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In recent works, beginning with [76], several stochastic 
geophysical fluid dynamics (SGFD) models have been derived 
from variational principles. In this paper, we introduce a new 
framework for parametrization schemes (PS) in GFD. We 
derive a class of rough geophysical fluid dynamics (RGFD) 
models as critical points of rough action functionals using 
the theory of controlled rough paths. These RGFD models 
characterize Lagrangian trajectories in fluid dynamics as 
geometric rough paths (GRP) on the manifold of diffeo-
morphic maps. We formulate three constrained variational 
approaches for the derivation of these models. The first 
is the Clebsch formulation, in which the constraints are 
imposed as rough advection laws. The second is the Hamilton-
Pontryagin formulation, in which the constraints are imposed 
as right-invariant rough vector fields. And the third is the 
Euler–Poincaré formulation, in which the variations are 
constrained. These constrained rough variational principles 
lead directly to the Lie–Poisson Hamiltonian formulation 
of fluid dynamics on GRP. The GRP framework preserves 
the geometric structure of fluid dynamics obtained by using 
Lie group reduction to pass from Lagrangian to Eulerian 
variational principles, yielding a rough formulation of the 
Kelvin circulation theorem. The rough formulation enhances 
its stochastic counterpart developed in [76], and extended 
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to semimartingales in [109]. For example, the rough-path 
variational approach includes non-Markovian perturbations 
of the Lagrangian fluid trajectories. In particular, memory 
effects can be introduced through a judicious choice of 
the rough path (e.g. a realization of a fractional Brownian 
motion). In the particular case when the rough path is a 
realization of a semimartingale, we recover the SGFD models 
in [76,109]. However, by eliminating the need for stochastic 
variational tools, we retain a pathwise interpretation of 
the Lagrangian trajectories. In contrast, the Lagrangian 
trajectories in the stochastic framework are described by 
stochastic integrals, which do not have a pathwise interpreta-
tion. Thus, the rough path formulation restores this property.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The present work aims to transfer the fundamental properties of deterministic fluid dy-
namics derived by Hamilton’s principle into their formulation on geometric rough paths. 
Recent work [44] concerning solution properties of Euler fluid dynamics on rough paths 
demonstrates the efficacy of this approach to produce previously unavailable results, such 
as the Beale-Kato-Majda blowup criterion for ideal fluid solutions on geometric rough 
paths.

To set the scene, we discuss some aspects of the Hamilton’s principle variational ap-
proach to modelling fluid dynamics behaviour using its Lie group symmetry. Hamilton’s 
principle states that critical points δS = 0 of a time integral S =

∫ T

0 L dt with La-
grangian functional L : TM → R determine dynamical equations on a manifold M . Since 
its inception, Hamilton’s principle has provided a systematic mathematical framework 
for scientific investigation. For example, Lie symmetries of Hamilton’s principle encode 
conservation laws (i.e., Noether’s theorem [99,82,78]) on whose level sets the ensuing 
dynamics takes place. Lie symmetries of Hamilton’s principle also reduce the number of 
dynamical degrees of freedom to equivalence classes of observables that transform under 
the corresponding Lie group.

The reduced Hamilton’s principle leading to the Euler-Poincaré equations for ideal 
continuum mechanics was only developed recently in [77]. For the flow of ideal fluids 
in a fixed domain M ⊂ Rn, Lie group symmetry reduces the number of degrees of 
freedom to the equivalence classes of observables that transform under pull-back by 
smooth invertible maps with smooth inverses (φ ∈ Diff(M), diffeomorphisms) in which 
the composition of functions is understood as a Lie group operation. Euler fluid dynamics 
is then recast as a flow map φt which defines a time-dependent geodesic curve on the 
manifold of diffeomorphisms, cf., [6,77].

The present approach is based on the premise that Euler’s fluid equations arise from 
Hamilton’s variational principle for geodesic flow on the manifold of diffeomorphisms 
with respect to the metric defined by the kinetic energy of the fluid, [6,53]. The vari-
ations are constrained by the condition of right-invariance of the velocity vector field. 
Hamilton’s principle for fluids is modified when advection by the fluid motion under the 
action of the diffeomorphisms carries fluid properties such as mass and heat, whose 
contribution to the thermodynamic equation of state affects the motion [77]. These 
advected fluid quantities are said to follow Lagrangian trajectories of fluid parcels in 
the flow. Since the Lagrangian trajectories for Euler’s ideal fluid equations are pushed 
forward by time-dependent diffeomorphic maps, these trajectories may be regarded as 
curves parametrized by time on the manifold of smooth invertible maps (diffeomor-
phisms) [53].

Preserving the fundamental structure derived from Hamilton’s principle in the course 
of more general fluid modelling is paramount. These theoretical considerations have 
helped in developing Hamilton’s principle modelling for stochastic continuum mechanics 
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in [76]. In turn, this new development has recently led to new methods for stochastic 
data assimilation using particle-filtering in geophysical fluid dynamics (GFD) [41].

The need for robust and computationally efficient Parametrization Schemes (PS) that 
model the effects of fast sub-grid scale physics and other unresolved processes is well un-
derstood in Geophysical Fluid Dynamics (GFD). See, for example, [64], for a recent 
overview. Stochastic Parameterization Schemes (SPS) have the additional ability to in-
troduce model uncertainty [13] naturally. SPS have improved the probabilistic skill of 
the ensemble weather forecasts by increasing their reliability and reducing the error of 
the ensemble mean. The coming years are likely to see a further increase in the use of 
SPS in ensemble methods in forecasts and assimilation. This, however, will put increas-
ing demands on the methods used to represent computational model uncertainty in the 
dynamical core and other components of the Earth system while maintaining overall 
computational efficiency [85].

The preservation of geometrical structure and physicality of fluid dynamics can serve 
as a guiding principle in designing robust PS for GFD. The PS are meant to preserve 
predictive power, accuracy, and computational efficiency in modelling the effects of both: 
(i) unresolved phenomena due to the known but unresolved rapid sub-grid scale physics, 
as well as (ii) uncertainty due to unknown bias in the data. Thus, in ensemble compu-
tations, PS face a daunting combination of tasks.

In this paper, we propose a structured approach for parametrization of the rapid scales 
of fluid motion by using a temporally rough vector field in the framework of geometric 
rough paths (GRP) [59], which we call Geometric Rough Path Parametrization Schemes 
(GRPPS). Namely, we will develop a new class of variational principles for fluids that 
model resolved and unresolved motions of fluid advection as GRPPS. Critical points of 
our rough-path constrained variational principles are rough partial differential equations 
(RPDEs), whose dynamics incorporate both the resolved-scale fluid velocity and the 
effects of the unresolved fluctuations.

In the particular case when the generating rough path is a straight line, or, more gen-
erally, a smooth curve, the GRPPS approach introduced here reduces to a PS approach 
obtained through classical/deterministic variational principles (see Section C). Similarly, 
when the generating rough path is a realization of a Brownian motion (or, more gen-
erally, of a semimartingale process), GRPPS specializes to a pathwise formulation of 
the SPS characterized through the stochastic variational principles first introduced in 
[76]. In other words, this work enhances the mathematical framework of Stochastic Ad-
vection by Lie Transport (SALT), in which the Lagrangian trajectories are treated as 
time-dependent Stratonovich stochastic processes [76].

Non-Markovian models include models with memory which are of interest in ocean 
dynamics, see, e.g., [119,51,98,19,120,84,102]. The variational treatment of fluid dynam-
ics on rough paths enables the introduction of such models. This can be accomplished, 
for example, by realising the rough path as a fractional Brownian motion, or as a more 
general Gaussian process with suitably chosen time correlation. There is growing evi-
dence that non-Markovianity improves models of the effects of fast sub-grid scales on 
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the resolved scales (see, e.g., [5,61,33,86]). It stands to reason that such models could be 
useful in parametrising the sub-grid scales of real fluids. Our framework, in particular, 
includes spatially-local, non-Markovian SPS by using rough paths (rather than, for ex-
ample, state-delay terms) to model the sub-grid scale terms. Since our framework retains 
the core geometric structure of fluid mechanics, one can expect the solution properties of 
our equations would track those of the deterministic unperturbed equations (e.g., stabil-
ity up to blow-up time [44]). This sort of fidelity would be important in the calibration 
of our models, especially for those calibrations that use the modern ‘solver-in-the loop’ 
estimation procedures [115].

The contents of this paper. The overall goal of the present paper is to formulate rig-
orously in Theorems 2.6 and 3.12 variational principles for ideal fluid dynamics with 
advection of fluid quantities along Geometric Rough Paths. To achieve this goal, our 
first aim is to derive a rough version of the Lie chain rule in Theorem 3.3 leading to the 
GRP version of the classical Reynolds transport formula in Corollary 3.5. The Reynolds 
transport formula for momentum density encapsulates the force law which governs fluid 
motion. Mathematically, the formula describes the rate of change of the integral of the 
fluid momentum density over a moving control volume that is being transported by 
the rough (fluid) flow along a GRP. Thus, our key result is the Lie chain rule formula 
(3.4) in Theorem 3.3 for the rough differential (or increment in time) of the pull-back 
and push-forward of a tensor-field-valued GRP by a rough flow. The Lie chain rule for-
mula (3.4) is intuitive and natural because it follows from the extension of ordinary 
calculus to GRP. The formula leads to a unified, stable, and flexible framework for mod-
elling fluids whose Lagrangian parcels move along temporally rough paths. Theorem 3.3
for the Lie chain rule is the foundation on which the other contributions of the paper 
rest.

In order to derive the momentum and advection equations satisfied by the critical 
points of our variational principles, we required a rough version of the fundamental 
lemma of the calculus of variations. A version is formulated and proved in Section B.3. 
As far as we are aware, this is a new result.

Our work is an example of the rigorous content of the Malliavin transfer princi-
ple, which says that geometric constructions involving manifold-valued curves can be 
extended to manifold-valued stochastic paths by replacing classical calculus with ge-
ometric rough-path calculus (see, e.g. [104,54,32,21,50,3]). More specifically, we show 
that deterministic geometric continuum mechanics can be extended to rough-path ge-
ometric continuum mechanics. In the particular case when the rough path is a real-
ization of a semimartingale, we recover the SGFD models in [76,109]. However, by 
eliminating the need for stochastic variational tools, we retain a pathwise interpre-
tation of the Lagrangian trajectories. In contrast, the Lagrangian trajectories in the 
stochastic framework are described by stochastic integrals, which do not have a path-
wise interpretation. In summary, the rough path formulation restores the pathwise 
property.
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The paper is structured as follows:

• Section 2 formulates the first variational principle for fluid dynamics on geometric 
rough paths in Theorem 2.6, by imposing the Clebsch constraint for the advection 
fluid quantities along rough paths.

• Section 3 formulates the Lie Chain Rule Theorem 3.3 and the Reynolds Transport 
Corollary 3.5 for geometric rough paths. The Reynolds transport formula in the 
special case of one-forms yields the rough Kelvin–Noether Theorem 3.6. Section 3
also formulates the Hamilton-Pontryagin variational principle for rough paths in 
Theorem 3.12, which imposes the constraint that the vector fields which generate 
the Lagrangian trajectories are right-invariant under diffeomorphisms whose time 
dependence is rough. The Clebsch and Hamilton-Pontryagin variational principles 
for rough paths correspond to those derived in the SALT approach in [76] and [63], 
respectively. Next we formulate the Euler–Poincaré constrained variational principle 
for ideal fluid motion on GRP in Theorem 3.15. Here, we pose an open problem 
regarding the construction of variations used in this principle. Finally, we develop 
the Lie–Poisson Hamiltonian formulation of fluid dynamics on GRP in Corollary 3.19.

• Section 4 provides three examples of fluid equations on GRP. These are: i) the rough 
Euler equation for incompressible fluid flow; ii) the rough Camassa-Holm equation 
and its limiting case, the rough Burgers equation; and iii) the equations for ideal 
compressible adiabatic fluid dynamics on GRP.

