt = 0 and δZsθt = Zsθ ⊗ Zθt, ∀(s, θ, t) ∈ Δ2
I . (2.11)

For an arbitrarily given Z ∈ Cp−var([0, T ]; RK), denote

�Z = inf{� : �isacontrols.t.|Zst| ≤ �(s, t) and |Zst| ≤ �(s, t), ∀(s, t) ∈ ΔI}. (2.12)

Given a smooth path z : I → RK , we define its canonical lift Z = (Z, Z) ∈
Cp−var([0, T ]; RK) by

Zst = δzst and Zst :=
t∫

s

Zsr ⊗ dzr, (s, t) ∈ I.

An element Z = (Z, Z) ∈ Cp−var(I; RK) is said to be geometric if it can be obtained 
as the limit in the product topology of a sequence of rough paths {(Zn, Zn)}∞n=1 that 
are canonical lifts of smooth paths zn : I → RK . We denote by Cp−var

g (I; RK) the set 
of geometric p-variation rough paths and endow it with the product topology. Finally, 
we denote by Cp−var

g (R+; RK) the corresponding Fréchet space of pairs Z = (Z, Z) :
Δ[0,∞) → RK ×RK×K belonging to Cp−var

g ([0, T ]; RK) for all positive T .
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The following lemma, referred to as the sewing lemma, lies at the very foundation of 
the theory of rough paths. The proof is a straightforward modification of [23, Lemma 
1.2] or [29, Lemma 4.2].

Lemma 2.2 (Sewing lemma). Let �1 and �2 be controls on I. Let L ∈ (0, ∞), ζ ∈ [0, 1)
and p ≥ ζ. Assume that h ∈ Cp−var

2,loc (I; E) is such that for all (s, u, t) ∈ Δ2
I with �1(s, t) ≤

L,

|δhsut| ≤ ω2(s, t)
1
ζ .

Then there exists a unique path Ih ∈ Cp−var(I; E) such that Iha = 0, Λh := h − δIh ∈
Cζ−var

2,loc (I; E), and for all (s, t) ∈ ΔI with �1(s, t) ≤ L,

|(Λh)st| ≤ Cζ�2(s, t)
1
ζ , (2.13)

for a universal positive constant Cζ. Moreover, for all (s, t) ∈ ΔI ,

δIhst = lim
|p|→0

#p−1∑
i=1

htiti+1 ,

where the limit is understood as a limit of nets over finite partitions p ∈ P([s, t]) of the 
interval [s, t] ⊂ I partially ordered by inclusion with mesh size |p| tending to zero.

3. Main results

3.1. Formulations of the rough incompressible Euler system

Let d ∈ {2, 3, . . .}, K ∈ N, p ∈ [2, 3), and m ∈ N be such that m ≥ m∗ := �d
2� + 2. 

For an arbitrarily given initial condition u0 ∈ H̊m
σ , geometric rough path Z = (Z, Z) ∈

Cp−var
g (R+; RK), and collection of vector fields ξ ∈ (Wm+2,∞

σ )K , we consider the rough 
incompressible Euler system given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

du + u · ∇u dt− £∗
ξk
u dZk

t = −d∇qt − dht on (0, T ] × Td,

div u = 0 on [0, T ] × Td,∫
Td u dV = 0,

∫
Td q dV = 0 on [0, T ],

u = u0, q = 0, h = 0 on {0} × Td,

(3.1)

where (see Section 2.1.2) £∗
ξk
u = −(ξjk∂xjui + uj∂xiξjk)ei. Equation (3.1) is to be solved 

for an unknown divergence and mean-free vector field (velocity) u : [0, T ] × Td → Rd, 
mean-free scalar field (‘time-integrated’ pressure) q : [0, T ] × Td → R, and harmonic 
constant (time-integrated) h : [0, T ] → Rd. The pressure q and harmonic constant h
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should be understood as Lagrange multipliers associated with the divergence-free and 
mean-free constraints, respectively.

In contrast to the unperturbed system (i.e., ξ ≡ 0 or Z ≡ 0), the system (3.1) does 
not preserve the mean of the initial condition if the ξ’s are not constant in space due to 
the term uj∂xiξjk. Indeed, upon formally integrating (3.1) over Td, all other terms vanish 
due to the periodic boundary conditions. Thus, the Lagrangian multiplier h is required 
to enforce the constraint that the velocity u remains mean-free. It is worth noting that 
we impose the mean-free constraint because it simplifies our analysis. For details on how 
to avoid this assumption, we refer to [41], which establishes the existence of a strong 
solution of the associated viscous version of equation (3.1).

Applying the divergence and mean-free projection operator P to (3.1), we find

{
du + P (u · ∇u) dt− P£∗

ξk
u dZk

t = 0 on (0, T ] × Td,

u = u0 on {0} × Td,
(RE)

which is to be solved for u : [0, T ] → H̊m
σ . We will now define the notion of solution of 

(RE) we will use throughout the paper, which is simply a specific case of Definition A.4. 
Formally, the definition can be obtained by integrating (RE) over an arbitrary interval 
and iterating the equation into the dZk-integral twice. In fact, in the proof of local 
existence (see Section 5), we smooth out the path Z and iterate in such a manner.

Definition 3.1 (Hm-solution). Let m ≥ m∗ and ξ ∈ (Wm+2,∞
σ )K . We say a bounded path 

u : [0, T ] → Hm is a Hm-solution of (RE) on the interval [0, T ] if u|t=0 = u0 and

uP,

st := δust +

t∫
s

P (ur · ∇ur) dr − P£∗
ξk
usZ

k
st − P£∗

ξk
P£∗

ξl
usZ

lk
st, (s, t) ∈ ΔT , (3.2)

satisfies uP,
 ∈ C
p
3−var
2,loc ([0, T ]; H̊m−3

σ ). A bounded path u : [0, T ] → Hm is said to be a 
Hm-solution of (RE) on the interval [0, T ) if u is a Hm-solution of (RE) on the interval 
[0, T ′] for all 0 < T ′ < T .

Remark 3.2. An Hm-solution actually possesses additional time-smoothness properties, 
as proven in Theorem 3.7 (see, also, Theorem A.5).

In Section 6.1, given Hm-solution u of (RE) on an interval [0, T ], we apply the 
sewing lemma (i.e., Lemma 2.2) to construct the rough integral 

∫ ·
0 £∗

ξk
usdZk

s ∈
Cp−var([0, T ]; Hm−3); that is, for all t ∈ [0, T ],

t∫
0

£∗
ξk
us dZk

s := lim
|p|→0

#p−1∑
i=1

(
£∗

ξk
utiZ

k
titi+1

+ £∗
ξk
P£∗

ξl
utiZ

lk
titi+1

)
.

p∈P([0,t])
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It follows by the continuity and linearity of the divergence and mean-free projection map 
P : Hm → H̊m

σ that for all t ∈ [0, T ],

ut − u0 +
t∫

0

P (us · ∇us) ds−
t∫

0

P£∗
ξk
us dZk

s = 0, (3.3)

where P
∫ ·
0 £∗

ξk
us dZk

s ∈ Cp−var([0, T ]; H̊m−3
σ ) is defined from the projected expansion 

appearing in the right-hand-side of (3.2). The pressure q and harmonic constant h can 
then be recovered using the Helmholtz decomposition P = I−Q −H (see Section 2.1.1)

∇qt :=
t∫

0

Q(us · ∇us) ds−
t∫

0

Q£∗
ξk
us dZk

s , ht := −
t∫

0

H£∗
ξk
us dZk

s , t ∈ [0, T ].

Proposition 3.3 (Recovery of pressure and harmonic constant). If u is a Hm-solution of 
(RE) on the interval [0, T ], then there exists 

∫ ·
0 £∗

ξk
usdZ

k
s ∈ Cp−var([0, T ]; Hm−3) and 

uniquely determined q ∈ Cp−var([0, T ]; H̊m−2) and h ∈ Cp−var([0, T ]; Rd) initiating from 
zero such that for all t ∈ [0, T ],

ut − u0 +
t∫

0

us · ∇us ds−
t∫

0

£∗
ξk
us dZk

s = −∇qt − ht. (3.4)

Using (2.8) and (2.6), we find that (3.1) can be expressed in terms of the associated 
co-vector u� (see Section 2.1.2):

du� + £uu
� dt + £ξku

� dZk
t = −d(dqt − 2−1|u|2dt) − dh�

t. (3.5)

Let ω = du� = (∂xiuj − ∂xjui)ei ∧ ej . By applying the exterior derivative d to (3.5) and 
using that d£v = £vd we arrive at the vorticity formulation:

⎧⎪⎪⎨
⎪⎪⎩

dω + £uω dt + £ξkω dZk
t = 0 on (0, T ] × Td,

u = BSω on (0, T ] × Td,

ω = du�
0 on {0} × Td,

(3.6)

where for a divergence-free vector field v we have (see Section 2.1.2)

£vω =
∑
i<j

(vq∂xqωij + ωqj∂xivq + ωiq∂xjvq)ei ∧ ej

=
∑
i<j

(∂xi(vqωqj) − ∂xj (vqωqi)) ei ∧ ej = d[ω(v, ·)]. (3.7)
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Recall that (see Section 2.1.1) for given s ∈ R, H̊s
d := {ω ∈ H̊s(Td; Λ2(Rd)∗) : dω =

0} and that BS : H̊m−1
d → H̊m

σ denotes the inverse of d�. The Cartan formulation (3.7)
of the Lie derivative £vω = d[ω(v, ·)] implies that the dynamics preserve the property 
that dω = 0 and ω̂(0) = 0, and thus no Lagrange multipliers are needed to enforce these 
constraints. In contrast, the velocity equation requires the pressure and the harmonic 
constant to enforce the divergence-free constraint.

We summarize the equivalence between the velocity and vorticity formulation in the 
following proposition. The direct implication is a simple consequence of (2.8) and (2.6)
and the converse follows from the properties of the Biot-Savart operator presented in 
Section 2.1.1.

Proposition 3.4 (Vorticity formulation). If u is a Hm-solution of (RE) on the interval 
[0, T ], then ω = du� : [0, T ] → H̊m−1

d is bounded and

ω

st := δωst +

t∫
s

£ur
ωr dr + £ξkωsZ

k
st − £ξk£ξlωsZ

lk
st, (s, t) ∈ ΔT , (3.8)

satisfies ω
 ∈ C
p
3−var
2,loc ([0, T ]; H̊m−4

d ). Moreover, ω
 = d�uP,
. Conversely, if ω and ω


belong to the aforementioned spaces and satisfy (3.8) with ω0 := du�
0 and u := BSω, 

then u is Hm-solution of (RE) and uP,
 = BSω
.

Remark 3.5. In dimension two, the vorticity ω can be identified with a scalar-valued 
function ω̃ = curlu = �ω = ω12. Using (2.9), we find that

dω̃ + u · ∇ω̃ dt + ξk · ∇ω̃ dZk
t = 0. (3.9)

The scalar transport structure then implies that Lp-norms of ω̃ are conserved, which is 
used to prove global well-posedness (see (3.14) in Theorem 3.10). In dimension three, the 
vorticity ω can be identified with a vector field ω̂ = curlu = 	 �ω = ω23e1+ω31e2+ω12e3. 
Applying (2.10), we get

dω̂ + [u, ω̂] dt + [ξk, ω̂] dZk
t = 0.

Remark 3.6. In the vorticity equation, neither Lagrange multipliers, nor projections, 
appear. The structure of the operators (i.e., (3.7)) imply that the mean-free and exterior-
derivative-free condition is preserved by the dynamics. This fact plays an important role 
in the proof of Theorem 4.2 in which we obtain a priori solution estimates of (RE) using 
the vorticity formulation. More precisely, the linear hyperbolic symmetric structure of 
the operator in the rough part of (3.6) enables us to develop an ‘equation’ for the ‘square’ 
ω ⊗ ω. Unlike in the stochastic setting, there is no Burkholder-Davis-Gundy inequality 
that can be used to estimate the rough integral, and thus we make use of the method 
of unbounded rough drivers [9], and more precisely Theorem A.5 to obtain remainder 
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estimates for the equation and the ‘squared’ equation. It is not clear how to obtain 
a priori estimates of (RE) directly due to the projection operators, or equivalently the 
presence of the pressure and harmonic constant. As a consequence, altering the structure 
of the operator appearing in the dZ-term in (3.1) even in a multiplicative way directly 
impacts the structure of the vorticity equation and prevents us from obtaining a priori 
solution estimates.

3.2. Statement of the main results

Recall that we always work under the assumption m ≥ m∗ := �d
2� + 2. Our first main 

results establish local well-posedness and the existence of a maximally extended solution 
in Hm of (RE). Recall that �Z is the control of Z, which is defined in (2.12).

