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Abstract: Fatigue cracks are a major defect in metal alloys, and specifically, their study poses defect
evaluation challenges in aluminum aircraft alloys. Existing inline inspection tools exhibit measure-
ment uncertainties. The physical-based methods for crack growth prediction utilize stress analysis
models and the crack growth model governed by Paris’ law. These models, when utilized for long-
term crack growth prediction, yield sub-optimum solutions and pose several technical limitations
to the prediction problems. The metaheuristic optimization algorithms in this study have been con-
ducted in accordance with neural networks to accurately forecast the crack growth rates in aluminum
alloys. Through experimental data, the performance of the hybrid metaheuristic optimization–neural
networks has been tested. A dynamic Levy flight function has been incorporated with a chimp
optimization algorithm to accurately train the deep neural network. The performance of the proposed
predictive model has been tested using 7055 T7511 and 6013 T651 alloys against four competing
techniques. Results show the proposed predictive model achieves lower correlation error, least
relative error, mean absolute error, and root mean square error values while shortening the run time
by 11.28%. It is evident through experimental study and statistical analysis that the crack length and
growth rates are predicted with high fidelity and very high resolution.

Keywords: crack growth rate; artificial intelligence; deep learning; aluminum aircraft alloys; fatigue
crack growth prediction

1. Introduction

There is a significant importance of fracture mechanics in mechanical engineering.
Most structural failures in automobiles, aircraft, bridges, and tanks are a result of fatigue
crack propagation in materials [1]. Structural failure of a 58-year-old Grumman G73T Turbo
Mallard Seaplane is one of the examples that occurred in 2005; the right hand wing of
which shed on a domestic flight in the USA. In 2002, a Chinese Boeing 777 crashed mid-air
as a result of a structural failure as well. The crash of a Japanese Boeing 747 SR100 was also
due to structural failure. Such accidents pose a serious threat to automobile manufacturing
companies to survive, as these failures lead towards human loss, as well as enormous
economic deficit. This remains to be a matter of serious concern. Crack propagation
under fatigue has been comprehensively explored by researchers and professionals in this
field and many of them tried to predict it using various methodologies with the help of
theoretical and experimental knowledge [2,3].

In engineering, fatigue is a process of material failure at a stage that is far below
the actual material strength when subjected to cyclic loading [4]. The traditional models
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attempt to predict the fatigue crack growth (FCG) rate da
dN with respect to the stress intensity

factor (SIF), ∆K [5]. A typical graph is shown in Figure 1. In this figure, a represents the
length of the crack, while N represents the number of cycles that leads to failure of structure.
The FCG curve is divided into three regions. The crack growth rate is much slower in
Region I. In Region II, the graph shows a linear and stable growth followed by a rapid
growth in Region III [6]. Paris and Erdogan [7] presented a pioneer model in their study
using an extensive pool of data, which is also known as Paris’ law. It presented the accurate
modeling of an FCG curve, especially in Region II, which is also called the Paris region.
Forman et al. [8] claimed that the stress ratio effect was ignored in the Paris model. The
model was improved in their study by considering the stress ratio and crack instability
effect. It is stated that this model is more flexible compared to the classical Paris model as it
is based upon a large amount of data. Priddle et al. [9] presented a method that improves
Paris’ law. However, this model failed to address SIF at threshold, Kth, average SIF, and
stress ratio effects [10]. Kujawski et al. [11] designed a parameter to relate stress ratio and
FCG rate, both for long and short cracks in the Paris region. All the above mentioned
models cannot handle non-linearity in Region II and III of the graph [12]. A short literature
summary has been provided in Table 1.

Table 1. Brief summary of the literature work.