• Finally, Section 5 contains the proofs of the main results formulated in Section 3.

In addition, the paper contains five Appendices which are meant to provide notation 
and background information, including proofs of key technical results invoked in the main 
text, a simple example of our procedure in the setting of smooth paths, and additional 
history and motivation. The first two Appendices are essential and contain together the 
key relationships and definitions needed in both geometric mechanics and the theory of 
rough paths for the present work, which as far as we know are found together nowhere 
else. The latter three Appendices provide additional information and motivation for the 
theory of rough paths.

Appendix A defines the notation we use and summarises the essential background and 
results for both rough paths and geometric mechanics that we use in the text. We choose 
to put this section in the appendix rather than in the main text since different classes 
of readers may be familiar with at least some of our notation, and might wish to see the 
statements of the main results presented first. The main text will refer to sections in Ap-
pendix A as needed if we think a notation is not standard. Appendix B contains proofs 
of selected technical results which facilitate the proofs in the main text. Appendix C
illustrates the variational principles we use in the example of a homogeneous incom-
pressible fluid flow perturbed by spatially and temporally smooth noise. This example 
serves as a guide for introducing rough perturbations into the variational principles for 
more general fluid theories. Appendix D provides a short history and motivation in the 
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development of the theory of rough paths and Appendix E discusses the concrete exam-
ple of Gaussian rough paths and provides additional references to this important class 
of rough paths.

Contributions of this paper.
This paper offers a variational framework that connects Geometric Rough Path The-

ory with Geophysical Fluid Dynamics, hopefully to the benefit of both fields. The 
geometric variational approach followed here may enhance the development of math-
ematical and numerical models in a range of investigations in Weather Prediction, Data 
Assimilation, Ocean Dynamics, Atmospheric Science, perhaps even Turbulence. For ex-
ample, the model development may benefit from theoretical results (stability results, 
large deviation principles, splitting schemes) for random dynamical systems arising from 
rough partial differential equations [44]. In turn, the new connections between GFD and 
geometric rough paths may become a fruitful source of open problems in mathematics.

This paper introduces a GRPPS framework that transcends the scope of either de-
terministic or stochastic parametrization schemes by allowing GRP with Hölder index 
α ∈

( 1
3 , 1

]
.1 The case α = 1 recovers deterministic fluid dynamics (see, e.g., Section C). 

The case α = 1/2 − ε (ε � 1) gives a pathwise characterization of SPS. Widening the 
choice of Hölder index provides a broader scope for modelling with PS. Indeed, one may 
also include models which are non-Markovian (for example, by choosing the rough path 
as a realization of a fractional Brownian motion, or of a more general Gaussian process 
with suitably chosen time dependence).

The GRPPS presented here possess the following fundamental properties:

• Being derived from Hamilton’s variational principle, they preserve the geometric 
structure of fluid dynamics [77].

• They satisfy a Kelvin circulation theorem, which is the classical essence of fluid flow.
• They are consistent with the modern mathematical formulation of fluid flow as 

geodesic flows on the manifold of smooth invertible transformations, with respect 
to the metric associated with the fluid’s kinetic energy [6].

• They accommodate Pontryagin’s maximum principle for control in taking a dynam-
ical system from one state to another, especially in the presence of constraints for 
the state or input controls [17].

Open problems Following this work, the following problems remain open:

• Completeness of the constrained velocity variations in formulating the RPDEs in the 
Euler-Poincaré Theorem 3.15.

• Well-posedness of RPDEs derived in Sec. 4.1 and Sec. 4.2.

1 The analysis presented here can be extended to α ∈ (0, 1] at the expense of more elaborate computations.
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• Estimation of the rough path properties and calibration of the GRPPS model from 
observed or simulated data.

• The development of pathwise data assimilation methods for the incorporation of data 
into GRPPS.

• Uncertainty quantification and forecast analysis using GRPPS.

Acknowledgments

All of the authors are grateful to our friends and colleagues who have generously of-
fered their time, thoughts and encouragement in the course of this work during the time 
of COVID-19. We are particularly grateful to T.D. Drivas and S. Takao for thought-
ful discussions. DC and DH are grateful for partial support from ERC Synergy Grant 
856408 - STUOD (Stochastic Transport in Upper Ocean Dynamics). JML is grateful for 
partial support from US AFOSR Grant FA9550-19-1-7043 - FDGRP (Fluid Dynamics of 
Geometric Rough Paths) awarded to DH as PI. TN is grateful for partial support from 
the DFG via the Research Unit FOR 2402.

2. The Clebsch variational principle for geometric rough paths

To streamline the presentation of our results and to provide a ready reference for 
the reader, we have assembled the notation and background of geometric mechanics and 
rough paths theory needed for this paper into one place – Appendix A – rather than 
dispersing it sequentially in the main text.

Let Z = (Z, Z) ∈ Cα
T (RK) be a given geometric rough path with Hölder index α ∈

(1
3 , 1] defined in the time interval t ∈ [0, T ]. Let X = XF1 denote a function space of vector 

fields. Let X∨ = X∨
F2 denote a function space of one-form densities such that the canonical 

pairing 〈·, ·〉X : X∨
C∞ × XC∞ → R defined in (A.13) extends to a continuous pairing on 

X∨ ×X. For incompressible fluids, we implicitly use the constructions of the divergence-
free, or both divergence-free and harmonic-free vector fields and their canonical ‘duals’ 
(see Definition A.20). We write all spaces in brief notation without including Riemannian 
measure μg or other extraneous adornment for a unified treatment of the compressible 
and incompressible case. That is to say, for incompressible fluid flows, all vector fields 
(and variations of vector fields) and one-form densities are constrained. Using Cartan’s 
formula (A.12) and the Stokes theorem, one can show that for all u ∈ XC∞ , the adjoint 
(see (A.14)) of the vector-field operation

adu = −£u : XC∞ → XC∞

relative to the canonical pairing 〈·, ·〉X is given by ad∗
u = £u : X∨

D′ → X∨
D′ . Thus, for all 

α⊗D ∈ X∨
C∞ , we have

ad∗
u(α⊗D) = £u(α⊗D) = £uα⊗D + α⊗ £uD = £uα⊗D + α⊗ (divD uD).
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Let A be a direct summand of alternating form bundles and tensor bundles such that 
the first component of A is the density bundle ΛdT ∗M . Let A∨ denote the canonical dual 
in Section A.2.2. Define 〈·, ·〉A : A∨

C∞ ×AC∞ → R via a sum as explained in (A.13). Let 
A = AF3 = ΓF3(A) and A∨ = A∨

F4 = ΓF4(A∨) be function spaces such that the pairing 
〈·, ·〉A extends to a continuous pairing on A∨×A. For all u ∈ XC∞ , let £∗

u : A∨
C∞ → A∨

C∞

denote the adjoint (see (A.14)) of the Lie derivative £u : A∨
C∞ → A∨

C∞ defined relative 
to the canonical pairing 〈·, ·〉A.

Definition 2.1 (Diamond operator (	)). We define the bilinear diamond operator 	 :
A∨

C∞ × AC∞ → X∨
C∞ via the relation

〈λ 	 a, u〉X = −〈λ,£ua〉A, ∀(λ, u, a) ∈ A∨
C∞ × XC∞ × AC∞ .

We refer the reader to [77] and Section 4 (esp. Section 4.4) for explicit computations 
with the diamond operator in fluid dynamics. We assume that 	 extends to a continuous 
operator 	 : A∨ × A → X∨.

Assumption 2.2. Let � : X ×A → R. Assume there exist (functional derivatives) δ�δu : X ×
A → X∨ and δ�δa : X ×A → A∨ such that for all (u, a) ∈ X ×A and (δu, δa) ∈ XC∞×AC∞ :

(i)

d

dε

∣∣∣∣
ε=0

�(u + εδu, a + εδa) =:
〈
δ�

δu
(u, a), δu

〉
X

+
〈
δ�

δa
(u, a), δa

〉
A

;

(ii) for any sequence {(un, an)}n∈N ⊂ XC∞ × AC∞ such that (un, an) → (u, a) as 
n → ∞ in X × A;

lim
n→∞

〈
δ�

δu
(un, an), δu

〉
X

=
〈
δ�

δu
(u, a), δu

〉
X

and

lim
n→∞

〈
δ�

δa
(un, an), δa

〉
A

=
〈
δ�

δa
(u, a), δa

〉
A

.

(iii) the mapping δ�
δu (·, a) : X → X∨ is an isomorphism.

Let ξ ∈ XK
D′ denote a fixed collection of vector fields.2

Definition 2.3. Let ClbZ denote the space of all

(u,a,λ) ∈ Cα
T (X) ×DZ,T (A) ×DZ,T (A∨)

such that

2 It is worth noting that one can make ξ time dependent and depend on other quantities as in [63].
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(i) for all φ ∈ XC∞ , we have £ua, £uφ, £φa ∈ Cα
T (A), and there exists (£ξa)′ such 

that (£ξa, (£ξa)′) ∈ DZ,T (A);
(ii) for all φ ∈ XC∞ , we have £∗

uλ, £
∗
uφ, £

∗
φλ ∈ Cα

T (A∨), and there exists (£∗
ξλ)′ such 

that (£∗
ξλ, (£

∗
ξλ)′) ∈ DZ,T (A∨).

Remark 2.4. Let X̃, Ã, and Ã∨ be function spaces (see Section A.2.2) such that X̃ ↪→
X, Ã ↪→ A, and Ã∨ ↪→ A∨, and £ ∈ L(X̃× Ã, A) and £∗ ∈ L(X̃× Ã∨, A∨). If (u, a, λ) ∈
CT (X̃) ×DZ,T (Ã) ×DZ,T (Ã∨) and ξ ∈ X̃K , then (i) and (ii) hold.

Clebsch variational principle. The Clebsch action functional SClbZ : ClbZ → R is 
defined by

SClbZ(u,a,λ) =
T∫

0

�(ut, at)dt + 〈λt,dat + £dxt
at〉A, (2.1)

where

〈λt,£dxt
at〉A := 〈λt,£ut

at〉Adt + 〈λt,£ξat〉AdZt, dxt := utdt + ξdZt.

Remark 2.5. By Remark A.9, the integral 
∫ T

0 〈λt, dat〉A in the Clebsch action functional 
in (2.1) is well-defined. Indeed, the extra structure provided by the Gubinelli derivative 
in the controlled rough path space (whose elements are denoted with bold font, see 
Appendix subsection A.1.1) allows one to construct this integration.

A variation of (u, a, λ) ∈ ClbZ is a curve {(uε, aε, λε)}ε∈(−1,1) ⊂ ClbZ of the form

(uε,aε,λε) = (u + εδu,a + εδa,λ + εδλ),

for arbitrarily chosen (δu, δa, δλ) ∈ C∞
T (XC∞ × AC∞ × A∨

C∞) such that δa vanishes at 
t = 0 and t = T . We say (u, a, λ) ∈ ClbZ is a critical point of the action functional SClbZ , 
if for all variations one has

d

dε

∣∣∣∣
ε=0

SClbZ(uε,aε,λε) = 0.

By virtue of the controlled rough path calculus and, in particular, Lemmas A.13 and 
B.4, we obtain the following Clebsch variational principle.3

Theorem 2.6 (Clebsch variational principle on geometric rough paths). A curve (u, a, λ) ∈
ClbZ is a critical point of SClbZ in (2.1) iff for all t ∈ [0, T ], the following equations hold.

3 For more details about the history and applications of the Clebsch variational principle in fluid dynamics, 
see Appendix C.
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mt +
t∫

0

£us
msds +

t∫
0

£ξmsdZs
X

∨
= m0 +

t∫
0

δ�

δa
(us, as) 	 asds, m = δ�

δu
(u, a) = λ 	 a,

at +
t∫

0

£us
asds +

t∫
0

£ξasdZs
A= a0,

λt
A

∨
= λ0 +

t∫
0

(
£∗

ut
λs + δ�

δa
(us, as)

)
ds +

t∫
0

£∗
ξλsdZs.