Theorem 3.7 (Local well-posedness). Assume that u0 ∈ H̊m
σ and ξ ∈ (Wm+2

σ )K . For all 
T∗ > 0 satisfying

eC1(1+�Z(0,T∗))T∗ < |u0|−1
Hm∗ , (3.10)

where C1 = C1(p, d, |ξ|Wm∗+2,∞) depends in an increasing way on |ξ|Wm∗+2,∞ , there 
exists a unique Hm-solution u ∈ Cw([0, T∗]; H̊m

σ ) ∩Cp−var([0, T∗]; H̊m−1
σ ) of (RE) on the 

interval [0, T∗] satisfying

sup
t≤T∗

|ut|Hm∗ ≤ eC1(1+�Z(0,T∗))

|u0|−1
Hm∗ − eC1(1+�Z(0,T∗))T∗

. (3.11)

Moreover, if m > m∗, there is a constant C2 = C2(p, d, m, |ξ|Wm+2,∞) which increases 
with |ξ|Wm∗+2,∞ , such that

sup
t≤T∗

|ut|Hm ≤
√

2 exp

⎛
⎝C2

⎛
⎝ T∗∫

0

|∇us|L∞ ds + �Z(0, T∗)

⎞
⎠
⎞
⎠ |u0|Hm . (3.12)

If ξ ∈ (Wm+4,∞
σ )K , then u ∈ C([0, T∗]; H̊m

σ ).

Corollary 3.8 (Maximally extended solution). Assume that u0 ∈ H̊m
σ and ξ ∈ (Wm+2

σ )K . 
Then there exists a unique maximally extended Hm-solution u ∈ Cw([0, Tmax); H̊m

σ ) ∩
Cp−var([0, Tmax); H̊m−1

σ ) of (RE) on the interval [0, Tmax). The time Tmax is uniquely 
specified by the property if Tmax < ∞, then lim supt↑Tmax

|ut|Hm∗ = ∞. If ξ ∈
(Wm+4,∞

σ )K , then u ∈ C([0, Tmax); H̊m
σ ).

The next theorem extends the Beale-Kato-Majda (BKM) blow-up criterion [10].
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Theorem 3.9 (BKM blow-up criterion). Assume that u0 ∈ H̊m
σ and ξ ∈ (Wm∗+4,∞

σ )K
if m = m∗ and ξ ∈ (Wm+2

σ )K if m > m∗. Let u denote the maximally extended Hm-
solution of (RE) and ω = du� denote its vorticity. Then there are constants C1 =
C1(d, m) and C2 = C2(p, d, m, |ξ|Wm+2,∞) depending in an increasing way on |ξ|Wm+2,∞

such that for all T < Tmax,

sup
t≤T

|ut|Hm ≤ C1(1 + |u0|Hm) exp

⎛
⎝C2(1 + �Z(0, T )) exp

⎛
⎝C2

T∫
0

|ωs|L∞ ds

⎞
⎠
⎞
⎠ . (3.13)

Moreover, Tmax < ∞ if and only if 
∫ Tmax
0 |ωt|L∞ dt = ∞.

In dimension two, we obtain global well-posedness.

Theorem 3.10 (Global well-posedness in 2d). Let d = 2. Assume that u0 ∈ H̊m
σ and 

ξ ∈ (Wm+2
σ )K . Let u denote the maximally extended Hm-solution and ω̃ = curlu denote 

its scalar vorticity. Then Tmax = ∞ and for all t ≥ 0 and p ∈ [2, ∞],

|ω̃t|Lp = |ω̃0|Lp . (3.14)

Moreover, there are constants C1 = C1(m) and C2 = C2(p, m, |ξ|Wm+2,∞) that increase 
with |ξ|Wm+2,∞ such that for all t ≥ 0

|ut|Hm ≤ C1(1 + |u0|Hm) exp (C2(1 + �Z(0, t)) exp (C2|ω̃0|L∞t)) . (3.15)

The following corollary establishes the continuity of the solution map with respect to 
the data.

Corollary 3.11 (Continuous dependence on data). Assume that u0 ∈ H̊m
σ and ξ ∈

(Wm+2
σ )K . Further, assume that {Zn}∞n=1 converges to Z in Cp−var

g and that {(un
0 , ξ

n)}∞n=1
is bounded in H̊m

σ ×Wm+2,∞
σ and converges to (u0, ξ) in L̇2

σ × (W 2,∞
σ )K . Denote by u

and {un}∞n=1 the maximally extended solutions corresponding to the data (u0, ξ, Z) and 
{(un

0 , ξ
n, Zn)}∞n=1, and let (q, h) and {(qn, hn)}∞n=1 denote the associated pressures and 

harmonic constants.

• If d = 2, then {un}∞n=1 converges to u in C([0, ∞); H̊m−ε
σ ) for any ε > 0 and in the 

weak-star topology of L∞([0, ∞); H̊m
σ ). Moreover, {(qn, hn)}∞n=1 converge to (q, h) in 

C([0, ∞); H̊m−2−ε) × C([0, ∞); Rd) for any ε > 0.
• If m > m∗, then for all T < Tmax there exists an N(T ) ∈ N such that 

{un}∞n=N(T ) converges to u in C([0, T ]; H̊m−ε
σ ) for any ε > 0 and in the weak-

star topology of L∞([0, T ]; H̊m
σ ). Moreover, {(qn, hn)}∞n=N(T ) converge to (q, h) in 

C([0, T ]; H̊m−2−ε) × C([0, T ]; Rd) for any ε > 0.



20 D. Crisan et al. / Journal of Functional Analysis 283 (2022) 109632
Remark 3.12 (Rough Navier-Stokes and inviscid limit). Let ν > 0. In [41], two of the 
authors considered the rough Navier-Stokes system given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

du + u · ∇u dt− £∗
ξk
u dZk

t = νΔu− d∇qt − dht, on [0, T ] × Td,

div u = 0 on [0, T ] × Td,∫
Td u dV = 0,

∫
Td q dV = 0 on [0, T ],

u = u0, q = 0, h = 0 on {0} × Td,

for d ∈ {2, 3}. We showed that for arbitrarily given u0 ∈ H̊1
σ, there exists a time 

T∗ = T∗(d, �Z, |ξ|W 3,∞) and a solution u ∈ L2([0, T∗]; H̊2
σ) ∩ L∞([0, T∗]; H̊1

σ). In 
fact, the solution was not constrained to be mean-free in [41], but the proof goes 
through in a simpler manner. In dimension two, we also proved that there is a unique 
global solution of the Navier-Stokes system. With minor changes in the present pa-
per, we can derive the existence and uniqueness of a maximally extended solution 
u ∈ L2([0, Tmax); H̊m+1

σ ) ∩ C([0, Tmax); H̊m
σ ) in any dimension d ≥ 2. Moreover, we 

can show that if d = 2 or m > m∗, then for an arbitrarily given {νn}∞n=1 converging 
to zero, the corresponding sequence of Navier-Stokes solutions {un}∞n=1 converges to the 
Euler solution in C([0, Tmax); H̊m−ε

σ ) for any ε > 0 and in the weak-star topology of 
L∞([0, Tmax); H̊m

σ ). The inviscid limit stochastic Naiver-Stokes equations with additive 
and multiplicative noise has been studied in [35,7].

3.2.1. Applications to stochastic partial differential equations
In what follows, we will discuss the Wong-Zakai approximation of the Euler stochastic 

partial differential equation (SPDE) driven by Brownian motion in dimension two. Let 
B = {Bk}Kk=1 denote a collection of K-independent Brownian motions adapted to a 
filtered probability space (Z, F , F = {Ft}t≥0, P ) satisfying the usual conditions. In [48], 
it was shown that for every F0-adapted initial velocity u0 ∈ H̊m−1

σ , there exists a unique 
F -adapted process ū ∈ C([0, ∞); H̊m

σ ) such that P -a.s. for all t ∈ [0, ∞),

ūt − u0 +
t∫

0

P (ūs · ∇ūs) ds−
t∫

0

P£∗
ξk
ūs ◦ dBk

s = 0, (3.16)

where equality is understood in L2 and the stochastic integral is understood in the 
Stratonovich sense.

By Proposition 3.5 of [29], P -a.s., B = (δB, Bstrat) ∈ Cp−var
g (R+; RK), where for each 

l, k ∈ {1, . . . , K} and (s, t) ∈ Δ[0,∞):

Bstrat;lk
st :=

t∫
(Bl

r −Bl
s) ◦ dBk

r .
s
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By Proposition 3.6 of [29], the canonical lift of a dyadic piecewise-linear approxima-
tion {Bn}∞n=1 of the Brownian motion B, denoted by {Bn}∞n=1 = {(Bn, Bn)}∞n=1 ∈
C1−var
g (R+; RK), converges P -a.s. to Z in Cp−var

g (R+; RK).
By Corollary 3.10, P -a.s., corresponding to the data (u0, B, ξ) and {(u0, Bn, ξ)}∞n=1, 

there exist unique solutions u, {un}∞n=1 ∈ C([0, ∞), H̊m
σ ) of (3.9). Owing to Corol-

lary 3.11, the sequence {un}∞n=1 converges to u in C([0, Tmax); H̊m−ε
σ ) for any ε > 0

and in the weak-star topology of L∞([0, ∞); H̊m
σ ).

For every t ∈ R+, the map Z|[0,t] ∈ Cp−var
g ([0, t]; RK) �→ u ∈ C([0, t], H̊m−

σ ) is con-
tinuous and the map ζ ∈ Z �→ B(ζ)|[0,t] ∈ Cp−var

g ([0, t]; RK) is measurable. Thus, we 
conclude that the composition of the two maps is measurable, and hence that the solution 
u is F-adapted. As explained above (see (3.3)), P -a.s., for all t ∈ [0, T ], we have

ut − u0 +
t∫

0

P (ur · ∇ur) dr −
t∫

0

P£∗
ξk
us dBk

s = 0.

It can be shown (see, e.g., [29, Corollary 5.2]) that P -a.s. for all t ∈ [0, T ],

t∫
0

P£∗
ξk
us dBk

s =
t∫

0

P£∗
ξk
us ◦ dBk

s .

Therefore, we obtain the following Wong-Zakai approximation result.

Theorem 3.13 (Wong-Zakai approximation). The stochastic process u is indistinguishable 
from ū, and P -a.s., {un}∞n=1 converges to u in C([0, ∞); H̊m−ε

σ ) for any ε > 0 and in 
the weak-star topology of L∞([0, ∞); H̊m

σ ).

Remark 3.14 (Strook-Varadhan support theorem, large deviations principle, and random 
dynamical system). As in [29, Section 9.3], using the continuity of the solution map, one 
can characterize the support of the law of the SPDE (3.16) in C([0, Tmax); H̊m−ε

σ ) for any 
ε > 0 in terms of Cameron-Martin space and prove a large deviations principle (making 
use of contraction principle) for

du + P (u · ∇u) dt− εP£∗
ξk
u ◦ dBk

t = 0,

which concerns small-noise deviations about solutions of the Euler system

∂tu + P (u · ∇u) = 0.

Moreover, if the driving rough path Z : Z → Cp−var
g is a continuous p-rough path co-

cycle,1 viz.

1 This is the appropriate notion of random shifts in the rough path which enables the construction of a 
random dynamical system.
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Z0,s+t(ζ) = Z0,s(ζ) + Z0,t(θsζ),

Z0,s+t(ζ) = Z0,s(ζ) + Z0,t(θsζ) + Z0,s(ζ) ⊗ Z0,t(θsζ), ∀(s, t) ∈ ΔT ,

where θs is the time-shift θsζt = ζt+s − ζs, then the 2D-system (RE) generates a contin-
uous random dynamical system on C([0, Tmax); H̊m−ε

σ ) for any ε > 0. See [41].

Remark 3.15 (Gaussian rough paths). Our main results also yield a solution theory in 
any dimension d ∈ {2, 3, . . . , } for a class of Euler SPDEs driven by fractional Brownian 
or more general Gaussian processes transport noise. We refer the reader to [29] for more 
details about the lifts of Gaussian processes to the space of geometric rough paths. In the 
introduction, we have discussed the potential applications of such models to stochastic 
parameterizations of sub-grid scales of ideal fluids.

3.2.2. Critical points of the Clebsch and Hamilton-Pontryagin variational principles
For an arbitrarily given Fréchet space E and time T > 0, denote by DZ([0, T ]; E) the 

space of E-valued Z-controlled rough paths on the interval [0, T ]. We refer to [29] for 
precise definitions. In [18], we introduced the Clebsch action functional

SClbZ(u, (λq)dq=1, (aq)dq=1) =
T∫

0

1
2 |ut|2L2 dt +

d∑
q=1

(
λq
t ,da

q
t + £ut

aqt dt + £ξka
q
t dZk

t

)
L2 ,

defined for u ∈ Cp−var([0, T ]; C̊∞
σ ) and (λq)dq=1, (aq)dq=1 ∈ DZ([0, T ]; C∞). We showed 

that critical points are characterized by the following system of RPDEs:

⎧⎪⎪⎨
⎪⎪⎩

du− P£∗
uudt− P£∗

ξk
udZk

t = 0, u = P (
∑d

q=1 a
q∇λq),

dλ + £uudt + £ξkλdZk
t = 0,

da + £uadt + £ξkadZk
t = 0.

