COGNITIVE SCIENCE

A Multidisciplinary Journal

Cognitive Science 46 (2022) e13132

© 2022 The Authors. Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science
Society (CSS).

ISSN: 1551-6709 online

DOI: 10.1111/cogs.13132

Great Minds Think Alike? Spatial Search Processes Can
Be More Idiosyncratic When Guided by More Accurate
Information
Michal Krél,2 Magdalena E. Kr61P

4School of Business and Law, Universitetet i Agder
SWroclaw Faculty of Psychology, SWPS University of Social Sciences and Humanities

Received 2 September 2021; received in revised form 17 March 2022; accepted 21 March 2022

Abstract

Existing research demonstrates that pre-decisional information sampling strategies are often stable
within a given person while varying greatly across people. However, it remains largely unknown what
drives these individual differences, that is, why in some circumstances we collect information more
idiosyncratically. In this brief report, we present a pre-registered online study of spatial search. Using
a novel technique that combines machine-learning dimension reduction and sequence alignment algo-
rithms, we quantify the extent to which the shape and temporal properties of a search trajectory are
idiosyncratic. We show that this metric increases (trajectories become more idiosyncratic) when a per-
son is better informed about the likely location of the search target, while poorly informed individuals
seem more likely to resort to default search routines determined bottom-up by the properties of the
search field. This shows that when many people independently attempt to solve a task in a similar way,
they are not necessarily “onto something.”
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1. Introduction

A vast body of research on human decision-making demonstrates that, when lacking suffi-
cient information as to which choice option is best, we tend to look to others for guidance. For
instance, in information and availability cascades (Anderson & Holt, 1997; Kuran & Sunstein,
1998), people see the fact that the same choice is made by a large number of their peers as a
sign that they must “know something” and are likely to copy that choice (e.g., to buy the most
popular product in a category on Amazon). Similarly, as seen in crowd attention studies (Sun,
Yu, Zhou, & Shen, 2017; Sweeny & Whitney, 2014), people are likely to look at whatever a
large portion of the crowd pays attention to. In other words, we tend to copy those patterns of
behavior or attention that are commonly seen in others, rather than the unusual, idiosyncratic
ones, deeming the latter less likely to lead to success.

However, research suggests that, in a variety of contexts, idiosyncratic behavior is not asso-
ciated with poor performance. For example, when making judgments based on viewing oth-
ers’ faces, people scan the face images with their eyes in a highly idiosyncratic manner, but
all these fingerprint-like unique information search patterns lead to similarly good task com-
pletion (Mehoudar, Arizpe, Baker, & Yovel, 2014; Peterson & Eckstein, 2012). In fact, the
increased similarity between the visual search patterns of people who collaborate on a task
may be related to decreased performance (Coco, Dale, & Keller, 2018). Even more strikingly,
in the context of research on the processing of various tasks by experts as opposed to novices
(see, e.g., Richstone et al., 2010; Wolff, Jarodzka, van den Bogert, & Boshuizen, 2016), it has
been noted that information search patterns of different experts are less similar to each other
than those of novices (Jarodzka, Scheiter, Gerjets, & van Gog, 2010). Recently, Krol and
Krol (2020) demonstrated that those decision-makers who were better informed beforehand
searched for further information with their eyes in a more idiosyncratic manner. These out-
comes were explained in terms of prior information (or expertise) triggering a greater degree
of top-down control of subsequent search, driven by the person’s individual characteristics
and experiences rather than steered bottom-up by the features of the stimuli, which are the
same for all people viewing them. Relatedly, other recent work demonstrated that computa-
tional noise is a core feature of human learning in volatile environments and that an increase
in that noise accompanying a high learning rate is a significant source of behavioral variability
observed in reward-guided decisions (Findling, Skvortsova, Dromnelle, Palminteri, & Wyart,
2019).

In our opinion, the potential association between the acquisition of knowledge and idiosyn-
cratic processing could also explain the apparent difficulty of researchers to pinpoint the fea-
tures of task processing that distinguish experts from novices (Brams et al., 2019). To put it
simply, the source of the difficulty might be that the main thing common to experts is that
they have relatively little in common. If so, then our tendency to copy commonly seen rather
than idiosyncratic patterns of behavior could in some situations be counterproductive, leading
us to follow poorly informed individuals.

