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A B S T R A C T

There is much controversy in the academic literature on the presence of short-term trends in financial markets
and the trend-following strategy’s profitability. We restrict our attention to studying the time series momentum
in the S&P Composite stock price index. Our contributions are both empirical and theoretical. On the empirical
side, we present compelling evidence of the presence of short-term momentum. For the first time, we suppose
that the returns follow a 𝑝-order autoregressive process and evaluate this process’s parameters. On the
theoretical side, we develop a tractable theoretical model that contributes to our fundamental understanding
of the trend-following strategy’s risk, return, and performance. Using our model, we also estimate the power
of statistical tests on the trend-following strategy’s profitability and find that these tests suffer from the low
power problem.
1. Introduction

Investment professionals have always believed that asset prices
tend to move in trends. Trend-following strategies that try to identify
and profit from market trends have existed for a century or more. In
contrast, academics had long been skeptical about the benefits of trend-
following. In their landmark study, Brock et al. (1992) demonstrate
for the first time the benefits of trend-following strategies. This study
dramatically changed the academics’ attitude toward the existence of
market trends. Since then, many empirical studies have documented
the profitability of trend-following strategies.1

The time series momentum (TSMOM) strategy, presented
by Moskowitz et al. (2012), is an example of a trend-following strategy.
Using a comprehensive dataset of different US asset classes, Moskowitz
et al. (2012) show that the past 12-month returns predict the next
month’s return; a trading strategy, which buys assets if their past 12-
month returns are positive and sells them otherwise, earns significant
risk-adjusted returns. In essence, a TSMOM strategy is a long–short
portfolio strategy where each return is scaled by its volatility. The prof-
itability of the TSMOM strategy in individual asset classes and interna-
tional markets is further documented among others by Georgopoulou
and Wang (2016), Lim et al. (2018), and Ham et al. (2019).

∗ Corresponding author.
E-mail addresses: Valeri.Zakamouline@uia.no (V. Zakamulin), jginer@ull.edu.es (J. Giner).

1 Examples of such studies are: Clare et al. (2013), Faber (2007, 2017), Fifield et al. (2005), Georgopoulou and Wang (2016), Gwilym et al. (2010), Ham
et al. (2019), Hutchinson and O’Brien (2014), Kilgallen (2012), Lee et al. (2001), Lim et al. (2018), Marshall et al. (2017), Moskowitz et al. (2012), Neely et al.
(2014), Okunev and White (2003), Olson (2004), Siegel (2002), Sullivan et al. (1999), and Zakamulin (2017).

However, recently the profitability of the TSMOM strategy has been
seriously questioned on two grounds. First, Kim et al. (2016) find
that the superiority of the TSMOM strategy is primarily driven by
volatility-scaling returns rather than by the short-term momentum ef-
fect. Effectively, there is no scientific evidence of the TSMOM strategy’s
profitability without volatility-scaling. Second, Huang et al. (2020)
show, among other things, that asset-by-asset time series regressions
reveal almost no evidence of short-term momentum. For example, they
find no evidence of short-term momentum in the S&P 500 index. All in
all, the papers by Kim et al. (2016) and Huang et al. (2020) cast severe
doubts on the existence and profitability of short-term momentum in
financial markets.

As a matter of fact, the scientific evidence of trend-following strate-
gies’ profitability has always been a problematic issue in the literature.
Many studies find that trend-following strategies are profitable in the
long run over periods ranging from 50 to 150 years. However, re-
searchers frequently report that, when they use the most recent 5 to
10 years in their historical data sample, the trend-following strategies
are not profitable (see, for example, Hutchinson & O’Brien, 2014;
Lee et al., 2001; Okunev & White, 2003; Olson, 2004, Siegel, 2002,
Chapter 17, Sullivan et al. (1999), and Zakamulin, 2014). In some other
studies, the researchers fail to establish the statistical significance of
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profitability even when the historical sample is rather long, and the
profitability of trend-following strategies is economically significant
(see, among others, Kim et al., 2016; Zakamulin, 2017, and Huang
et al., 2020).

There are two alternative explanations for the lack of scientific
evidence on the profitability of trend-following strategies. The first
explanation is that the profitability of trend-following strategies is an
artifact of data-snooping. A variant of this explanation is that market
efficiency improves over time. As a result, the trend-following rules that
were profitable in the past have lost their effectiveness over time. The
second alternative explanation is that the trend-following strategies are
profitable, but the statistical tests for profitability have low power. It
is known that a test’s statistical power is directly related to the sample
size; the power increases with increased sample size. Therefore, one can
argue that the inability to reject the null hypothesis of no superiority
does not imply that the null hypothesis is true but means that the
sample size is not long enough.

In this paper, we restrict our attention to studying the time series
momentum in the S&P Composite stock price index. Our contributions
are both empirical and theoretical. On the empirical side, we aim to
resolve the existing controversy regarding the presence of short-term
trends in the market. On the theoretical side, we develop a tractable
theoretical model that can significantly contribute to our fundamental
understanding of the TSMOM strategy and help explain the existing
controversy on its profitability.

In particular, in the first half of this paper, we conduct a novel
empirical study that presents compelling evidence of short-term mo-
mentum in the excess returns on the S&P Composite index. For the first
time, we assume that the excess returns follow a 𝑝-order autoregressive
process, 𝐴𝑅(𝑝), with 𝑝 > 1 and evaluate the parameters of this process.
The difficulty is that the autocorrelation in excess returns is very weak
over monthly horizons and escapes detection when traditional estima-
tion methods are used. We suggest a methodology that uses excess
returns aggregated over multiple months and finds the parameters of
the 𝐴𝑅(𝑝) process that produces the best fit to a theoretical model.

All previous results on the performance and profitability of trend-
following rules have been obtained solely through empirical research.
Typically, an empirical study uses historical data to simulate the returns
to a trend-following strategy and subsequently tests the null hypothesis
that the trend-following strategy’s performance is equal to that of the
buy-and-hold strategy. The major limitation of such empirical studies
is that they are conducted using a single and relatively short historical
realization of a random process. In this regard, two obstacles deserve
mentioning. First, one has no idea whether the number of observations
is sufficient to detect the profitability of a trend-following strategy.
Second, an empirical study is not integrated with a theoretical model
that allows researchers to justify and explain the observed results and
provide deep insights into the nature of the trend process and the
properties of trend-following rules.

In contrast to previous studies, the outcome of our empirical analy-
sis is not only the evidence of short-term momentum but also a tractable
and well-understood statistical model that describes the dynamics of
trends. Fairly accurate knowledge of this model allows us to provide
several important theoretical implications for the profitability of the
TSMOM strategy and its other properties. The model also allows us to
evaluate the power of statistical tests and the required sample size to
achieve the desired statistical power.

More specifically, we start the second half of this paper by providing
analytical results on the mean return, variance of returns, Sharpe ratio,
and CAPM beta and alpha of the long-only and long–short TSMOM
strategies. The estimated parameters of the model for the excess returns
are utilized to evaluate the profitability of these strategies analytically.
We demonstrate that our analytical results agree well with the empiri-
cal results obtained by simulating the historical returns to the TSMOM
strategies. Subsequently, we conduct a comparative static analysis of
2

our theoretical model to examine how the profitability of the TSMOM
strategies depends on the model’s parameters. Finally, by relying on
a simulation analysis, we explore how the evidence of the TSMOM
strategy’s superior performance depends on the investment horizon and
evaluate the power of statistical tests.

The Sharpe ratio and CAPM alpha are the two most common
performance measures in modern finance. The results of our analysis
reveal that the choice of performance measure plays a crucial role
in determining whether a TSMOM strategy is superior to its passive
counterpart and the outcome of comparing the performance of the
long–short TSMOM strategy with that of the long-only TSMOM strat-
egy. In particular, our analysis suggests that, when the Sharpe ratio
measures the performance, the long-only TSMOM strategy outperforms
the buy-and-hold strategy, while the superiority of the long–short
TSMOM strategy is questionable. By contrast, when the CAPM alpha
measures the performance, the long–short TSMOM strategy is superior
to the long-only TSMOM strategy, which, in turn, is superior to the
buy-and-hold strategy.

By convention, the desired power of a statistical test is 80%. Our
ballpark estimate is that the sample size must be about 250 years
with monthly observations to reach the desired power level when
the Sharpe ratio measures the performance. When the performance
is measured by alpha, the sample size must be about 90 years to
ensure the recommended statistical power. Even though the alpha test
has notably larger statistical power than the Sharpe ratio test, it still
requires a sample size that spans almost a century. Consequently, we
conclude that in virtually all empirical studies that evaluate a trend-
following strategy’s profitability, the power of a statistical test is much
below the acceptable level. This finding explains the lack of scientific
evidence on the TSMOM strategy’s profitability.

The rest of the paper is organized as follows. Section 2 presents the
TSMOM trading rules. Section 3 motivates the choice of the 𝐴𝑅(𝑝) pro-
ess to model the price trends, while Section 4 describes the data. The
mpirical results are presented in Section 5. In particular, this section
ocuments the evidence of short-term momentum and evaluates the
utoregressive process parameters for excess returns. Section 6 presents
number of analytical and simulation results on the profitability of the
SMOM strategies and the statistical power of the tests on profitability.
inally, Section 7 concludes the paper.

. Time series momentum trading strategies

Denote by 𝑟𝑡 and 𝑟𝑓𝑡 the month 𝑡 total return on the stock market
nd the risk-free rate of return, respectively. Further, denote by 𝑋𝑡 the
onth 𝑡 market excess return

𝑡 = 𝑟𝑡 − 𝑟𝑓𝑡.

The TSMOM trading signal for month 𝑡 is generated in a two-step
process. First, the TSMOM trading indicator’s value is computed at
month-end 𝑡− 1 by summing the excess returns over the past 𝑛 months
(including the last one):

𝑀𝑂𝑀𝑡−1(𝑛) =
𝑛
∑

𝑖=1
𝑋𝑡−𝑖.

Subsequently, this value is translated into a trading signal for month 𝑡
s follows. If 𝑀𝑂𝑀𝑡−1(𝑛) > 0, then the trading signal is Buy. Otherwise,
he trading signal is Sell.

This paper considers both the ‘‘long-only’’ and ‘‘long–short’’ trading
trategies. In both strategies, a Buy signal commands buying the stocks.
he long-only TSMOM strategy seeks to generate profits and limit losses
y investing in the stocks only when prices trend upwards. In this
trategy, if a Sell signal is generated after a Buy signal, the trader sells
he stocks and invests the proceeds at the risk-free rate. Therefore, the
eturn to the long-only TSMOM strategy over month 𝑡 is given by

𝐿𝑂
𝑡 =

{

𝑟𝑡 if 𝑀𝑂𝑀𝑡−1(𝑛) > 0,
(1)
𝑟𝑓𝑡 otherwise.
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The long–short TSMOM strategy tries to take advantage of profit oppor-
tunities in both upward- and downward-trending markets. In this case,
when a Sell signal is generated after a Buy signal, the trader sells all
own shares of the stocks and, subsequently, sells short the same number
of shares of the stocks. The proceeds from both sales are invested at the
risk-free rate. Thus, the return to the long–short TSMOM strategy over
month 𝑡 is given by

𝐿𝑆
𝑡 =

{

𝑟𝑡 if 𝑀𝑂𝑀𝑡−1(𝑛) > 0,
2𝑟𝑓𝑡 − 𝑟𝑡 otherwise.

(2)

he strategy introduced by Moskowitz et al. (2012) is an extension of
he long–short TSMOM strategy that uses the window size of 𝑛 = 12
onths and involves several risky assets weighted in inverse proportion

o the volatility of each asset.

. Process for excess returns

For the TSMOM strategy to be profitable, excess returns must exhibit
hort-term persistence. In other words, excess returns must be positively
utocorrelated. To this end, we assume that the excess returns follow a
-order autoregressive process, 𝐴𝑅(𝑝). The following equation defines
his process:

𝑡 = 𝑐 + 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 +⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝜀𝑡 = 𝑐 +
𝑝
∑

𝑖=1
𝜙𝑖𝑋𝑡−𝑖 + 𝜀𝑡, (3)

where 𝑋𝑡−𝑖 is the excess return observed at month 𝑡− 𝑖, 𝑐 is a constant,
{𝜙1, 𝜙2,… , 𝜙𝑝} are the parameters of the model, and 𝜀𝑡 are i.i.d. random
variables with zero mean and variance of 𝜎2𝜀 . We assume that the 𝐴𝑅(𝑝)
process satisfies the stationarity conditions.