SN. Reference Technique(s) Summary

1. Hu. Dianyin et al. [13] Gaussian Process
Regression (GPR)

Bayesian-based calibration method is presented to
improve computational efficacy and accuracy for FCG life
prediction. In comparison with experimental data,
predicted results are bounded within a factor of ±2.0

2. Ma. Xinran et al. [14] Increment
Learning Scheme

A fully connected neural network is presented using the
Increment Learning Scheme for crack growth under
tension on the specimens of 7B04 aluminum and TA15
titanium alloys. The proposed method is superior to
conventional fitting techniques. The minimum achieved
MSE is 0.10 for aluminum alloy for R = 0.06

3. Mortazavi et al. [15]
Radial Basis Function
Neural Network
(RBF-NN)

Radial basis function-based neural network approach is
presented to predict FCG behavior. The proposed
technique has been verified through experimentation on
aluminum and titanium alloys. This model handles
non-linearity in a better way for both long and
short cracks

4. Wang et al. [16]
Extreme Learning
Machine, RBF-NN,
and GA-BP

Three different machine learning algorithms (MLAs) are
compared for FCG prediction. The algorithms are tested
on datasets of different alloys of aluminum and titanium.
MLAs are compared with each other and with the
classical K* approach. ELM outperforms its counterparts
with minimum MSE, i.e., 3.12 × 10−8

5. Rovinelli et al. [17] Bayesian Networks

This study utilizes in situ experimental and crystal
plasticity simulations study multimodal data with
Bayesian networks to predict the fatigue crack growth rate
in 3D for small cracks. A non-local driving force is
postulated to construct a data-driven probabilistic crack
propagation framework.
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Table 1. Cont.

SN. Reference Technique(s) Summary

6. Nejad et al. [18] Rockwell micro-
hardness experiment

Prediction of fatigue crack propagation and fractography
of rail steel is made using Machine Learning algorithms.
The modified Paris model is used to estimate fatigue crack
growth rates. Fatigue crack growth and hardness tests are
carried out by fractography studies on fractured
specimens. A three-dimensional boundary element
method is used for fatigue crack growth study under a
stress field.

In comparison to the extensive literature on empirical techniques, machine learning-
based models have lesser literature available as this is a relatively modern technique [19].
Jang et al. [20] forecasted the fatigue life of chains used in cranes to lift heavy duty cargo
loads using machine learning. Specifically, a logistic regression-based model was used. The
experimental data were extracted using strain gauges. Fatigue life prediction in overhead
wires was predicted using artificial neural networks (ANNs) by Nowel and Nowel [21].
Yan et al. [22] analyzed the failure of a bridge as a result of an overloading of vehicles using
machine learning methodology. This approach gave more accurate results as compared
to conventional finite element analysis-based techniques. In [23], the researchers used a
radial basis function neural network (RBF-NN) to predict the fatigue crack growth rate
in the airplane industry. The problem of vibrations in electrical transmission lines caused
by wind, earthquakes, or snow loading was addressed by Pestana et al. using ANNs [24].
Younis [25] carried his work forward by predicting fatigue crack length using radial-based
function-NN (RBF-NN). Moreover, optimized neural networks were used to predict the
FCG rate in aircraft aluminum structures by Younis et al. [12]. The hill climbing optimized
neural network produced better results among the other two by having better relevance
with experimental data.
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2. Fracture Mechanics

Fracture mechanics is the study of crack propagation in materials. All engineering
structures are prone to geometrical discontinuities. The size and shapes of such features are
crucial as they pose serious concerns about the strength of the component [26]. Structures
exposed to cyclic loading fail far below their strength due to fatigue. It refers to the
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progressive degradation of material due to cyclic loading when subjected to applied force
such as stress, strain, and torque [27]. Fatigue crack growth is discussed in context to
different crack regions as shown in Figure 2 for 2324 T39 and 6013 T651 materials. Crack
initiation is the first phase of crack propagation, followed by stable crack propagation and
unstable crack propagation, respectively. In the first region, small cracks initiate that are of
the order 10–25 µm or even less. This region is also called the threshold region. In Region
II or the Paris region, the crack growth rate is of the order 10−6 − 10−3 mm/cycle. After
crossing Region II, the crack propagates exponentially; that is, of the order 103 mm/cycle.
The Paris region is a main concern of our research, which is explained by Paris and
Erdogan [7] in the form of the crack growth equation. It is also called Paris’ law. The stress
intensity factor K illustrates load all over the crack tip. The ∆Kd can be utilized to correlate
the R-ratio effects [27]. Crack propagation is the function of SIF range and ∆K during
cycling loading. It is mathematically presented as (1):

da
dN

= C(∆K)m (1)

where a is the crack length, da
dN is the crack growth rate for load cycle N. C and m are

constants that are material dependent. SIF range can be represented as (2):