A well-known problem, where the relationship between knowledge, experience, and
idiosyncratic behavior is particularly interesting, is spatial search, a real-world example of
which is digging for gold within a land area divided into smaller plots. Humans faced with this
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kind of task in experimental settings are known to display foraging-like behavior, where their
decisions on which plot to focus on next are influenced by knowledge of previously found
targets’ locations. Such experience-driven processes were observed by researchers regardless
of whether the search was carried out via mouse clicks (Kerster, Rhodes, & Kello, 2016), eye
movements (Cain, Vul, Clark, & Mitroff, 2012; Najemnik & Geisler, 2005), or even inside a
person’s own mind (Todd & Hills, 2020).

But suppose that some individuals have better prior knowledge than others about where
targets (in the example, gold) have recently been found. In what way would their search
trajectories (i.e., which plots they explored and in what order), differ from those of their less
well informed counterparts? If the prior knowledge is highly accurate—for example, gold
has been found several times in a specific plot and has never been found elsewhere—we
would expect the informed individuals’ efforts to converge on this high-reward location (in
foraging models, this is known as local exploitation). This, in turn, would make their search
trajectories similar to each other and less idiosyncratic in terms of their overall placement
when compared to people with no information on where to look, who would likely rely on a
less focused, global exploration of the search space.

Nevertheless, in light of the aforementioned research linking idiosyncratic behavior with
expertise, we hypothesize that search trajectory features other than their overall placement,
like their shape and temporal ordering, are still going to be more idiosyncratic in well-
informed individuals. If true, this would indicate that those individuals may be distinguished
from their less well informed counterparts even when the environment is volatile and prior
information imprecise. In our example, if gold has been found in several different plots across
the search area, people who are aware of these locations will not necessarily converge on the
same spot at the same time, but might still be identified based on the fact that they will move
between different plots in an idiosyncratic manner.

To test this hypothesis, we conducted an online experiment and recorded the mouse click
sequences that participants used to explore a rectangular grid in search of a target, after receiv-
ing information about its likely location. We manipulated the quality and quantity of that
information and used a novel technique to measure the associated changes in the extent to
which the shape of the search trajectory was idiosyncratic. By statistically testing the effect
of prior information features on the proposed measure, the paper presents an approach that
turns idiosyncratic behavior from a source of noise obstructing research into its subject and
instrument.

2. Methods

2.1. Participants

A power analysis of a pilot study (with 20 participants, but otherwise an identical design
as the main study) indicated a main effect (information absent vs. present) of sufficient size
for the required sample size to be less than 100 given a two-tailed alpha = 0.05 and power
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= 0.90. Due to the computational load of the data analysis pipeline increasing exponentially
with sample size (see below), this was also our maximum capacity in this respect.

Accordingly, for the main study, we used the Prolific platform to recruit a sample of 100
adults, English-speaking participants with a 100% platform approval rating (mean age 33.2,
SD = 12.2, 54% female participants). Of these, eight participants did not meet the data quality
criteria (their answer accuracy rate was below chance), leaving a final sample of N = 92. The
study took approximately 80 min to complete.

2.2. Stimuli and design

In a repeated measures design, participants each attempted a number of visual search tri-
als, looking for a single target—a red circle—among identically shaped black distractors in a
5x 9 grid. Initially, all circles were shown as gray, but with a click the participant could flip
each circle for 1 s to see if it was black or red underneath (this could be done any number
of times, and one could flip the same circle more than once). At any time, the participant
could answer whether they thought there was a single red circle somewhere in the grid (par-
ticipants were informed that this would happen in a randomly chosen 50% of the trials and
that otherwise all circles would be black). Each correct answer was worth a fixed monetary
amount, adding up to a maximum of 6 GBP over all trials, in addition to a 6 GBP “show-up
fee.”

Before initiating each search, the participant had to click through 12 “prior information”
slides, some of them blank, and others each containing a hint, that is, an example location of
the target in the subsequent search grid.