In our paper, the process’s persistence is measured by the sum of
the autoregressive coefficients, 𝜅 =

∑𝑝
𝑖=1 𝜙𝑖. This measure of persistence

was originally introduced by Andrews and Chen (1994). The rationale
for this measure is that every 𝐴𝑅(𝑝) process exhibits mean-reverting
behavior, and the mean reversion’s speed is inversely proportional to 𝜅.
Specifically, a large value of 𝜅 implies a slow reversion to the long-run
mean and, hence, a strong persistence of the 𝐴𝑅(𝑝) process. For more
details on this measure of persistence, the interested reader is referred
to Marques (2005).

The mean and variance of 𝑋𝑡 are given by (see, for example, Box
et al. (2016), Chapter 3)

𝜇𝑥 = 𝑐
1 −

∑𝑝
𝑖=1 𝜙𝑖

, 𝜎2𝑥 =
𝜎2𝜀

1 −
∑𝑝

𝑖=1 𝜙𝑖𝜌𝑖
, (4)

here 𝜌𝑖 denotes the autocorrelation between 𝑋𝑡 and 𝑋𝑡−𝑖.
One of this paper’s main goals is to evaluate the parameters of

he 𝐴𝑅(𝑝) process for excess returns using long-term data for the S&P
omposite index. In particular, our goal is to evaluate the values of
and 𝜙𝑖 for all 𝑖 ∈ [1, 𝑝]. The main obstacle is that we have no clue

bout the process that governs the return persistence. As a result, there
s a wide variety in the number of parameters and their functional
orm. Therefore, to make this goal feasible, we propose the following
onjecture:

onjecture 1. The TSMOM rule with 𝑛 return lags represents the most
ptimal trading rule among all feasible trend-following rules. In particular,
he Sharpe ratio of the strategy based on using the 𝑀𝑂𝑀(𝑛) trading
ndicator represents the highest possible Sharpe ratio.

Conjecture 1 allows us to narrow down the number of unknown
arameters of the 𝐴𝑅(𝑝) process dramatically. The logic is as fol-
ows. Acar (2003) proves that the Sharpe ratio of a trend following
trategy increases as the correlation between the trading indicator and
he future return increases. Therefore, for the TSMOM rule to have
he highest possible Sharpe ratio among all feasible trend-following
trategies, the 𝑀𝑂𝑀(𝑛) trading indicator must have the highest pos-
3

ible correlation with the future return. When returns follow the 𝐴𝑅(𝑝) h
rocess, Zakamulin and Giner (2020) show that the 𝑀𝑂𝑀(𝑛) trading
ndicator has the highest possible correlation with the future return
hen all autoregressive coefficients are alike, 𝜙𝑖 = 𝜙, and the number
f autoregressive terms equals the number of return lags in the TSMOM
ule, 𝑝 = 𝑛. Consequently, our task reduces to evaluating only two
alues: 𝜙 and 𝑝.

The Yule–Walker equations imply that, in the special case where
𝑖 = 𝜙 for all 𝑖 ∈ [1, 𝑝], the first 𝑝 autocorrelation coefficients are alike,
𝑖 = 𝜌, and equal to

=
𝜙

1 − (𝑝 − 1)𝜙
. (5)

Therefore, Eqs. (4) for the mean and variance of the process for excess
returns reduce to

𝜇𝑥 = 𝑐
1 − 𝜅

, 𝜎2𝑥 =
𝜎2𝜀

1 − 𝜌𝜅
, 𝜅 = 𝑝𝜙. (6)

4. Data

The S&P Composite index is a proxy for the U.S. stock market over
the very long run. The risk-free rate of return is proxied by the T-Bill
rate. All data come at the monthly frequency. The sample period used
in our study starts in January 1857 and ends in December 2018 (162
full years).

William Schwert2 provides the data for the U.S. market returns from
January 1857 to December 1925. The market returns for this period are
constructed using a collection of early stock market indices for the U.S.
The methodology of construction is described in all detail in Schwert
(1990). From January 1926 to February 1957, the market returns are
the returns on the S&P 90 stock market index. Starting from March
1957, the market returns are the returns on the S&P 500 stock market
index. Amit Goyal3 provides the returns for the period from January
1926 to December 2018.

Amit Goyal also provides the data for the T-Bill rate from January
1920 to December 2018. There are no data for the short-term risk-free
debt before January 1920. To estimate the risk-free rate over the period
from January 1857 to December 1919, we apply the methodology
suggested by Welch and Goyal (2008). This methodology constructs the
instrumented risk-free rate from the Commercial Paper Rates for New
York.4

We are primarily interested in determining the order 𝑝 of the
autoregressive process for excess returns and evaluating coefficients
𝜙𝑖. Moskowitz et al. (2012) report that the TSMOM strategy produces
a rather stable performance when the number of return lags 𝑛 ∈ [6, 12].
Therefore, we expect that the number of autoregressive terms 𝑝 lies
somewhere between 6 and 12. The most straightforward approach to
estimating the autoregressive coefficients is to use an OLS regression
model.

Table 1 reports the estimated autoregressive coefficients 𝜙𝑖 of the
𝐴𝑅(𝑝) process for excess returns. Additionally, this table shows the
estimated trend strength 𝜅 =

∑12
𝑖=1 𝜙𝑖. In brief, our results suggest

evidence in favor of weak persistence (𝜅 = 0.246) in excess returns in
the first half of the sample. In this half, there are three positive and
statistically significant coefficients: 𝜙1, 𝜙5, and 𝜙8. In the whole sample
period and the second half, the persistence (𝜅 = 0.167 and 𝜅 = 0.127
espectively) is much weaker than in the first half, and the only positive
nd statistically significant coefficient is 𝜙5. In this context, the well-

known issue is that when one conducts testing of many coefficients
for statistical significance, one will inevitably find coefficients that are
‘‘significant’’. That is, statistical significance can be caused by luck or

2 http://schwert.ssb.rochester.edu/data.htm
3 http://www.hec.unil.ch/agoyal/
4 The data for the Commercial Paper Rates for New York from January

857 to December 1971 are available from the NBER Macrohistory database.

ttp://research.stlouisfed.org/fred2/series/M13002US35620M156NNBR.

http://schwert.ssb.rochester.edu/data.htm
http://www.hec.unil.ch/agoyal/
http://research.stlouisfed.org/fred2/series/M13002US35620M156NNBR


International Review of Financial Analysis 82 (2022) 102173V. Zakamulin and J. Giner

o

5

e
r

𝑋

T
s
T
t
s

t
w
r

𝑋

t
t
r

i
d
e
m
i
i
d
f
m

F
a

w
𝐴

Table 1
Estimated autoregressive coefficients 𝜙𝑖 of the 𝐴𝑅(𝑝) process for the excess returns and
the empirical trend strength 𝜅 =

∑12
𝑖=1 𝜙𝑖. The reported standard errors are Newey–West

heteroscedasticity and autocorrelation consistent standard errors computed using 12
lags. Bold values indicate statistical significance at the 5% level.

Parameter 1858–2018 1858–1937 1938–2018

Estimate Std. error Estimate Std. error Estimate Std. error

𝜙1 0.067 0.042 0.118 0.057 0.017 0.044
𝜙2 0.001 0.036 −0.011 0.054 −0.006 0.031
𝜙3 −0.056 0.042 −0.094 0.060 0.034 0.034
𝜙4 0.022 0.031 0.024 0.046 0.036 0.037
𝜙5 0.077 0.027 0.083 0.040 0.073 0.034
𝜙6 −0.042 0.036 −0.049 0.054 −0.065 0.041
𝜙7 0.025 0.029 0.055 0.042 0.004 0.029
𝜙8 0.043 0.032 0.092 0.041 −0.030 0.036
𝜙9 0.016 0.038 0.026 0.046 −0.011 0.040
𝜙10 0.013 0.030 0.047 0.040 −0.008 0.038
𝜙11 0.004 0.034 −0.021 0.048 0.033 0.036
𝜙12 −0.005 0.031 −0.023 0.044 0.048 0.032

𝜅 0.167 0.246 0.127

chance. Therefore, the results for the second half of the sample seem
to suggest that TSMOM is an artifact. However, it is premature to jump
to definite conclusions. In the subsequent section, we present strong
evidence that TSMOM does exist.

5. Empirical evidence of persistence and model identification pro-
cedure

This section starts with presenting strong evidence of short-term
persistence in the excess returns on the S&P Composite stock price
index. The section continues with evaluating the parameters 𝑝 and 𝜙
f the autoregressive process for excess returns.

.1. A test of return persistence

Moskowitz et al. (2012) show the time series predictability of the
xcess returns by regressing the month 𝑡 excess return on the excess
eturn lagged ℎ months:

𝑡 = 𝛿ℎ + 𝛾ℎ𝑋𝑡−ℎ + 𝜀𝑡. (7)

o increase the test power, Moskowitz et al. (2012) compute the 𝑡-
tatistic of 𝛾ℎ using the pooled regression across many asset classes.
hey demonstrate that the 𝑡-statistic is positive for the first 12 lags; for
he most lags, the value of the 𝑡-statistic implies that 𝛾ℎ is statistically
ignificantly positive.

Since the TSMOM strategy is profitable, it is natural to assume that
he past 12-month returns predict the next month’s return. However,
hen Huang et al. (2020) run asset-by-asset time series predictive

egressions

𝑡 = 𝛿 + 𝛾
12
∑

𝑖=1
𝑋𝑡−𝑖 + 𝜀𝑡, (8)

hese regressions reveal almost no evidence of predictability. In par-
icular, Huang et al. (2020) find no evidence that the past 12-month
eturns on the S&P 500 index predict the next month return.

We maintain that the autocorrelation in excess returns at any lag
s very weak over monthly horizons and escapes detection when tra-
itional estimation methods (e.g., OLS) are used. To provide reliable
vidence of short-term persistence in excess returns, we suggest a new
ethodology that is based on two key elements. The first key element

s to use excess returns aggregated over multiple months. A similar
dea was put forward already by Fama and French (1988) who, to
etect the presence of weak mean-reversion in stock prices, advocate
or using the first-order autocorrelation of returns aggregated over
4

ultiple periods. Formally, the methodology suggested by Fama and a
rench (1988) consists in running the following regression for various
ggregation periods of 𝑘 months:
𝑘
∑

𝑖=1
𝑋𝑡+𝑖 = 𝛿𝑘 + 𝛾𝑘

𝑘
∑

𝑖=1
𝑋𝑡−𝑘+𝑖 + 𝜀𝑡. (9)

The slope coefficient 𝛾𝑘, which we further use as a test statistic and
denote by 𝐴𝐶1(𝑘), is the first-order autocorrelation of 𝑘-month excess
returns:

𝛾𝑘 = 𝐴𝐶1(𝑘) = 𝐶𝑜𝑟

( 𝑘
∑

𝑖=1
𝑋𝑡+𝑖,

𝑘
∑

𝑖=1
𝑋𝑡−𝑘+𝑖

)

= 𝐶𝑜𝑟(𝑀𝑂𝑀𝑡+𝑘(𝑘),𝑀𝑂𝑀𝑡(𝑘)), (10)

here 𝐶𝑜𝑟(⋅, ⋅) denotes the correlation coefficient. The test statistic
𝐶1(𝑘) is nothing else than the correlation between 𝑀𝑂𝑀𝑡(𝑘) and

𝑀𝑂𝑀𝑡+𝑘(𝑘) trading indicators.
We wish to estimate the first-order autocorrelation over periods 𝑘 ∈

[1, 14] months. The fundamental problem with these estimations is that
we have only a relatively small number of non-overlapping intervals
of 14 months. Therefore, as in Fama and French (1988), to increase
the number of observations of 𝑘-month excess returns, we employ
overlapping intervals of 𝑘 months. However, in contrast to Fama and
French (1988) who estimate the first-order autocorrelations using a
standard OLS regression, the second key element of our methodology
is to estimate the autocorrelations using a highly robust covariance
(and correlation) estimation method suggested by Rousseeuw (1984)
and further developed by Rousseeuw (1985).