∆K = Kmax− Kmin (2)
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3. Proposed Technique
3.1. Dynamic Levy Flight Chimp Optimization Algorithm

In the following section, a new chimp optimization algorithm with Levy Flight random
movement (DLFCO) is put forward in order to train DNN. The presented procedure updates
the weights and biases of the DNN in order to decrease the cost mapping. DLFCO is an
optimization algorithm based on the populace that has the application in the hunting and
preying behavior of the chimps to update the weights and biases with the Levy flight
random walk in order to obtain global maxima in the exploitation phase. Fusion of LF
with the ChoA improves the exploration and exploitation capability of the algorithm [28].
This extremely exploratory attitude enables it to locate the overall best answer, that in
turn efficiently trains the DNN model. This trained framework forecasts the fatigue crack
growth for the aluminum alloys in aircraft applications. The preceding segment elucidates
the chimp optimization and sine–cosine merged chimp optimization algorithm.

3.1.1. Chimp Optimization Algorithm (ChoA)

This model obtains its motivation by the intellect of the chimpanzee and breeding
actions in cluster hunting. Four techniques are implemented to replicate the attitude, which
are attack, chase, barrier, and driver as show in Figure 3. The scientific equations of the
driver and attacker of the presented approach are mentioned in (3) and (4), respectively.

D =
∣∣∣C·αprey −m·αchimp

∣∣∣ (3)

αchimp(n + 1) =
∣∣αprey − a·d

∣∣ (4)

where m, c, and d are the co-efficient vectors. These factors may be rationalized by (5)–(7).

a = 2·l·r1 − l (5)

c = 2·r2 (6)

m = chaotic value (7)

where r1 and r2 represent random numbers in the range of 0–1 and l is a constant which
decreases in the direction of a line from 2.5 till 0 all along the iterations and m is a disordered
vector. To mathematically simulate this system, the four best results with optimal capability
are chosen which are attacker, barrier, chaser, and driver. The remaining inhabitants will
upgrade their location with help from the data provided by the best four results. Their
statistical demonstration is given by Equations (8), (9), (10), and (11), respectively.

dattack = |C1·αattacker −m1·xn| (8)

dbarrier = |C2·αbarrier −m2·xn| (9)

dchaser = |C3·αchaser −m3·xn| (10)

ddriver = |C4·αdriver −m4·xn| (11)

The succeeding point of the chimps are restructured consequently using (12)–(15):

x1 = αattacker − a1·dattacker (12)

x2 = αbarrier − a2·dbarrier (13)

x3 = αchaser − a3·dchaser (14)

x4 = αdriver − a4·ddriver (15)
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Using the above equations, the positions are upgraded through:

x1 =
x1 + x2 + x3 + x4

4
(16)

Subsequently, after upgrading the positions, (17) is applied.

αchimp(n + 1) =
{

αprey − x·d ,∅ < 0.5
chaotic ,∅ < 0.5

(17)
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3.1.2. Levy Flight (LF)

Levy flight is the random walk used for position updating in a search of global
maximum position in the area of search. LF is a non-Gaussian distribution based on
arbitrary numbers. The Levy flight random walk is presented in Figure 4. The Gaussian
method is a relatively stable procedure, containing summation of the Gaussian variables
and Gaussian spread. The probability density function is shown in (18).