We also introduced the Hamilton-Pontryagin action functional

SHPZ(u, φ, λ) =
T∫

0

1
2 |ut|2L2 dt +

(
λt,dφt ◦ φ−1

t − ut dt− ξk dZk
t

)
L2 , (3.17)

defined for

(u, λ, φ) ∈ Cp−var([0, T ]; C̊∞
σ ) ×DZ([0, T ]; C̊∞

σ ) × DiffZ([0, T ];Td).

The space DiffZ([0, T ]; Td) consists of all rough flows (i.e., diffeomorphisms on Td) 
{φt}t∈[0,T ] (see [18]) of the form
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{
dφ = v ◦ φ dt + σk ◦ φ dZk

t , t ∈ (0, T ],
φ0 = id,

for some (v, σ) ∈ Cp−var([0, T ]; C̊∞
σ ) ×C∞([0, T ]; (C∞

σ )K). Moreover, for φ ∈ DiffZ([0, T ];
Td), the integral in (3.17) is defined by

T∫
0

〈λt,dφt ◦ φ−1
t 〉 :=

T∫
0

(λt, vt)L2 dt + (λt, σt)L2 dZk
t .

We refer the reader to [18] for the specifics of how variations of DiffZ([0, T ]; Td) are 
defined. In [18], we showed that if Z is truly rough (see [29, Definition 6.3]), then (u, φ, λ)
is a critical point of SHPZ if and only if

{
du− P£∗

uudt− P£∗
ξk
udZk

t = 0, u = λ,

dφ = u ◦ φ dt + ξk ◦ φ dZk
t .

In [18], we showed that critical points satisfy a Kelvin circulation balance law: for an 
arbitrarily given smooth closed curve γ ⊂ Td and all t ∈ [0, T ],

d
∮

φt(γ)

u�
t =

∮
φt(γ)

(du�
t + £ut

u�
t dt + £ξku

�
t dZk

t ) = 0.

Assume that u0 ∈ C̊∞
σ and ξ ∈ (C̊∞

σ )K . Denote by u ∈ Cp−var([0, Tmax); C̊∞
σ ) the 

unique maximally extended H∞-solution of (RE) and let T < Tmax. Let {φt}t∈[0,T ] ∈
DiffZ([0, T ]; Td) denote the rough flow (see, e.g., [13,29,18]) satisfying

{
dφ = u ◦ φ dt + ξk ◦ φ dZk

t , t ∈ (0, T ],
φ0 = id .

It follows that (u, φ, u) is a critical point of SHPZ provided Z is truly rough.
To show that we can construct a critical point of SClbZ , we must find λ and a such 

that the so-called Clebsch representation u� = P (
∑d

q=1 a
qdλq) holds. Let λ = φ−1 and 

a = u0 ◦ φ−1. By Theorem 3.3 in [18], we have

{
dλ + £uudt + £ξkλdZk

t = 0,
da + £uadt + £ξkadZk

t = 0.

Proceeding as in [24, Lemma 3] and applying the product rule for geometric rough paths 
(see, e.g., [29,18]), it follows that v =

∑d
q=1 a

qdλq satisfies the linear RPDE

dv − £∗
uv dt− £∗

ξ v dZk
t = 0.
k



24 D. Crisan et al. / Journal of Functional Analysis 283 (2022) 109632
By virtue of identity (2.7), we find that v̄ := Pv ∈ Cp−var([0, T ]; H̊m
σ ) is a solution of the 

constrained (to the space of divergence and mean-free vector-fields) linear RPDE given 
by

dv̄ − P£∗
v v̄ dt− P£∗

ξk
v̄ dZk

t = 0. (3.18)

As in Proposition 3.4, using the operators d� and BS we can establish an equivalence 
between solutions of (3.18) and solutions of the unconstrained linear RPDE

dω̄ + £uω̄ dt + £ξk ω̄ dZk
t = 0.

Thus, by the uniqueness of solutions of unconstrained linear RPDEs (see, e.g., (4.12) in 
Theorem 4.4 or [9]), we can deduce uniqueness of solutions of (3.18). Since u also solves 
(2.7), and hence (3.18), we deduce that

u = P

(
d∑

q=1
aq∇λq

)
= P (∇φ−1u0 ◦ φ−1) ⇔ u� = Pφ∗u

�
0, (3.19)

where with abuse of notation we denote by P ∈ L(Hs(Td; (Rd)∗); Hs
δ (Td; (Rd) the 

corresponding projection associated with the one-form Hodge decomposition (see Sec-
tion 2.1.1). It follows that (u, λ, a) is a critical point of SClbZ . The above representation 
extends the well-known Weber formula (see, e.g., [20]). Since the exterior derivative d is 
natural with the push-forward, we also obtain the following representation of the vorticity 
two-form ω = φ∗ω0.

4. A priori estimates

The goal of this section is to establish a priori estimates of remainders and solutions 
of (RE).

4.1. Remainder estimates

Theorem 4.1 (Remainder estimates). Let u be an Hm-solution of (RE) on the interval 
[0, T ] and �μ(s, t) :=

∫ t

s
|∇ur|L∞ |ur|Hm dr, (s, t) ∈ ΔT . Then there exists a constant 

C = C(p, d, m, |ξ|Wm+2,∞) which increases with |ξ|Wm+2,∞ such that for all (s, t) ∈ ΔT

with C�Z(s, t) ≤ 1, it holds that

|uP,
|
p
3
p
3−var;[s,t];Hm−3 ≤ C

(
sup

s≤r≤t
|ur|Hm�Z(s, t)

3
p + �μ(s, t)�Z(s, t)

1
p

)
.

Moreover, for all (s, t) ∈ ΔT with C�Z(s, t) + C�μ(s, t) dr ≤ 1, it holds that
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|uP,�|
p
2
p
2−var;[s,t];Hm−2 ≤ C

(
�μ(s, t) + sup

s≤r≤t
|ur|Hm�Z(s, t)

2
p

)

|u|pp−var;[s,t];Hm−1 ≤ C

(
�μ(s, t) + sup

s≤r≤t
|ur|Hm

(
�μ(s, t)

1
p + �Z(s, t)

1
p

))
,

where

uP,�
st := δust − P£∗

ξk
usZ

k
st = −

t∫
s

P (ur · ∇ur) dr + P£∗
ξk
P£∗

ξl
usZ

lk
st + uP,


st .

Proof. By Proposition 3.4, ω = du� : [0, T ] → H̊m−1
d ) is bounded and

ω

st := d�uP,
 = δωst +

t∫
s

£ur
ωr dr + £ξkωsZ

k
st − £ξk£ξlωsZ

lk
st, (s, t) ∈ ΔT , (4.1)

satisfies ω
 ∈ C
p
3−var
2,loc ([0, T ]; H̊m−4

d ). We recall that for a vector-field v ∈ Hm,

£vω =
∑
i<j

(vq∂xqωij + ωqj∂xivq + ωiq∂xjvq)ei ∧ ej .

Moreover,

ω�
st = d�uP,� = δωst + £ξkωsZ

k
st = −

t∫
s

£ur
ωr dr + £ξk£ξlωsZ

lk
st + ω


st.

The strategy of the proof is as follows. We form a system of equations for ω and its 
derivatives up to order m − 1 of the form Definition A.4 and then apply Theorem A.5
and (2.4). Let Im−1 = {∅} ∪ ∪m−1

n=1 {1, . . . , d}n. For I = ∅, let |I| = 0 and for given 
I = (i1, . . . , in) ∈ Im−1 define |I| = n. For given I = (i1, . . . , in) ∈ Im−1, define 
∂I = ∂xi1 ◦ · · · ◦ ∂xin . Let Ad,m−1 = ⊕m−1

n=0 (Λ2(Rd)∗)⊗n.
For given n ∈ {0, 1, 2, 3}, let En = Hn(Td; Ad,m−1). It follows that (En)3n=0 is a 

scale with a smoothing (see Section 2.1) Jη = P≤�η−1�, η ∈ (0, 1), in the sense of 
Definitions A.1 and A.3. For a given function Φ ∈ En, i, j ∈ {1, . . . , d} with i < j, and 
I ∈ Im−1, denote by ΦI

ij its (I, ij)-th component.
Define Ω ∈ L∞([0, T ]; E−0) ∩C([0, T ]; E−3) by ΩI = ∂Iω and Ω
 ∈ C

p
3−var
2,loc ([0, T ]; E−3)

by ΩI = ∂Iω
 for I ∈ Im−1.
Applying the weak derivative operators ∂I to (4.1), we find that for all (s, t) ∈ ΔT

and Φ ∈ E3,

〈Ω

st,Φ〉 = 〈δΩst,Φ〉 + 〈μst,Φ〉 + 〈Ωs, [A1,∗

st + A2,∗
st ]Φ〉,

where
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• 〈μst, Φ〉 :=
∑

I∈Im−1

∫ t

s

(
(∂I [£ur

ωr] − uq
r∂xq∂Iωr,ΦI)L2 + (uq

r∂
Iωr, ∂xqΦI)L2

)
dr,

• A1
stΦ := (ξqk∂xqΦ + νmk Φ)Zk

st,
• A2

stΦ := − ((ξqk∂xq + νmk ) (ξql ∂xq + νml ) Φ)Zlk
st,

and where for each k ∈ {1, . . . , K}, νmk : Td → L(Ad,m−1; Ad,m−1) is implicitly and 
inductively defined as follows: for i, j ∈ {1, . . . , d},

(νmk Φ)∅ij = Φ∅
qj∂xiξqk + Φ∅

iq∂xjξqk,

and for I ∈ Im−1 with |I| < m − 1,

∂xl [ξqk∂xqΦ + νmk Φ]Iij = ξqk∂xqΦ(I,l)
ij + (∂xlξjk)Φ

(I,j)
ij + ((∂xlνmk )Φ)Iij + (νmk ∂xlΦ)Iij

= ξqk∂xqΦ(I,l)
ij + (νmk Φ)(I,l)ij .

Consequently, the components of the νmk depend only at most m derivatives of ξk. In 
order to apply Theorem A.5, we need to show that the pair A = (A1, A2) is an unbounded 
rough driver (see Definition A.2) in the scale (En) and that we have control of the non-
linearity μ in E−1 in the sense of (A.4).

Since Z satisfies Chen’s relation (i.e., (2.11)), (A.2) holds for A. Moreover, for all 
Φ ∈ E3 and (s, t) ∈ ΔT , it holds that

A1,∗
st Φ = (−ξk · ∇Φ + νm,�

k Φ)Zk
st,

|A1,∗
st Φ|En

�d,m |ξ|Wm+n,∞ |Φ|En+1�Z(s, t)
1
p , ∀n ∈ {0, 2},

|A2,∗
st Φ|En

�d,m |ξ|2Wm+1+n,∞ |Φ|En+2�Z(s, t)
2
p , ∀n ∈ {0, 1}.

Thus, A is an unbounded rough driver in the scale (En).
We will now show that (A.4) holds for μ. For all I ∈ Im−1, we have

∂I [£uω] − uq∂xq∂Iω = ∂I [uq∂xqω] − uq∂xq∂Iω + ∂I [ωqj∂xiuq + ωiq∂xjuq].

Applying (2.1), (2.2), and (2.4), we get
∑

I∈Im−1

|∂I [£uω] − uq∂xq∂Iω|L2 �d,m |∇u|L∞ |ω|Hm−1 + |u|Hm |ω|L∞

�d,m |∇u|L∞ |ω|Hm−1 . (4.2)

Using (4.2) and Poincare’s inequality, we find that there exists C = C(d, m) such that 
for all (s, t) ∈ ΔT ,

|μst|E−1 ≤ C

t∫
|∇ur|L∞ |ωr|Hm−1 dr.
s
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Therefore, in the sense of Definition A.4, Ω is a solution of

dΩ + μ(dt) + A(dt)Ω = 0.

We complete the proof by invoking Theorem A.5 and (2.4). �
4.2. Solution estimates

We will now present the main solution estimates that we will use to prove local 
existence and establish the BKM blow-up criteria.