The justification of our approach is as follows. It is well-known the
stock return distribution is leptokurtic and skewed to the left. Put differ-
ently, as compared to the normal distribution, the stock returns contain
lots of ‘‘outliers’’, and the negative outliers are larger (in absolute value)
than the positive outliers. Since we expect that the slope coefficient
𝛾𝑘 is rather small, its estimation and statistical significance are heavily
influenced by outliers, especially negative ones. To decrease the role of
outliers, one possibility is to run a robust linear regression. Typically,
in robust regressions, one reduces the weight of outliers. The problem
is that the outliers are still present in the estimation and, thus, they
can nevertheless distort the estimation and decrease the test power. In
contrast, the estimation method suggested by Rousseeuw (1984) uses
the minimum covariance determinant (MCD) method, which is highly
resistant to outliers. In brief, this method only uses observations that lie
within 97.5% volume of a Gaussian confidence ellipsoid. The problem
is that the exact MCD method is extremely time-consuming. Our study
relies on the FAST-MCD method developed by Rousseeuw and Driessen
(1999).

After estimating 𝐴𝐶1(𝑘), we want to ensure that the estimated first-
order autocorrelations are statistically significantly positive. To this
end, we test the following null hypothesis:

𝐻0 ∶ 𝐴𝐶1(𝑘) = 0 versus 𝐻𝐴 ∶ 𝐴𝐶1(𝑘) > 0.

The motivation for this test is as follows. If the excess returns are
independent and identically distributed, then 𝐴𝐶1(𝑘) = 0 for all 𝑘.
In other words, absent persistence in the excess returns, there is no
correlation between two consecutive and non-overlapping 𝑘-month
excess returns. The null hypothesis of independence is rejected in favor
of persistence in the excess returns if 𝐴𝐶1(𝑘) is significantly above zero.
Testing this null hypothesis can be carried out using the randomization
method.

To be more specific, we randomize the original excess return series
𝑁 = 1, 000 times, each time obtaining a new estimate for 𝐴𝐶1∗𝑗 (𝑘),
where 𝑗 is an index for the randomization round (so 𝑗 = 1 for the round
1).5 In the end, the collection of all estimates for 𝐴𝐶1∗𝑗 (𝑘) constitutes

5 Asterisk is used to indicate that each of these estimates is calculated on
randomized sample.
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Fig. 1. For the whole sample and both halves of the sample, this figure plots the shape of the empirically estimated first-order autocorrelation function of 𝑘-month excess returns,
𝐴𝐶1(𝑘).
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the probability distribution of 𝐴𝐶1(𝑘) under the null hypothesis. The
test’s 𝑝-value is estimated as the proportion of test statistics 𝐴𝐶1∗𝑗 (𝑘)
that are at least as extreme as the observed statistic 𝐴𝐶1(𝑘). Formally,
the 𝑝-value is computed as:

𝑝(𝑘) =

∑𝑁
𝑗=1 𝟏𝐴𝐶1∗𝑗 (𝑘)≥𝐴𝐶1(𝑘)

𝑁
,

here 𝟏𝐴𝐶1(𝑘)∗𝑗≥𝐴𝐶1(𝑘) denotes the indicator function that takes one if
𝐶1(𝑘)∗𝑗 ≥ 𝐴𝐶1(𝑘) and zero otherwise.

It is known that estimates obtained using overlapping blocks of data
re biased (see Fama & French, 1988; Kim et al., 1991, and Nelson &
im, 1993 among others). Therefore, we estimate the bias in 𝐴𝐶1(𝑘)

and conduct the bias correction. The bias is estimated as the mean value
of the sampling distribution for 𝐴𝐶1(𝑘) obtained by assuming the null
hypothesis is true. The bias is corrected by subtracting the estimated
mean from the observed 𝐴𝐶1(𝑘).

For the whole sample and both halves of the sample, Fig. 1 plots
the estimated first-order autocorrelation function of 𝑘-month excess
returns on the S&P Composite stock price index. Table 2 reports the
estimated first-order autocorrelations and the results of testing the null
hypothesis using the whole sample of data and both halves of the
sample. The results reported in this table exhibit clear evidence against
independence in favor of a short-term persistence in the excess returns.
Specifically, in the whole sample, the first-order autocorrelation is
statistically significantly above zero at the 5% level for periods of 𝑘 ∈
[3, 11] months. In the first (second) half of the sample, the first-order
autocorrelation is statistically significantly above zero at the 5% level
for periods of 𝑘 ∈ [3, 7] (𝑘 ∈ [4, 8]) months. For the sake of illustration,
Fig. 2 plots the estimated first-order autocorrelation function of 𝑘-
month excess returns, 𝐴𝐶1(𝑘), using the data for the whole sample
period. The shaded area indicates the 90% confidence interval for the
estimated autocorrelation under the null hypothesis that the excess
returns are independent and identically distributed. With this choice, if
the estimated value of 𝐴𝐶1(𝑘) lies above the 90% confidence interval,
this value is statistically significantly positive at the 5% level in a
one-tailed test.

5.2. Evaluation of model parameters

The 𝐴𝑅(𝑝) process for the excess returns is tractable and allows us
to compute the theoretical shape of the test statistic 𝐴𝐶1(𝑘) given a pair
5

of parameters 𝑝 and 𝜙.
Table 2
First-order autocorrelation of 𝑘-month excess returns on the S&P Composite stock price
index. The estimates are corrected for bias under the null hypothesis. Bold values
indicate statistical significance at the 5% level.

Period 𝑘 1857–2018 1857–1937 1938–2018

Estimate 𝑃 -value Estimate 𝑃 -value Estimate 𝑃 -value

1 0.025 0.279 0.045 0.199 −0.030 0.710
2 0.050 0.113 0.070 0.105 0.042 0.231
3 0.183 0.000 0.225 0.000 0.105 0.052
4 0.152 0.002 0.149 0.022 0.191 0.004
5 0.179 0.000 0.137 0.037 0.184 0.009
6 0.230 0.000 0.205 0.006 0.174 0.018
7 0.205 0.000 0.148 0.042 0.161 0.037
8 0.204 0.002 0.132 0.086 0.178 0.032
9 0.190 0.004 0.140 0.087 0.162 0.056
10 0.191 0.008 0.105 0.170 0.129 0.122
11 0.155 0.024 −0.034 0.614 0.160 0.082
12 0.135 0.055 −0.086 0.767 0.092 0.203
13 0.068 0.213 −0.128 0.852 0.033 0.396
14 −0.076 0.808 −0.138 0.866 −0.106 0.799

Proposition 1. If 𝑋𝑡 is a wide-sense stationary stochastic process, then

𝐴𝐶1(𝑘) =
𝟏′𝑘𝑸𝑘,𝑘𝟏𝑘
𝟏′𝑘𝑷 𝑘,𝑘𝟏𝑘

, (11)

here 𝟏𝑘 is the 𝑘 × 1 vector of ones, 𝑷 𝑘,𝑘 and 𝑸𝑘,𝑘 are the 𝑘 × 𝑘 matrices
iven by

𝑷 𝑘,𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 𝜌1 𝜌2 … 𝜌𝑘−1
𝜌1 1 𝜌1 … 𝜌𝑘−2
𝜌2 𝜌1 1 … 𝜌𝑘−3
⋮ ⋮ ⋮ ⋱ ⋮

𝜌𝑘−1 𝜌𝑘−2 𝜌𝑘−3 … 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑸𝑘,𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜌𝑘 𝜌𝑘+1 𝜌𝑘+2 … 𝜌2𝑘−1
𝜌𝑘−1 𝜌𝑘 𝜌𝑘+1 … 𝜌2𝑘−2
𝜌𝑘−2 𝜌𝑘−1 𝜌𝑘 … 𝜌2𝑘−3
⋮ ⋮ ⋮ ⋱ ⋮
𝜌1 𝜌2 𝜌3 … 𝜌𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(12)

where 𝜌𝑖 is the autocorrelation of order 𝑖 of the process for 𝑋𝑡.

The proof is given in Appendix.
Fig. 3 plots the theoretical shapes of the 𝐴𝐶1(𝑘) where each model
parameter can take only two values: 𝑝 ∈ {6, 8} and 𝜙 ∈ {0.03, 0.04}.
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Fig. 2. Using the data for the whole sample, this figure plots the shape of the empirically estimated first-order autocorrelation function of 𝑘-month excess returns, 𝐴𝐶1(𝑘), on the
&P Composite stock price index. The shaded area indicates the 90% confidence interval for the estimated autocorrelation under the null hypothesis that the excess returns are
ndependent and identically distributed.
Fig. 3. The theoretical shapes of the 𝐴𝐶1(𝑘) where each model parameter can take only two values: 𝑝 ∈ {6, 8} and 𝜙 ∈ {0.03, 0.04}.
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Our first observation is that each curve in Fig. 3 is a positively skewed
bell-shaped curve with an evident top. Our second observation is that
the top’s location is governed by the order of the 𝐴𝑅(𝑝) process, that
is, the parameter 𝑝.6 Our third and final observation is that, for a fixed
value of 𝑝, the value of 𝐴𝐶1(𝑘) for any 𝑘 increases as the parameter 𝜙
increases. Altogether, the curves in the figure imply that the shape of
𝐴𝐶1(𝑘) is uniquely determined by the parameters 𝑝 and 𝜙.7

The observations presented in the preceding paragraph suggest an
indirect approach to the joint evaluation of the parameters 𝑝 and 𝜙 of
the 𝐴𝑅(𝑝) process for excess returns. Specifically, the idea is to evaluate

6 Our numerical experiments suggest that for a small 𝑝 ∈ [1, 5] the top is
ocated at 𝑘 = 𝑝. When the order 𝑝 exceeds 5, the top is located at 𝑘 < 𝑝.

7 Using an approximate solution for the value of 𝐴𝐶1(𝑘), we prove that
𝐴𝐶1(𝑘)∕𝜕𝑝 > 0 and 𝜕𝐴𝐶1(𝑘)∕𝜕𝜙 > 0. These proofs are available from the
uthors upon request.
6

and 𝜙 by fitting the theoretical shape of 𝐴𝐶1(𝑘) to the empirically
estimated shape. For this purpose, we numerically solve the following
problem:

min
𝑝,𝜙

𝑘=𝑘𝑚𝑎𝑥
∑

𝑘=𝑘𝑚𝑖𝑛

|

|

|

𝐴𝐶1(𝑘, 𝑝, 𝜙) − 𝐴𝐶1𝐸𝑀𝑃 (𝑘)
|

|

|

, (13)

where 𝐴𝐶1𝐸𝑀𝑃 (𝑘) is the empirically estimated first-order autocor-
elation function of 𝑘-month excess returns and 𝐴𝐶1(𝑘, 𝑝, 𝜙) is the

theoretical autocorrelation function of 𝑘-month excess returns for some
specific values of 𝑝 and 𝜙. That is, the parameters 𝑝 and 𝜙 are evaluated
by a numerical procedure that finds the pair {𝑝, 𝜙} which minimizes the
sum of the absolute deviations between the empirically observed and
the model-implied values of the first-order autocorrelation function of
𝑘-month excess returns.

The main discrepancy between the model-implied autocorrelation

function depicted in Fig. 3 and the sample autocorrelation function
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Fig. 4. Using the data for the whole sample, this figure plots the shape of the empirically estimated first-order autocorrelation function of 𝑘-month excess returns and the shape
of the theoretical first-order autocorrelation function with the parameters 𝑝 = 9 and 𝜙 = 0.0321 that produce the best fit to the empirical data.
Table 3
Estimated best-fit parameters 𝑝 and 𝜙 of the 𝐴𝑅(𝑝) process for the excess returns on
he S&P Composite stock price index. 𝜅 = 𝑝𝜙 measures the persistence of the process

for excess returns.
Period Order 𝑝 Coefficient 𝜙 Persistence 𝜅

1857–2018 9 0.0321 0.2889
1857–1937 7 0.0325 0.2275
1938–2018 8 0.0312 0.2496

plotted in Fig. 1 concerns the behavior for 𝑘 greater than about 12
months. Specifically, whereas the model-implied autocorrelation func-
tion decreases gradually toward zero as 𝑘 increases, the sample au-
ocorrelation function eventually becomes negative. This behavior of
he sample first-order autocorrelation function is a direct consequence
f the well-known empirical fact that ‘‘the time series momentum or

trend’ effect persists for about a year and then partially reverses over
onger horizons’’ (Moskowitz et al., 2012, page 228). That is, there is
oth a short-term momentum and a subsequent medium-term mean
eversion in excess returns. Motivated by this observation, our model
dentification procedure finds the parameters 𝑝 and 𝜙 that produce the

best fit over the range 𝑘𝑚𝑖𝑛 = 1 month to 𝑘𝑚𝑎𝑥 = 12 months. The
motivation for limiting the maximum value for 𝑘 to 12 months is to
confine our attention solely to the short-term persistence effect and
overlook the impact of the subsequent medium-term reversion to the
mean.