L(x) =
1
π

∫
0

e−γpα cos(px)dp (18)

The Levy spread has two constraints, i.e., α, γ, and is proportional as well, regarding
x = 0. Where γ is the scaling aspect, γ > 0 and α is between [0, 2] [29]. The factor α defines
the spreading figure to attain a number of probability distribution characters; specifically,
the end of dispersion is governed by the factor α. Figure 4 provides the chaotic map of the
Levy flight showing long and short jumps in the search space.
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3.1.3. Improved ChoA with LF

The established ChoA keeps its agents posted in the direction of its prey, i.e., the
best position on the basis of the driver, chaser, barrier, and attacker positions. On the
other hand, the search neurons of the algorithm can become stuck in local minima in
some circumstances. So, the premature conjunction issue may pose a threat. In a few
circumstances, the acknowledged ChoA is unable to perform the transition from the
exploration to exploitation phase and back smoothly. In this section, LF is applied to speak
about the above stated limitations. The DLFCO offers more deep searching arrays that lead
towards an efficient global search. This arrangement can solve immobility issues as well.
In addition, the agent features must be upgraded in DLFCO through all iterations. The
chimp’s location can be updated using (19) and (20).

xchimp =
x1 + x2 + x3 + x4

4
+ rand(0)⊕ Levy(W1) if |a| < 0.5 (19)

xchimp =
x1 + x2 + x3 + x4

4
+ rand(0)⊕ Levy(W2) if |a| > 0.5 (20)

where ⊕ designates multiplication in the hierarchical entry, W1 and W2 are decreasing
over the iterations, in that order; these equations are defined in a manner that W1 shows a
descending angle and W2 shows an ascending angle, and both of the parameters show an
arbitrary performance. The pseudo code of the proposed technique is presented in Figure 5.

3.2. Deep Neural Network (DNN)

An artificial neural network (ANN) is a brain-like structure in which learning is
undertaken by experience. It consists of three layers, i.e., input layer, hidden layer, and
output layer. The input layer acts as a channel to pass information to the hidden layer
by multiplying with weights Wij, which are weights from the input layer to the hidden
layer. The relationship of input and output data of the hidden layer is presented in
Equation (22). The hidden layer applies to the predefined mathematical model which is
called the activation function. The output of the hidden layer is passed onto the output
layer after multiplying it with weights Wjk. The relationship between the output and
hidden layer is presented by Equation (23).
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The number of weights and biases are directly proportional to the number of neurons
in the hidden layer. The selection of the number of neurons in the hidden layer depend
upon the non-linearity of the dataset. A high number of neurons could result in overfitting,
while a lower number of neurons could lead to inefficient training of the ANN. Therefore,
in order to deal with a highly non-linear dataset, multiple hidden layers need to be added
between the input layer and output layer, which is called the deep neural network.

The deep neural network (DNN) is a multi-layered structure like the ANN, but it
consists of more than one hidden layer. In this work, a layered DNN is implemented which
contains one input layer, two hidden layer neurons, and one output layer, as shown in
Figure 6. Six neurons are selected in the hidden layer.

3.3. Activation Function

For active mapping of inputs and outputs, a function is required in the hidden layer
neurons called the activation function. Each hidden layer neuron has the activation function
which is chosen on the basis of application. There are different types of activation functions
in classification and regression applications. For classification, the sigmoid function is
commonly used as in Equation (21).

ăi =
1

1 + e−xi
Sigmoid Function (21)
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As the fatigue crack growth rate is a regression problem and has a highly non-linear
nature, the radial basis function neural network is chosen as the activation function, which
is given by (22).

vj
(
yj
)
= exp

− r

∑
i=1

[
yij − ŷ ij

]
2

√
µ

RBF (22)

Materials 2022, 15, x FOR PEER REVIEW 9 of 18 
 

 

As the fatigue crack growth rate is a regression problem and has a highly non-linear 

nature, the radial basis function neural network is chosen as the activation function, which 

is given by (22). 

𝑣𝑗(𝑦𝑗) = exp (− ∑
[𝑦𝑖𝑗 − 𝑦^ 𝑖𝑗]2

√𝜇

𝑟

𝑖=1

)      𝑅𝐵𝐹 (22) 

 

Figure 6. Structure of DNN. 