In addition to the presence of the target, we manipulated the number of prior information
slides that contained hints (“information quantity”). This was either O (“none”), 4 (“low”),
8 (“medium”), or 12 (“high”), with the blank slides inserted at randomly chosen slots in
the sequence. We also manipulated the “quality” of the information, either “low” or “high,”
which determined how well the distribution of the example locations matched that of the
actual target.

Specifically, for each participant and each combination of information quality, quantity,
and “target-present,” the 9x 5 grid was randomly partitioned into nine plots of five cells each
using the K-Medoids clustering algorithm with random seeding (Kaufman & Rousseeuw,
2009). (This clustering algorithm was chosen as it made it possible to specify the exact num-
ber of clusters and ensured that the plots were approximately square-shaped.).! Each of the
nine plots was then used to generate a separate trial, where the target—if present—was drawn
from the five cells that comprised the plot with equal probability (thus, regardless of the con-
dition, the target was equally likely to be found in any part of the grid).

The resulting total number of trials was

2 (target missing/present)
x 7[1(no information) + 3(information quantity) x 2(information quality)]

x 9(alternative target location distributions) = 126.
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Fig. 1. An example single-trial display sequence under high information quality—medium quantity condition. The
participant first sees a total of 12 prior information slides, four of them blank, and two of the remaining eight (slides
3 and 10) pointing away from the true target location. The participant then clicks in the search panel (bottom) to
flip individual circles (in the example, the clicked circle turns black, as the target is at a different location, marked
with a red cross).

In the “low-quality” condition, half of the hints (i.e., two, four, or six hints, depending on
information quantity) would be drawn in the same way as the corresponding target, that is,
from the cells comprising the plot used to draw the target, while the remaining hints were
drawn from all the remaining cells (with equal probability). The proportion of hints that
matched the distribution of the target in this way would increase from half to three quarters
in the “high-quality” condition. (See Fig. 1 for an illustration of how this was presented to
the participants.)

2.3. Data processing

The procedure outlined here is an adaptation of the one in Krol and Krol (2020) for the pur-
pose of analyzing mouse clicks instead of eye-movement sequence data. The pre-registered
data analysis code is available on the OSF page.

For each target search, we first partitioned the sequence of cells clicked in the search panel
into subsequences of length = 3 (the highest computationally feasible number—see below).
To separate their shape and temporal properties from their overall location, we recorded the
cell coordinates relative to the spatial median of each subsequence. Thus, for example, any
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two clicks aimed at one cell to the right of the median were deemed equivalent regardless of
the respective medians’ locations.

All recorded subsequences were then compared pairwise using the Needleman-Wunsch
(1970) algorithm (requiring close to 370 million runs of the algorithm, a figure that would
rise to several billion if longer subsequences were used). The algorithm aligns the com-
pared sequences (by deleting or shifting their elements) to maximize the number of matching
elements and outputs the resulting similarity score. Simply put, two subsequences would
receive a high similarity score if, in each case, cells that were similarly placed relative to their
respective spatial medians were visited in a similar order. Using a different similarity metric
did not seem to affect our findings.” The results of all pairwise comparisons were stored in a
similarity matrix for further use.

In particular, we then used the t-distributed stochastic neighbor embedding algorithm (t-
SNE; see van der Maaten & Hinton, 2008) to map each subsequence to a point in a two-
dimensional space in a way that minimizes the Kullback-Leibler divergence between the
distributions modeling the original versus dimension-reduced data (the former represented by
the similarity matrix obtained as described above). That is, similar subsequences were mapped
to neighboring points on the plane.’> We then estimated the distribution of the obtained low-
dimensional sequence representation points. This was achieved using non-parametric smooth
kernel density estimation with spherical Gaussian kernels of fixed, automatically determined
size (set to a value such that a kernel centered around a training example contains an average
of 10 other examples).