(2.2)

Proof. See Section 5.1. �
Remark 2.7. The Lagrange multiplier λ enforces the constraint that ‘a’ satisfies

at +
t∫

0

£us
asds +

t∫
0

£ξasdZs
A= a0, ∀t ∈ [0, T ].

That is, the quantity ‘a’ is (formally) advected by the integral curves of the vector 
field dxt = udt + ξdZt. The Lie chain rule (Theorem 3.3) and Hamilton-Pontryagin 
variational principle in Section 3.3 explain the nature of this differential notation (see 
Remarks 3.4 and 3.9) which we will use freely. It follows that a = (a, −£ξa) ∈ DZ,T (A)
and (£ξa, (£ξa)′) ∈ DZ,T (A), where (£ξa)′ = −(£ξk£ξla)1≤k,l≤K . For more information 
about rough partial differential equations (RPDEs) and their solutions, we refer the 
reader to [59,10,47,74,75]. We mention that to prove well-posedness and, in particular, 
to show that ‘a’ is controlled, one must obtain a priori estimates of a remainder term 
which contains third-order Lie derivatives, see equation (A.11).

Remark 2.8. Incorporating additional constraints into the action functional is straight-
forward. For example, it is possible to enforce incompressibility via Lagrange multipliers 
instead of through constraints on spaces as discussed at the beginning of this section 
and in Section A.2.3. Naturally, additional terms appear on the right-hand-side of the 
equation for momentum, m, corresponding to the pressure terms (rough and smooth in 
time). We will explain in the examples in Section 4 how one can impose the incompress-
ibility constraint, either by using Lagrangian multipliers, or by constraining the space of 
vector fields and its dual.

The most commonly solved Euler equation for incompressible homogeneous flow of an 
ideal fluid with transport-type noise is, in addition, harmonic-free [43,28,27,42]. Indeed, 
in most papers, the authors prove well-posedness of a transport vorticity equation on the 
torus Td, d = 2, 3 with u recovered via the Biot-Savart law. By the Hodge decomposition 
theorem (see Section A.2.3), if the underlying equation for the fluid velocity u does not 
preserve mean-freeness (i.e., harmonic-freeness), then u cannot be recovered directly from 
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the vorticity equation by the Biot-Savart law. As a result of the perturbative nature of 
our theory, our equations do not, in general, preserve harmonic-freeness at the level of 
velocity. By imposing constraints on spaces (i.e., projections), we can easily impose that u
is both divergence and harmonic-free and derive the corresponding momentum equation 
with enough ‘free-variables’ to impose the divergence-free and harmonic-free constraints. 
In particular, we shall explain how the pressure and constant harmonic terms naturally 
decompose into a smooth and rough part, and how they can be recovered from u as was 
done in, for example, [94,95] and [74,75]).

3. The Lie chain rule for geometric rough paths and its applications

For an incompressible ideal fluid evolving on a compact oriented Riemannian manifold 
(M, g) with associated volume-form μg, the Lagrangian flow map η : [0, T ] → Diffμg

may 
be regarded as a curve in the group G := Diffμg

of volume-preserving diffeomorphisms 
on M endowed with some appropriate topology, initiated from the identity η0 = id
and parametrized by time, t ∈ [0, T ]. In his seminal paper [6], V.I. Arnold showed 
that the configuration space for incompressible hydrodynamics is the space of volume-
preserving diffeomorphisms and that Euler’s equation for the Eulerian velocity field u
(i.e., η̇t = ut ◦ ηt) is equivalent to the path η being a critical point of the kinetic energy 
action functional. That is, solutions of Euler’s fluid equations are geodesic paths on 
the manifold of volume-preserving diffeomorphisms endowed with a right-invariant weak 
L2-metric.

However, several geometric-analytic challenges arise if one wishes to make this view-
point constructive and solve the geodesic equation as an ODE (and show there is no 
derivative loss). The crux of the matter is that composition from the right is not smooth 
if one wants to endow G with a Banach topology and work with a standard functional 
analytic tool-set [53]. The variational principles developed in this paper can be seen as 
extensions of the geodesic principle in [6] or, more generally, the overarching EPDiff 
theory [77].

3.1. Lie chain rule and Reynolds transport theorem

Theorem B.1 can be extended via a coordinate chart or approximate flow argument 
(see, e.g., [118,50,9]) to obtain the following theorem concerning smooth rough flows on 
the closed manifold M . We assume smoothness in the spatial variable and compactness 
of our manifolds for simplicity. More relaxed conditions can be found in, for example, in 
[118].

Theorem 3.1 (Rough flow properties). There exists a unique continuous map

Flow : Cα
T (XC∞) × C∞

T (XK
C∞) × Cg,T (RK) → Cα

2,T (DiffC∞)

such that ηts = Flow(u, ξ, Z)ts, (s, t) ∈ [0, T ]2, satisfies the following properties:
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(i) for all (s, θ, t) ∈ [0, T ]3, ηtt = Id and

ηtθ ◦ ηθs = ηts;

(ii) for all (s, t) ∈ Δ and f ∈ C∞,

η∗tsf = f +
t∫

0

η∗rsur[f ]dr +
t∫

0

η∗rsξr[f ]dZr, (3.1)

and

ηts∗f = f −
t∫

0

ur[ηrs∗f ]dr −
t∫

0

ξr[ηrs∗f ]dZr. (3.2)

Remark 3.2. Let us recall that η∗ts and ηts∗ denote the pull-back and push-forward, 
respectively (see (A.10)). Item (ii) in (3.1) means that for all X ∈ M , the quantity η·sX
is the unique solution of the RDE

dηtsX = ut(ηtsX)dt + ξt(ηtsX)dZt, t ∈ (s, T ], ηssX = X, (3.3)

for all s ∈ [0, T ].

We refer to the following theorem as the Lie chain rule. A stochastic version (i.e., 
Brownian case) of this theorem was proved in [46][Theorem 3.1].

Theorem 3.3 (Rough Lie chain rule). For given τ0 ∈ T lk
C∞ , π ∈ CT (T lk

C∞), and γ =
(γ, γ′) ∈ DZ,T ((T lk

C∞)K), let

τt = τ0 +
t∫

0

πrdr +
t∫

0

γrdZr, t ∈ [0, T ].

Then for all (s, t) ∈ ΔT ,

η∗tsτt = τs +
t∫

s

η∗rs (πr + £ur
τr) dr +

t∫
s

η∗rs (γr + £ξrτr) dZr, (3.4)

and

ηts∗τt = τs +
t∫

s

(ηrs∗πr − £ur
(ηrs∗τr)) dr +

t∫
s

(ηrs∗γr − £ξr (ηrs∗τr)) dZr, (3.5)

where the time-dependent vector fields u and ξ are given in equation (3.3).
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Proof. See Section 5.2. �
Remark 3.4. By (3.5), for an arbitrary τ0 ∈ T r,s

C∞ , it follows that τ· = η·0 ∗τ0 is a classical 
solution of

τt +
t∫

0

£ur
τrdr +

t∫
0

£ξrτrdZr = τ0.

Notice that if we introduce the notation dxt := dηt0 ◦ η−1
t0 := utdt + ξtdZt, then we may 

write

τt +
t∫

0

£dxr
τr = τ0,

which generalizes the dynamic definition of the Lie-derivative to the rough case.

The following corollary is an extension of the Reynolds transport theorem. It is a 
sequential application of the definition of the integral on manifolds (see, e.g., Sec. 8.1 
and 8.2 of [1]), the global change of variables formula, the Lie chain rule (Theorem 3.3) 
and the rough Fubini theorem (Lemma B.3. We will use this formula next in the case 
k = 1 for the proof of the Kelvin circulation theorem (see Section 3.2).

Corollary 3.5 (Rough Reynolds transport theorem). For given α0 ∈ Ωk
C∞ , π ∈ CT (Ωk

C∞), 
and γ = (γ, γ′) ∈ DZ,T ((Ωk

C∞)K), let

αt = α0 +
t∫

0

πrdr +
t∫

0

γrdZr, t ∈ [0, T ].

Then for all k-dimensional smooth submanifolds Γ embedded in M and (s, t) ∈ ΔT , we 
have

∫
ηts(Γ)

αt =
∫
Γ

αs +
t∫

s

∫
ηrs(Γ)

(πr + £ur
τr) dr +

t∫
s

∫
ηrs(Γ)

(γr + £ξrτr) dZr,

where ηts(Γ) denotes the image of Γ under the action of the flow η.

3.2. Kelvin’s circulation theorem

Assume that for all t ∈ [0, T ],

mt
X

∨
C∞= m0 +

t∫ (
δ�

δa
(us, as) 	 as − £us

ms

)
ds−

t∫
£ξmsdZs, m = δ�

δu
(u, a),
0 0
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Dt +
t∫

0

£us
Dsdr +

t∫
0

£ξDsdZs
DensC∞= D0,

where all the paths and integrands are assumed to be smooth. By virtue of Theorem 3.1, 
there exists a flow of diffeomorphisms η = η · 0 ∈ Cα

T (DiffC∞) such that

dηtX = ut(ηtX)dt + ξ(ηtX)dZt, t ∈ (0, T ], η0X = X ∈ M.

We obtain the following rough version of the Kelvin-Noether theorem in [77] as an 
application of the Reynolds transport theorem in Corollary 3.5,

Theorem 3.6 (Rough Kelvin-Noether Theorem). Let γ denote a compact embedded one-
dimensional smooth submanifold of M and denote γt = ηt(γ) for all t ∈ [0, T ]. If D0 is 
non-vanishing, then

∮
γt

1
Dt

δ�

δu
(ut, at) =

∮
γ0

1
D0

δ�

δu
(u0, a0) +

t∫
0

∮
γs

1
Ds

δ�

δa
(us, as) 	 asds.

Remark 3.7. Formula (A.15) explains that 1
μ : X∨

C∞ → Ω1
C∞ is defined by m = α⊗ ν 
→

m
μ = α dν

dμ .

Proof. See Section 5.3. �
3.3. The Hamilton-Pontryagin variational principle for geometric rough paths

In this section, in addition to the assumptions in Section 2, we require that A =
AC∞ , X = XC∞ , ξ ∈ {XC∞}K , and Z ∈ Cα

g,T (RK), α ∈
( 1

3 ,
1
2
]
, is truly rough as in 

Definition A.14. We define the space of rough diffeomorphisms by

DiffZ,T,C∞ = Flow(Cα
T (XC∞), C∞

T (XK
C∞),Z) · 0.

For given η = Flow(v, σ, Z)·0 ∈ DiffZ,T,C∞ and λ ∈ DZ,T (X∨), we let

T∫
0

〈λt,dηt ◦ η−1
t 〉X :=

T∫
0

〈λt, vt〉Xdt +
T∫

0

〈λt, σt〉XdZt. (3.6)

Definition 3.8. Let HPZ denote the space of

(u, η,λ) ∈ Cα
T (XC∞) × DiffZ,T,C∞ ×DZ,T (X∨)

such that for all φ ∈ XC∞ , £uλ, £uφ, £φλ ∈ Cα
T (A∨), and there exists (£ξλ)′ such that 

(£ξλ, (£ξλ)′) ∈ DZ,T (X∨).
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For a given a0 ∈ AC∞ , the Hamilton-Pontryagin action integral SHPZ

a0
: HPZ → R is 

defined by

SHPZ

a0
(u, η,λ) =

T∫
0

�(ut, ηt∗a0)dt + 〈λt,dηt ◦ η−1
t − utdt− ξdZt〉X. (3.7)

Remark 3.9. By Theorem A.15, the Lagrange multiplier λ in (3.7) enforces

dηtX = ut(ηtX)dt + ξ(ηtX)dZt, t ∈ (0, T ], η0X = X ∈ M.