3.4. Cost Function 

The cost function or fitness function is the function that tells the difference between 

actual data and predicted data. This is the function which needs to be minimized during 

training of the ANN by updating the weights and biases. Various types of cost functions 

are presented in Equations (23)–(26). 

MAE =   
∑ |𝑦 − 𝑦′|𝑛

𝑖=0

𝑛
                   𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (23) 

MSE =   
∑ (𝑦 − 𝑦′)2𝑛

𝑖=0

𝑛
                   𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (24) 

RMSE = √
∑ (𝑦 − 𝑦′)2𝑛

𝑖=0

𝑛
                   𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (25) 

NRMSE =
RMSE

𝑋𝑜𝑏𝑠,𝑚𝑎𝑥 − 𝑋𝑜𝑏𝑠,𝑚𝑖𝑛

     𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (26) 

The normalized root mean square error (NRMSE) is the cost function which is se-

lected for this problem and is presented in Equation (26). The specifications of the DNN 

used in this network are presented in Table 2. 
  

Figure 6. Structure of DNN.

3.4. Cost Function

The cost function or fitness function is the function that tells the difference between
actual data and predicted data. This is the function which needs to be minimized during
training of the ANN by updating the weights and biases. Various types of cost functions
are presented in Equations (23)–(26).

MAE =
∑n

i=0|y− y′|
n

Mean Absolute Error (23)

MSE =
∑n

i=0(y− y′)2

n
Mean Squared Error (24)

RMSE =

√
∑n

i=0(y− y′)2

n
Root Mean Squared Error (25)

NRMSE =
RMSE

Xobs,max − Xobs,min
Normalized Root Mean Squared Error (26)

The normalized root mean square error (NRMSE) is the cost function which is selected
for this problem and is presented in Equation (26). The specifications of the DNN used in
this network are presented in Table 2.
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Table 2. Parameter descriptions of model used for prediction.

Parameter Value

Number of Layers 4

Number of Hidden Layers 2

Number of Neurons in Hidden Layer 6

Number of Weights and Biases 59

Number of Iterations 50

Activation Function RBF

Cost Function NRMSE

Training Algorithm DLFCOA

3.5. Neural Network Training Using DLFCO

Updating weights and biases in the neural network is called the training of the neural
network. The back propagation (BP) algorithm is one of the simplest algorithms to train
neural networks, but it takes lots of iterations for effective training, which makes BPNN
expensive computationally. For effective training of weights and biases, the metaheuristic
optimization algorithm is used in this work, which calculates the cost function and updates
weights and biases according to the mathematical model of the optimization algorithm.

As shown in Figure 7, firstly, 50 sets of weights and biases are initialized over the
search space randomly. These sets of weights and biases are the particle’s position. Then,
the DNN structure with two hidden layers having six neurons in each layer are initialized.
After that, fitness is calculated for every particle using NMSE, which defines the best
particle’s position for the current iteration in the population. After calculation of the best
particle, the particle’s position is updated using the optimization algorithm. This phase of
optimization is called the exploration phase.
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4. Results

This section first discusses the data collection for the fatigue crack growth rate, evalua-
tion parameters for the prediction results, and prediction of the growth rate.

4.1. Data Collection

The data extraction has been undertaken for dissimilar aircraft structures of aluminum
with the range of R-ratio from 0.1 to 0.7 after comprehensive experimentation of alloy spec-
imens in the Fracture Technology Associates Laboratory, USA. The experimentation setup
includes servo-controlled, hydraulically actuated, closed-loop assembly that is furthermore
linked to a standalone PC for information gathering and governing of the factors. Test
conditions which are undertaken for experimentation are summarized in Table 3.

Table 3. Test conditions of alloy hardware experiments in the lab.