Table 3 documents the estimated best-fit parameters 𝑝 and 𝜙 of
the 𝐴𝑅(𝑝) process for the excess returns on the S&P Composite stock
price index for the whole sample and both halves of the sample. The
results reported in this table suggest that over the first (second) half of
the sample, the excess returns followed the 𝐴𝑅(𝑝) process with 𝑝 = 7
and 𝜙 = 0.0325 (𝑝 = 8 and 𝜙 = 0.0312). Over the whole sample,
the estimated parameters are 𝑝 = 9 and 𝜙 = 0.0321. For the sake
of illustration, using the data for the whole sample, Fig. 4 plots the
shape of the empirically estimated first-order autocorrelation function
of 𝑘-month excess returns and the shape of the theoretical first-order
autocorrelation function with the parameters 𝑝 = 9 and 𝜙 = 0.0321 that
produce the best fit to the empirical data.

It is important to emphasize that the results of our estimations imply
that, when the whole sample data are used, the value of 𝜙 is about
the same largeness as that of the standard error of estimation of 𝜙
7

using the OLS regression model, see Table 1. This observation explains
why we generally do not see statistically significant 𝜙𝑖 coefficients
when we rely on the OLS methodology. This is because, to detect
statistical significance at the 5% level, a coefficient in an OLS model
must be more than twice as large as the standard error of estimation
of this coefficient. To reduce the standard error by half, one needs to
quadruple the sample size. Therefore, our ballpark estimate is that, to
detect statistically significant autoregressive coefficient using the OLS
methodology, the sample size must cover more than 162 × 4 ≈ 650
years.8 Thus, the required sample size is way beyond the currently
available sample sizes.

It is also instructive to compare the results on the estimated return
persistence calculated as the sum of the autoregressive coefficients from
the OLS regression and the return persistence estimated by our model
identification procedure. Whereas the two results agree well when the
data for the first half of the sample is used, they differ remarkably
when the data for the whole sample or the second half are utilized.
Specifically, the results in Table 1 indicate a weak return persistence in
the first half of the sample and a substantially weaker return persistence
in the whole sample and the second half of it. By contrast, the results
in Table 3 argue that in the entire sample period and the second half,
the return persistence was a bit stronger than that in the first half of
the sample.

6. Theoretical analysis of time series momentum strategy

Armed with a reasonably accurate knowledge of the momentum
generating process, we continue this paper with a theoretical analysis
of the TSMOM strategy. In particular, in the subsequent section, we
offer analytical results on the TSMOM strategy’s risk, return, and
performance. We demonstrate that our analytical results agree well
with the empirical data. Subsequently, we provide a comparative static
analysis of the profitability of the TSMOM strategy. Finally, by relying
on a simulation analysis, we explore how the evidence of the TSMOM
strategy’s superior performance depends on the investment horizon and
evaluate the power of statistical tests.

8 This number is verified using a parametric bootstrap simulation method.



International Review of Financial Analysis 82 (2022) 102173V. Zakamulin and J. Giner

w
o

𝑷

P
t

𝐸

𝑉

𝛼

w
a
T

R
s

i
b
t
o
t
e
T
i
s

t
𝑟
s
b
s
𝑟
r
o
c
r

𝜚

a

𝜚

w
b
b

o

6.1. Risk, return, and performance of TSMOM strategy

To start with, this section presents analytical solutions for the mean
returns, the variance of returns, the Sharpe ratio, and the CAPM alpha
and beta of the TSMOM strategy. For simplicity, we assume that the
risk-free interest rate, 𝑟𝑓 , is constant and the joint distribution of
the market returns 𝑟𝑡 and the 𝑀𝑂𝑀𝑡−1(𝑛) trading indicator follows a
bivariate normal distribution
[

𝑟𝑡
𝑀𝑂𝑀𝑡−1(𝑛)

]

= 
([

𝜇
𝑚

]

,
[

𝜎2 𝜚𝑛𝜎𝑣
𝜚𝑛𝜎𝑣 𝑣2

])

, (14)

where 𝜇 and 𝜎2 are the mean and variance of 𝑟𝑡, 𝑚 and 𝑣2 are the
mean and variance of 𝑀𝑂𝑀𝑡−1(𝑛), and 𝜚𝑛 is the correlation coefficient
between 𝑟𝑡 and 𝑀𝑂𝑀𝑡−1(𝑛). The mean and variance of 𝑀𝑂𝑀𝑡−1(𝑛) are
given by

𝑚 = 𝑛𝜇𝑥, 𝑣2 = 𝟏′𝑛𝑷 𝑛,𝑛𝟏𝑛𝜎2𝑥 , (15)

where 𝜇𝑥 and 𝜎2𝑥 are given by Eq. (6), 𝟏𝑛 is the 𝑛×1 vector of ones, and
matrix 𝑷 𝑛,𝑛 is the 𝑛×𝑛 matrix given by (12). The correlation coefficient
is computed as (see Zakamulin & Giner, 2020)

𝜚𝑛 =
𝟏′𝑛𝑷 𝑛,𝑝 𝝓𝑝
√

𝟏′𝑛𝑷 𝑛,𝑛𝟏𝑛
, (16)

here 𝝓′
𝑝 = [𝜙, 𝜙,… , 𝜙] is the 𝑝×1 vector of autoregressive coefficients

f 𝑋𝑡 and 𝑷 𝑛,𝑝 is the 𝑛 × 𝑝 matrix given by

𝑛,𝑝 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 𝜌1 𝜌2 … 𝜌𝑝−1
𝜌1 1 𝜌1 … 𝜌𝑝−2
𝜌2 𝜌1 1 … 𝜌𝑝−3
⋮ ⋮ ⋮ ⋱ ⋮

𝜌𝑛−1 𝜌𝑛−2 𝜌𝑛−3 … 𝜌
|𝑝−𝑛|

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

roposition 2. The mean return, variance of returns, beta, and alpha of
he long-only TSMOM strategy are given by

[𝑅𝐿𝑂
𝑡 ] = (𝜇 − 𝑟𝑓 )𝛷(−𝑑) + 𝑟𝑓 + 𝑔, (17)

𝑎𝑟[𝑅𝐿𝑂
𝑡 ] = (𝜇2 + 𝜎2)𝛷(−𝑑) + 𝑔(2𝜇 + 𝜎𝜚𝑛𝑑) + 𝑟2𝑓𝛷(𝑑) − 𝐸[𝑅𝐿𝑂

𝑡 ]2, (18)

𝛽𝐿𝑂 = 𝛷(−𝑑) +
𝑔(𝜇 − 𝑟𝑓 + 𝜎𝜚𝑛𝑑)

𝜎2
, (19)

𝛼𝐿𝑂 = 𝑔
(

1 −
(𝜇 − 𝑟𝑓 )(𝜇 − 𝑟𝑓 + 𝜎𝜚𝑛𝑑)

𝜎2

)

, (20)

where

𝑑 = −𝑚
𝑣
, 𝑔 = 𝜎𝜚𝑛𝜑(𝑑),

and 𝜑(.) and 𝛷(.) denote the probability density and the cumulative prob-
ability distribution function, respectively, of the standard normal random
variable

𝜑(𝑧) = 1
√

2𝜋
𝑒−

𝑧2
2 , 𝛷(𝑑) = ∫

𝑑

−∞
𝜑(𝑧)𝑑𝑧.

The mean return, variance of returns, beta, and alpha of the long–short
TSMOM strategy are given by

𝐸[𝑅𝐿𝑆
𝑡 ] = (2𝛷(−𝑑) − 1)𝜇 + 2(𝑔 +𝛷(𝑑)𝑟𝑓 ), (21)

𝑉 𝑎𝑟[𝑅𝐿𝑆
𝑡 ] = (𝜇2 + 𝜎2) + 4𝑟𝑓 (𝑔 − (𝜇 − 𝑟𝑓 )𝛷(𝑑)) − 𝐸[𝑅𝐿𝑆

𝑡 ]2, (22)

𝛽𝐿𝑆 = 𝛷(−𝑑) −𝛷(𝑑) +
2𝑔(𝜇 − 𝑟𝑓 + 𝜎𝜚𝑛𝑑)

𝜎2
, (23)

𝐿𝑆 = 2 𝑔
(

1 −
(𝜇 − 𝑟𝑓 )(𝜇 − 𝑟𝑓 + 𝜎𝜚𝑛𝑑)

𝜎2

)

. (24)

The proof is given in Appendix.
8

𝜎

Remark 1. We remind the reader that the returns to the long-only
strategy, 𝑅𝐿𝑂

𝑡 , are given by Eq. (1), whereas the returns to the long–
short strategy, 𝑅𝐿𝑆

𝑡 , are specified by Eq. (2).

Remark 2. The Sharpe ratio of the buy-and-hold strategy, the long-
only TSMOM strategy, and long–short TSMOM strategy are given by

𝑆𝑅𝐵𝐻 =
𝜇 − 𝑟𝑓

𝜎
, 𝑆𝑅𝐿𝑂 =

𝐸[𝑅𝐿𝑂
𝑡 ] − 𝑟𝑓

√

𝑉 𝑎𝑟
[

𝑅𝐿𝑂
𝑡

]

, 𝑆𝑅𝐿𝑆 =
𝐸[𝑅𝐿𝑆

𝑡 ] − 𝑟𝑓
√

𝑉 𝑎𝑟
[

𝑅𝐿𝑆
𝑡

]

,

(25)

here 𝑆𝑅𝐵𝐻 , 𝑆𝑅𝐿𝑂, and 𝑆𝑅𝐿𝑆 denote the Sharpe ratio of the buy-
nd-hold strategy, the long-only TSMOM strategy, and the long–short
SMOM strategy, respectively.

emark 3. Note that 𝛼𝐿𝑆 = 2𝛼𝐿𝑂. In words, the alpha of the long–short
trategy is twice as large as the alpha of the long-only strategy.

First of all, we check how well the results of our theoretical model-
ng agree with the empirical results. The empirical results are obtained
y simulating the historical returns to the TSMOM strategies over
he whole sample and each half of the sample. We assume that the
ptimal window size in the 𝑀𝑂𝑀(𝑛) trading indicator is known in
hese simulations. We remind the reader that the optimal window size
quals the number of lags in the 𝐴𝑅(𝑝) process for the excess returns.
hus, when the whole sample data are used, the optimal window size

s 𝑛 = 9. The optimal window sizes for the first and second half of the
ample are 7 and 8, respectively.

The theoretical results are computed as follows. First, using a par-
icular sample period, we estimate the monthly parameters 𝜇, 𝜎, and
𝑓 . Then, using the analytical solutions, we compute the mean return,
tandard deviation, Sharpe ratio, and CAPM alpha and beta of the
uy-and-hold strategy, the long-only TSMOM strategy, and the long–
hort TSMOM strategy.9 We assume that the excess market returns
𝑡 − 𝑟𝑓 follow the 𝐴𝑅(𝑝) process with the estimated best-fit parameters
eported in Table 3. As in the historical simulations, we assume that the
ptimal window size in the TSMOM rule is known, that is, 𝑛 = 𝑝. In this
ase, the expression for the correlation coefficient specified by Eq. (16)
educes to

𝑝 =
(1 + (𝑝 − 1)𝜌)𝑝𝜙
√

𝑝(1 + (𝑝 − 1)𝜌)
, (26)

where 𝜌 is given by Eq. (5). Assuming that 𝑝 − 1 ≈ 𝑝, a useful
pproximate solution for this correlation coefficient is given by

𝑝 ≈
𝜅

√

𝑝 (1 − 𝜅)
. (27)

Note that this correlation coefficient is the main driving factor deter-
mining the TSMOM strategy’s success. This is because the performance
of any trend-following strategy increases as the correlation between the
trading indicator and the future return increases.