The true roughness of the path Z defined in Definition A.14 and satisfying Theorem A.15
is required to ensure that (3.6) is well-specified and to conclude that v ≡ u and σ ≡ ξ in 
the proof of Theorem 3.12 (i.e., after taking variations). In contrast, we did not impose 
true roughness (see Remark 2.7) of the path for the Clebsch variational principle in 
Theorem 2.6 owing to the nature of the constraint and Lemma B.4.

By the Lie chain rule (Theorem 3.3), we find that at = ηt∗a0 satisfies

at +
t∫

0

£dxs
as = a0, where dxt = utdt + ξdZt,

where the notation for dxt is explained in Remark 3.4. That is, the quantity a is advected 
by the flow η ∈ DiffZ,T,C∞ . This advection equation is used directly as the constraint in 
the Clebsch variational principal in Theorem 2.6.

Definition 3.10. A variation of (u, η, λ) ∈ HPZ is a curve {(uε, ηε, λε)}ε∈(−1,1) ⊂ HPZ of 
the form

(uε, ηε,λε) = (u + εδu, ψε ◦ η,λ + εδλ),

where ψ ∈ C∞([−1, 1] × [0, T ]; DiffC∞) is defined to be the flow (in the t-variable) given 
by

∂tψ
ε
tX = ε∂tδwt(ψε

tX), ψε
0X = X ∈ M,

for arbitrarily chosen (δu, δw, δλ) ∈ C∞
T (XC∞ ×AC∞ ×A∨

C∞) such that δw vanishes at 
t = 0 and t = T .

Remark 3.11 (Variation ηε). The type of variation we use for the rough diffeomorphism 
is common in the geometric mechanics community (see, e.g., Lemma 3.1 of [4]). Notice 
that for all t ∈ [0, T ] and f ∈ C∞,
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ψε∗
t f = f + ε

t∫
0

ψε∗
r [∂tδwrf ]dr.

Applying Theorem 3.3 and using the natural property of the Lie derivative leads to

ηε∗t f = f +
t∫

0

ηε∗r
(
£vε

r
f + ε£∂tδwr

f
)
dr +

t∫
0

ηε∗r £σε
r
fdZr,

where vεt = ψε
t∗v and σε

t = ψε
t∗σ. Thus, for a given η = Flow(v, σ, Z)·0, it follows that

dηεtX = (vεt (ηεtX) + ε∂tδwr(ηεtX)) dt + σε
t (ηεtX)dZt, ηε0X = X ∈ M,

and hence

ηε = Flow (vε + ε∂tδw, σ
ε,Z)·0 ∈ DiffZ,T,C∞ .

The proof of the following theorem is given in Section 5.4.

Theorem 3.12 (Hamilton-Pontryagin variational principle). A curve (u, η, λ) ∈ HPZ is 
a critical point of SHPZ if and only if for all [0, T ],

mt +
t∫

0

£us
msds +

t∫
0

£ξmsdZs
X

∨
= m0 +

t∫
0

δ�

δa
(us, as) 	 asds, m = δ�

δu
(u, a) = λ,

at +
t∫

0

£us
asds +

t∫
0

£ξasdZs
AC∞= a0, at = ηt∗a0,

dηtX = ut(ηtX)dt + ξ(ηtX)dZt, t ∈ (0, T ], η0X = X ∈ M.

Remark 3.13. The corresponding Hamilton-Pontryagin principle was derived for SALT 
in [63].

Proof. See Section 5.4. �
Remark 3.14 (Incompressible homogeneous Euler). The rough incompressible homoge-
neous (unit density) Euler equations arise from the choice of the ‘kinetic energy’ La-
grangian � : Ẋμg

→ R+ defined by

�(u) =
∫

g(u, u)μg,
M
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where (M, g) is an oriented Riemannian manifold with corresponding volume form μg. 
We refer to Sections 4.2 and 4.2 for more details. Letting Ẋ∨

μg
denote the space of one-

form densities modulo exact and harmonic forms (see Definition A.20), we find

m = λ = δ�

δu
= [u
 ⊗ μg] ∈ Ẋ∨

μg
,

and hence that (u, η, λ) is a critical point of HPZ iff

d[u

t ⊗ μg] + £ut

[u

t ⊗ μg]dt + £ξ[u


t ⊗ μg]dZt

Ẋ
∨
μg= 1

2[dg(ut, ut) ⊗ μg]dt,

dηtX = ut(ηtX)dt + ξ(ηtX)dZt, t ∈ (0, T ], η0X = X ∈ M.

The first equation is equivalent to⎧⎪⎪⎨
⎪⎪⎩

du

t + £ut

u

tdt + £ξu



tdZt = 1

2dg(ut, ut) − ddpt − dct,
d∗u
 = div u = 0,
H(u
) = 0,

where dpt = ptdt + qtdZt and dct = ctdt + c̃tdZt are the Lagrangian multipliers cor-
responding to the divergence and harmonic-free constraints. It follows that ω = du


satisfies

dωt + £ut
ωtdt + £ξωtdZt = 0.

In [44], we extend the work of [75], which studied the viscous case on the torus M = Td, 
to show that for an initial-velocity u0 ∈ XWm

2 with m > d
2 + 1, there exists a unique 

maximal Cauchy development u ∈ C([0, T ∗); XWm
2 ) ∩ Cα([0, Tmax; XWm−3

2
). Moreover, 

we show that if Tmax < ∞, then

T∗∫
0

|ωt|Ω2
L∞μg = +∞.

That is, a Beale-Kato-Majda blowup criterion holds. In dimension two, identifying ω
with a scalar ω̃ = �ω ∈ Ω0, we find that |ω̃t|Lp = |ω̃0|Lp for all p so that T ∗ = +∞.

Therefore, taking the initial data u0 ∈ XC∞ to be smooth, we obtain a solution 
u ∈ Cα

T (XC∞) on any interval [0, T ] with T < Tmax, and hence we may construct the 
flow η = Flow(u, ξ, Z) ∈ DiffZ,T,C∞ . Consequently, we obtain a critical point (u, η, λ) of 
HPZ for any T < Tmax with λ = (λ, λ′) = ([u
 ⊗ μg], £ξ[u
 ⊗ μg]).

3.4. An Euler–Poincaré variational principle for geometric rough paths

In this section, we assume that all stated quantities exist and are smooth; so, we can 
work formally (see Remark 3.17).
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Theorem 3.15 (Euler–Poincaré variational principle). Consider a path η=Flow(u, ξ, Z) ∈
DiffZ,T,C∞ . The following are equivalent:

(i) The constrained variational principle

δ

T∫
0

�(ut, at)dt = 0

holds on Cα
T (XC∞) × Cα

T (AC∞) using variations of the form

δudt = ∂tδwdt− addxt
δw and δa = −£δwa, (3.8)

for arbitrarily chosen δw ∈ C∞
T (XC∞) which vanishes at t = 0 and t = T , where 

dxt = utdt + ξdZt.
(ii) The Euler–Poincaré equations on geometric rough paths hold: that is, for all t ∈

[0, T ],

mt +
t∫

0

£us
msds +

t∫
0

£ξmsdZs
X

∨
C∞= m0 +

t∫
0

δ�

δa
(us, as) 	 asds, m = δ�

δu
(u, a),

at +
t∫

0

£us
asds +

t∫
0

£ξasdZs
AC∞= a0, at = ηt∗a0.

Proof. See Section 5.5. �
Remark 3.16. Recalling that for all u ∈ X∞ the adjoint of adu = −£u : XC∞ → XC∞ is 
ad∗

u = £u : X∨
C∞ → X∨

C∞ , we have

dmt + ad∗
dxt

mt = δ�

δat
	 at

dat + £dxt
at = 0.

(3.9)

Remark 3.17. This is not strictly a variational principle in the same sense as the standard 
Hamilton’s principle. It is akin to the classic Lagrange d’Alembert principle for dynamics 
with nonholonomic constraints, because the variations of δu and δa in (3.8) are restricted 
in terms of δw. These restrictions are discussed next.

Let η = Flow(u, ξ, Z)·,0. Assume that for all δw ∈ XC∞ and δw0 = δwT = 0 we can 
construct a variation {ηε}ε∈[−1,1] such that

dηεtX = uε
t(ηεtX)dt + ξ(ηεtX)dZt, t ∈ (0, T ], ηε0X = X ∈ M,

and for all t ∈ [0, T ],



20 D. Crisan et al. / Advances in Mathematics 404 (2022) 108409
(i)
∂

∂ε
dηεt

∣∣
ε=0 = d ∂

∂ε
ηεt
∣∣
ε=0;

(ii)
δwt =

(
∂

∂ε

∣∣
ε=0η

ε
t

)
◦ η−1

t ⇔ ∂

∂ε

∣∣
ε=0η

ε
tX = δwt(ηtX).

Define δut := ∂
∂ε

∣∣
ε=0u

ε
t. Then

d ∂

∂ε
ηεt
∣∣
ε=0 = d(δwt ◦ ηt) = (∂tδwt) ◦ ηtdt + (Tδwt ◦ ηt)(ut ◦ ηtdt + ξ ◦ ηtdZt)

and

∂

∂ε
dηεt

∣∣
ε=0 = ∂

∂ε
(uε ◦ ηεtdt + ξ ◦ ηεtdZt)

∣∣
ε=0

= (δut ◦ ηt + (Tut ◦ ηt)(δwt ◦ ηt)) dt + (Tξ ◦ ηt)(δwt ◦ ηt)dZt

Using the equality of mixed derivatives, we find

δut ◦ ηtdt = ((∂tδwt) ◦ ηt + [δwt, ut] ◦ ηt) dt + [δwt, ξ] ◦ ηtZt

= ((∂tδwt) ◦ ηt − adut
δwt ◦ ηt) dt− adξ δwt ◦ ηtZt.

It follows from aεt = ηεt∗a0 that δat = ∂
∂ε

∣∣
ε=0η

ε
t∗a0 = −£δwat. Two issues now arise: i) 

we do not have a proof that such variations exist as we did for the Hamilton-Pontryagin 
variational principle; ii) it is not clear how to deduce

δutdt = (∂tδwt − adut
δwt) dt− adξ δwtdZt.

We shall leave the clarification of these issues about the Euler-Poincaré variations as an 
open problem.

3.5. A Lie–Poisson bracket for Hamiltonian dynamics on geometric rough paths

Definition 3.18. We define h : DZ,T (X∨) ⊕DZ,T (A) → DZ,T (R) by

ht(m, a) :=
t∫

0

(〈ms, us〉X − �(us, as)) ds +
t∫

0

〈ms, ξ〉XdZs,

(m, a) ∈ DZ,T (X∨) ⊕DZ,T (A), t ∈ [0, T ],

where u denotes the inverse of δ� (·, a) : X → X∨ applied to m; that is, m = δ� (u, a).
δu δu
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The rough Hamiltonian ht(m, a) is the sum of the deterministic Hamiltonian defined 
by Legendre transformation associated with the Lagrangian � and given by H(m, a) =
〈m, u〉X − �(u, a), plus G(m) = 〈m, ξk〉X, so that

ht(m, a) =
t∫

0

H(ms, as)ds +
t∫

0

G(ms)dZs.

Let us take variations of h(m, a) in m and a. For arbitrary δm ∈ X∨
C∞ and δa ∈ AC∞ , 

we find

δht =
t∫

0

(
〈ms,

δu

δm
〉X + 〈δms, us〉X − 〈 δ�

δu
(us, as),

δu

δm
〉X − 〈 δ�

δa
(us, as), δa〉A

)
ds

+
t∫

0

〈δms, ξ〉XdZs

=
t∫

0

〈δms,dxs〉X −
t∫

0

〈 δ�
δa

(us, as), δa〉Ads, ∀t ∈ [0, T ],

where in the second equality we have used m := δ�
δu and set dxt := utdt + ξdZt. Thus,

dδht

δm
(m, a) = dxt and dδh

δa
(m, a) = − δ�

δa
(u, a)dt,

which is to say

δht

δm
(m, a) =

t∫
0

usds +
t∫

0

ξdZs =
t∫

0

δH

δm
(ms, as)ds +

t∫
0

δG

δm
(ms)ds

δht

δa
(m, a) = − δ�

δa
(ut, at) = δH

δa
(mt, at).