Theorem 4.2 (Solution estimates). Let u be an Hm-solution of (RE) on the interval [0, T ]. 
Then for all m′ ∈ N0 such that 1 ≤ m′ ≤ m − 2, there are constants C1 = C1(d, m′) and 
C = C(p, d, m′, |ξ|Wm′+2,∞) depending in an increasing way on |ξ|Wm′+2,∞ such that

sup
t≤T

|ut|Hm′ ≤
√

2 exp

⎛
⎝C

⎛
⎝ T∫

0

|∇ur|L∞ dr + �Z(0, T )

⎞
⎠
⎞
⎠ |u0|Hm′ (4.3)

sup
t≤T

|ut|Hm′ ≤ C1(1 + |u0|Hm′ ) exp

⎛
⎝C(1 + �Z(0, T )) exp

⎛
⎝C

T∫
0

|ωr|L∞ dr

⎞
⎠
⎞
⎠ . (4.4)

If m∗ ≤ m′ ≤ m − 2, then for all T∗ ∈ [0, T ] satisfying

eC(1+�Z(0,T∗))T∗ < |u0|−1
Hm′ ,

it holds that

sup
t≤T∗

|ut|Hm′ ≤ eC(1+�Z(0,T∗))

|u0|−1
Hm′ − eC(1+�Z(0,T∗))T∗

. (4.5)

Proof. Using the notation of the proof of Theorem 4.1, we let

Ω = (∂Iω)I∈Im′−1 ∈ L∞([0, T ];H2(Td;Ad,m′−1) ∩ C([0, T ];H−1(Td;Ad,m′−1)),

Ω
 = (∂Iω
)I∈Im′−1 ∈ C
p
3−var
2,loc ([0, T ];H−1(Td;Ad,m′−1)),

and

Ω� = (∂Iω�)I∈Im′−1 ∈ C
p
2−var
2,loc ([0, T ];L2(Td;Ad,m′−1)).

Here, we have used the worst possible regularity at m′ = m − 2.
For given n ∈ {0, 1, 2, 3}, let En = Wn,∞(Td; Ad,m′−1 ⊗ Ad,m′−1). Let ρ : Rd → R

denote a non-negative radially symmetric function with support in the unit ball that 
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integrates to one. For η ∈ (0, 1), let ρη = η−dρ( ·
η ) and define the smoothing operator 

Jη : E0 → C∞(Td; Ad,m′−1 ⊗ Ad,m′−1) by JηΦ = Φ ∗ ρη =
∫
Rd ρη(y)Φ(· − y)dV . It 

follows that (En)3n=0 is a scale with smoothing (see Section 2.1) Jη = ρη∗, η ∈ (0, 1), in 
the sense of Definitions A.1 and A.3. For Φ ∈ E3 and k ∈ {1, . . . , K}, denote

LξkΦ = ξqk∂xqΦ + νm
′

k Φ,

where νm
′

k is defined as in the proof of Theorem 4.1.
In order to obtain the desired estimates, we will proceed as follows. First, we will 

write down an unbounded rough driver equation (Definition A.4) for the bounded path 
Ω⊗2 = Ω ⊗ Ω : [0, T ] → E−0. Second, we will apply Theorem A.5 to obtain a bound 
on the associated remainder term Ω⊗2,
. In the final step, we will test against a Φ = I

such that 〈Ω ⊗ Ω, I〉 = |ω|2
Hm′−1 and apply rough Gronwall’s lemma (i.e., Lemma B.1) 

to obtain two solution estimates; one of which is used for local existence and other of 
which is used to derive the BKM blow-up criterion.

For arbitrarily given M1, M2 ∈ Ad,m′−1, denote M1⊗̂M2 = 2−1(M1⊗M2 +M2⊗M1). 
Note that since Z is geometric, we have that for all k, l ∈ {1, . . . , K},

LξkΩs ⊗ LξlΩsZ
k
stZ

l
st = LξkΩs ⊗ LξlΩs(Zlk

st + Zkl
st) = 2LξkΩs⊗̂LξlΩsZ

lk
st. (4.6)

We will need the following fact. The pointwise tensor product of smooth functions 
extends canonically to a continuous bi-linear map

⊗ : H1(Td;Ad,m′−1) ×H−1(Td;Ad,m′−1) → E−1.

Moreover, for all f ∈ H1(Td; Ad,m′−1), g ∈ H−1(Td; Ad,m′−1), and Φ ∈ E1,

〈f ⊗ g,Φ〉 := 〈g, (f,Φ)Ad,m′−1〉. (4.7)

Applying (4.7) and (4.6), we find that for all Φ ∈ E1 and (s, t) ∈ ΔT ,

〈δΩ⊗2
st ,Φ〉 = 2〈Ωs⊗̂δΩst,Φ〉 + 〈δΩst ⊗ δΩst,Φ〉

= −〈Mst,Φ〉 − 2〈Ωs⊗̂LξkΩs,Φ〉Zk
st

+ 2〈Ωs⊗̂LξkLξlΩs + Lξkωs⊗̂Lξlωs,Φ〉Zlk
st + 〈Ω⊗2,


st ,Φ〉
= −〈Mst,Φ〉 − 〈Ω⊗2

s , [Γ1,∗
st + Γ2,∗

st ]Φ〉 + 〈Ω⊗2,

st ,Φ〉, (4.8)

where

〈Mst,Φ〉 :=
∑

I,J∈Im′−1

t∫
s

〈∂I [£ur
ωr] ⊗ ∂Jωr + ∂Iωr ⊗ ∂J [£ur

ωr],ΦIJ 〉 dr,

Γ1Φ := (ξqk∂xqΦ + 2(νm
′

k ⊗̂ id)Φ)Zk
st,
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Γ2Φ := −(ξqk∂xq + 2νm
′

k ⊗̂ id)(ξql ∂xq + 2νm
′

l ⊗̂ id)ΦZlk
st,

〈Ω⊗2,

st ,Φ〉 := 2〈Ωs⊗̂Ω


st,Φ〉

+
∑

I,J∈Im′−1

t∫
s

〈∂I [£ur
ωr] ⊗ ∂Jδωrs + ∂Iδωrs ⊗ ∂J [£ur

ωr],ΦIJ 〉 dr

+ 〈Ω�
st ⊗ δΩst,Φ〉 + 〈LξkΩsZ

k
st ⊗ Ω�

st,Φ〉.

Here, 2νm′

k ⊗̂ id : Td → L(Ad,m′−1 ⊗ Ad,m′−1; Ad,m′−1 ⊗ Ad,m′−1) is the unique linear 
map induced by the bi-linear map 2νm′

k (x)⊗̂ id : Ad,m′−1×Ad,m′−1 → Ad,m′−1⊗Ad,m′−1, 
x ∈ Td, defined for given (M1, M2) ∈ Ad,m′−1 ×Ad,m′−1 by

(2νm
′

k (x)⊗̂ id)(M1,M2) = νm
′

k (x)M1 ⊗M2 + M1 ⊗ νm
′

k (x)M2.

We will now obtain control over the drift. Proceeding as in (4.2), we find that
∑

I∈Im′−1

|∂I [£uω] − uq∂xq∂Iω|L2 �d,m |∇u|L∞ |ω|Hm′−1 . (4.9)

Using (4.9) and Poincare’s inequality, we find that there exists a constant C = C(d, m)
such that for all Φ ∈ E1 and (s, t) ∈ ΔT ,

〈Mst,Φ〉 =
∑

I,J∈Im′−1

t∫
s

〈
(
∂I [£ur

ωr] − uq∂xq∂Iωr

)
⊗ ∂Jωr,ΦIJ 〉 dr

+
∑

I,J∈Im′−1

t∫
s

〈∂Iωr ⊗
(
∂J [£ur

ωr] − uq
r∂xq∂Jωr

)
,ΦIJ 〉 dr

−
∑

I,J∈Im′−1

t∫
s

〈uq
r(∂Iωr ⊗ ∂Jωr), ∂xqΦIJ 〉 dr

≤ C|Φ|E1

t∫
s

|∇ur|L∞ |ωr|2Hm′−1 dr.

Claim (Verification of ‘squared’ remainder). We have Ω⊗2,
 ∈ C
p
3−var
2,loc ([0, T ]; E−1).

Proof. We will proceed by estimating term-by-term. By the embeddings H2⊗H1 ↪→ E−1
and L1 ⊗ L1 ↪→ L2, we find that there is a constant C = C(d, m′, |ξ|Wm′,∞) such that 
for all (s, t) ∈ ΔT ,

|Ωs⊗̂Ω

st|E−1 ≤ sup |Ωm′

r |H2 |Ω

st|

p
3
p
3−var;[s,t];H−1 ,
r≤T
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|Ω�
st ⊗ δΩst|L1 ≤ |Ω�

st|
p
2
p
2−var;[s,t];L2 |Ωst|pp−var;[s,t];L2 ,

|£ξkΩsZ
k
st ⊗ Ω�

st|L1 ≤ C sup
r≤T

|Ωr|H1�Z(s, t)
1
p |Ω�

st|
p
2
p
2−var;[s,t];L2 .

Upon using the decomposition

〈∂I [£ur
ωr] ⊗ ∂Jδωrs,ΦIJ 〉 = 〈

(
∂I [£ur

ωr] − uq
r∂xq∂Iωr

)
⊗ ∂Jδωrs,ΦIJ 〉

− 〈uq
r∂

Iωr ⊗ ∂xq∂Jδωrs,ΦIJ 〉
− 〈uq

r∂
Iωr ⊗ ∂Jδωrs, ∂xqΦIJ 〉

in (4.9) and applying Poincare’s inequality, we find that for all Φ ∈ E1 and (s, t) ∈ ΔT ,

∑
I,J∈Im′−1

t∫
s

〈∂I [£ur
ωr] ⊗ ∂Jδωrs + ∂Iδωrs ⊗ ∂J [£ur

ωr],ΦIJ 〉 dr

�d,m |Φ|E1 |ω|p−var;[s,t];Hm′

t∫
s

|∇ur|L∞ |ωr|Hm′−1 dr.

We then complete the proof by using the property that a product of powers of regular 
controls whose powers sum to greater than or equal to one is a control (see, e.g., [31, Ex. 
1.9]. �

One can easily check that the pair Γ = (Γ1, Γ2) is an unbounded rough driver in 
the scale (En) and that (A.1) holds with �Γ(s, t) := C�Z(s, t), (s, t) ∈ ΔT , for a 
given constant C = C(d, m, |ξ|Wm′+2,∞) that depends in an increasing way on |ξ|Wm′+2 . 
Therefore, Ω⊗2 is a solution of

dΩ⊗2 +M(dt) + Γ(dt)Ω⊗2 = 0

in the sense of Definition A.4. Thus, by Theorem A.5, there is a constant C =
C(p, d, m′, |ξ|Wm′+2,∞) depending in an increasing way on |ξ|Wm′+2,∞ and a constant 
L = L(p) such that for all (s, t) ∈ ΔT with �Γ(s, t) ≤ L it holds that

|Ω⊗2,
|
p
3
p
3−var;[s,t];E−3

≤ C

⎛
⎝ sup

s≤r≤t
|ωr|2Hm′−1�Z(s, t)

3
p +

t∫
s

|∇ur|L∞ |ωr|2Hm′−1 dr�Z(s, t)
1
p

⎞
⎠ . (4.10)

Let I ∈ Ad,m′−1 ⊗ Ad,m′−1 be such that 〈Ω ⊗ Ω, I〉 = |ω|2
Hm′−1 . Henceforth, let 

C = C(p, d, m′, |ξ|Wm′+2,∞) denote a constant which increases with |ξ|Wm′+2,∞ and, thus, 
may change from line to line. Letting Φ = I in (4.8), we find that for all (s, t) ∈ ΔT ,
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δ(|ω|2
Hm′−1)st = −2

∑
I∈Im′−1

t∫
s

〈∂I [£ur
ωr], ∂Iωr〉 dr + 〈Ω⊗2

s , [Γ1,∗
st + Γ2,∗

st ]I〉 + 〈Ω⊗2,

st , I〉.

It follows from (4.10) and the fact that Γ is an unbounded rough driver that for all 
(s, t) ∈ ΔT with �Γ(s, t) ≤ L ∧ 1,

δ(|ω|2
Hm′−1)st ≤ C

⎛
⎝ t∫

s

|∇ur|L∞ |ωr|2Hm′−1 dr + sup
s≤r≤t

|ωr|2Hm′−1�Z(s, t)
1
p

⎞
⎠ . (4.11)

Upon applying rough Gronwall’s lemma (i.e., Lemma B.1) and (2.4), we obtain (4.3). 
For t ∈ [0, T ], define yt = ln(e + |ut|Hm′ ). By virtue of the inequality (2.5) and (4.3), we 
have that for all t ∈ [0, T ],

yt ≤ ln(
√

2y0) + C�Z(0, t) + C

t∫
0

|ωr|L∞yr dr.

By using Gronwall’s inequality, we find that for all t ∈ [0, T ],

yt ≤
(
ln(

√
2y0) + C�Z(0, t)

)
exp

⎛
⎝C

t∫
0

|ωr|L∞ dr

⎞
⎠ ,

and hence (4.4) holds.
Returning to (4.11) and applying the Sobolev embedding and (2.4) with m′ > m∗, we 

find that for all (s, t) ∈ ΔT with �Γ(s, t) ≤ L ∧ 1,

δ(|ω|2
Hm′−1)st ≤ C

⎛
⎝ t∫

s

|ωr|3Hm′−1 dr + sup
s≤r≤t

|ωr|2Hm′−1�Z(s, t)
1
p

⎞
⎠ .