Both the Sharpe ratio and CAPM alpha measure the performance
of an investment strategy. To check whether the TSMOM strategy
outperforms the buy-and-hold strategy, we conduct two statistical tests.
The first test uses the Sharpe ratio as a performance measure. The null
hypothesis in this test is

𝐻0 ∶ 𝑆𝑅𝑀𝑂𝑀 = 𝑆𝑅𝐵𝐻 versus 𝐻𝐴 ∶ 𝑆𝑅𝑀𝑂𝑀 > 𝑆𝑅𝐵𝐻 , (28)

here 𝑆𝑅𝑀𝑂𝑀 and 𝑆𝑅𝐵𝐻 are the Sharpe ratios of the TSMOM and
uy-and-hold strategy, respectively. In words, we test for the difference
etween the Sharpe ratios of two alternative strategies. To this end, we

9 The risk-free rate of return is estimated as the mean risk-free rate of return
ver the sample. Further note that under our assumptions 𝜇𝑥 = 𝜇 − 𝑟𝑓 and
= 𝜎.
𝑥
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Table 4
The descriptive statistics of the buy-and-hold strategy, the long-only TSMOM strategy,
and the long–short TSMOM strategy. The mean return, standard deviation, and alpha
are annualized and reported in percentages. The Sharpe ratios are also annualized. For
each TSMOM strategy, the table reports the empirically estimated descriptive statistics
and the theoretically computed (model-implied) descriptive statistics. The 𝑝-values are
reported in round brackets. The 𝑝-value of alpha is computed using Newey–West errors
with 12 lags. Bold indicates statistical significance at the 5% level.

Buy and hold Long-only Long–short

Empirical Theoretical Empirical Theoretical

Full sample: 1857–2018

Mean return 10.27 10.06 10.34 9.64 10.40
Std. deviation 17.40 12.88 13.61 17.46 17.40
Sharpe ratio 0.37 0.48 0.48 0.33 0.38

(0.04) (0.68)
Beta 1.00 0.55 0.61 0.10 0.22
Alpha 0.00 2.59 2.56 5.18 5.13

(0.00) (0.00)

First half: 1857–1937

Mean return 8.99 9.19 9.36 9.12 9.73
Std. deviation 19.25 12.87 14.56 19.34 19.23
Sharpe ratio 0.26 0.40 0.37 0.27 0.30

(0.08) (0.52)
Beta 1.00 0.45 0.57 −0.11 0.14
Alpha 0.00 2.85 2.50 5.69 5.00

(0.01) (0.01)

Second half: 1938–2018

Mean return 11.56 10.37 10.72 9.41 9.89
Std. deviation 15.34 11.64 12.38 14.91 15.40
Sharpe ratio 0.52 0.57 0.57 0.39 0.41

(0.22) (0.83)
Beta 1.00 0.62 0.65 0.23 0.30
Alpha 0.00 1.97 1.94 3.95 3.88

(0.02) (0.02)

apply the Jobson and Korkie (1981) test corrected by Memmel (2003).
The test statistic in the Jobson and Korkie (1981) test is

𝑧 =
𝑆𝑅𝑀𝑂𝑀 − 𝑆𝑅𝐵𝐻

√

[

2(1 − 𝜌𝑏) +
1
2 (𝑆𝑅

2
𝑀𝑂𝑀 + 𝑆𝑅2

𝐵𝐻 − 2𝜌2𝑏𝑆𝑅𝑀𝑂𝑀𝑆𝑅𝐵𝐻 )
]

∕𝑇
, (29)

where 𝑆𝑅𝑀𝑂𝑀 , 𝑆𝑅𝐵𝐻 , and 𝜌𝑏 are the estimated Sharpe ratios and
correlation coefficient between the returns of the two strategies over a
sample size of 𝑇 months. Under the null hypothesis, 𝑧 is asymptotically
standard normal.

The second test uses the CAPM alpha as a performance measure.
The null hypothesis in this test is

𝐻0 ∶ 𝛼𝑀𝑂𝑀 = 0 versus 𝐻𝐴 ∶ 𝛼𝑀𝑂𝑀 > 0, (30)

where 𝛼𝑀𝑂𝑀 is the alpha of the TSMOM strategy. The test statistic in
this test

𝑧 =
𝛼𝑀𝑂𝑀

𝑠𝑒
(

𝛼𝑀𝑂𝑀
) , (31)

where 𝑠𝑒
(

𝛼𝑀𝑂𝑀
)

is the standard error of estimation of 𝛼𝑀𝑂𝑀 . When
the number of observations is sufficiently large, 𝑧 is asymptotically
standard normal. The alpha is estimated using the CAPM regression.
Because the regression residuals are autocorrelated, the standard error
of estimation of alpha is computed using the Newey–West estimator
with 12 lags. Finally, note that both our tests are one-sided.

Table 4 reports the descriptive statistics of the buy-and-hold strat-
egy using the whole sample of data and both halves of the sample.
The descriptive statistics include the mean return, standard devia-
tion, Sharpe ratio, and CAPM alpha and beta. Besides, for both the
long-only and long–short TSMOM strategies, this table reports the em-
pirically estimated descriptive statistics and the theoretically computed
(model-implied) descriptive statistics. The empirical performance of
9

w

each TSMOM strategy is tested against the performance of the corre-
sponding buy-and-hold strategy. The p-values are reported in round
brackets.

Our first observation concerns the agreement between the empiri-
cally estimated and model-implied descriptive statistics of the TSMOM
strategies. As the numbers in Table 4 suggest, most often, the analyt-
ically calculated descriptive statistics slightly overestimate the empiri-
cally estimated descriptive statistics. Yet, the general picture is that the
model-implied results agree well with the empirical data.

Our second observation is related to the profitability of the TSMOM
strategies. Judging by the Sharpe ratio, the long–short TSMOM strat-
egy is not superior to the buy-and-hold strategy, while the long-only
TSMOM strategy outperforms the buy-and-hold strategy. In particular,
the evaluated Sharpe ratios of the long-only TSMOM strategy are eco-
nomically significantly larger than those of the buy-and-hold strategy
over the whole sample and both halves of the sample. Yet, the statistical
evidence of outperformance is obtained only when the data for the
whole sample are used. Judging by the alpha, both TSMOM strategies
are statistically significantly superior to the buy-and-hold strategy.
As our theoretical model correctly predicts, the empirically estimated
alpha of the long–short TSMOM strategy tends to be double as large as
the alpha of the long-only TSMOM strategy.

It is worth emphasizing that the choice of performance measure
plays a crucial role in determining which TSMOM strategy is best.
When the Sharpe ratio measures the performance, the long-only TSMOM
strategy is best. By contrast, the long–short TSMOM strategy is best
according to the CAPM alpha. The difference in conclusions may seem
surprising but can be explained by how each performance criterion
measures the risk. While the Sharpe ratio is a performance measure
that considers the total risk (total standard deviation), the CAPM
alpha is a performance measure that accounts for the systematic risk
(beta) only. As the numbers in Table 4 reveal, the standard deviation
of returns of the long–short TSMOM strategy is comparable to that
of the buy-and-hold strategy and larger than the standard deviation
of the long-only TSMOM strategy. Conversely, the beta of the long–
short TSMOM strategy is substantially below the beta of the long-only
TSMOM strategy, which, in turn, has a beta that is notably below
the beta of the buy-and-hold strategy. Therefore, while the long-only
TSMOM strategy has the lowest total risk, the long–short TSMOM
strategy has the lowest systematic risk.

6.2. Comparative static analysis of TSMOM strategy’s performance

The results presented in the preceding section advocate that our
theoretical model is in good agreement with empirical data. Con-
sequently, the comparative static analysis of our theoretical model
can significantly contribute to our fundamental understanding of the
TSMOM strategy. Given the space limitation, it is impossible to present
a full-blown analysis. With this in mind, we focus only on studying
how the TSMOM strategy’s profitability depends on the parameters of
the 𝐴𝑅(𝑝) process for the excess returns and the number of lags in the

𝑂𝑀(𝑛) trading indicator.
We start our analysis by investigating how the performance of the

ong-only and long–short TSMOM strategy depends on the value of 𝜙
in the 𝐴𝑅(𝑝) process for the excess returns. The model parameters 𝜇,
𝜎, and 𝑟𝑓 are evaluated using the data for the whole sample. We hold
the value of 𝑝 fixed at 9 (the estimated value) and vary the value of
𝜙 ∈ [0, 0.07]. Panel A (B) in Fig. 5 plots the theoretical Sharpe ratio
(alpha) of the buy-and-hold strategy, the long-only TSMOM strategy,
and the long–short TSMOM strategy versus the value of 𝜙 in the 𝐴𝑅(9)
rocess for the excess returns. In both strategies, the trading signal is
enerated using the 𝑀𝑂𝑀(9) trading indicator.

To begin with, we analyze how the superiority of the TSMOM
trategy depends on 𝜙 when the performance is measured by the Sharpe
atio. Based on the visual observations of the curves in Fig. 5 Panel A,

e can make the following observations. First, when the excess market
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Fig. 5. Panel A (B) plots the theoretical Sharpe ratio (alpha) of the buy-and-hold strategy, the long-only TSMOM strategy, and the long–short TSMOM strategy versus the value of
𝜙 in the 𝐴𝑅(9) process for the excess returns. In both strategies, the trading signal is generated using the 𝑀𝑂𝑀(9) trading indicator. The parameters 𝜇, 𝜎, and 𝑟𝑓 are evaluated
using the data for the whole sample. The vertical dotted line shows the location of the estimated value of 𝜙 = 0.0321.
v

returns follow a random walk, 𝜙 = 0, the correlation coefficient 𝜚𝑝 =
0, and, consequently, the trading signals do not have any predictive
ability. In this case, both TSMOM strategies underperform the buy-and-
hold strategy. It is also worth mentioning that, in this case, the Sharpe
ratio of the long–short TSMOM strategy is notably below that of the
long-only TSMOM strategy.

Second, when the autoregressive coefficient 𝜙 increases, the return
persistence 𝜅 = 𝑝𝜙 and the correlation 𝜚𝑝 increase (see Eq. (27)). As
a result, the Sharpe ratio of both TSMOM strategies increases. Third,
the long-only TSMOM strategy starts outperforming the buy-and-hold
strategy when the value of the autoregressive parameter 𝜙 exceeds
.0149. This value is twice as low as the estimated value. Fourth,
he value of 𝜙 must surpass 0.0549 to make the long–short TSMOM
trategy superior to the long-only TSMOM strategy. That is, the value
f 𝜙 must be more than twice as large as the estimated value to make
he long–short TSMOM strategy worthwhile according to the Sharpe
atio criterion. Finally, when the performance is measured by alpha and
> 0, the long–short TSMOM strategy always outperforms the long-

nly TSMOM strategy, which, in turn, outperforms the buy-and-hold
trategy.

Our next analysis is motivated by the following observation con-
erning the superiority of the long-only TSMOM strategy. Both the
mpirical and model-implied Sharpe ratios of the long-only TSMOM
trategy are higher than the Sharpe ratios of the buy-and-hold strategy.
ote, however, that in the first half of the sample, the Sharpe ratio of

he long-only TSMOM strategy is about 40% higher than that of the
uy-and-hold strategy. In contrast, in the second half of the sample,
he Sharpe ratio of the long-only TSMOM strategy is only about 12%
igher than that of the buy-and-hold strategy. This difference seems
urprising given that the estimated persistence of the return process is
lmost the same in both halves of the sample. A similar observation
an be made regarding the alpha of a TSMOM strategy. In particular,
he alpha is notably greater in the first half of the sample than in the
econd half.

Our theoretical model, coupled with the estimated parameters of
he 𝐴𝑅(𝑝) process for the excess returns, can explain the observed
iscrepancy between the relative performance of the TSMOM strategy
ersus the buy-and-hold strategy in two halves of the sample. Note that
he correlation coefficient 𝜚𝑝 increases as the return persistence 𝜅 = 𝑝𝜙
10

ncreases. In contrast, for a fixed 𝜅, the correlation coefficient increases
when 𝑝 decreases (see Eq. (27)). As a result, two different pairs {𝑝, 𝜙}
can yield notably different performances even though the product of
each pair is the same.

For the sake of illustration, Panel A (B) in Fig. 6 plots the theoretical
Sharpe ratio (alpha) of the long-only and long–short 𝑀𝑂𝑀(𝑝) strategy
ersus 𝑝 for a constant 𝜅 = 𝑝𝜙 = 0.2889.10 The parameters 𝜇, 𝜎,

and 𝑟𝑓 are estimated using the data for the whole sample. This figure
demonstrates that, for a fixed value of 𝜅 = 𝑝𝜙, the Sharpe ratio and
alpha of the TSMOM strategy increase exponentially when 𝑝 decreases.
Note that the estimated value of 𝑝 for the first half of the sample equals
7, whereas the estimated value equals 8 for the second half of the
sample. At the same time, the estimated return persistence is about the
same in both halves of the sample. Consequently, our model correctly
predicts that a TSMOM strategy outperforms the buy-and-hold strategy
to a greater extent in the first half of the sample than in the second
half.