Corollary 3.19 (Lie–Poisson Hamiltonian form). The Euler–Poincaré equations in (3.9)
can be written in Lie–Poisson bracket form as

[
mt

at

]
X

∨⊕A=
[
m0
a0

]
−

t∫
0

[
ad∗� ms � 	 as
£�as 0

] [
dδhs/δm(m, a)
dδhs/δa(m, a)

]
,

in which the boxes (�) represent substitution in the operator. For arbitrary f : X∨×A →
R such that δf

δm (m, a) ∈ CT (X) and δfδa (m, a) ∈ DZ,T (A∨) exist (see Lemma A.13), we 
have
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f(mt, at) = f(m0, a0) +
t∫

0

〈dms,
δf

δm
(ms, as)〉X +

t∫
0

〈das,
δf

δa
(ms, as)〉A∨

= −
t∫

0

〈[
ad∗� ms � 	 as
£�as 0

] [
dδh/δm(ms, as)
dδh/δa(ms, as)

]
,

[
δf/δm(ms, as)
δf/δa(ms, as)

]〉
X⊕A∨

=:
t∫

0

{
f,dhs

}
(ms, as),

in which the last equality adopts the notation for the semidirect-product Lie–Poisson 
bracket given in [77]. In differential notation, we find

df(mt, at) = {f,dht}(mt, at) = {f,H}(mt, at)dt + {f,G}(mt, at)dZt.

Remark 3.20. Stochastic Hamilton equations were introduced along parallel lines with 
the deterministic canonical theory in [15]. These results were later extended to include 
reduction by symmetry in [83]. Reduction by symmetry of expected-value stochastic vari-
ational principles for Euler–Poincaré equations was developed in [4] and [36]. Stochastic 
variational principles were also used in constructing stochastic variational integrators in 
Bou-Rabee and Owhadi [20].

4. Examples

4.1. Rough incompressible Euler equation via Lagrange multipliers

Let (M, g) denote a smooth, compact, connected, oriented d-dimensional Riemannian 
manifold without boundary. Denote by μg ∈ DensC∞ the associated volume form, which 
is given in local coordinates by

μg =
√
|det[gij ]| dx1 ∧ · · · ∧ dxd.

Let A = ΛdT ∗M ⊕ Λ0T ∗M and A∨ = Λ0T ∗M ⊕ ΛdT ∗M . Denote the advected vari-
ables by a = (D, ρ) ∈ A = DensF3 ⊕Ω0

F3 and the associated Lagrangian multipliers by 
λ = (f , β) ∈ A∨ = Ω0

F4 ⊕ DensF4 . In the following example, we will explain how to 
impose incompressibility through projections and spatial constraints. Toward this end, 
we introduce an additional Lagrangian multiplier π ∈ DZ,T (F3 ∩ F4) to enforce incom-
pressibility. We consider the Clebsch action functional

SClbZ(u,a,λ,π) =
T∫

0

�(ut, at)dt +
〈
dπt , Dt − ρtμg

〉
Ωd +

〈
ft , dDt + £dxt

Dt

〉
Ωd

+
〈
βt , dρt + £dxt

ρt
〉
Ω0 ,
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where dxt = utdt + ξdZt and the Lagrangian � : X × A → R is defined by

�(u, a) = 1
2

∫
M

g(u, u)D = 1
2 〈u


 ⊗D,u〉X,

where the � operation is defined in Section A.2.3. We take variations of (u, a, λ) as defined 
in Section 2. A variation of π is defined to be πε = π+ εδπ for δπ ∈ C∞

T (C∞) such that 
δπ0 = δπT = 0.

It follows that all (u, a) ∈ X × A,

m = δ�

δu
(u, a) = u
⊗D ∈ X∨, u = �

D
m, and δ�

δa
(u, a) =

(
1
2g(u, u), 0

)
∈ A∨,

where the diffeomorphism �
D is defined in Section A.2.2. Let us now compute the relevant 

diamond terms (see Definition 2.1). For all (h, ν) ∈ C∞ × DensC∞ and u ∈ XC∞ , we 
have

−〈h,£uν〉Ωd = −
∫
M

h£uν = −
∫
M

hdiuν =
∫
M

νiudh = 〈£uh, ν〉Ωd = 〈dh⊗ ν, u〉X,

which implies h 	 ν = dg ⊗ ν. Moreover, since

−〈ν,£uh〉Ω0 = −
∫
M

νiudh = −〈dh⊗ ν, u〉X ⇒ ν 	 h = −dh⊗ ν.

With minor modifications of the Proof of Theorem 2.6, we find that (u, a, λ, π) is a 
critical point of SClbZ = 0, if and only if for all t ∈ [0, T ]:

mt +
t∫

0

£dxs
ms

X
∨

= m0 +
t∫

0

1
2g(us, us) 	Dsds +

t∫
0

dπs 	Ds −
t∫

0

dπsμg 	 ρs,

mt = ft 	Dt + βt 	 ρt,

Dt +
t∫

0

£dxs
Ds

Dens= D0, ρt +
t∫

0

£dxs
ρs

Ω0

= ρ0, Dt = ρtμg,

ft +
t∫

0

£dxs
fs

Ω0

= f0 +
t∫

0

πsds + 1
2

t∫
0

g(us, us)ds βt +
t∫

0

£dxs
βt

Dens= β0 −
t∫

0

πsμgds.

Substituting D = ρμg into the equation for D and applying the diffeomorphism 1
μg

(see 
(A.15)), we find
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ρt +
t∫

0

(
£dxs

ρs + divμg
dxs

)
= ρ0.

Since ρ is advected, we obtain for all t ∈ [0, T ],

t∫
0

divμg
usds +

t∫
0

divμg
ξdZs = 0.

In order to conclude that divμg
u ≡ 0, we need to assume either divμg

ξ ≡ 0, or true 
roughness of Z. In the next example, we do not require additional assumptions to con-
clude that u is divergence-free, since we will impose this directly.

Substituting m = u
 ⊗ D into the momentum equation and recalling that D is ad-
vected, that the Lie derivative is a derivation, and that the product rule (Lemma A.13) 
holds, we find

du

t ⊗ ρtμg + £dxt

u

t ⊗ ρtμg+ = 1

2dg(ut, ut) ⊗ ρtμg + ddπt ⊗ ρtμg + dρt ⊗ dπtμg.

Assuming ρ is non-vanishing and applying the diffeomorphism 1
D (see (A.15)) yields

du

t + £dxt

u

t

Ω1

= 1
2dg(ut, ut) + ddπt + 1

ρt
dρtdπt = 1

2dg(ut, ut) + 1
ρt

d(ρtdπt)

= 1
2dg(ut, ut) −

1
ρt

ddpt,

(4.1)

in which the pressure is identified in terms of the Lagrange multiplier dπt as dpt :=
−ρtdπt. We will elaborate more on this equation in the following example.

4.2. Rough incompressible Euler equation via constraint on spaces

Let (M, g) and μg be as in the previous example. Let A = ΛdT ∗M and A∨ = Λ0T ∗M

in this example, and notice that for all D ∈ A = DensF 3 , there exists ρ ∈ Ω0
F 3 such that 

D = ρμg.
Let Xμg

= Xμg,F1 denote the space of incompressible vector fields and X∨
μg

= Xμg,F2
denote the dual space of one-form densities modulo the kernel of the divergence-free 
projection as defined in Definition A.20. Denote by 〈·, ·〉Xμg

: X∨
μg

× Xμg
→ R the 

canonical pairing defined in (A.18) in Definition A.20. Define the Lagrangian � : Xμg
×

A → R by

�(u,D) = 1
2

∫
M

ρg(u, u)μg = 1
2

∫
M

g(u, u)D = 1
2 〈u


 ⊗D,u〉X = 1
2 〈[u


 ⊗D], u〉Xμg
.

The square brackets denote an equivalence class, whose elements satisfy [df ⊗μg]. = [0]. 
It follows that for all (u, D) ∈ Xμg

× A,
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m = δ�

δu
(u,D) = [u
 ⊗D] ∈ X∨

μg
, u = �

D
m, and δ�

δD
(u,D) = 1

2g(u, u),

where the diffeomorphism �
D is defined in Section A.2.2. Using the diamond operation 

computed in the previous example, we find

δ�

δD
(u,D) 	D =

[
1
2dg(u, u) ⊗D

]
∈ X∨

μg
.

Clebsch critical points (Theorem 2.6) thus satisfy

dmt + £ut
mtdt + £ξmtdZt

X
∨
μg= [12dg(ut, ut) ⊗Dt]dt, m = [u
 ⊗D],

dDt + £ut
Dtdt + £ξDtdZt

A= 0,

dλt
A

∨
=

(
£ut

λt + 1
2g(ut, ut)

)
dt + £ξλtdZt.

Critical points of the Hamilton-Pontryagin action functional (Theorem 3.12) also satisfy 
the first two equations. Since D is Lie-advected and the Lie derivative is a derivation, 
using the product rule (Lemma A.13), we find

[du

t ⊗Dt] + [£ut

u

t ⊗Dt]dt + [£ξu



t ⊗Dt]dZt

X
∨
μg= [12dg(ut, ut) ⊗Dt]dt,

or equivalently

du

t ⊗Dt + P (£ut

u

t ⊗Dt)dt + P (£ξu



t ⊗Dt)dZt

X
∨
μg= P (1

2dg(ut, ut) ⊗Dt)dt.

Upon invoking the definition of X∨
μg

in Definition A.20, we find

du

t⊗Dt+£ut

u

t⊗Dtdt+£ξu



t⊗DtdZt

X
∨

= 1
2dg(ut, ut)⊗Dtdt−dp⊗μgdt−dq⊗μgdZt,

where dp ∈ Cα
T (Ω0) and dq ∈ DZ,T ((Ω0)K).

Applying 1
D (as defined in (A.15)) and recalling that divμg

ut ≡ 0 yields

du

t + £ut

u

tdt + £ξu



tdZt

Ω1

= 1
2dg(ut, ut)dt−

1
ρt

dptdt−
1
ρt

dqtdZt,

d∗u
 = 0 = divμg
ut,

dρt + £ut
ρtdt + (£ξρt + divμg

ξ)dZt
Ω0

= 0.

Remark 4.1. Thus, one sees that the Hodge decomposition necessitates introducing a 
‘rough’ Lagrangian multiplier (i.e., pressure term) dpt = −ρtdπt in (4.1). That is,
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dpt = dp⊗ μgdt− dq ⊗ μgdZt,

where

dpt = −Q

(
ρt

(
£ut

u

t −

1
2dg(ut, ut)

))
and dqt = −Q

(
ρt£ξu



t

)
,

and Q : Ω1 → dΩ0 denotes the projection (A.16) onto flat one-forms.

The following identity is well-known:

£vv

 − 1

2dg(v, v) = (∇vv)
, ∀v ∈ XC∞ ,

where ∇ : XC∞ × XC∞ → XC∞ is Levi-Civita connection (see, e.g., [52][Section 3]).4
Thus, applying the � operator to the equation for u
 yields

dut + ∇ut
utdt +

(
£ξu



t

)�

dZt = 1
ρt
∇ptdt + 1

ρt
∇qtdZt,

where in a local coordinate chart (see (A.11)),

(£ξu

)� =

(
ξj∂xjuk + gikξjul∂xjgli + gikglju

l∂xiξj
)
∂xk .

It is worth noting that for all u ∈ Xμg,C∞ and v, w ∈ XC∞ ,

(w, adu v)XL2 = 〈w
 ⊗ μg, adu v〉X = 〈£u(w
 ⊗ μg), v〉X = 〈£uw

 ⊗ μg, v〉X

= ((£uw

)�, v)XL2 .