Applying rough Gronwall’s lemma implies that, for all t ∈ [0, T ] and t′ > t,

|ωt|2Hm′−1 ≤ eC(1+�Z(0,t′))

⎛
⎝|ω0|2Hm′−1 +

t∫
0

|ωr|3Hm′−1 dr

⎞
⎠ =: yt.

It follows that for all t ∈ [0, T ] and t′ > t, one has

d
dty

− 1
2

t = −2−1eC(1+�Z(0,t′))
(
y
− 1

2
t |ωr|Hm′−1

)3
≥ −2−1eC(1+�Z(0,t′)),

which implies

y
− 1

2
t ≥ exp−C

2 (1+�Z(0,t′)) |ω0|−1
m′−1 − 2−1eC(1+�Z(0,t′)t.
H
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Therefore, upon letting t′ ↓ t and applying (2.4), we obtain (4.5). �
Remark 4.3. In [9], the method of doubling of variables was used to derive solution 
estimates and prove uniqueness for linear rough transport equations. The remainder 
term for linear rough transport equations can only be expected to belong to H−3 if its 
initial condition belongs to L2. Thus, more care is needed to derive solution estimates 
and uniqueness since it is not possible, at least directly, to test the equation against the 
solution. In our setting, we can avoid doubling variables and obtain solution estimates by 
smoothing (e.g., the path an initial condition and ξ) at the expense of having to assume 
ξ is slightly more regular whenever continuity in time in the highest norm is needed. In 
particular, we prove uniqueness by considering differences only in the L2-norm and not 
the highest norm.

4.3. Difference estimates and uniqueness

The following theorem establishes a priori estimates of the difference of Hm-solutions 
in the H1-norm and Hm-norm.

Theorem 4.4 (Difference estimates and uniqueness). Let u1 and u2 be Hm-solutions of 
(RE) on the interval [0, T ] with the same data (Z, ξ) ∈ Cp−var

g (R+; RK) × (Wm+2,∞)K
starting from u1

0 and u2
0, respectively. Then there is a constant C = C(p, d, |ξ|W 3,∞) such 

that

sup
t≤T

|u1
t − u2

t |H1 ≤
√

2 exp

⎛
⎝C

⎛
⎝ T∫

0

(
|u1

r|Hm∗ + |u2
r|Hm∗

)
dr + �Z(0, T )

⎞
⎠
⎞
⎠ |u1

0 − u2
0|H1 .

(4.12)
If m∗ ≤ m′ ≤ m − 2, then there is a constant C = C(p, d, m′, |ξ|Wm′+2,∞) such that

sup
t≤T

|u1
t − u2

t |Hm′ ≤
√
qm′(T )|u1

0 − u2
0|Hm′ + Tqm′(T )|u1

0 − u2
0|Hm∗−1 |u1

0|Hm′+1 , (4.13)

where

qm′(T ) :=
√

2 exp

⎛
⎝C

⎛
⎝ T∫

0

(
|u1

r|Hm∗ + |u2
r|Hm′

)
dr + �Z(0, T )

⎞
⎠
⎞
⎠ .

Proof. Let u = u1 − u2 and ω = ω1 − ω2. We will adopt the notation of the proof of 
Theorem 4.2 and consider m′ ∈ {1, m∗ − 1} ∪ {m∗, m∗ + 1, . . .}. For n ∈ {0, 1, 2, 3}, let 
En = Wn,∞(Td; Ad,m′−1 ⊗ Ad,m′−1). By the analysis in the proof of Theorem 4.2, we 
have that

Ω⊗2 := Ω1,⊗2 − Ω2,⊗2 ∈ L∞([0, T ];E−0) ∩ Cp−var([0, T ];E−3)
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and

Ω⊗2,
 = Ω1,⊗2,
 − Ω2,⊗2,
 ∈ C
p
3−var
2,loc ([0, T ];E−1)

satisfy for all Φ ∈ E1 and (s, t) ∈ ΔT ,

〈Ω⊗2,

st ,Φ〉 = 〈δΩ⊗2

st ,Φ〉 + 〈Nst,Φ〉 + 〈Ω⊗2
s , [Γ1,∗

st + Γ2,∗
st ]Φ〉,

where

〈Nst,Φ〉 :=
∑

I,J∈Im′−1

t∫
s

〈∂I [£ur
ω1
r ] ⊗ ∂Jωr + ∂Iωr ⊗ ∂J [£ur

ω1
r ],ΦIJ〉 dr

+
∑

I,J∈Im′−1

t∫
s

〈
(
∂I [£u2

r
ωr] − u2,q

r ∂xq∂Iωr

)
⊗ ∂Jωr,ΦIJ〉 dr

+
∑

I,J∈Im′−1

t∫
s

〈∂Iωr ⊗
(
∂J [£u2

r
ωr] − u2,q

r ∂xq∂Jωr

)
,ΦIJ〉 dr

−
∑

I,J∈Im′−1

t∫
s

〈u2,q
r ∂Iωr ⊗ ∂Jωr, ∂xqΦIJ 〉 dr.

For all f ∈ H1 and g ∈ Hs with s > d
2 −1, the Sobolev embedding (see, e.g., [12]) implies 

that

|fg|L2 �d,s |f |H1 |g|Hs . (4.14)

If m′ = 1, then using (4.14) and (2.1), we find

|£uω
1|L2 �d |u|H1 |ω1|Hm∗−1 + |∇u|L2 |ω1|L2 �d |ω|L2 |u1|Hm∗

|£u2ω − u2 · ∇ω|L2 �d |∇u2|L∞ |ω|L2 �d |ω|L2 |u2|Hm∗ .

Making use of (2.1) and (2.4), we obtain

∑
I∈Im′−1

|∂I [£uω
1]|L2 �d,m′

m′−1∑
l=0

(
||Dlu||Dm′−lω1||L2 + ||Dl+1u||Dm′−1−lω1||L2

)

�d,m′ |u|L∞ |ω1|Hm′ + |ω1|L∞ |u|m′

�d,m′

{
|ω|Hm′−1 |u1|Hm∗ if m′ = m∗ − 1,
|ω|Hm∗−2 |u1|Hm′+1 + |ω|Hm′−1 |u1|Hm∗ if m′ ≥ m∗,
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and
∑

I∈Im′−1

|∂I [£u2ω] − u2,q∂xq∂Iω|L2

�d,m′

m′−1∑
l=1

||Dlu2||Dm′−lω||L2 +
m′−1∑
l=0

||Dl+1u2||Dm′−1−lω||L2

�d,m′

{∑m′−1
l=0 ||Dl∇u2||Dm′−lu||L2 if m′ = m∗ − 1,∑m′−1
l=0 ||Dl∇u2||Dm′−1−lω||L2 if m′ ≥ m∗,

�d,m′

{
|∇u2|L∞ |u|Hm′ + |u|L∞ |u2|Hm∗ if m′ = m∗ − 1,
|∇u2|L∞ |ω|Hm′−1 + |ω|L∞ |u2|Hm′ if m′ ≥ m∗,

�d,m′ |ω|Hm′−1 |u2|Hm∗ .

Putting it all together and using |u2|L∞ �d |u2|Hm∗ , we get that there exists a constant 
C = C(d, m′) such that for all (s, t) ∈ ΔT ,

|Nm′

st |E−1 ≤ C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ t

s
|ωr|2L2

(
|u1

r|Hm∗ + |u2
r|Hm∗

)
dr if m′ = 1,∫ t

s
|ωr|2Hm′−2

(
|u1

r|Hm∗ + |u2
r|Hm∗

)
dr if m′ = m∗ − 1,∫ t

s
|ωr|Hm′−1 |ωr|Hm∗−2 |u1

r|Hm′+1 if m′ ≥ m∗,

+ |ωr|2Hm′−1

(
|u1

r|Hm∗ + |u2
r|Hm′

)
dr

=: �Nm′ (s, t).

Therefore, Ω⊗2 is a solution of

dΩ⊗2 +N(dt) + Γ(dt)Ω⊗2 = 0

in the sense of Definition A.4. Owing to Theorem A.5, there is a constant C =
C(p, d, m, |ξ|Wm′+2,∞) depending in an increasing way on |ξ|Wm′+2,∞ and a constant 
L = L(p) such that for all (s, t) ∈ ΔT with �Γ(s, t) ≤ L it holds that

|Ω⊗2,
|
p
3
p
3−var;[s,t];E−3

≤ C

(
sup

s≤r≤t
|ωr|2Hm′−1�Z(s, t)

3
p + �Nm′ (s, t)�Z(s, t)

1
p

)
.

Henceforth, let C = C(p, d, m, |ξ|Wm′+2,∞) denote a constant depending in an increasing 
way on |ξ|Wm′+2,∞ that may change from line to line. Letting Φ = I in (4.8) as in the 
proof of Theorem 4.2, we get that for all (s, t) ∈ ΔT ,

δ(|ω|2
Hm′−1)st ≤ −2

∑
I∈I

t∫
〈∂I [£ur

ω1
r + £u2

r
ωr], ∂Iωr〉 dr
m′−1 s
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+ 〈Ω⊗2
s , [Γ1,∗

st + Γ2,∗
st ]I〉 + 〈Ω⊗2,


st , I〉.

Thus, if m′ ∈ {1, m∗ − 1}, then for all (s, t) ∈ ΔT with �Γ(s, t) ≤ L ∧ 1, we have

δ(|ω|2
Hm′−1)st ≤ C

t∫
s

|ωr|2Hm′−1−2

(
|u1

r|Hm∗ + |u2
r|Hm∗

)
dr + C sup

s≤r≤t
|ωr|2Hm′−1�Z(s, t)

1
p .

Applying Lemma B.1, we get

sup
t≤T

|ω1
t − ω2

t |Hm′−1

≤
√

2 exp

⎛
⎝C

⎛
⎝ T∫

0

(
|u1

r|Hm∗ + |u2
r|Hm∗

)
dr + �Z(0, T )

⎞
⎠
⎞
⎠ |ω1

0 − ω2
0 |Hm′−1 , (4.15)

and hence (4.12) follows from (2.4).
If m′ ≥ m∗, then for all (s, t) ∈ ΔT with �Γ(s, t) ≤ L ∧ 1,

δ(|ω|2
Hm′−1)st ≤ C

t∫
s

(
|ωr|Hm′−1 |ωr|Hm∗−2 |u1

r|Hm′+1 + |ωr|2Hm′−1

(
|u1

r|Hm∗ + |u2
r|Hm′

))
dr

+ C sup
s≤r≤t

|ωr|2Hm′−1�Z(s, t)
1
p .

Using Lemma B.1, (4.3), and (4.15), we obtain that for all t ∈ [0, T ] and t′ > t,

|ωt|2Hm′−1 ≤ qm′(t′)

⎛
⎝|ω0|2Hm′−1 + |ω0|Hm∗−2 |ω1

0 |Hm∗−1

t∫
0

|ωr|Hm′−1 dr

⎞
⎠ ,

where

qm′(t′) :=
√

2 exp

⎛
⎝C

⎛
⎝ t′∫

0

(
|u1

r|Hm∗ + |u2
r|Hm′

)
dr + �Z(0, t′)

⎞
⎠
⎞
⎠ .