The results reported above are obtained under the implicit assump-
tion that we know the optimal number of lags in the TSMOM rule. In
reality, the optimal number of lags is never known for sure. The final
analysis in this section investigates the TSMOM strategy’s robustness
to the number of lags in the rule. Panel A (B) in Fig. 7 plots the
theoretical Sharpe ratio (alpha) of the buy-and-hold strategy, the long-
only TSMOM strategy, and the long–short TSMOM strategy versus the
number of lags 𝑛. In both strategies, the trading signal is generated
using the 𝑀𝑂𝑀(𝑛) trading indicator. As before, we assume that the
excess returns follow the 𝐴𝑅(9) process and the parameters 𝜇, 𝜎, and
𝑟𝑓 are estimated using the whole sample data.

The curves in Fig. 7 advocate that the TSMOM strategy’s perfor-
mance is rather stable with respect to changes in 𝑛 (at least when
𝑛 is not very much different from the optimal 𝑛 = 𝑝). For example,
the Sharpe ratio of the long-only TSMOM strategy with either 𝑛 = 6
or 𝑛 = 14 is only about 6% below the Sharpe ratio of the optimal
strategy with 𝑛 = 9 and still about 23% above the estimated Sharpe
ratio of the buy-and-hold strategy. A similar conclusion can be drawn
regarding the TSMOM strategy’s robustness when the performance is
measured by alpha. In this case, the alpha of both TSMOM strategies
is only a fraction below its maximum value when 𝑛 varies from 6 to
14. Even when 𝑛 = 1, both TSMOM strategies have an edge over the
buy-and-hold strategy.

10 For each value of 𝑝, the value of 𝜙 is computed as 𝜙 = 𝜅∕𝑝.
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Fig. 6. Panel A (B) plots the theoretical Sharpe ratio (alpha) of the long-only and long–short 𝑀𝑂𝑀(𝑝) strategy versus the value of 𝑝 in the 𝐴𝑅(𝑝) process for the excess returns.
t is assumed that the return persistence 𝜅 = 𝑝𝜙 = 0.2889 is constant for all 𝑝. The parameters 𝜇, 𝜎, and 𝑟𝑓 are evaluated using the data for the whole sample. The vertical dotted

line shows the location of the estimated value of 𝑝 = 9.
Fig. 7. Panel A (B) plots the theoretical Sharpe ratio (alpha) of the buy-and-hold strategy, the long-only TSMOM strategy, and the long–short TSMOM strategy versus the number
f lags 𝑛. In both strategies, the trading signal is generated using the 𝑀𝑂𝑀(𝑛) trading indicator. It is assumed that the excess returns follow the 𝐴𝑅(9) process. The parameters
, 𝜎, 𝑟𝑓 , and 𝜙 are estimated using the data for the whole sample. The vertical dotted line shows the location of the optimal 𝑛 = 9.
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.3. Investment Horizon and evidence of superior performance

The majority of the empirical studies on the profitability of trend-
ollowing strategies find that these strategies are profitable in the
ong run over periods ranging from 50 to 150 years. However, when
he researchers use the most recent historical period (from 5 to 10
ast years in the sample of data used in a study), they frequently
eport that the trend-following strategies are not profitable (see, for
xample, Hutchinson & O’Brien, 2014; Lee et al., 2001; Okunev &
hite, 2003; Olson, 2004, Siegel, 2002, Chapter 2, Sullivan et al.,

999, and Zakamulin, 2014). Typically, this result is attributed to
ncreased market efficiency over time. Another issue in these studies
s the lack of scientific evidence on the profitability of trend-following
trategies. Specifically, even when the performance of a trend-following
11
trategy is economically significantly higher than that of its passive
ounterpart, the researchers often fail to reject the null hypothesis
hat both strategies have equal performance (see, among others, Huang
t al., 2020; Kim et al., 2016, and Zakamulin, 2017).

Our theoretical and empirical results reported above suggest that
he performance of the TSMOM strategy is superior to that of the
uy-and-hold strategy.11 Strictly speaking, this says that the TSMOM
trategy tends to outperform the buy-and-hold strategy over the long
un. However, because of randomness, there is no guarantee that the
SMOM strategy outperforms the buy-and-hold strategy over the short

11 Except the case of the long–short TSMOM strategy when the performance
is measured by the Sharpe ratio.



International Review of Financial Analysis 82 (2022) 102173V. Zakamulin and J. Giner

m
T
c
w
T
s
r
a
o
t
i
b
a
e
1

s
s

p
t
p

a
T
t
p
t
a
p
o
t
2
r

t
r
b
s
s
s
d
s
l
s
e
s
t
s
t
t
s

t
c
f

run. In this section, we examine how the evidence of the TSMOM
strategy’s superior performance depends on the investment horizon
length. The goal is to understand and explain why trend-following
strategies often demonstrate inferior performance over the short run
and lack of scientific evidence of superior performance even over the
long run.

To achieve this goal, we rely on a simulation method. In particular,
using the data for the whole sample, we estimate the monthly parame-
ters 𝜇 and 𝜎 of the returns on the S&P Composite index and the risk-free
rate of returns 𝑟𝑓 . The mean and variance of the excess market returns
are computed as 𝜇𝑥 = 𝜇 − 𝑟𝑓 and 𝜎𝑥 = 𝜎. We assume that the excess

arket returns follow the 𝐴𝑅(𝑝) process with 𝑝 = 9 and 𝜙 = 0.0321.
he parameters 𝑐 and 𝜎𝜀 of the 𝐴𝑅(𝑝) process for the excess returns are
omputed using Eqs. (6). Subsequently, for a fixed horizon of 𝑌 years,
e simulate monthly returns to the buy-and-hold strategy and the
SMOM strategy 𝑁 = 100,000 times. The trading signal in the TSMOM
trategy is generated using the 𝑀𝑂𝑀(9) rule. After each simulation
ound, we compute the Sharpe ratio of the long-only TSMOM strategy12

nd the buy-and-hold strategy, and the CAPM alpha of both the long-
nly and long–short TSMOM strategies. Subsequently, we conduct the
ests of the null hypothesis of equal performance. The null hypothesis
n the Sharpe ratio test is given by Eq. (28), and its test statistic is given
y Eq. (29). In the alpha test, the null hypothesis and its test statistic
re given by Eqs. (30) and (31), respectively. The standard error of
stimation of alpha is computed using the Newey–West estimator with
2 lags.

After carrying out all simulations for a specific horizon 𝑌 , we
compute two probabilities. The first probability is the probability that
over the horizon of 𝑌 years, the performance of the TSMOM strategy
is better than that of the buy-and-hold strategy, 𝑃𝑟𝑜𝑏(𝑧 > 0). To
compute this probability, we count how many times the performance
(Sharpe ratio or alpha) of the TSMOM strategy is greater than the
performance of the buy-and-hold strategy. Denoting this value by 𝑞1,
the probability is computed as 𝑃𝑟𝑜𝑏(𝑧 > 0) = 𝑞1∕𝑁 . The second
probability is the probability that over the horizon of 𝑌 years, the
𝑝-value of the null hypothesis is lower than 5%. This probability is
the probability of rejecting the null hypothesis at the 5% level. To
compute this probability, we count how many times the value of the
𝑧-statistic exceeds the value of 1.64 (which is the critical value in a
one-tailed test). Denoting this value by 𝑞2, the probability is computed
as 𝑃𝑟𝑜𝑏(𝑧 > 1.64) = 𝑞2∕𝑁 .

Table 5 reports the results of this simulation study. The information
in the table is very insightful and allows us to draw important con-
clusions. We start with discussing the conclusions that can be reached
when the performance is measured by the Sharpe ratio criterion. Over
short- to medium-term horizons of up to 5 years, the probability that
the long-only TSMOM strategy outperforms the buy-and-hold strategy
is around 50%. That is, over these horizons, the long-only TSMOM
strategy is equally like to underperform the buy-and-hold strategy as
to outperform. The probability of outperformance increases as the
investment horizon lengthens. For example, over horizons ranging from
5 to 10 years, the TSMOM strategy’s probability of outperforming the
buy-and-hold strategy is about 60%. However, even over 50 years,
the probability of outperformance is about 80% only. Consequently,
there is no guarantee that the trend-following strategy outperforms the
buy-and-hold strategy even over a very long horizon.

The probability that the long-only TSMOM strategy statistically
significantly outperforms the buy-and-hold strategy also increases as
the investment horizon lengthens. Over the medium- and long-term
horizons ranging from 5 to 50 years, the probability of observing
statistically significant outperformance does not exceed 31%. Even over

12 In the Sharpe ratio test, we focus exclusively on the long-only TSMOM
trategy because our results suggest that the long–short TSMOM strategy is not
uperior to the buy-and-hold strategy according to the Sharpe ratio criterion.
12
Table 5
The results of the simulation study. For each horizon, the table reports two probabilities.
Probability 𝑃𝑟𝑜𝑏(𝑧 > 0) denotes the probability that the performance of a TSMOM
strategy is greater than the performance of the buy-and-hold strategy. Probability
𝑃𝑟𝑜𝑏(𝑧 > 1.64) denotes the probability of rejecting the null hypothesis of equal
erformances at the 5% level. The rejection of the null hypothesis means that
he performance of a TSMOM strategy is statistically significantly higher than the
erformance of the buy-and-hold strategy.
Panel A: Simulation study results for the Sharpe ratio

Probability Horizon, years

5 10 20 30 40 50 75 100 200 300 500

𝑧 > 0 0.50 0.59 0.69 0.75 0.79 0.82 0.88 0.92 0.98 0.99 1.00
𝑧 > 1.64 0.08 0.12 0.18 0.22 0.26 0.31 0.39 0.48 0.71 0.85 0.96

Panel B: Simulation study results for the CAPM alpha

Probability Horizon, years

10 25 40 50 60 70 80 90 100 110 120

𝑧 > 0 0.70 0.88 0.94 0.96 0.98 0.98 0.99 0.99 0.99 1.00 1.00
𝑧 > 1.64 0.18 0.34 0.48 0.56 0.64 0.70 0.76 0.81 0.83 0.87 0.90

the horizon of 100 years in 52% of cases, the long-only TSMOM strategy
does not statistically significantly outperform the buy-and-hold strat-
egy. The Sharpe ratio of the long-only TSMOM strategy almost surely
exceeds the Sharpe ratio of the buy-and-hold strategy over the horizon
of 500 years. Yet, even in this case, there is a 4% probability that
the Sharpe ratio of the long-only TSMOM strategy is not statistically
significantly higher than the Sharpe ratio of the buy-and-hold strategy.

It is worth noting that the probability 𝑃𝑟𝑜𝑏(𝑧 > 1.64) is the prob-
bility of correctly rejecting the false null hypothesis at the 5% level.
his probability is commonly known as the ‘‘statistical power’’ of the
est. From elementary statistics, it is known that when the statistical
ower is low, there is a high probability of a Type II error or concluding
here is no effect when a true effect exists. By convention, 80% is an
cceptable level of power in a statistical test. The left panel in Fig. 8
lots the estimated power of the Sharpe ratio test versus the number
f years in a sample. The plot in this panel advocates that, to reach
he desired power level of 80%, the sample size must be approximately
50 years. Consequently, our simulation results reveal that the Sharpe
atio test suffers from extremely low statistical power.

Next, we briefly discuss the conclusions that can be drawn when
he CAPM alpha measures the performance. First, our simulation study
esults suggest that the alpha test’s statistical power is similar for
oth the long-only and long–short TSMOM strategies. This result seems
urprising at first glance because the theoretical alpha of the long–
hort TSMOM strategy is twice as high as that of the long-only TSMOM
trategy. However, the long-only TSMOM strategy has a lower standard
eviation of returns and higher beta than the long–short TSMOM
trategy. Therefore, the long-only TSMOM strategy has a substantially
ower residual variance (in the CAPM regression) and, hence, a lower
tandard error of estimation of alpha than the long–short TSMOM strat-
gy.13 Our second conclusion is that the alpha test has a notably higher
tatistical power than the Sharpe ratio test. Our ballpark estimate is that
he sample size must be about 90 years to ensure the recommended
tatistical power in the alpha test. This sample size is approximately
hree times smaller than the necessary sample size in the Sharpe ratio
est. Still, to reach the desired power level in the alpha test, the sample
ize must span almost a century.