Remark 4.2. When ξ ≡ 0, the corresponding equation is the usual deterministic incom-
pressible non-homogeneous Euler fluid equation (see, e.g., [24][Ch. VI] or [92]).

In case of a homogeneous fluid (ρ ≡ 1) we find

du

t + £ut

u

tdt + £ξu



tdZt = 1

2dg(ut, ut)dt− dptdt− dqtdZt,

4 For the convenience of the reader, we repeat the proof. For a given u ∈ XC∞ , define the tensor derivation 
Au = £u −∇u. It follows that Auf ≡ 0 for all f ∈ C∞ and that Auv = −∇vu by the torsion-free property 
of the connection. Using these properties and that Au is a derivation, for a given α ∈ Ω1

C∞ , we have 
iv(Auα) = i∇vuα, and hence iw(Auv

�) = i∇wuv
� = g(v, ∇wu) for all w ∈ XC∞ . Therefore,

iw(dg(u, v)) = ∇w[g(u, v)] = g(v,∇wu) + g(u,∇wv) = iw(Auv
� + Avu

�), ∀u, v, w ∈ XC∞ ,

where we have also used ∇η = 0. Thus, £uv
� − ∇uv

� + £vu
� − ∇vu

� = dg(u, v), which gives the formula 
upon setting u = v.
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or equivalently,

dut + ∇ut
utdt +

(
£ξu



t

)�

dZt = −∇ptdt−∇qtdZt.

In this case, another advected quantity a ∈ ⊕d
i=1Λ0T ∗M and its Lagrange multiplier 

λ ∈ ⊕d
i=1ΛdT ∗M should be introduced into the Clebsch constraint to avoid reduction to 

potential flow (see, e.g., Section C).

Vorticity dynamics We will now discuss vorticity dynamics in both the inhomogeneous 
and homogeneous case. We assume divμg

ξ ≡ 0 and that all quantities are regular enough 
subsequently to perform each calculation. First, notice that for every f ∈ C∞,

df(ρt) + £ut
f(ρt)dt + £ξf(ρt)dZt = 0.

That is, f(ρt) is advected by dxt (see Remark 3.4). Let ω = du
 ∈ Ω2 be the vorticity 
two-form. Since the exterior derivative d commutes with the Lie derivative, we obtain

dωt + £ut
ωtdt + £ξωtdZt

Ω2

= −dρ−1
t ∧ dptdt− dρ−1

t ∧ dqtdZt and

ddf(ρt) + £ut
(df(ρt))dt + £ξ(df(ρt))dZt

Ω1

= 0.

Thus, by the product rule (Lemma A.13), we get

d(ωt ∧ df(ρt)) + £ut
((ωt ∧ df(ρt))dt + £ξ((ωt ∧ df(ρt))dZt

= −dρ−1
t ∧ dpt ∧ df(ρt)dt− dρ−1

t ∧ dqt ∧ df(ρt)dZt.

In particular, in dimension three, using that dρt ∧ dpt ∧ dρt ≡ dρt ∧ dqt ∧ dρt ≡ 0, we 
find

d(ωt ∧ dρt) + £ut
(ωt ∧ dρt)dt + £ξ(ωt ∧ dρt)dZt

Ω3

= 0.

Moreover, in dimension three, applying Stokes theorem, we get

∫
M

ωt ∧ df(ρt) =
∫
M

ω0 ∧ df(ρ0).

We also have that

d(ωtf(ρt)) + £ut
(ωtf(ρt)dt + £ξ(ω)tf(ρt))dZt = −dG(ρt) ∧ dptdt− dG(ρt) ∧ dqtdZt,

where G is the anti-derivative of g(ρ) = f(ρ)
2 . Thus, in dimension two, we obtain
ρ
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∫
M

ωtf(ρt) =
∫
M

ω0f(ρ0).

In the homogeneous setting, the vorticity equation is given by

dωt + £ut
ωtdt + £ξωtdZt = 0.

Using the Hodge-star operator � : Ω2 → Ωd−2 and setting ω̃ = �ω ∈ Ω0 in dimension 
two and ω̃ = � � ω ∈ Ẋμg

in dimension three, we find

∂tω̃t + ((ut · ∇)ω̃t − 1d=3(ω̃t · ∇)ut) dt + ((ξ · ∇)ω̃t − 1d=3(ω̃t · ∇)ξ) dt = 0.

Here, we have used that �� and the Lie derivative commute (see, e.g., Section A.6 of 
[14]).

In three dimensions, the helicity, defined as

Λ(ω̃t) =
∫
M

u

t ∧ ωt

measures the linkage of field lines of the divergence-free vector field ω̃ [7]. It follows that

d(u
 ∧ ω) + £ut
(u
 ∧ ω)dt + £ξ(u
 ∧ ω)dZt = −dp̃t ∧ ωtdt− dq ∧ ωtdZt,

where p̃ = p − 1
2dg(u, u). Thus, we find

Λ(ω̃t) =
∫
M

u

t ∧ ωt =

∫
M

u

0 ∧ ω0 = Λ(ω̃0).

Therefore, the linkage number of the vorticity vector field Λ(ω̃) is preserved by the 3D 
Euler fluid equations.

In two dimensions, for any smooth f ∈ C∞,

df(ω̃t) + £ut
f(ω̃t)dt + £ξf(ω̃t)dZt = 0,

and hence ∫
M

f(ω̃t)μg =
∫
M

f(ω̃0)μg.

Letting f(x) = x2, we obtain
∫
M

ω̃2
t μg =

∫
M

ω̃2
0μg,

which implies that in dimension two enstrophy is conserved.
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Divergence and harmonic-free It is worth noting that in the homogeneous setting, 
u can only be recovered directly from ω if H1

Δ = ∅ via the Biot-Savart law (see Sec-
tion A.2.3). Otherwise one needs to keep track of the harmonic constant. Nevertheless, 
one can repeat the above analysis with the harmonic and divergence-free spaces Ẋμg

and 
Ẋ∨

μg
(see Definition A.20) to derive

du

t + Ṗ£ut

u

tdt + Ṗ£ξu



tdZt = 1

2 Ṗdg(ut, ut)dt,

and hence

du

t + £ut

u

tdt + £ξu



tdZt = 1

2dg(ut, ut)dt + (ct − dpt)dt + (c̃t − dqt)dZt,

where c = H(£uu

) ∈ Cα

T (H1
Δ) and c̃ = H(£ξu


) ∈ DZ,T ((H1
Δ)K) and H is the pro-

jection onto Harmonic one-forms. Here, u is constrained to be both divergence free and 
harmonic free. For this equation, u
 (and u) can be recovered directly from ω via the 
Biot-Savart operator. This equation has been studied in [43,28,27,42]. See, also, the dis-
cussion in [55].

4.3. Rough Camassa-Holm equation and Burgers equation

Let M = S be the flat one-dimensional torus (i.e., the circle). Denote the standard 
normalized volume form by μ ∈ DensC∞ and coordinates by x. In this example, we take 
A = ∅ = A∨. We define the Lagrangian � : X → R by

�(u) = 1
2

∫
S

(|u|2 + α2|∇xu|2)μ = 1
2 〈(Λ

2u)
 ⊗ μ, u〉X, where Λ2 := 1 − α2∇2
x.

It follows that

m = δ�

δu
(u) = (Λ2u)
 ⊗ μ ∈ X∨ and u = Λ−2

(
�

μ
m

)
.

If (u, η) is a critical point of the Hamilton-Pontryagin action functional (Theorem 3.12), 
then

dmt + £ut
mtdt + £ξmtdZt = 0,

which we may interpret as Lie transport of the momentum 1-form density in the Camassa-
Holm equation along rough paths.

Since the Lie derivative is a derivation and we have the explicit formula (A.11) for 
one-forms, we find

£vm =
(
£v(Λ2u)
 + (Λ2u)
 divμ v

)
⊗ μ =

(
v∇x(Λ2u) + 2(Λ2u)∇xv

)
 ⊗ μ, ∀v ∈ X.
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Thus, identifying u with a scalar-valued function, we get

dut + Λ−2 (ut∂x(Λ2ut) + 2(Λ2ut)∂xut

)
dt + Λ−2 (ξ∂x(Λ2ut) + 2(Λ2ut)∂xξ

)
dZt = 0.

After some simplification, we find

dut +
(
ut∂xut + ∂xΛ−2

((
|ut|2 + α2

2 |∂xut|2
)))

dt

+
(
ξ∂xut + Λ−2 (2ut∂xξ + α2∂2

xξ∂xut

))
dZt = 0,

written as a nonlocal Cauchy problem with the pseudo-differential operator Λ−2. Indeed, 
notice that if one substitutes ξ with u in the dZt-term, then one obtains the same operator 
in dt-term.

Now, if α = 0, we obtain the Burgers equation on rough paths,

dut + 3ut∂xutdt + (ξ∂xut + 2ut∂xξ) dZt = 0.

The properties of the stochastic Burgers equation with stochastic transport noise have 
been investigated, e.g., in [2], and the properties of the Burgers equation with rough 
transport noise have been studied in [73].

4.4. Rough Euler equations for adiabatic compressible flows

Let A = ΛdT ∗M⊕Λ0T ∗M and A∨ = Λ0T ∗M⊕ΛdT ∗M . Denote the advected variables 
by a = (D, s) ∈ AF3 = DensF3 ⊕Ω0

F3 and the associated Lagrangian multipliers by λ =
(f , β) ∈ A∨

F4 = Ω0
F4 ⊕DensF4 . Let ρ ∈ Ω0

F3 be such that D = ρμg. The advected variables 
comprise the thermodynamic evolution variables mass/volume, ρ and the entropy/mass, 
s. The internal energy/mass, e(ρ, s), obeys the First Law of Thermodynamics, given by

de(ρ, s) = p

ρ2 dρ + Tds,

with pressure p(ρ, s) and temperature T (ρ, s).
Define the Lagrangian � : Xμg

× A → R by

�(u, a) =
∫
M

(
1
2g(u, u) − e(ρ, s)

)
D.

It follows that

m = δ�

δu
(u, a) = u
 ⊗D ∈ X∨ and δ�

δa
(u, a) =

(
1
2g(u, u) − h(p, s), −TD

)
,

where h(p, s) = e(ρ, s) + p/ρ is the specific enthalpy/mass, which satisfies
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dh(p, s) = 1
ρ
dp + Tds.

Applying the calculations with the diamond operation (	) in Section 4.1 yields

δ�

δa
(u, a) 	 a =

((
1
2dg(u, u) − dh(p, s)

)
⊗D, Tds⊗D

)
.

Critical points of the Clebsch and Hamilton-Pontryagin action functionals satisfy

dmt + £dxt
mtdt

X
∨

=
(

1
2dg(ut, ut) − dh(pt, st)

)
⊗Dtdt + Ttdst ⊗Dtdt,

dDt + £dxt
Dtdt

Dens= 0, & dst + £dxt
st

Ω0

= 0.

Since D is Lie-advected and the Lie derivative is a derivation, using the product rule 
(Lemma A.13) and applying the diffeomorphism 1

D yields

du

t + £dxt

u

t =

(
d
(

1
2g(ut, ut) − h(pt, st)

)
+ Ttdst

)
dt =:

(
1
2dg(ut, ut) −

1
ρt

dpt
)

dt .

Restricting to dimension three and working with enough regularity to perform the sub-
sequent calculations implies three advected quantities,

(d + £dxt
)Dt = 0 , (d + £dxt

)st = 0 , (d + £dxt
)(du


t ∧ dst)
Ω3

= 0 . (4.2)

Let ω = du
 denote the vorticity two-form and let ω̃ denote the corresponding 
divergence-free vector field. From the three quantities in (4.2), one may construct the 
following advected scalar quantity known as the potential vorticity

(d + £dxt
)Ωt

Ω0

= 0, where Ωt := D−1
t ωt ∧ dst = ρ−1

t ω̃ · ∇st.