Finally, we used the ‘“RarerProbability” algorithm, embedded in the Wolfram Mathematica
software package, to compute the probability of generating (from the estimated distribution)
a sample with a lower density than each of the obtained subsequence representation points.
In simple terms, this algorithm is a multivariate generalization of a two-tailed p-value, giving
a score between O (an extremely unlikely multivariate outcome) and 1 (a likely one). Due to
the non-normal distribution of rarer probability within trials, for each trial, we calculated its
median value over all subsequences that comprised the corresponding search trajectory. We
subtracted this probability from one to obtain a measure of the extent to which the search tra-
jectory was idiosyncratic and will refer to it as the “search atypicality” index. For an overview
of the described procedure, see Fig. 2.

3. Results

Overall the most common search trajectory was flipping successive circles horizontally,
from left to right. Irrespective of the experimental condition, ranking subsequence shapes in
terms of their frequency of occurrence resulted in exactly the same list of most common pat-
terns. At the same time, as can be seen in Fig. 3, the prevalence of the common search patterns
generally seems to decrease as information quantity increases. To test the statistical signifi-
cance of this claim, we estimated a mixed-effects regression with random subject effects, the
overall (aggregated) frequency of the nine most common subsequence shapes seen in Fig. 3
as the dependent variable, the information quantity as the main independent variable, and
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Fig. 2. An illustration of the data analysis procedure. Two search trajectories in the top panel (green and red) are
initially similarly shaped and ordered relative to their (different) overall locations. That is, their corresponding
initial subsequences (clicks 1-3, marked with dark colors), have similar X/Y coordinates. These coordinates are set
relative to the subsequences’ respective spatial medians (in the examples, these correspond to item 2 in each case).
For example, “0,-1” means “directly to the left of the median” (see panels A/B in the top-right). Because of these
similarities, the two subsequences have a high Needleman—Wunsch similarity score, and so are mapped by t-SNE
to adjacent points on the plane (see the bottom panel). Being located in a higher density area of the corresponding
distribution, they have lower search atypicality scores (i.e., are less idiosyncratic, or more common) than the final
subsequence (clicks 4-6) of the red trajectory, represented by point C.

the overall length of the search sequence (number of clicks during the trial) as an additional
control. This showed that the common subsequence shapes occurred less frequently when
information quantity was higher (B; uaniry = —0.1151, p < .001).

The claim that, rather than changing the search trajectories’ typical characteristics, informa-
tion instead clears those characteristics, making the search more idiosyncratic, can be further
examined using the proposed search atypicality index. To begin with, the average values of
the index across the experimental conditions are shown in Table 1.

To test the significance of the differences across conditions seen in Table 1, we first esti-
mated a mixed-effects regression with random subject effects, the search atypicality index
as the dependent variable, information quantity as the main independent variable, and the
overall sequence length as an additional control. This showed that the search subsequence
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Fig. 3. The frequency of occurrence of the nine most common three-element search subsequence shapes across
experimental conditions. The box in the top-right corner of each panel depicts the respective search pattern.

Table 1
Mean values of the search atypicality index across experimental conditions

Information Quality

Low High
Information quantity None 0.297
Low 0.382 0.406
Medium 0.398 0.404
High 0.403 0.426

shapes were more idiosyncratic when information quantity was higher (8; juaniry = 0.0786,
p < .001).

Next, we incorporated the effect of information quality (i.quality = 0/“low”, 1/*high”) into
the analysis. This has no bearing on trials in which the quantity of information was zero
because the quality of the hints does not matter when no hints are shown. Thus, we dropped
those trials from further analysis and estimated a mixed-effects regression with random
subject effects, search atypicality as the dependent variable, sequence length as a control, and
both information quantity and quality (as well as their interaction) as independent variables.*

The regression estimation results are shown in Table 2. Search atypicality increased
when the overall sequence length was smaller (Beqiengn = —0.6538, p < .001).
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Table 2
Regression estimates of search atypicality

B SE t p

Intercept 0.5279 0.0144 36.531 <.001*
i.quantity 0.0282 0.0067 4.185 <.001*
i.quality 0.0179 0.0062 2.844 .004*
i.quantity*i.quality 0.0028 0.0096 0.294 769
seq.length —0.7215 0.0196 —36.707 <.001*

Note: *p <.05.