To sum up, we find that both the Sharpe ratio and CAPM alpha
ests suffer from the low statistical power problem. Consequently, we
onclude that in virtually all empirical studies that evaluate a trend-
ollowing strategy’s profitability, the power of the statistical test is

13 Consequently, our results advocate that the standard error of estimation
of alpha of the long-only TSMOM strategy is twice as small as that of the
long–short strategy.
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Fig. 8. Estimated statistical power of the test of equal performance of the TSMOM and buy-and-hold strategies versus the number of years in a sample. The left (right) panel plots
he statistical power of the Sharpe ratio (alpha) test. The statistical power is evaluated using the simulation method. The dashed horizontal line shows the recommended power
evel in a statistical test.
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uch below the acceptable level. Finally, it is worth noting that our
imulation study results agree very well with the findings reported
n the numerous papers. Although the TSMOM strategy’s performance
n our simulation study is notably higher than that of the buy-and-
old strategy, the outperformance is not guaranteed over short-term
orizons. And this result has nothing to do with the increased efficiency
f financial markets. It is merely the result of randomness. Besides,
he statistically significant outperformance is not guaranteed even over
ery long-term horizons.

. Conclusions

There is much controversy in the academic literature on the pres-
nce of short-term trends in financial markets and the trend-following
trategy’s profitability. This controversy has different aspects and raises
any questions that need to be answered. In this paper, we restrict

ur attention to studying time series momentum in the S&P Compos-
te stock price index. We aim to answer several important questions
egarding time series momentum and explain the existing controversy.

Our contributions are both empirical and theoretical. On the empir-
cal side, we present compelling evidence of short-term momentum in
he excess returns on the S&P Composite stock price index. For the first
ime, we assume that the excess returns follow an autoregressive pro-
ess of order 𝑝 and, using a novel methodology, estimate this process’s
arameters. Our estimation results reveal that the autocorrelation in
xcess returns is very weak over monthly horizons and, hence, escapes
etection when traditional estimation methods are used.

On the theoretical side, armed with a fairly accurate knowledge of
he momentum generating process, we provide analytical results on the
isk, return, and performance of the long-only and long–short TSMOM
trategies. We demonstrate that our analytical results agree well with
he empirical results obtained by simulating the historical returns to
he TSMOM strategies. We conduct a comparative static analysis of
ur analytical model to examine how the performance of the TSMOM
trategies depends on the model’s parameters. This analysis provides
ew and valuable insights into the properties and profitability of the
SMOM strategies.

The Sharpe ratio and CAPM alpha are the two most common
erformance measures in modern finance. We find that the choice of
erformance measure plays a crucial role in determining whether a
SMOM strategy is superior to its passive counterpart. The explanation
or this finding is that these performance criteria use totally different
isk measures. By relying on a simulation study, we explore how
13

he evidence of the TSMOM strategy’s profitability depends on the a
investment horizon and evaluate the power of statistical tests. This
study reveals that both the Sharpe ratio and alpha tests suffer from the
low statistical power problem.

By convention, the recommended power of a statistical test is 80%.
Our ballpark estimate is that the sample size must be about 250 years
with monthly observations to reach the desired power level when the
performance is measured by the Sharpe ratio. When the performance
is measured by alpha, the sample size must be about 90 years to
ensure the recommended statistical power. Even though the alpha test
has notably larger statistical power than the Sharpe ratio test, it still
requires a sample size that spans almost a century. Consequently, we
conclude that in virtually all empirical studies that evaluate a trend-
following strategy’s profitability, the power of the statistical test is
much below the acceptable level.
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ppendix

roof of Proposition 1

We suppose that 𝑋𝑡 is wide-sense stationary process, that is, the
rocess whose mean and autocovariance do not vary with respect to
ime: 𝐸[𝑋𝑡] = 𝜇𝑥 and 𝐸[(𝑋𝑡 − 𝜇𝑥)(𝑋𝑡−𝑘 − 𝜇𝑥)] = 𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡−𝑘) = 𝛾𝑘 for
ny 𝑡 and 𝑘.

By definition,

𝑜𝑟(𝑀𝑂𝑀𝑡+𝑘(𝑘),𝑀𝑂𝑀𝑡(𝑘)) =
𝐶𝑜𝑣(𝑀𝑂𝑀𝑡+𝑘(𝑘),𝑀𝑂𝑀𝑡(𝑘))

𝑉 𝑎𝑟(𝑀𝑂𝑀𝑡(𝑘))
, (32)

here 𝐶𝑜𝑣(𝑀𝑂𝑀𝑡+𝑘(𝑘),𝑀𝑂𝑀𝑡(𝑘)) is the covariance between
𝑂𝑀𝑡+𝑘(𝑘) and 𝑀𝑂𝑀𝑡(𝑘). Note that, because of the stationarity

ssumption, the variance of 𝑀𝑂𝑀 (𝑘) equals that of 𝑀𝑂𝑀 (𝑘).
𝑡+𝑘 𝑡



International Review of Financial Analysis 82 (2022) 102173V. Zakamulin and J. Giner

W

𝐸

𝐸

b
(
b

𝐸

E

𝐸

A
b

𝐸

A

𝐸

A

M

t

𝐸

T
c

𝐸

T
b

𝐸

w

V

c

𝑉

T
t

𝐸

The variance of 𝑀𝑂𝑀𝑡(𝑘) is given by

𝑉 𝑎𝑟(𝑀𝑂𝑀𝑡(𝑘)) = 𝑉 𝑎𝑟

( 𝑘
∑

𝑖=1
𝑋𝑡−𝑘+𝑖

)

=
𝑘−1
∑

𝑖=0

𝑘−1
∑

𝑗=0
𝐶𝑜𝑣(𝑋𝑡−𝑖, 𝑋𝑡−𝑗 ).

By definition, 𝐶𝑜𝑣(𝑋𝑡−𝑖, 𝑋𝑡−𝑗 ) = 𝜌
|𝑖−𝑗|𝛾20 = 𝜌

|𝑖−𝑗|𝜎2𝑥, where 𝜌𝑚 denotes
the autocorrelation of order 𝑚 of 𝑋𝑡 (with 𝜌0 = 1) and 𝜎2𝑥 denotes the
variance of 𝑋𝑡. Consequently, the expression for the variance can be
written as

𝑉 𝑎𝑟(𝑀𝑂𝑀𝑡(𝑘)) =
𝑘−1
∑

𝑖=0

𝑘−1
∑

𝑗=0
𝜌
|𝑖−𝑗|𝜎

2
𝑥 = 𝟏′𝑘𝑷 𝑘,𝑘𝟏𝑘𝜎2𝑥.

By similar reasoning, the covariance between 𝑀𝑂𝑀𝑡+𝑘(𝑘) and
𝑀𝑂𝑀𝑡(𝑘) is given by

𝐶𝑜𝑣(𝑀𝑂𝑀𝑡+𝑘(𝑘),𝑀𝑂𝑀𝑡(𝑘)) = 𝐶𝑜𝑣

( 𝑘
∑

𝑖=1
𝑋𝑡+𝑖,

𝑘
∑

𝑗=1
𝑋𝑡−𝑘+𝑗

)

=
𝑘
∑

𝑖=1

𝑘
∑

𝑗=1
𝐶𝑜𝑣(𝑋𝑡+𝑖, 𝑋𝑡−𝑘+𝑗 )

=
𝑘
∑

𝑖=1

𝑘
∑

𝑗=1
𝜌
|𝑘−𝑗+𝑖|𝜎

2
𝑥 = 𝟏′𝑘𝑸𝑘,𝑘𝟏𝑘𝜎2𝑥 .

Inserting the expressions for 𝐶𝑜𝑣(𝑀𝑂𝑀𝑡+𝑘(𝑘),𝑀𝑂𝑀𝑡(𝑘)) and
𝑉 𝑎𝑟(𝑀𝑂𝑀𝑡(𝑘)) into Eq. (32) completes the proof.

Proof of Proposition 2

Consider the returns to the following generalized trading strategy:

𝑅𝑡 =

{

𝑎𝑟𝑡 + 𝑐𝑎 if 𝑀𝑂𝑀𝑡−1(𝑛) > 0,
𝑏𝑟𝑡 + 𝑐𝑏 if 𝑀𝑂𝑀𝑡−1(𝑛) ≤ 0.

This trading strategy can be seen as an investment directed by binary
operators 𝐵𝑡 and 𝐶𝑡 defined in the following way:

𝐵𝑡 =

{

𝑎 if 𝑀𝑂𝑀𝑡−1(𝑛) > 0,
𝑏 if 𝑀𝑂𝑀𝑡−1(𝑛) ≤ 0,

and 𝐶𝑡 =

{

𝑐𝑎 if 𝑀𝑂𝑀𝑡−1(𝑛) > 0,
𝑐𝑏 if 𝑀𝑂𝑀𝑡−1(𝑛) ≤ 0,

so that the returns to the generalized trading strategy can be expressed
as 𝑅𝑡 = 𝐵𝑡𝑟𝑡 + 𝐶𝑡. The derivation of the formulas for the mean and
variance of 𝑅𝑡 follows along the lines of the derivation in Acar (2003)
who considered the simplified case 𝑅𝑡 = 𝐵𝑡𝑟𝑡.

Some necessary intermediate results
Taking into account that the joint distribution of 𝑟𝑡 and 𝑀𝑂𝑀𝑡−1(𝑛)

can be represented by the bivariate normal distribution given by (14),
we introduce variables 𝑧𝑡 and 𝑦𝑡−1 that are standardized versions of 𝑟𝑡
and 𝑀𝑂𝑀𝑡−1(𝑛) respectively. That is, 𝑧𝑡 =

𝑟𝑡−𝜇
𝜎 and 𝑦𝑡−1 =

𝑀𝑂𝑀𝑡−1(𝑛)−𝑚
𝑣 .

Then the pair of variables (𝑧𝑡, 𝑦𝑡−1) follows a bivariate standard normal
distribution with correlation coefficient 𝜚𝑛.

We introduce the following variable:

𝑑 = −𝑚
𝑣
.

ith this notation, the probability of 𝑀𝑂𝑀𝑡−1(𝑛) being less or greater
than 0 equals

𝑃𝑟𝑜𝑏(𝑀𝑂𝑀𝑡−1(𝑛) ≤ 0) = 𝑃𝑟𝑜𝑏(𝑦𝑡−1 ≤ 𝑑) = 𝛷(𝑑),

𝑃 𝑟𝑜𝑏(𝑀𝑂𝑀𝑡−1(𝑛) > 0) = 𝑃𝑟𝑜𝑏(𝑦𝑡−1 > 𝑑) = 1 −𝛷(𝑑) = 𝛷(−𝑑).

Note that in the 𝑦𝑡−1𝑧𝑡 plane the line 𝑦𝑡−1 = 𝑑 divides the whole plane
into two half-planes: in the half-plane where 𝑦𝑡−1 ≤ 𝑑 the trading signal
is Sell, whereas in the other half-plane where 𝑦𝑡−1 > 𝑑 the trading signal
is Buy.

The following results are straightforward to derive:
14

𝐸[𝐵𝑡] = 𝑎𝛷(−𝑑) + 𝑏𝛷(𝑑), (33)
𝐸[𝐶𝑡] = 𝑐𝑎𝛷(−𝑑) + 𝑐𝑏𝛷(𝑑), (34)

[𝐵2
𝑡 ] = 𝑎2𝛷(−𝑑) + 𝑏2𝛷(𝑑), (35)

[𝐶2
𝑡 ] = 𝑐2𝑎𝛷(−𝑑) + 𝑐2𝑏𝛷(𝑑). (36)

Consider the first and second moments of 𝑧𝑡 conditioned on 𝑦𝑡−1
eing less or greater than the value of 𝑑. Using the results of Kotz et al.
2000, pages 311-315) on the first and second moments of truncated
ivariate distributions, we obtain

[𝑧𝑡|𝑦𝑡−1 > 𝑑] =
𝜚𝑛𝜑(𝑑)
𝛷(−𝑑)

, (37)

𝐸[𝑧𝑡|𝑦𝑡−1 ≤ 𝑑] = −
𝜚𝑛𝜑(𝑑)
𝛷(𝑑)

, (38)

𝐸[𝑧2𝑡 |𝑦𝑡−1 > 𝑑] = 1 +
𝜚2𝑛𝑑𝜑(𝑑)
𝛷(−𝑑)

, (39)

𝐸[𝑧2𝑡 |𝑦𝑡−1 ≤ 𝑑] = 1 −
𝜚2𝑛𝑑𝜑(𝑑)
𝛷(𝑑)

. (40)

As an example, the expectation 𝐸[𝐵𝑡𝑧𝑡] can be obtained by combining
qs. (37) and (38)

[𝐵𝑡𝑧𝑡] = 𝑎𝛷(−𝑑)𝐸[𝑧𝑡|𝑦𝑡−1 > 𝑑] + 𝑏𝛷(𝑑)𝐸[𝑧𝑡|𝑦𝑡−1 ≤ 𝑑] = (𝑎 − 𝑏)𝜚𝑛𝜑(𝑑).