Consequently, the following functional is conserved for the adiabatic compressible Euler 
equations on GRPs

CΦ :=
∫
M

Φ(Ωt, st)D,

for any smooth function Φ : R2 → R.

5. Proof of main results

5.1. Proof of the Clebsch variational principle Theorem 2.6

Proof. It is worth noting that this proof closely mirrors the proof in [76] for stochastic 
variational principles. Nonetheless, we repeat the proof for the convenience of the reader.
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If (u, a, λ) ∈ ClbZ is a critical point of the action functional, then it satisfies

0 = d

dε

∣∣∣∣
ε=0

SClbZ(uε,aε,λε) = I(δu) + II(δa) + III(δλ),

where

I(δu) =
T∫

0

〈
δ�

δu
(ut, at) − λt 	 at, δut

〉
X

dt

II(δa) =
T∫

0

〈λt, ∂tδat〉Adt +
T∫

0

〈 δ�
δa

(ut, at) + £T
ut
λt, δat〉Adt +

T∫
0

〈£∗
ξλt, δat〉AdZt

III(δλ) =
T∫

0

〈δλt,dat〉A +
T∫

0

〈δλt,£ut
at〉Adt +

T∫
0

〈δλt,£ξat〉AdZt.

Here, we have used the definition of the diamond operator and (2.2) to exchange the 
order of derivative in ε and the time-integral for the Lagrangian terms. Since we may 
always take δu ≡ 0, δa ≡ 0, and δλ ≡ 0, we conclude that I(δu) = 0, II(δa) = 0, 
and III(δλ) = 0 for all smooth (δu, δλ, δa) that vanish at t = 0 and t = T . Splitting 
the variations in time and space and applying the fundamental lemma of calculus of 
variations in Lemmas B.4, and A.13, we find m = δ�

δu (u, a) X
∨

= λ 	 a and that a, λ solve 
the equations given in (2.2). Upon applying Lemma A.13 with the continuous bilinear 
pairing 	 : X × A → X∨, we obtain

mt = λ0 	 a0 +
t∫

0

dλr 	 ar +
t∫

0

λr 	 dar.

Subtracting 
∫ t

0
δ�
δa (ur, ar)dr from both sides of the above, testing against a smooth φ ∈

XC∞ and working in differential notation yields

〈dm− δ�

δa
	 adt, φ〉X = 〈(dλ− δ�

δa
dt) 	 a + λ 	 da, φ〉X

= 〈£∗
uλ 	 a, φ〉Xdt + 〈£∗

ξλ 	 a, φ〉XdZ − 〈λ 	 £ua, φ〉Xdt− 〈λ 	 £ξa, φ〉XdZ

(by eqn. for λ & a)

= −〈£∗
uλ,£φa〉Adt− 〈£∗

ξλ,£φa〉AdZ + 〈λ,£φ£ua〉Adt + 〈λ,£φ£ξa〉AdZ

(by def. of 	)
= −〈λ, (£u£φ − £φ£u)a〉Adt− 〈λ, (£ξ£φ − £φ£ξ)a〉AdZ

= −〈λ,£[u,φ]a〉Adt− 〈λ,£[ξ,φ]a〉AdZ (by prop. of Lie derivative)
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= 〈λ 	 a, [u, φ]〉Xdt + 〈λ 	 a, [ξ, φ]〉XdZ (by def. of 	)

= −〈λ 	 a, adu φ〉Xdt− 〈λ 	 a, adξ φ〉XdZ (by def. of adu)

= −〈£um,φ〉Xdt− 〈£ξm,φ〉XdZ (b/c ad∗
v m = £vm).

Consequently,

dmt + £ut
mtdt + £ξmtdZt

X∨= δ�

δa
	 atdt.

The converse can be obtained by reversing the above proof. �
5.2. Proof of the rough Lie chain rule Theorem 3.3

Proof. We will prove the statement using the following steps.

1. We prove the formula for scalar functions by working in a local chart;
2. We prove the formula for vectors by reducing to step 1 and using the product formula;
3. We prove the formula for one-forms from steps 1 and 2 and the product formula;
4. Using steps 3 and 4, we apply an induction argument to prove the general formula.

For simplicity, we will drop the dt-terms and time-dependence on ξ, and assume s = 0. 
That is, we consider the C∞-flow η ∈ Cα

T (DiffC∞) satisfying

dηtX = ξ(ηtX)dZt, η0X = X ∈ M.

Since we are working in C∞, we will simply write DZ for the controlled spaces.
Step 1. Assume that f ∈ Cα

T (C∞) has the decomposition

ft = f0 +
t∫

0

πrdZr, t ∈ [0, T ].

We aim to show that

η∗t ft = f0 +
t∫

0

η∗r (πr + ξ[fr]) dZr (5.1)

and

ηt∗ft = f0 +
t∫
(ηr∗πr − ξ[ηr∗fr]) dZr,
0
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where both integrals are understood in the sense of controlled calculus. We focus only 
on the pull-back formula (5.1) as the equation for the push-forward can be shown in a 
similar way.

Towards this end, let us fix a coordinate chart (U, x). Let ρ := φ ◦ η, Ξi := ξ[φi], 
Ft = ft ◦ φ−1 and b(t, ·) = πt(φ−1(·)). We will now show that

Ft(ρt) = F0 +
t∫

0

(
Ξi(ρr)∂xiFr(ρr) + b(r, ρr)

)
dZr, (5.2)

which is (5.1) written in local coordinates. Since (U, φ) was arbitrary, proving (5.2)
completes step 1.

To see this, it will be convenient to spell out the expansion in terms of scalars. We 
identify Ξ(·) as an operator on L(RK , Rd) acting on Z with Ξk(·)δZk

st and write the 
Davie’s expansions of ρ and F :

δρst = Ξk(ρs)δZk
st + ∂xiΞk(ρs)Ξi

l(ρs)Zlk
st + ρ�st (5.3)

and

δFst(·) = bk(s, ·)δZk
st + b′k,l(s, ·)Zlk

st + b�st(·), (5.4)

where |ρ�st| � |t − s|3α and |b�st|C∞ � |t − s|3α.
To prove (5.2), we Taylor expand Fs, bk(s, ·), and b′k,l(s, ·), and use (5.4) to write

Ft(ρt) − Fs(ρs) = Ft(ρt) − Fs(ρt) + Fs(ρt) − Fs(ρs)

= bk(s, ρt)δZk
st + b′k,l(s, ρt)Zlk

st + b�st(ρt) + ∂xiFs(ρs)δρist

+ 1
2∂x

j∂xiFs(ρs)δρistδρ
j
st + o(|δρst|3)

= (bk(s, ρs) + ∂xibk(s, ρs)δρist + o(|δρst|2))δZk
st

+ (b′k,l(s, ρs) + o(|δρst|))Zlk
st + b�st(ρt)

+ ∂xiFs(ρs)Ξi
k(ρs)δZk

st + ∂xiFs(ρs)∂xjΞi
k(ρs)Ξ

j
l (ρs)Z

lk
st + ∂xiFs(ρs)ρi,�st

+ 1
2∂x

j∂xiFs(ρs)Ξi
lΞ

j
kδZ

k
stδZ

l
st + o(|δρst|3).

Since Z is geometric (i.e., Zlk
st + Zkl

st = Zl
stZ

k
st), plugging in the expansion (5.3), we find

Ft(ρt) − Fs(ρs) =
(
bk(s, ρs) + ∂xiFs(ρs)Ξi

k(ρs)
)
δZk

st

+
(
∂xibk(s, ρs)Ξi

l(ρs) + ∂xibl(s, ρs)Ξi
k(ρs)

)
Zlk

st

+
(
∂xj∂xiFs(ρs)Ξi

lΞ
j
k + ∂xiFs(ρs)∂xjΞi

k(ρs)Ξ
j
l (ρs)

)
Zlk

st + o(|t− s|3α).
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Straightforward, but tedious, computations show that the local expansion

Ψst :=
(
bk(s, ρs) + ∂xiFs(ρs)Ξi

k(ρs)
)
δZk

st

+
(
∂xibk(s, ρs)Ξi

l(ρs) + ∂xibl(s, ρs)Ξi
k(ρs) + ∂xj∂xiFs(ρs)Ξi

lΞ
j
k

+ ∂xiFs(ρs)∂xjΞi
k(ρs)Ξ

j
l (ρs)

)
Zlk

st

satisfies |δ2Ψsθt| � |t − s|3α. By the uniqueness in Lemma A.1, we get (5.2).

Step 2. Let V ∈ Cα
T (XC∞) be such that

Vt = V0 +
t∫

0

πrdZr, t ∈ [0, T ],

for some (π, π′) ∈ DZ . For any f ∈ C∞, we have

(η∗t Vt)[f ] = (η∗t Vt)[η∗t ηt∗f ] = η∗t (Vt[ηt∗]).

Recall that ηt = ηt∗ ∈ Cα
T (C∞) satisfies (3.2) with s = 0. Applying Lemma A.13 with 

the continuous bilinear map B : XC∞ × C∞ → C∞, we find

Vt[ηt] = V0[f ] +
t∫

0

(πr[gr] − Vr[ξ[gr]]) dZr.

Moreover, making use of step 1 with ft = Vt[ηt] ∈ C∞, we obtain

(η∗t Vt)[f ] = η∗t (Vt[ηt]) = V0[f ] +
t∫

0

η∗r (πr[gr] + ξ[Vr[gr]] − Vr[ξ[gr]]) dZr

= V0[f ] +
t∫

0

η∗r (πr[gr] + [ξ, Vr][gr]) dZr

= V0[f ] +
t∫

0

(η∗r (πr + [ξ, Vr])) [f ]dZr.

Because f was arbitrarily chosen, we conclude that (η∗V, η∗£ξV + η∗π) ∈ DZ and

η∗t Vt = V0 +
t∫
η∗r (πr + £ξVr) dZr.
0
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Noting that

(ηt∗Vt)[f ] = (ηt∗Vt)[ηt∗η∗t f ] = ηt∗(Vt[η∗t f ]),

and following a similar proof, we find that (η∗V, −£ξη∗V + η∗π) ∈ DZ and

ηt∗Vt = V0 +
t∫

0

(ηr∗πr − £ξ(ηr∗Vr)) dZr. (5.5)

Step 3. Assume that α ∈ Cα
T (Ω1

C∞) has the decomposition

αt = α0 +
t∫

0

πrdZr.

Fix an arbitrary vector V ∈ XC∞ independent of t. Using (5.5) and Lemma A.13, we get

αt(ηt∗V ) = α0(V ) +
t∫

0

(πr(ηr∗V ) − αr([ξ, ηr∗V ])) dZr.

Applying (5.1), we obtain

(η∗t αt)(V ) = η∗t (αt(ηt∗V ))

= α0(V ) +
t∫

0

η∗r (πr(ηr∗V ) − αr([ξ, ηr∗V ]) + [ξ(αr(ηr∗V )]) dZr.

The derivation property of the Lie derivative implies

η∗t ξ[αt(ηt∗V )] = (η∗t (£ξαt))(V ) + η∗t (αt([ξ, ηt∗V ])) .

Noting that η∗t (πt(ηt∗V )) = (η∗t πt)(V ) and that V was arbitrary, we obtain

η∗t αt = α0 +
t∫

0

η∗r (πr + £ξαr) dZr.

Following a similar argument, we get

ηt∗αt = α0 +
t∫

0

ηr∗πr − £ξ (ηr∗αr) dZr,

which completes step 3.
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Step 4. Let us show how to extend to T lk
C∞ . Let V1, . . . , Vk ∈ XC∞ , and α1, . . . , αl ∈

Ω1
C∞ . We recall that

(η∗t τt)(α1, . . . , αl, X1, . . . , Xk) = η∗t
(
τt(ηt∗α1, . . . , ηt∗αl, ηt∗X1, . . . , ηt∗Xk)

)
.