Specimen Type M (T)

Notch Lenght (2a0) 10.2 mm

Width (W) 101.6 mm

Thickness (B) 2.2–3.1 mm (Variable)

Test Frequency 15 Hz

da/dN 1× 10−12 − 1× 10−4 m/cycle

Orientation L-T

Lab Air Temp. 24 ◦C

Relative Humidity (R.H) 50–55%

4.2. Evaluation Parameter

In order to assess diverse techniques, further error directories are applied as well.
The grade of spreading in outcomes may be corroborated through normalized root mean
square error (NRMSE), given by Equation (27). To specify deviancy of extrapolation,
mean absolute error (MAE) and mean absolute percentage error (MAPE) is given by
Equations (28) and (29), correspondingly. Furthermore, the relationship between real and
forecasted value can be calculated with the help of R-square (R2), which is mentioned in
Equation (30).

NRMSE =
1
T

√√√√√ 1
N

N

∑
i=1

(Ti − Pi)
2 × 100% (27)

MAPE =
1
N

N

∑
i=1

|Ti − Pi|
Pi

× 100% (28)

NMAE =
1
N

N

∑
i=1

|Ti − Pi|
Pi

(29)

R2 =
∑N

i=1
(
Ti − Ti

)
)·
(

Pi − Pi
)2

∑N
i=1
(
Ti − Ti

)
·∑N

i=1
(

Pi − Pi
) (30)

where Ti represents the actual value, Pi is the forecasted value, N is the overall sum
of illustrations. Ti is the mean of the actual output value, Pi is the mean of forecasted
output value.
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4.3. Prediction Results

The results are presented in the graphical, statistical, and qualitative measures. For
aircraft alloys, namely, 7055 T7511, 6013 T651, and 2324 T39, prediction results and accuracy
of prediction with respect to the sample are compared in Figures 8–13 The results show
the rate increase as the independent parameters progress non-linearly. The corresponding
algorithm performances and statistical analysis is presented in Tables 4–9.
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5. Discussion

To verify the prediction performance of shape and growth rate evolution, the testing
set has been employed. The aluminum alloys under experimental data are 6013 T651,
7055 T7511, and 2324 T39. The 6013 T651 is medium strength aerospace alloy that of-
fers enhanced formidability and corrosion resistance. The 2324 T39 alloy exhibits higher
strength with better fracture toughness. The 7055 T7511 alloy is predominantly employed
in compression-dominated structures due to improvised compressive and tensile strengths.
The experiments conducted at the Fracture Technology Associates Laboratory utilize alu-
minum with an R-ratio range of 0.1–0.7 in several experiments. The stress was applied
using a servo-controlled, hydraulically actuated, closed-loop assembly equipped with HIL
data acquisition and parameter control. Strain gauge transducers measure the displacement
that is utilized to measure the length and growth rates secondarily [30].

The performance of the proposed framework has been compared with three highly
effective and recently studied optimization algorithms. It includes particle swarm optimiza-
tion algorithms that provide standard behavior of metaheuristic optimization algorithms,
which have the capability to distinguish among sub-optimum solutions. The second algo-
rithm is the grey wolf optimization algorithm (GWO). The improved information sharing
mechanism among GWO solutions enhances the accuracy towards optimum solutions.
The comparison is made in terms of testing error, training errors, and algorithm run time.
A more comprehensive statistical analysis is made for MFA-DNN, GWO-DNN, PSO-DNN,
and DLFCO-DNN in Table 8 for statistical indices such as MAE, RMSE, correlation (R2),
and mean RE [31].

Figures 9, 11 and 13 exhibit the trained DLFCO-DNN estimate RE of predicted values
at various samples with high redundancy. The lack of accuracy in competing techniques
is primarily associated with over- and/or under-fitting of machine learning algorithms.
The stagnation and model fitting issues arise when the predictive values show high vari-
ance and low bias due to the noise present in the data. It is avoidable through accurate
selection of parameters and preprocessing of data outliers and feature mapping during
the pre-processing of the data. Tables 4–9 show a summary of the results for da/dN rate
prediction using DLFCO-DNN on three aluminum alloys. The testing and training values
are compared alongside run time. The best run time has been achieved by a simple criterion
that defines the boundary of the small-scale yielding regime, to avoid invalid use of the
LEFM parameter, ∆K, as the characterizing parameter for the fatigue crack growth rate [32].