Thus, letting t′ ↓ t, we find that for all t ∈ [0, T ],

|ω1
t − ω2

t |Hm′ ≤
√
qm′(t)|ω1

0 − ω2
0 |Hm′ + tqm′(t)|ω1

0 − ω2
0 |Hm∗−2 |ω1

0 |Hm′+1 ,

which yields (4.13). �
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5. Local well-posedness (Proof of Theorem 3.7)

Proof of Theorem 3.7. There exists a sequence {(un
0 , Zn, ξn)}∞n=1 ∈ C̊∞

σ × C1−var
g ×

(C∞
σ )K such that for all n ∈ N, Zn = (δzn, Zn) is the canonical lift of a z ∈ C∞(R+; RK), 

{(un
0 , Zn, ξn)}∞n=1 converges to (u0, Z, ξ) in Hm

σ ×Cp−var
g ×Wm+1,∞, and for all n ∈ N,

|un
0 |Hm ≤ |u0|Hm , |ξn|Wm+2,∞ ≤ |ξ|Wm+2,∞ ,

�Zn(s, t) ≤ 1 + �Z(s, t), ∀(s, t) ∈ Δ[0,∞).
(5.1)

For all n ∈ N, there exists a maximally extended solution un ∈ C1([0, Tn
max); C̊∞

σ ) of

{
dun + P (un · ∇un)dt− P£∗

ξnk
undzn,kt = 0 on (0, Tn

max) × Td,

un = un
0 on {0} × Td

(5.2)

such that if Tn
max < ∞, then lim supt↑Tn

max
|un

t |Hm∗ = ∞.2 Integrating (5.2) over an 
arbitrary interval [s, t] ⊂ [0, Tn

max) and then substituting the equation into the dZn,k-
integral twice, we obtain

un,P,

st = δun

st +
t∫

s

P (un
r · ∇un

r ) dr − P£∗
ξnk
un
sZ

n,k
st − P [£∗

ξnk
P [£∗

ξnl
un
s ]]Zn,lk

st , (5.3)

where

un,P,

st := −

∫
s<t2<t1<t

P£∗
ξnk
Pun

t2 · ∇un
t2dt2 dzn,kt1

−
∫

s<t3<t2<t1<t

P£ξnk
P£∗

ξnl
P (un

t3 · ∇un
t3)dt3 dzn,lt2 dzn,kt1

+
∫

s<t3<t2<t1<t

P£∗
ξnk
P£∗

ξnl
P£∗

ξnq
un
t3 dzn,qt3 dzn,lt2 dzn,kt1 ,

2 Indeed, to see this, for given N ∈ N, consider the equation

{
∂tu

N,n + PP≤N (P≤NuN,n · ∇P≤NuN ) − PP≤N (£∗
ξk
P≤NuN,n) żn,k

t = 0 on (0,∞) × Td,

uN = P≤Nu0 on {0} × Td.

One may then derive solution estimates independent of N but dependent on 
∫ t
0 |żn| dt as in [5, Chapter 3]

or [4, Chapter 7]. We are not able to derive a priori estimates independent of N and n jointly because the 
presence of the projection P≤N prohibits us from deriving the unbounded rough driver equation (i.e. Defini-
tion A.4) for ∂Iω

N,n ⊗ ∂Jω
N,n, and hence applying Theorem A.5 to derive solution estimates independent 

of n as in the proof of Theorem 4.2. For fixed n ∈ N, one passes to the limit as N → ∞ and establishes all 
other solution properties (e.g., BKM blow-up criterion) as in [5, Chapter 3] or [4, Chapter 7] or as detailed 
below for the rough version of the equation.



D. Crisan et al. / Journal of Functional Analysis 283 (2022) 109632 37
and hence un,P,
 ∈ C
p
3−var
2,loc ([0, Tn

max); C̊∞
σ ). In particular, un is a Hm+2-solution of (5.3)

on the interval [0, Tn
max) in the sense of Definition 3.1.

By virtue of (5.1) and Theorem 4.2, there are constants C1 = C1(p, d, m, |ξ|Wm∗+2,∞)
depending in an increasing way on |ξ|Wm∗+2,∞ and constant C2 = C2(p, d, m, |ξ|Wm+2,∞)
such that for all T∗ < Tn

max satisfying

eC1(1+�Z(0,T∗))T∗ < |u0|−1
Hm∗ ,

it holds that for all n ∈ N,

sup
t≤T∗

|un
t |Hm∗ ≤ eC1(1+�Z(0,T∗))

|un
0 |−1

Hm∗ − eC1(1+�Z(0,T∗))T∗
, (5.4)

sup
t≤T∗

|un
t |Hm ≤

√
2 exp

⎛
⎝C2

⎛
⎝ T∗∫

0

|∇un
s |L∞ dr + �Z(0, T∗)

⎞
⎠
⎞
⎠ |u0|Hm (5.5)

≤
√

2 exp

⎛
⎝C2

⎛
⎝ T∗∫

0

|un
s |Hm∗ dr + �Z(0, T∗)

⎞
⎠
⎞
⎠ |u0|Hm .

Furthermore, by Theorem 4.1, there exists a constant C = C(p, d, m, |ξ|Wm+2,∞) such 
that for all (s, t) ∈ ΔT∗ with C�Z(s, t) ≤ 1, it holds that

|un,P,
|
p
3
p
3−var;[s,t];Hm−3 ≤ C

⎛
⎝ sup

s≤r≤t
|un

r |Hm�Z(s, t)
3
p +

t∫
s

|un
r |2Hm dr�Z(s, t)

1
p

⎞
⎠

and for all (s, t) ∈ ΔT with C�Z(s, t) + C
∫ t

s
|un

r |2Hm dr ≤ 1, it holds that

|un|pp−var;[s,t];Hm−1

≤ C

⎛
⎜⎝

t∫
s

|un
r |2Hm dr + sup

s≤r≤t
|ur|Hm

⎛
⎜⎝
⎛
⎝ t∫

s

|un
r |2Hm dr

⎞
⎠

1
p

+ �Z(s, t)
1
p

⎞
⎟⎠
⎞
⎟⎠ .

We deduce that {un}∞n=1 is bounded in L∞([0, T∗]; H̊m
σ ) ∩ Cp−var([0, T∗]; H̊m−1

σ ). In 
particular, {un}∞n=1 is equicontinuous in H̊m−1

σ . For all ε > 0, there exists a θ ∈ (0, 1)
such that for all (s, t) ∈ [0, T∗]2,

|un
t − un

s |Hm−ε �d,m |un
t − un

s |θHm−1 sup
t≤T∗

|un
t |1−θ

Hm ,

which implies that the sequence {un}∞n=1 is equicontinuous in Hm−ε. Moreover, by virtue 
of the boundedness of {un}∞n=1 in L∞([0, T∗]; H̊m

σ ) and the compactness of Hm in Hm−ε, 
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the generalized Arzelá-Ascoli theorem implies that there exists a subsequence {unj} that 
converges to u in C([0, T∗]; H̊m−ε

σ ) for any ε > 0. Moreover, we may extract a further 
subsequence, also denoted by {unj} that converges to u in the weak-star topology of 
L∞([0, T∗]; H̊m

σ ). Furthermore, u ∈ Cp−var([0, T∗]; H̊m−1
σ ) ∩ L∞([0, T∗]; H̊m

σ ). Using the 
lower semicontinuity of norms in the weak-star topology, we may pass to the limit in 
(5.4) and (5.5) to obtain (3.11) and (3.12).

Claim. u ∈ Cw([0, T∗]; H̊m
σ ).

Proof. Fix an arbitrary ε > 0 and φ ∈ H̊−m
σ . We need to show that there exists a δε,φ > 0

such that for all (s, t) ∈ [0, T∗] with |t − s| < δε,φ, it holds that

〈φ, ut − us〉Hm < ε

Since H̊−m+1
σ is dense in H̊−m

σ , there exists a ψε ∈ H̊−m+1
σ such that

|φ− ψε|H−m <
ε

4 sup
t≤T∗

|ut|−1
Hm .

It follows that for all (s, t) ∈ [0, T∗]2,

〈φ, ut − us〉Hm = 〈ψε, ut − us〉Hm−1 + 〈φ− ψε, ut − us〉Hm

≤ 〈ψε, ut − us〉Hm−1 + 2 sup
t≤T∗

|u|Hm |φ− ψε|H−m

< 〈ψε, ut − us〉Hm−1 + ε

2 .

Since u ∈ C([0, T∗]; H̊m−1,2
σ ) ⊂ Cw([0, T∗]; H̊m−1

σ ) we can find δε,φ > 0 such that for all 
(s, t) ∈ [0, T∗]2 with |t − s| < δε,φ, 〈ψε, ut − us〉Hm−1 < ε

2 , which completes the proof of 
the claim. �

We will now show that u is a Hm-solution of (RE) on the interval [0, T∗] in the sense 
of Definition 3.1. By (5.3), for all φ ∈ C̊∞

σ and (s, t) ∈ Δ[0,T∗], we have

〈unj ,P,

st , φ〉 = (δunj

st , φ)L2 −
t∫

s

(unj
r ⊗ unj

r ,∇φ)L2 dr + (unj
s ,£ξnk

φ)L2Z
nj ,k
st

− (unj
s ,£ξnl

P£ξnk
φ)L2Z

nj ,lk
st .

Since unj → u in C([0, T∗]; ̊L2
σ), ξnj → ξ in (W 2,∞

σ )K , and Znj → Z in Cp−var
g , the 

right-hand-side of the above converges for every φ ∈ C̊∞
σ . Thus, 〈un,P,


st , φ〉 converges 
to 〈u
,P

st , φ〉, which implies that uP,
 ∈ C
p
2−var([0, T ]; D̊′

σ). Since {unj ,P,
} is bounded 
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uniformly in C
p
3−var
2,loc ([0, T∗]; H̊m−3

σ ), we have uP,
 ∈ C
p
3−var
2,loc ([0, T∗]; H̊m−3

σ ), which com-
pletes the proof that u is an Hm-solution in the sense of Definition 3.1. Uniqueness 
follows immediately from (4.12) in Theorem 4.4.

Finally, we will show that if ξ ∈ (Wm+4,∞)K , then u ∈ C([0, T∗]; H̊m
σ ). For given 

N ∈ N, let uN
0 = P≤2Nu0 ∈ C̊σ. By the above proof of local well-posedness, since 

ξ ∈ Wm+4,∞
σ and |uN

0 |Hm∗ ≤ |u0|Hm∗ for all N ∈ N, there exists a sequence of Hm+2-
solutions {uN}∞N=1 ⊂ L∞([0, T∗]; H̊m+2

σ ) ∩ Cp−var([0, T∗]; H̊m+1
σ ) of (RE) on interval 

[0, T∗] with initial conditions {uN
0 }∞N=1 ⊂ H̊m+2

σ . Moreover, for all N ∈ N,

sup
t≤T∗

|uN
t |Hm∗ ≤ eC1(1+�Z(0,T∗))

|uN
0 |−1

Hm∗ − eC1(1+�Z(0,T∗))T∗

≤ eC1(1+�Z(0,T∗))

|u0|−1
Hm∗ − eC1(1+�Z(0,T∗))T∗

,

sup
t≤T∗

|uN
t |Hm ≤

√
2 exp

⎛
⎝C2

⎛
⎝ T∗∫

0

|uN
s |Hm∗ ds + �Z(0, T∗)

⎞
⎠
⎞
⎠ |u0|Hm .

By virtue of (4.13), for all N ∈ N, we have

sup
t≤T∗

|uN
t − ut|Hm ≤

√
qN (T∗)|uN

0 − u0|Hm + T∗qN (T∗)|uN
0 − u0|Hm−1 |uN

0 |Hm+1 ,

where

qN (T∗) :=
√

2 exp

⎛
⎝C

⎛
⎝ T∗∫

0

(
|uN

s |Hm + |us|Hm

)
ds + �Z(0, T∗)

⎞
⎠
⎞
⎠ .

It follows that

2−N |uN
0 |Hm+1 = 2−N |P≤2Nu0|Hm+1 ≤ |u0|Hm

lim
N→∞

2N |uN
0 − u0|Hm−1 ≤ lim

N→∞

⎛
⎝ ∑

|n|>2N

|n|2m|û0(n)|2
⎞
⎠

1
2

= 0,

which implies that the sequence {uN}∞N=1 converges to u in C([0, T∗]; H̊m
σ ), and hence 

u ∈ C([0, T∗]; H̊m
σ ). �
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6. Proof of the remaining results

6.1. Recovery of the pressure and harmonic part (Proof of Proposition 3.3)

Proof of Proposition 3.3. Define Ξ : ΔT → Hm−3 by

Ξst = £∗
ξk
usZ

k
st + £∗

ξk
P£∗

ξl
usZ

lk
st.

Using that P = I −Q −H (see Section 2.1.1), we find that for all (s, t) ∈ ΔT , we have

uP,

st = δust +

t∫
s

ur · ∇ur dr −
t∫

s

Q(ur · ∇ur) dr − Ξst + QΞst + HΞst.

We will apply the sewing lemma (i.e., Lemma 2.2) to construct the rough integral

It =
t∫

0

£∗
ξk
urdZk

r , I0 = 0,

from the local expansion Ξ. For all (s, θ, t) ∈ Δ2
T ,

δΞsθt = −£∗
ξk
uP,�
sθ Zk

θt − £∗
ξk
P£∗

ξl
δusθZ

lk
θt,

where uP,� is as defined in Theorem 4.1. By Theorem 4.1, for all (s, t) ∈ ΔT with 
C�Z(s, t) + C

∫ t

s
|ur|2Hmdr ≤ 1, it holds that

|Ξst|Hm−3 ≤ C sup
r≤T

|ur|Hm−1�Z(s, t)
1
p

|δΞsθt|Hm−3 ≤ C
(
|uP,�|

p
2
p
2−var,[s,t],Hm−2�Z(s, t)

1
p + |u|pp−var,[s,t],Hm−1�Z(s, t)

2
p

)
.