Controlling for sequence length, search atypicality increased both when more hints were
shown (B; guaniry = 0.0282, p < .001) and when the hints more accurately revealed the tar-
get’s location (B; guairy = 0.0179, p = .004). However, the interaction between information
quantity and quality was not significant (8; guansiry*i.quatiy = 0.0028, p = .769).

4. Discussion

Previous research demonstrated the stability of information sampling strategies within-
(Boot, Becic, & Kramer, 2009) but a considerable variation between individuals (Irons &
Leber, 2020), to the extent that one’s attentional patterns may constitute a “signature” dis-
tinguishing her from others (Bargary et al., 2017). Despite these individual differences,
researchers have successfully examined how the average characteristics of the sampling pro-
cess, like the shape of the mouse click search path, are influenced by environmental features
such as the spatial distribution of the targets (Kerster et al., 2016). It has been shown that sam-
pling is guided by previously acquired information, particularly the previously encountered
or primed search target locations (Geng & Behrmann, 2005; Talcott & Gaspelin, 2020).

Nevertheless, so far, the focus of this area of research has been on how experimental con-
ditions of interest affect information sampling on average, rather than how they affect the
variability of this process across people or the likelihood of a person’s search strategies being
idiosyncratic. In contrast, based on our short study, we would argue that the extent to which
the sampling process is idiosyncratic is, in itself, an important property that can serve as a
variable of interest, rather than being a source of noise that obstructs research on
human decision-making.

In particular, we showed how, thanks to machine-learning techniques, one can combine
complex spatiotemporal features of a search path into a single metric that describes how
unusual that path is in the population, much like what the p-value does for simple numerical
measures. More precisely, dimension reduction techniques were used to construct a “density
map” representing the distribution of all three-click sections of the recorded search trajecto-
ries, accounting for both their spatial and temporal features, but disentangling the shape of the
section pattern from where in the search field it was positioned. We then used a multivariate
analog of the p-value to obtain, for each individual trajectory, a measure of how probable (i.e.,
typical rather than idiosyncratic), it is within the estimated population distribution. In general,
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such a metric can be used to investigate how behavioral or information-processing idiosyn-
crasies are influenced by factors of interest, or how these factors may be reverse inferred from
the metric.

Here, we hypothesized that being a priori better informed about the likely location of the
search target would result in a more idiosyncratically shaped search path. We found that the
hypothesis is supported by evidence, that is, by the fact that both the quantity and the quality
of the hints given at the start of a trial were positively related to the search atypicality index
(controlling for the overall length of the search sequence).

The likely reason for this was that, as hypothesized, poorly informed agents were more
reliant on default search routines dictated by the fixed, uniform features of the search field
(e.g., scanning from left to right in straight lines), rather than on their individual interpreta-
tion of noisy prior information. This explanation is supported by the fact that the frequency
of occurrence of the most common subsequence shape patterns decreased with information
quantity. Rather than changing the search trajectories’ typical characteristics, information
instead clears those characteristics, making the search more idiosyncratic.

In other words, we do not, and cannot, point to any specific spatiotemporal patterns in
search behavior that would be signatures of being well informed. Quite the contrary, what
well-informed search paths seem to have in common is that they have relatively little in com-
mon, that is, every informed search path is informed “in its own way.” This may be related
to the work of Findling et al. (2019), who found computational noise to be a core feature of
learning, and suggested that an increase in that noise accompanying a high learning rate could
be a significant source of behavioral variability in reward-guided decisions. Furthermore, as
recently demonstrated by Wu et al. (2021), in random, dynamic environments, people are less
reliant on observing others to obtain information, while balancing individual and social learn-
ing to avoid correlated social information and maladaptive information cascades. This may
be beneficial if—as our results suggest—common trends seen in social information may sys-
tematically arise from the behavior of those individuals who are relatively poorly informed.

In terms of the limitations of the present investigation, an alternative explanation of the
results could be that the “informed” search paths are informed by diverse (randomly drawn)
sets of hints (as opposed to the uninformed search paths being “informed” by the same blank
slides). However, this interpretation seems less likely because, when the information quality
is low rather than high, any hints that are shown are more diverse (due to a greater degree of
noise), and yet the search trajectories are less idiosyncratic.