While in uniform amplitude loading, the FCG graph—crack growth rate (da/dN)
against SIF (∆K) in log–log measure—normally comprises three portions. Region I denotes
the earlier crack propagation. In this region, the crack normally grows in the order of
6 10−6 mm/cycle span. This section of the curve is subjective to the micro-structural
appearances, the R-ratio (lowest useful stress divided by maximum useful stress), plus the
ecological circumstances. In general, it is believed that there subsists a SIF at threshold
(∆Kth). Under this point, fatigue crack propagation does not take place [33]. Speedy and
unsteady fatigue crack growth takes place in Region III of the curve before fracture. A crack
progression rate of the order of ≥ 10−3 mm/cycle is ordinary in the case of metals and
is asymptotic when crack growth reaches the threshold of fracture toughness (Kc) of the
material [34]. This is even though it is mostly dominated by the stress ratio effect, substance
micro-cracks, and the specimen width. Moreover, crack growth in the third region of the
curve is usually overlooked as a result of trivial leftover fatigue life while arriving in the
region. Stable crack growth is observed in Region II of the FCG curve, typically in the range
of 10−6 mm/cycle to 10−3 mm/cycle in the case of metals [35].

It is pertinent to mention that in the case of a hole in the crack route, the crack growth
rate in Region I reduces considerably, while in Region II, it elevates [36]. It is noticeable in
the trajectory of crack propagation; in a straight line crack progression, KI escalates, but
upon the change in direction, KII escalates [37]. The preceding graphs of SIF reveal that all
simulated specimen testing data exhibit almost similar numbers for KI and KII throughout
crack progression intervals. These insignificant deviations in the final values are dominated
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by the quantity of phases employed in every package and the mathematical methodology
applied. The quantity of phases applied in ANSYS software for model simulation range
between 11 and 20, with the total amount of percentage increase organized with the help of
software. In FRANC2D/L, the steps are between 32 and 92 with a 0.1 to 0.13 increment
per step.

Figures 8, 10 and 12 show comparisons of MFA-DNN, GWO-DNN, PSO-DNN, and
DLFCO-DNN fatigue life simulations with experimental outcomes for 6013 T651, 7055
T7511, and 2324 T39. The simulated fatigue crack growth life using the proposed method
comes to an impeccable agreement, while the experimental results are provided by Gomes
and Miranda [38]. Moreover, the present study outcomes came out to be much more
accurate for prediction of fatigue life as linked to the arithmetical results achieved by means
of the software. The outcomes of such a study are carefully compared with Quera2D instead
of BemCracker2D. Such results, moreover, establish the impact of the opening location
regarding the fatigue life of the samples in various areas of impact with ∆K stress intensity
range on a log scale [39]. Care must be taken while taking into account the use of ∆K, which
is usable for high strength alloys as well [32]. The deterioration caused by the operational,
environmental, and climate conditions quantitation should be improvised [40].

6. Conclusions

This study proposes a new framework for the fatigue crack growth rate in aluminum
alloys usually utilized in aircraft manufacturing, specifically 7055 T7511, 2324 T39, and
6013 T651. A comprehensive modeling and analysis was undertaken to accurately predict
the fatigue crack growth in aluminum aircraft alloys. A hybrid DLFCO-DNN framework
has been proposed to utilize experimental data for training the predictive models. Existing
models based on physical models lack robustness and accuracy demonstrated by the
proposed model. The quantitative and statistical analysis made using statistical indices
re-affirms the superior performance of DLFCO-DNN in terms of training, testing, and run
time of the algorithms. Moreover, the accuracy in prediction as compared to recent works
is up to 4–8 times higher; meanwhile, the DLFCO-DNN algorithm complexity allows for
hardware implementation on less costly controllers such as c2000 for real-time functionality.
In light of improvised results, it is safe to conclude that the proposed novel framework
hybrid fatigue crack growth rate prediction is highly effective.
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