(41)

s another example, the expectation 𝐸[𝐵2
𝑡 𝑧

2
𝑡 ] can be obtained by com-

ining Eqs. (39) and (40)

[𝐵2
𝑡 𝑧

2
𝑡 ] = 𝑎2𝛷(−𝑑)𝐸[𝑧2𝑡 |𝑦𝑡−1 > 𝑑] + 𝑏2𝛷(𝑑)𝐸[𝑧2𝑡 |𝑦𝑡−1 ≤ 𝑑]

= 𝑎2𝛷(−𝑑) + 𝑏2𝛷(𝑑) + (𝑎2 − 𝑏2)𝜚2𝑛𝑑𝜑(𝑑).
(42)

s a final example, the solution for 𝐸[𝐵𝑡𝑧2𝑡 ] is given by

[𝐵𝑡𝑧
2
𝑡 ] = 𝑎𝛷(−𝑑)𝐸[𝑧2𝑡 |𝑦𝑡−1 > 𝑑] + 𝑏𝛷(𝑑)𝐸[𝑧2𝑡 |𝑦𝑡−1 ≤ 𝑑]

= 𝑎𝛷(−𝑑) + 𝑏𝛷(𝑑) + (𝑎 − 𝑏)𝜚2𝑛𝑑𝜑(𝑑).
(43)

ll these three results are needed later in the derivations.

ean returns of generalized trading strategy
Consider the expression for the mean returns of the generalized

rading strategy:

[𝑅𝑡] = 𝐸[𝐵𝑡𝑟𝑡 + 𝐶𝑡] = 𝐸[𝐵𝑡𝑟𝑡] + 𝐸[𝐶𝑡]. (44)

he term 𝐸[𝐶𝑡] is given by Eq. (34). The expression for the term 𝐸[𝐵𝑡𝑟𝑡]
an be represented in the following manner:

[𝐵𝑡𝑟𝑡] = 𝐸[𝐵𝑡(𝜇 + 𝜎𝑧𝑡)] = 𝜇𝐸[𝐵𝑡] + 𝜎𝐸[𝐵𝑡𝑧𝑡].

he term 𝐸[𝐵𝑡] is given by Eq. (33), whereas the term 𝐸[𝐵𝑡𝑧𝑡] is given
y Eq. (41). Putting everything together into Eq. (44), we obtain

[𝑅𝑡] = 𝜇 (𝑎𝛷(−𝑑) + 𝑏𝛷(𝑑)) + (𝑎 − 𝑏)𝑔 + 𝑐𝑎𝛷(−𝑑) + 𝑐𝑏𝛷(𝑑), (45)

here, for the sake of brevity, we denote the product 𝜎𝜚𝑛𝜑(𝑑) by 𝑔.

ariance of returns of generalized trading strategy
The variance of returns of the generalized trading strategy can be

omputed as:

𝑎𝑟[𝑅𝑡] = 𝐸[𝑅2
𝑡 ] − 𝐸[𝑅𝑡]2. (46)

he term 𝐸[𝑅𝑡] is given by Eq. (45). Consider the term 𝐸[𝑅2
𝑡 ] which is

he mean squared return of the generalized trading strategy:

[𝑅2
𝑡 ] = 𝐸

[

(𝐵𝑡𝑟𝑡 + 𝐶𝑡)2
]

= 𝐸
[

𝐵2
𝑡 𝑟

2
𝑡 + 2𝐵𝑡𝐶𝑡𝑟𝑡 + 𝐶2

𝑡
]

= 𝐸
[

𝐵2
𝑡 𝑟

2
𝑡
]

+ 2𝐸
[

𝐵𝑡𝐶𝑡𝑟𝑡
]

+ 𝐸
[

𝐶2
𝑡
]

. (47)
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The term 𝐸[𝐶2
𝑡 ] is given by Eq. (36). Consider the term 𝐸[𝐵𝑡𝐶𝑡𝑟𝑡]

[𝐵𝑡𝐶𝑡𝑟𝑡] = 𝐸[𝐵𝑡𝐶𝑡(𝜇 + 𝜎𝑧𝑡)] = 𝜇𝐸[𝐵𝑡𝐶𝑡] + 𝜎𝐸[𝐵𝑡𝐶𝑡𝑧𝑡].

The expression for 𝐸[𝐵𝑡𝐶𝑡] is straightforward to derive:

𝐸[𝐵𝑡𝐶𝑡] = 𝑎𝑐𝑎𝛷(−𝑑) + 𝑏𝑐𝑏𝛷(𝑑).

The expression for 𝐸[𝐵𝑡𝐶𝑡𝑧𝑡] can be obtained in a similar manner to
that of the expression for 𝐸[𝐵𝑡𝑧𝑡] (see Eq. (41))

𝐸[𝐵𝑡𝐶𝑡𝑧𝑡] = (𝑎𝑐𝑎 − 𝑏𝑐𝑏)𝜚𝑛𝜑(𝑑).

Therefore,

𝐸[𝐵𝑡𝐶𝑡𝑟𝑡] = 𝜇
(

𝑎𝑐𝑎𝛷(−𝑑) + 𝑏𝑐𝑏𝛷(𝑑)
)

+ (𝑎𝑐𝑎 − 𝑏𝑐𝑏)𝑔. (48)

Now consider the expression for 𝐸[𝐵2
𝑡 𝑟

2
𝑡 ]

𝐸[𝐵2
𝑡 𝑟

2
𝑡 ] = 𝐸[𝐵2

𝑡 (𝜇 + 𝜎𝑧𝑡)2] = 𝜇2𝐸[𝐵2
𝑡 ] + 2𝜇𝜎𝐸[𝐵2

𝑡 𝑧𝑡] + 𝜎2𝐸[𝐵2
𝑡 𝑧

2
𝑡 ].

The terms with 𝐸[𝐵2
𝑡 ] and 𝐸[𝐵2

𝑡 𝑧
2
𝑡 ] are given by Eqs. (35) and (42)

respectively. The expression for the term 𝐸[𝐵2
𝑡 𝑧𝑡] is obtained in a

similar manner to that of 𝐸[𝐵𝑡𝑧𝑡] (see Eq. (41))

𝐸[𝐵2
𝑡 𝑧𝑡] =

(

𝑎2 − 𝑏2
)

𝜚𝑛𝜑(𝑑).

Consequently, we obtain

𝐸[𝐵2
𝑡 𝑟

2
𝑡 ] =

(

𝜇2 + 𝜎2
) (

𝑎2𝛷(−𝑑) + 𝑏2𝛷(𝑑)
)

+
(

𝑎2 − 𝑏2
)

𝑔(2𝜇 + 𝜎𝜚𝑛𝑑).

Finally, substituting 𝐸[𝐶2
𝑡 ], 𝐸[𝐵𝑡𝐶𝑡𝑟𝑡], and 𝐸[𝐵2

𝑡 𝑟
2
𝑡 ] into Eq. (47) for

𝐸[𝑅2
𝑡 ], the expression for the variance of returns of the generalized

trading strategy becomes:

𝑉 𝑎𝑟[𝑅𝑡] =
(

𝜇2 + 𝜎2
) (

𝑎2𝛷(−𝑑) + 𝑏2𝛷(𝑑)
)

+
(

𝑎2 − 𝑏2
)

𝑔(2𝜇 + 𝜎𝜚𝑛𝑑)

+ 2𝜇
(

𝑎𝑐𝑎𝛷(−𝑑) + 𝑏𝑐𝑏𝛷(𝑑)
)

+ 2(𝑎𝑐𝑎 − 𝑏𝑐𝑏)𝑔

+ 𝑐2𝑎𝛷(−𝑑) + 𝑐2𝑏𝛷(𝑑) − 𝐸[𝑅𝑡]2.

(49)

Alpha and beta of generalized trading strategy
The alpha in the CAPM is given by:

𝛼 = (𝐸[𝑅𝑡] − 𝑟𝑓 ) − 𝛽(𝜇 − 𝑟𝑓 ), (50)

where 𝐸[𝑅𝑡] is given by Eq. (45), while the beta is defined by:

𝛽 =
𝐶𝑜𝑣(𝑅𝑡, 𝑟𝑡)
𝑉 𝑎𝑟(𝑟𝑡)

=
𝐸[𝑅𝑡𝑟𝑡] − 𝐸[𝑅𝑡]𝜇

𝜎2
. (51)

he only new term in Eq. (51) is:

[𝑅𝑡𝑟𝑡] = 𝐸[(𝐵𝑡𝑟𝑡 + 𝐶𝑡)𝑟𝑡] = 𝐸[𝐵𝑡𝑟
2
𝑡 ] + 𝐸[𝐶𝑡𝑟𝑡].

To obtain the analytical result for 𝐸[𝑅𝑡𝑟𝑡], first, we derive the solution
for 𝐸[𝐵𝑡𝑟2𝑡 ];

𝐸[𝐵𝑡𝑟
2
𝑡 ] = 𝐸[𝐵𝑡(𝜇 + 𝜎𝑧𝑡)2] = 𝜇2𝐸[𝐵𝑡] + 2𝜇𝜎𝐸[𝐵𝑡𝑧𝑡] + 𝜎2𝐸[𝐵𝑡𝑧

2
𝑡 ].

The solution for 𝐸[𝐵𝑡] is given by Eq. (33), the solution for 𝐸[𝐵𝑡𝑧𝑡] is
given by Eq. (41), while the solution for 𝐸[𝐵𝑡𝑧2𝑡 ] is given by Eq. (43).
Putting it all together we get after simplification

𝐸[𝐵𝑡𝑟
2
𝑡 ] =

(

𝜇2 + 𝜎2
)

(𝑎𝛷(−𝑑) + 𝑏𝛷(𝑑)) + (𝑎 − 𝑏)𝑔(2𝜇 + 𝜎𝜚𝑛𝑑). (52)

Second, we derive the solution for 𝐸[𝐶𝑡𝑟𝑡]:

𝐸[𝐶𝑡𝑟𝑡] = 𝐸[𝐶𝑡(𝜇 + 𝜎𝑧𝑡)] = 𝜇𝐸[𝐶𝑡] + 𝜎𝐸[𝐶𝑡𝑧𝑡].

The solution for 𝐸[𝐶𝑡] is given by Eq. (34). The solution for 𝐸[𝐶𝑡𝑧𝑡] is
obtained along the same lines as the solution for 𝐸[𝐵𝑡𝑧𝑡] (see Eq. (41)):

𝐸[𝐶𝑡𝑧𝑡] = (𝑐𝑎 − 𝑐𝑏)𝜚𝑛𝜑(𝑑).

Putting it all together yields:

𝐸[𝐶𝑡𝑟𝑡] = 𝜇
(

𝑐𝑎𝛷(−𝑑) + 𝑐𝑏𝛷(𝑑)
)

+ (𝑐𝑎 − 𝑐𝑏)𝜚𝑛𝜑(𝑑). (53)

Finally, inserting the solutions for 𝐸[𝑅𝑡𝑟𝑡] and 𝐸[𝑅𝑡] into Eq. (51) we
get after simplification

𝛽 = 𝑎𝛷(−𝑑) + 𝑏𝛷(𝑑) +
(𝑎 − 𝑏)𝑔(𝜇 + 𝜎𝜚𝑛𝑑) + 𝑔(𝑐𝑎 − 𝑐𝑏) . (54)
15

𝜎2
esults for the long-only and long–short trading strategy
The particular results for the long-only trading strategy are obtained

hrough Eqs. (45), (49), (54), and (50) by using 𝑎 = 1, 𝑏 = 0, 𝑐𝑎 = 0 and
𝑐𝑏 = 𝑟𝑓 .

The particular results for the long–short trading strategy are ob-
tained through Eqs. (45), (49), (54), and (50) by using 𝑎 = 1, 𝑏 = −1,
𝑐𝑎 = 0 and 𝑐𝑏 = 2 𝑟𝑓 .
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