A more significant limitation is the fact that we presented a highly specific search task,
one in which the search field was quite small (constraining the search path shapes), had a
quite rigid chessboard layout, and contained at most one target. It may be that other search
environments, like the one analyzed by Kerster et al. (2016), would produce qualitatively dif-
ferent results. Along the same lines, one can envisage using other metrics of “atypicality.” In
particular, the spatiotemporal properties of information sampling processes could be modeled
and represented in other ways, for example, using hidden Markov models (Coutrot, Hsiao,
& Chan, 2018), and the probability of occurrence of a given pattern in a population could
be assessed with a variety of machine-learning anomaly detection techniques (Chandola,
Banerjee, & Kumar, 2009).
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Despite the above limitations, this short communication provides an early indication that
the shape and temporal structure of search paths—when disentangled from their overall
location—is more idiosyncratic when the search is guided by more accurate information.
This suggests that recent eye-tracking work with text stimuli can extend to other interfaces
and domains, although much more work is needed to fully establish the scope of these
findings. More generally, it might be fruitful to further explore how an individual’s cogni-
tive processes are related to those of her counterparts, exploiting cognitive idiosyncrasies as
a source of predictive power instead of noise.
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Notes

1 The full code used to generate the task schedules, and the schedules themselves, are
available on the OSF project page (see the “instructions.txt” file first).

2 In the OSF project page, we included the full data analysis code, which makes it possible
to rerun all analyses with different parameters, distance functions, etc.; as an example,
we also included a regression output from using an alternative distance measure.

3 An advantage of being able to directly input the subsequence similarity matrix into t-
SNE was that this removes the need to specify model parameters like “perplexity” that
otherwise can influence the obtained mapping. Additionally, although we pre-registered
the use of t-SNE, alternative techniques that accept a similarity matrix as input, partic-
ularly Kruskal’s non-metric multidimensional scaling, produce similar results to those
presented here.

4 The resulting R regression formulation was (variables were rescaled to [0;1]; full R out-
put tables for all regressions are available on the OSF project page):

search.atypicality ~ i.quantity*i.quality + seq.length + (1|subjectID)

References

Anderson, L. R., & Holt, C. A. (1997). Information cascades in the laboratory. The American Economic Review,
87(5), 847-862.

Bargary, G., Bosten, J. M., Goodbourn, P. T., Lawrance-Owen, A. J., Hogg, R. E., & Mollon, J. D. (2017). Indi-
vidual differences in human eye movements: An oculomotor signature? Vision Research, 141, 157-169.

Boot, W. R., Becic, E., & Kramer, A. F. (2009). Stable individual differences in search strategy?: The effect of
task demands and motivational factors on scanning strategy in visual search. Journal of Vision, 9(3), 7-7.

Brams, S., Ziv, G., Levin, O., Spitz, J., Wagemans, J., Williams, A. M., & Helsen, W. F. (2019). The relationship
between gaze behavior, expertise, and performance: A systematic review. Psychological Bulletin, 145(10),
980-1027.

85U8017 SUOWILLOD 8AIIERID 3|qeotjdde 3y} Aq pausnob ase ssolle YO ‘9Sn 0 Sa|nJ 10} ARG aUIUO AB]IM UO (SUOIPUOD-PUR-SLLBYWI0D A3 1M Ate1q 1 [BulU0//SdNY) SUORIPUOD pue SWIS | 8U1 88 *[2202/TT/£0] Uo ArigiTaunuo Ajim epby JO AiseAun Aq ZeTET'SBo0/TTTT OT/I0p/wW00 A3 (1M Ariq1jpul|uoy/Sdiy Lol pepeojumoq ‘v ‘220z ‘60L9TSST



12 of 12 M. Krol, M. E. Krol/ Cognitive Science 46 (2022)

Cain, M. S., Vul, E., Clark, K., & Mitroff, S. R. (2012). A bayesian optimal foraging model of human visual
search. Psychological Science, 23(9), 1047-1054.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3),
15:1-15:58.