Thus, applying Lemma 2.2, we find that there is a paths I ∈ Cp−var([0, T ]; Hm−3), 
IQ = QI ∈ Cp−var([0, T ]; ∇H̊m−2), and h = HI ∈ Cp−var([0, T ]; Rd) such that u
 :=
δI −Ξ ∈ C

p
3−var
2,loc ([0, T ]; Hm−3), uQ,
 := δIQ−QΞ ∈ C

p
3−var
2,loc ([0, T ]; ∇H̊m−2) and uH,
 :=

δh −HΞ ∈ C
p
3−var
2,loc ([0, T ]; Rd).

For all t ∈ [0, T ], we have

t∫
0

|Q(ur · ∇ur)|Hm−3 dr ≤
t∫

0

|ur · ∇ur|Hm−3 dr ≤
t∫

0

|∇ur|L∞ |ur|Hm−3 dr.

We define q ∈ Cp−var([0, T ]; H̊m−2) by
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∇qt = −
t∫

0

Q(ur · ∇ur) dr + IQt .

Therefore, we have that for all (s, t) ∈ ΔT ,

uP,

st + u


st + uQ,

st + uH,


st = δust +
t∫

s

ur · ∇ur dr − δIst + ∇δqst + δhst,

from which we deduce (3.4) since the right-hand-side is a path of p3 -variation, and hence 
zero. �
6.2. Maximally extended solution (Proof of Corollary 3.8)

We will give a constructive proof of the maximally extended solution as it will be used 
in subsequent proofs.

Remark 6.1. Both Definition 3.1 and Theorem 3.7 can be extended in the obvious 
manner to account for an arbitrary initial time t0 ≥ 0. More precisely, for all u0 ∈
H̊m

σ and ξ ∈ (Wm+2
σ )k, there exists a unique Hm-solution u ∈ Cw([t0, T∗]; H̊m

σ ) ∩
Cp−var([t0, T∗]; H̊m−1

σ ) on an interval [t0, T∗] with initial condition u|t=t0 = u0 for any 
time T∗ satisfying

eC1(1+�Z(t0,T∗))(T∗ − t0) < |u0|−1
Hm∗

and

sup
t∈[t0,T∗]

|ut|Hm∗ ≤ eC1(1+�Z(t0,T∗))

|u0|−1
Hm∗ − eC1(1+�Z(t0,T∗))(T∗ − t0)

.

Moreover, if m > m∗,

sup
t∈[t0,T∗]

|ut|Hm ≤
√

2 exp

⎛
⎝C2

⎛
⎝ T∗∫

t0

|∇us|L∞ ds + �Z(t0, T∗)

⎞
⎠
⎞
⎠ |u0|Hm .

Proof of Corollary 3.8. Let R > 1 and C̄ > C1(p, d, |ξ|Wm∗+2,∞) be arbitrarily given, 
where C1 is as given in (3.10) in Theorem 3.7. Define f : R2

+ → [0, ∞) by

f(s, δ) = eC̄(1+�Z(s,s+δ))δ.

Note that for all s ∈ R+, f(s, 0) = 0 and limδ↑∞ f(s, δ) = ∞. Since �Z is non-decreasing 
in its second argument, f is strictly increasing in δ, and hence there exists an inverse of 
f in its second argument δ∗ : R2

+ → R+; that is, for all (s, M) ∈ R2
+,
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f(s, δ∗(s,M)) = eC̄(1+�Z(s,δ∗(s,M)))δ∗(s,M) = M.

Let T0 = 0 and u0
T0

= u0. Let T1 = T0 + δ∗(T0, (R + |u0
T0
|Hm∗ )−1)) so that

eC1(1+�Z(T0,T1))(T1 − T0) ≤ eC̄(1+�Z(T0,T1))(T1 − T0) ≤ (R + |u0
T0
|Hm∗ )−1 < |u0

T0
|−1
Hm∗ .

By Theorem 3.7, there exists an Hm-solution u1 of (RE) on the interval [0, T1]. Let 
T2 = T1 + δ∗(T1, (R + |u1

T1
|Hm∗ )−1)). Since

eC1(1+�Z(T1,T2))(T2 − T1) ≤ eC̄(1+�Z(T1,T2))(T1 − T0) = (R + |u1
T1
|Hm∗ )−1 < |u1

T1
|−1
Hm∗ ,

by Remark 6.1, there exists an Hm-solution ũ2 of (RE) on the interval [T1, T2]. Let 
u2 = u1 on [0, T1] and u2 = ũ2 on [T1, T2] so that u2 is a Hm-solution of (RE) on the 
interval [0, T2]. Proceeding by induction, we define

Tl+1 = Tl + δ∗(Tl, (R + |ul
Tl
|Hm∗ )−1), l ∈ {3, . . . , },

and appeal to Remark 6.1 to obtain an Hm-solution un of (RE) on the interval [0, Tl]
for all l ∈ N. Let Tmax = supn∈N0

Tl and umax = liml→∞ ul. It follows that umax is the 
unique Hm-solution on the open [0, Tmax) by virtue of (4.12) in Theorem 4.4.

Assume that Tmax < ∞. Suppose, by contradiction, that lim supt↑Tmax
|ut|Hm∗ < ∞. 

In particular, there exists M > 0 such that |ut|Hm∗ < M for all t < Tmax. For arbitrarily 
chosen ε > 0, there exists a L = L(ε) > 0 such that for all l > L, Tl+1 − Tl < ε, which 
implies

eC̄(1+�Z(0,Tmax))(R + M)−1 < eC̄(1+�Z(Tl,Tl+1))(R + |uTl
|Hm)−1 < ε.

Choosing ε > 0 smaller than the left-hand-side, we obtain a contradiction.
Suppose, by contradiction, there exists T̄ ∈ (Tmax, ∞] and an Hm-solution ū of (RE)

on the interval [0, T̄ ). By virtue of uniqueness (i.e., (4.12) in Theorem 4.4), we have 
u ≡ ū on [0, Tmax), which implies

lim sup
t↑Tmax

|ut|Hm∗ = |ūTmax |Hm∗ < ∞ ⇒ Tmax = ∞.

This leads to a contradiction, which precludes the existence of an extension of u. �
6.3. BKM blow-up criterion (Proof of Theorem 3.9)

Proof of Theorem 3.9. The strategy of the proof is to first construct an approximation 
sequence of Hm+2-solutions that converges to u on any interval [0, T ] ⊂ [0, Tmax). We will 
then use the solution estimate given in (4.4) in Theorem 4.2 and then pass to the limit in 
both sides of the solution bound. The approximation sequence is constructed separately 
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for m = m∗ and m > m∗. If m = m∗, we only approximate the initial condition, assume 
(Wm∗+4,∞

σ )K , and use (4.13) in Theorem 4.4 to establish convergence in C([0, T ]; H̊m∗
σ ), 

which is needed to continue the approximating sequence up to Tmax. If m > m∗, we can 
avoid the assumption ξ ∈ (Wm+4,∞)K for all m by smoothing the initial condition and 
ξ and relying on compactness to obtain convergence in C([0, T ]; H̊m∗

σ ), which allows us 
to continue the approximating sequence up to Tmax.

Case m = m∗. Let {Tn}∞n=0 be the sequence of times specified in the proof of Corol-
lary 3.8 converging to Tmax. In the proof of Theorem 3.7, we showed that the sequence 
{un}∞n=1 of Hm+2-solutions on the interval [0, T1] corresponding to the initial conditions 
{P≤2nu0}∞n=1 ∈ C∞

σ converges to u in C([0, T1]; H̊m∗
σ ). In particular, there exists an 

N2 ∈ N be such that for all n ≥ N2, |un
T1
|Hm∗ < |uT1 |Hm∗ +2−1R. Thus, by Remark 6.1

and (4.12) (i.e., uniqueness), we can extend the solutions {un}∞n=N2
to the interval [0, T2]

such that for all n ≥ N2,

sup
t∈[T1,T2]

|un
t |Hm∗ ≤ eC1(1+�Z(T1,T2))

|un
T1
|−1
Hm∗ − eC1(1+�Z(T1,T2))(T2 − T1)

≤ eC1(1+�Z(T1,T2))

(2−1R + |uT1 |Hm∗ )−1 − (R + |uT1 |Hm∗ )−1 .

Repeating the argument at the end of the proof of Theorem 3.7 (i.e., applying (4.13)) on 
the interval [0, T2], we get that the sequence {un}∞n=N2

of Hm+2-solutions on the interval 
[0, T2] converges to u in C([0, T2]; H̊m∗

σ ). Proceeding inductively, for all l ∈ N, we find 
an Nl ∈ N such that the sequence {un}∞n=Nl

converges to u in C([0, Tl]; H̊m∗
σ ).

Case m > m∗. There exists a sequence {(un
0 , ξ

n)}∞n=1 ∈ C̊∞
σ × (C∞

σ )K that converges 
to (u0, ξ) in Hm

σ ×Wm+1,∞ and such that for all n ∈ N, |un
0 |Hm ≤ |u0|Hm , |ξn|Wm+2,∞ ≤

|ξ|Wm+2,∞ . Let {Tn}∞n=0 be the sequence of times specified in the proof of Corollary 3.8
converging to Tmax. By Theorem 3.7, there exists a sequence of Hm+2-solutions {un}∞n=1
on the interval [0, T1] corresponding to the data {(un

0 , ξ
n)}∞n=1 such that for all n ∈ N,

sup
t∈[0,T1]

|un
t |Hm∗ ≤ eC1(1+�Z(0,T1))

|u0|−1
Hm∗ − (R + |u0|Hm∗ )−1

sup
t∈[0,T1]

|un
t |Hm ≤

√
2 exp

⎛
⎝C2

⎛
⎝ T1∫

0

|un
s |Hm∗ ds + �Z(0, T1)

⎞
⎠
⎞
⎠ |u0|Hm .

Following the proof of Theorem 3.7 (i.e., applying Theorem 4.1, compactness, and Arzelá-
Ascoli, and then passing to the limit) and using uniqueness, we find that the full sequence 
{un}∞n=1 converges to u in C([0, T1]; H̊m−ε

σ ) for any ε > 0 and in the weak-star topology 
of L∞([0, T1]; H̊m

σ ). In particular, there exists an N2 ∈ N be such that for all n ≥ N2, 
|un

T1
|Hm∗ < |uT1 |Hm∗ + 2−1R. By Remark 6.1 and (4.12) (i.e., uniqueness), we may 

continue the solutions to the interval [0, T2] such that for all n ≥ N2
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sup
t∈[T1,T2]

|un
t |Hm∗ ≤ eC1(1+�Z(T1,T2))

(2−1R + |uT1 |Hm∗ )−1 − (R + |uT1 |Hm∗ )−1

sup
t∈[0,T2]

|un
t |Hm ≤

√
2 exp

⎛
⎝C2

⎛
⎝ T2∫

0

|un
s |Hm∗ ds + �Z(0, T2)

⎞
⎠
⎞
⎠ |u0|Hm .

Again, following the proof of Theorem 3.7 and using uniqueness, we get that the full 
sequence {un}∞n=N2

converges to u in C([0, T2]; H̊m−ε
σ ) for any ε > 0 and in the weak-

star topology of L∞([0, T2]; H̊m
σ ). Proceeding inductively, for all l ∈ N, we find an Nl ∈ N

such that the sequence {un}∞n=Nl
converges to u in C([0, Tl]; H̊m−ε

σ ) for any ε > 0 and 
in the weak-star topology of L∞([0, Tl]; H̊m

σ ).
We will now show (3.13). Let T < Tmax = supl∈N Tl be arbitrarily given and 

N(T ) ∈ N be such that the sequences constructed above {un}∞n=N(T ) of converges to u

in C([0, T ]; H̊m∗
σ ) and in the weak-star topology of L∞([0, T ]; H̊m

σ ) if m > m∗. It follows 
that {ωn = d�un}∞n=N(T ) converges to ω in C([0, T ]; L∞).3 By (4.4) in Theorem (4.4), 
there exist constants C1 = C1(d, m) and C2 = C2(p, d, m, |ξ|Wm+2,∞) such that for all 
n ≥ N(T ),

sup
t≤T

|un
t |Hm ≤ C1(1 + |u0|Hm) exp

⎛
⎝C2(1 + �Z(0, T )) exp

⎛
⎝C2

T∫
0

|ωn
s |L∞ ds

⎞
⎠
⎞
⎠ .

Using the lower semi-continuity of weak-star convergence if m > m∗, we pass to the limit 
as n → ∞ on both sides of the inequality to obtain (3.13).