Coco, M. 1., Dale, R., & Keller, E. (2018). Performance in a collaborative search Task: The role of feedback and
alignment. Topics in Cognitive Science, 10(1), 55-79.

Coutrot, A., Hsiao, J. H., & Chan, A. B. (2018). Scanpath modeling and classification with hidden Markov models.
Behavior Research Methods, 50(1), 362-379.

Findling, C., Skvortsova, V., Dromnelle, R., Palminteri, S., & Wyart, V. (2019). Computational noise in reward-
guided learning drives behavioral variability in volatile environments. Nature Neuroscience, 22(12), 2066—
2077.

Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception &
Psychophysics, 67(7), 1252-1268.

Irons, J. L., & Leber, A. B. (2020). Developing an individual profile of attentional control strategy. Current Direc-
tions in Psychological Science, 29(4), 364-371.

Jarodzka, H., Scheiter, K., Gerjets, P., & van Gog, T. (2010). In the eyes of the beholder: How experts and novices
interpret dynamic stimuli. Learning and Instruction, 20(2), 146-154.

Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: An introduction to cluster analysis. John Wiley
& Sons.

Kerster, B. E., Rhodes, T., & Kello, C. T. (2016). Spatial memory in foraging games. Cognition, 148, 85-96.

Krol, M., & Krol, M. E. (2020). Eye movement anomalies as a source of diagnostic information in decision process
analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(6), 1012-1026.

Kuran, T., & Sunstein, C. R. (1998). Availability cascades and risk regulation. Stanford Law Review, 51(4), 683—
768.

Mehoudar, E., Arizpe, J., Baker, C. 1., & Yovel, G. (2014). Faces in the eye of the beholder: Unique and stable eye
scanning patterns of individual observers. Journal of Vision, 14(7), 6-6.

Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434(7031),
387-391.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443-453.

Peterson, M. F., & Eckstein, M. P. (2012). Looking just below the eyes is optimal across face recognition tasks.
Proceedings of the National Academy of Sciences, 109(48), E3314-E3323.

Richstone, L., Schwartz, M. J., Seideman, C., Cadeddu, J., Marshall, S., & Kavoussi, L. R. (2010). Eye Metrics as
an objective assessment of surgical skill. Annals of Surgery, 252(1), 177-182.

Sun, Z., Yu, W., Zhou, J., & Shen, M. (2017). Perceiving crowd attention: Gaze following in human crowds with
conflicting cues. Attention, Perception, & Psychophysics, 79(4), 1039-1049.

Sweeny, T. D., & Whitney, D. (2014). Perceiving crowd attention: Ensemble perception of a crowd’s gaze. Psy-
chological Science, 25(10), 1903-1913.

Talcott, T. N., & Gaspelin, N. (2020). Prior target locations attract overt attention during search. Cognition, 201,
104282.

Todd, P. M., & Hills, T. T. (2020). Foraging in Mind. Current Directions in Psychological Science, 29(3), 309-315.

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research,
9(Nov), 2579-2605.

Wolff, C. E., Jarodzka, H., van den Bogert, N., & Boshuizen, H. P. (2016). Teacher vision: Expert and novice
teachers’ perception of problematic classroom management scenes. Instructional Science, 44(3), 243-265.
Wu, C. M., Ho, M. K., Kahl, B., Leuker, C., Meder, B., & Kurvers, R. (2021). Specialization and selective social
attention establishes the balance between individual and social learning. Proceedings of the Annual Meeting of

the Cognitive Science Society, 43(43).

85U8017 SUOWILLOD 8AIIERID 3|qeotjdde 3y} Aq pausnob ase ssolle YO ‘9Sn 0 Sa|nJ 10} ARG aUIUO AB]IM UO (SUOIPUOD-PUR-SLLBYWI0D A3 1M Ate1q 1 [BulU0//SdNY) SUORIPUOD pue SWIS | 8U1 88 *[2202/TT/£0] Uo ArigiTaunuo Ajim epby JO AiseAun Aq ZeTET'SBo0/TTTT OT/I0p/wW00 A3 (1M Ariq1jpul|uoy/Sdiy Lol pepeojumoq ‘v ‘220z ‘60L9TSST