If Tmax < ∞, then lim supt↑Tmax
|ut|Hm = ∞, which yields lim supt↑Tmax

∫ t

0 |ωs|L∞ =
∞ by (3.13). Conversely, if lim supt↑Tmax

∫ t

0 |ωs|L∞ds = ∞, then

∞ = lim sup
t↑Tmax

t∫
0

|ωs|L∞ds ≤ lim sup
t↑Tmax

t∫
0

|us|Hmds,

which implies lim supt↑Tmax
|ut|Hm = ∞. �

6.4. Global well-posedness in two-dimensions (Proof of Theorem 3.10)

Proof of Corollary 3.10. Consider the sequence {un}∞n=1 of H∞-solutions on [0, Tn
max)

corresponding to the data {(un
0 , Zn, ξn)}∞n=1 ∈ C̊∞

σ ×C1−var
g × (C∞

σ )K from the proof of 
Theorem 3.7. For given n ∈ N, let ω̃n = curlun, so that (see Remark 3.5),

3 We actually only need convergence of {un} in C([0, T ]; H̊m∗−ε
σ ) for any ε > 0 to conclude this. However, 

in order to construct the approximating sequence up to the maximal time Tmax, we needed the convergence 
in C([0, T ]; H̊m∗

σ ).
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{
dω̃n + un · ∇ω̃ndt + ξnk · ∇ω̃ndzn,kt = 0 on [0, Tn

max) × Td,

ω̃n = ω̃n
0 on {0} × Td.

It follows that for all n ∈ N, t ∈ [0, ∞), and p ∈ [2, ∞],

|ωn
t |Lp = |ωn

0 |Lp ≤ |ω0|Lp . (6.1)

Moreover, Tn
max = ∞ since (see, e.g., [5, Chapter 3] or [4, Chapter 7]) for all n ∈ N,

|un
t |Hm ≤ C1(1 + |un

0 |Hm) exp

⎛
⎝C2(1 +

t∫
0

|żns |ds) exp (C2t|ωn
0 |L∞)

⎞
⎠ .

Owing to (4.4) in Theorem 4.2, there exist constants C1 = C1(m) and C2 =
C2(p, m, |ξ|Wm+2,∞) such that for all n ∈ N and t ≥ 0,

|un
t |Hm ≤ C1(1 + |u0|Hm) exp (C2(1 + �Z(0, t)) exp (C2t|ω0|L∞)) . (6.2)

Proceeding as in the proof of Theorem 3.7 and using uniqueness, we find that {un}∞n=1
converges to u in C([0, ∞); H̊m−ε

σ ) for any ε > 0 and in the weak-star topology of 
L∞([0, ∞); H̊m

σ ). We may then pass to the limit (6.2) using lower semicontinuity of 
weak-star convergence to obtain (3.15). Since there always exists an ε > 0 such that 
m − ε > d

2 + 1, {ω̃n}∞n=1 converges to ω in C([0, T ]; L∞), and thus passing to the limit 
in (6.1) yields (3.14). �
6.5. Continuous dependence on data (Proof of Corollary 3.11)

Proof of Corollary 3.11. Let R > 1 be such that for all n ∈ N,

|un
0 |Hm ≤ R, |ξn|Wm+2,∞+|ξ|Wm+2,∞ ≤ R, �Zn(s, t) ≤ R+�Z(s, t), ∀(s, t) ∈ Δ[0,∞).

We will establish the convergence of {un} for the cases d = 2 and m > m∗ separately.
Case d = 2. Owing to (3.15), there exists a constant C̄ = C̄(p, m, R) such that for all 

and n ∈ N and t ≥ 0,

|un
t |Hm ≤ C1(1 + R) exp

(
C̄(1 + �Z(0, t)) exp

(
C̄|ω̃0|L∞t

))
.

Proceeding as in the proof of Theorem 3.7, we find that {un}∞n=N1
converges to u in 

C([0, ∞); H̊m−ε
σ ) for any ε > 0 and in the weak-star topology of L∞([0, ∞); H̊m

σ ).
Case m > m∗. Let C1(|ξ|Wm∗+2,∞) = C1(p, d, m, |ξ|Wm∗+2,∞) denote the constant 

appearing in (3.10). Let C̄ = RC1(p, d, m, R) and note that for all (s, t) ∈ Δ[0,∞),

C1(|ξn|Wm∗+2,∞)(1 + �Zn(s, t)) ∨ C1(|ξ|Wm∗+2,∞)(1 + �Z(s, t)) ≤ C̄(1 + �Z(s, t)).
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Let {Tn}∞n=0 be the sequence of times specified in the proof of Corollary 3.8 with R and 
C̄ as just specified. We then proceed as in the proof of Theorem 3.9 to show that for 
all T < Tmax, there exists an N(T ) ∈ N such that the sequence {un}∞n=N(T ) of Hm-
solutions converges to u in C([0, T ]; H̊m−ε

σ ) for any ε > 0 and in the weak-star topology 
of L∞([0, T ]; H̊m

σ ).
We will now turn our attention to showing the convergence of the pressure and har-

monic constant. Let T < Tmax and N(T ) = 1 if d = 2 and N(T ) as specified if m > m∗. 
By Proposition 3.3, for all n ≥ N(T ), there exists qn ∈ Cp−var([0, T ]; ∇H̊m−2) and 
hn ∈ Cp−var([0, T ]; Rd) such that

un
t − un

0 +
t∫

0

un
s · ∇un

s ds−
t∫

0

£∗
ξnk
un
s dZn,k

s = −∇qnt − hn
t ,

where, upon adopting the notation in the proof of Proposition 3.3, for all (s, t) ∈ ΔT , 
we have

∇δqnst :=
t∫

s

Q(un
r · ∇un

r )dr + QΞn
st + un,Q,
, δhn

st = HΞn
st + un,H,
,

and

Ξn
st = £∗

ξnk
un
sZ

n,k
st + £∗

ξnk
P£∗

ξnl
un
sZ

n,lk
st .

Thus, for all (s, t) ∈ ΔT

|∇δqnst|Hm−3 ≤ (t− s) sup
s≤r≤t

|∇un
r |L∞ |un

r |Hm−3 dr + |Ξn
st|Hm−3 + |un,Q,
|Hm−3

|δhn
st| ≤ |Ξn

st|Hm−3 + |un,Q,
|Hm−3 .

There exists a constant C = C(p, d, m, R) such that

|Ξn
st|Hm−3 ≤ C sup

r≤T
|un

r |Hm−1�Zn(s, t)
1
p .

Theorem 4.1 implies that there exists a constant C = C(p, d, m, R) such that for all 
(s, t) ∈ ΔT with C�Zn(s, t) + C

∫ t

s
|un

r |2Hmdr ≤ 1, it holds that

|δΞn
sθt|Hm−3 ≤ C

(
|un,P,�|

p
2
p
2−var,[s,t],Hm−2�Zn(s, t)

1
p + |un|pp−var,[s,t],Hm−1�Zn(s, t)

2
p

)

|un,P,�|
p
2
p
2−var;[s,t];Hm−2 ≤ C

⎛
⎝ t∫

|un
r |2Hm dr + sup

s≤r≤t
|un

r |Hm�Zn(s, t)
2
p

⎞
⎠

s
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The bound (2.13) in the sewing lemma then implies that

un,Q,
 := δIn,Q −QΞn and un,H,
 := δhn −HΞn,

are bounded independent of n in C
p
3−var
2,loc ([0, T ]; ∇H̊m−2) and C

p
3−var
2,loc ([0, T ]; Rd), 

respectively. Therefore, {(∇qn, hn)}∞n=N(T ) is bounded in Cp−var([0, T ]; ∇H̊m−2) ×
Cp−var([0, T ]; Rd). Following the proof of Theorem 3.7 and using uniqueness of u from 
which uniqueness of (q, h) follows, we deduce that {(∇qn, hn)}∞n=N(T ) converges to (q, h)
in C([0, T ]; ∇H̊m−2−ε) × C([0, T ]; Rd) for any ε > 0. �
Appendix A. Unbounded rough drivers

In this section, we present some elements of the theory of unbounded rough drivers 
[9] and the associated remainder estimates. We use Theorem A.5 in Section 4 to derive 
a priori estimates of the remainder and solution (i.e., Theorems 4.1, 4.2, and 4.4).

Definition A.1 (Scale). We say a sequence of Banach spaces (En, | · |n)3n=0 = (En) is a 
scale, if En+1 is continuously embedded into En for all n ∈ {0, 1, 2, 3}. Denote by E−n

the strong topological dual of En.

Definition A.2 (Unbounded rough driver). For a given interval [0, T ], let Ai : ΔT →
L(E−n; E−(n+i)) for n ∈ {0, 1, 2} and i ∈ {1, 2}. For a given p ∈ [2, 3), a pair of 2-index 
maps A = (A1, A2) is called an unbounded p-rough driver on the interval [0, T ] with 
respect to the scale (En) if there exists a regular control �A on [0, T ] such that for every 
(s, t) ∈ ΔT ,

|A1
st|pL(E−n;E−(n+1)) ≤ �A(s, t) for n ∈ {0, 2},

|A2
st|

p
2
L(E−n;E−(n+2)) ≤ �A(s, t) for n ∈ {0, 1},

(A.1)

and, in addition, Chen’s relations hold:

δA1
sθt = 0 and δA2

sθt = −A1
θtA

1
sθ, ∀(s, θ, t) ∈ Δ2

T . (A.2)

Definition A.3 (Smoothing). We say a family of operators (Jη)η∈(0,1) is a smoothing on 
a given scale (En) if the following conditions are satisfied:

|Jη − I|L(Em;En) � ηm−n for(n,m) ∈ {(0, 1), (0, 2), (1, 2)}

|Jη|L(En;Em) � η−(m−n) for(n,m) ∈ {(1, 1), (1, 2), (2, 2), (1, 3), (2, 3)}.

Definition A.4 (Solution of unbounded rough driver equation). Let A = (A1, A2) be a 
continuous unbounded p-rough driver on [0, T ] with respect to a scale (En). Let μ ∈
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C1−var([0, T ]; E−1). Assume that (En) admits a smoothing. A bounded path f : [0, T ] →
E−0 is called a solution of

df + μ(dt) + A(dt)f = 0 (A.3)

on the interval [0, T ], provided f 
 : ΔT → E−3 defined for every (s, t) ∈ ΔT and φ ∈ E3
by

〈f 

st, φ〉 = 〈δfst, φ〉 + 〈δμst, φ〉 + 〈fs, (A1,∗

st + A2,∗
st )φ〉

satisfies f 
 ∈ C
p
3−var
2,loc ([0, T ]; E−3).

Define the map f � : ΔT → E−3 for every (s, t) ∈ ΔT and φ ∈ E3 by

〈f �
st, φ〉 = 〈δfst, φ〉 + 〈fs, A1,∗

st φ〉 = −〈δμst, φ〉 − 〈fs, A2,∗
st φ〉 + 〈f 


st, φ〉.

The first expression for f �
st consists of terms that are less regular in time and more 

regular in space than the second expression for f �
st. The following theorem is proved 

using interpolation, and hence properties of the smoothing operators, and the sewing 
lemma (i.e., Lemma 2.2). Its proof can be found, for example, in [39, Proposition 3.1].

Theorem A.5 (Unbounded rough driver estimates). Let u be a solution of (A.3) and 
assume that there exists a regular control �μ on the interval [0, T ] such that for all 
(s, t) ∈ ΔT ,

|δμst|E−1 ≤ �μ(s, t). (A.4)

Then there exist positive constants C = C(p) and L = L(p) such that for all (s, t) ∈ ΔT

with �A(s, t) ≤ L it holds that

|f 
|
p
3
p
3−var;[s,t];E−3

≤ C

(
sup

s≤r≤t
|fr|E−0�A(s, t)

3
p + �μ(s, t)�A(s, t)

1
p

)
.

Furthermore, for all (s, t) ∈ ΔT with �A(s, t) + �μ(s, t) ≤ L it holds that

|f �|
p
2
p
2−var;[s,t];E−2

≤ C

(
�μ(s, t) + sup

s≤r≤t
|fr|E−0�A(s, t)

2
p )
)

,

|f |pp−var,[s,t];E−1
≤ C

(
�μ(s, t) + sup

s≤r≤t
|fr|E−0(�μ(s, t)

1
p + �A(s, t)

1
p )
)
.

Appendix B. Rough Gronwall’s lemma

In this section, we state a rough version of Gronwall’s lemma. The proof can be found, 
for example, in [23].
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Lemma B.1 (Rough Gronwall’s lemma). Let L and p denote positive constants. Let κ ∈
L1(I) and � be a regular control on the interval [0, T ]. Let φ : ΔT → R+ be such that 
φ(s, t) ≤ φ(0, T ) for all (s, t) ∈ ΔT . Assume that G : [0, T ] → R+ is such that for every 
(s, t) ∈ ΔT with �(s, t) ≤ L,

δGst ≤ φ(s, t) +
t∫

s

κrGr dr + �(s, t)
1
p sup

r≤t
Gt.

Then there exists a positive constant β = β(L, p) such that

sup
0≤t≤T

Gt ≤ 2 exp

⎛
⎝β

⎛
⎝ T∫

0

κr dr + �(0, T )

⎞
⎠
⎞
⎠ (G0 + φ(0, T )) .
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