Using induction in the product formula, we obtain

τt(ηt∗α1, . . . , ηt∗αl, ηt∗V1, . . . , ηt∗Vk) = τ0(α1, . . . , αl, V1, . . . , Vk)

+
t∫

0

[
γr(ηr∗α1, . . . , ηr∗αl, ηr∗V1, . . . , ηr∗Vk)

−
l∑

j=1
τr(ηr∗α1, . . . ,£ξηr∗αj , . . . , ηr∗αl, ηr∗V1, . . . , ηr∗Vk)

−
k∑

j=1
τr(ηr∗α1, . . . , ηr∗αl, ηr∗V1, . . . ,£ξηr∗Vj , . . . , ηr∗Vk)

]
dZr,

which from (5.1) yields

η∗t τt(α1, . . . , αl, V1, . . . , Vk) = τ0(α1, . . . , αl, V1, . . . , Vk)

+
t∫

0

[
η∗r (γr(ηr∗α1, . . . , ηr∗αl, ηr∗V1, . . . , ηr∗Vk))

−
k∑

j=1
τr(ηr∗α1, . . . ,£ξηr∗αj , . . . , ηr∗αl, ηr∗V1, . . . , ηr∗Vk)

−
k∑

j=1
τr(ηr∗α1, . . . , ηr∗αl, ηr∗V1, . . . ,£ξηr∗Vj , . . . , ηr∗Vk)

]
dZr

+
t∫

0

η∗r (ξ[τr(ηr∗V1, . . . , ηr∗Vk)])dZr.

By the derivation property of the Lie derivative, we get

ξ[τr(ηr∗α1, . . . , ηr∗αl, ηr∗V1, . . . , ηr∗Vk)]

= (£ξτr)(ηr∗α1, . . . , ηr∗αl, ηr∗V1, . . . , ηr∗Vk)

+
l∑

j=1
τr(ηr∗α1, . . . ,£ξηr∗αj , . . . , ηr∗αl, ηr∗V1, . . . , ηr∗Vk)

+
k∑

τr(ηr∗α1, . . . , ηr∗αl, ηr∗V1, . . . ,£ξηr∗Vj , . . . , ηr∗Vk),

j=1
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and hence

η∗t τt(α1, . . . , αl, V1, . . . , Vk)

= τ0(V1, . . . , Vk) +
t∫

0

[
η∗rγr(ηr∗α1, . . . , ηr∗αl, ηr∗V1, . . . , ηr∗Vk)

+ η∗r (£ξτr)(ηr∗α1, . . . , ηr∗αl, ηr∗V1, . . . , ηr∗Vk)
]
dZr

= τ0(α1, . . . , αl, V1, . . . , Vk)

+
t∫

0

(η∗rγr)(α1, . . . , αl, V1, . . . , Vk) + (η∗r£ξτr)(α1, . . . , αl, V1, . . . , Vk)dZr.

Since α1, . . . , αl and V1, . . . , Vk were arbitrary, the result follows. �
5.3. Proof of the rough Kelvin–Noether Theorem 3.6

Proof. Let μ ∈ DensC∞ be an arbitrary non-vanishing density and set ρ = dD
dμ ∈ C∞ so 

that D = ρμ. Recall that for all w ∈ XC∞ , £wD = (£wρ + divμ w)μ. It follows that for 
all t ∈ [0, T ],

ρt = ρ0 −
t∫

0

(£ur
ρr + ρr divμ ur)dr −

t∫
0

(£ξρr + ρr divμ ξ)dZr.

Using the Lemma A.13 and the identity £w
1
ρ = − 1

ρ2 £wρ, w ∈ XC∞ , we find

1
ρt

= 1
ρ0

+
t∫

0

(
−£ur

1
ρr

+ 1
ρr

divμ ur

)
dr +

t∫
0

(
−£ξ

1
ρr

+ 1
ρr

divμ ξ

)
dZr.

For all m = α⊗ ν ∈ X∨
C∞ and w ∈ XC∞ , we have

£wm = £w

(
α
dν

dμ
⊗ μ

)
=
(

£w

(
αi

dν

dμ

)
+ (divμ w)αi

dν

dμ

)
⊗ μ

= £w

(
m

μ

)
+ (divμ w)m

μ
.

Therefore,

mt

μ
= m0

μ
+

t∫ (
1
μ

δ�

δa
(ur, ar) 	 at − £ur

(
mr

μ

)
− (divμ ur)

mr

μ

)
dr
0
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−
t∫

s

(
£ξ

(
mr

μ

)
+ (divμ ξ)

mr

μ

)
dZr.

Applying the Lemma A.13 and the identity m
Dt

= 1
dDt
dν

m
μ = 1

ρt

m
μ , we arrive at

mt

Dt
= ms

Ds
+

t∫
s

1
Dr

(
δ�

δa
(ut, at) 	 at − £ur

(
mr

Dr

))
dr −

t∫
s

1
Dr

£ξ

(
mr

Dr

)
dZr.

We then complete the proof by applying Corollary 3.5 with α = m/D. �
5.4. Proof of the rough Hamilton–Pontryagin Theorem 3.12

Proof. If (u, g, λ) ∈ HPZ is a critical point of the action functional, then

0 = d

dε

∣∣∣∣
ε=0

SHPZ

a0
(uε, ηε,λε) = I(δu) + II(δw) + III(δλ),

where

I(δu) =
T∫

0

〈
δ�

δu
(ut, at) − λt, δut

〉
X

dt

II(δw) = d

dε

∣∣∣∣
ε=0

T∫
0

�(ut, (ηεt )∗a0)dt + d

dε

∣∣∣∣
ε=0

T∫
0

〈λt,dηε,−1
t ηεt 〉X

III(δλ) =
T∫

0

〈δλt,dηt ◦ η−1
t 〉X −

T∫
0

〈δλt, ut〉Xdt−
T∫

0

〈δλt, ξ〉XdZt.

By virtue of the fundamental lemma of calculus of variations, I(δu) = 0 implies m =
δ�
δu (u, a) X

∨
= λ. Separating variations in time and space and applying Theorem A.15, from 

III(δλ) = 0, deduce that v ≡ u and σ ≡ ξ.
We now focus on II(δw) = 0. By the equality of mixed derivatives (see, also, Lemma 

3.1 in [4]), we have

∂2ψε
t

∂t∂ε
= ∂2ψε

t

∂ε∂t
= ∂tδwt ◦ ψε

t + ε
∂

∂ε
[∂tδwt ◦ ψε

t ] , ∀(ε, t) ∈ [−1, 1] × [0, T ].

Using the above relation and that ψ0
tX = X, we find ∂ψ

ε

∂ε

∣∣
ε=0 = δw, and hence

d
∣∣∣∣ vεt = d

∣∣∣∣ (ψε
t )∗v = −[δwt, vt] = adδwt

vt.

dε ε=0 dε ε=0
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Therefore,

d

dε

∣∣∣∣
ε=0

T∫
0

〈λt,dηε,−1
t ηεt 〉X =

T∫
0

〈λt, ∂tδwt + adδwt
vt〉Xdt +

T∫
0

〈λt, adδwt
σt〉XdZt,

where we have exchanged the order of d
dε and the rough integral using Theorem A.8. 

Moreover,

d

dε

∣∣∣∣
ε=0

(ηεt)∗a0 = d

dε

∣∣∣∣
ε=0

(ψε
t )∗at = −£δwt

at, ∀t ∈ [0, T ],

which implies that

d

dε

∣∣∣∣
ε=0

T∫
0

�(ut, (ηεt )∗a0)dt =
T∫

0

〈 δ�
δa

(ut, at),−£δwt
at〉Adt =

T∫
0

〈 δ�
δa

(ut, at) 	 at, δwt〉Adt.

The proof is completed by splitting the variations of δw in space and time and applying 
Lemma B.4. �
5.5. Proof of the rough Euler–Poincaré Theorem 3.15

Proof. Using the definitions of δu and δa in (3.8), integrating by parts, and taking the 
endpoint conditions w0 = wT = 0 into account, we find

δSEPZ =
T∫

0

〈 δ�

δut
(ut, at) , δut〉Xdt + 〈 δ�

δat
(ut, at), δat〉A

=
T∫

0

〈 δ�

δut
(ut, at) , ∂tδw〉Xdt + 〈 δ�

δut
(ut, at) , addxt

δw〉X

− 〈 δ�
δat

(ut, at) 	 at , δw〉Xdt

=
T∫

0

〈− d
(

δ�

δut

)
− ad∗

dxt

δ�

δut
, δw〉X + 〈 δ�

δat
	 at , δw〉X dt

=
T∫

0

〈− d
(

δ�

δut

)
− £∗

dxt

δ�

δut
+ δ�

δat
	 at dt , δw〉X.

We conclude with the corresponding momentum equation by splitting up variations in 
space and time and applying Lemma B.4. In addition, the advection equation dat +
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£dxt
at = 0 follows from the push-forward relation at = (ηt)∗a0 by the Lie chain rule in 

Theorem 3.3. These two results complete the proof of Theorem 3.15. �
Appendix A. Notation and required background

A.1. Geometric rough paths

In this section, we will provide an overview of the theory of geometric rough paths. 
We invite the reader to consult Appendix D for a historical account motivating the use 
of rough paths and [90,60,59,8] for more thorough expositions.

Let T > 0, Δ2
T = {(s, t) ∈ [0, T ]2 : s ≤ t} and Δ3

T = {(s, θ, t) ∈ [0, T ]3 : s ≤ θ ≤ t}. 
Let E denote an arbitrary Fréchet space E with family of seminorms P . Elements of 
family of seminorms P will be denoted by p. For a given α ∈ (0, 1], let Cα

T (E) denote the 
space of Hölder continuous paths; in particular, C1

T (E) is the space of Lipschitz paths. 
Moreover, for a given m ∈ {2, 3}5 and α ∈ R+, denote by Cα

m,T (E) the space of functions 
that satisfy

[Ξ]α,p = sup
(t1,··· ,tm)∈Δm

T

t1 
=tm

p (Ξt1,...,tm)
|tm − t1|α

< ∞, p ∈ P .

Define δ : Cα
T (E) → Cα

2,T (E) by δf =st:= ft − fs for f ∈ Cα
T (E) and δ2 : Cα

2,T (E) →
Cα

3,T (E) by

δ2Ξsθt := Ξst − Ξsθ − Ξθt, (s, θ, t) ∈ Δ3
T , Ξ ∈ Cα

2,T (E).

It follows that δ2 ◦ δ : CT (E) → C3,T (E) is the zero operator.
For a given Ξ ∈ Cα

2,T (E), β ∈ R+, and p ∈ P , the quantity [δ2Ξ]β,p, defined above, 
may be regarded as a measure of the extent to which Ξ is an increment δf for some 
f ∈ Cα

T (E). The following lemma, proved in [72][Proposition A.1], is referred to as the 
sewing lemma. The lemma says that if β > 1, one can construct a “unique” f ∈ Cα

T (E)
such that Ξ is close to δf in Cβ

2,T (E) by (A.1).

Lemma A.1 (Sewing Lemma). There exists a unique continuous linear map I :
Cα,β

2,T (E) → Cα
T (E) satisfying IΞ0 = 0 and [δIΞ − Ξ]β �β [δ2Ξ]β,p for all Ξ ∈ Cα,β

2,T (E)
and p ∈ P. More explicitly, for a given (s, t) ∈ Δ2

T ,

δ(IΞ)st = lim
|P([s,t])|→0

∑
[ti,ti+1]∈P([s,t])

Ξtiti+1 , (A.1)

5 We only need m = 2, 3 because we consider only rough paths with Hölder regularity α ∈
( 1
3 ,

1
2
]
.
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where P([s, t]) denotes a finite partition of the interval [s, t], |P([s, t])| denotes its mesh 
size, and the limit is understood as a limit of nets (with the directed set of partitions 
partially ordered by inclusion).

Remark A.2. Notice that if Ξ̃ ∈ Cα,β
2,T (E) and Ξ − Ξ̃ ∈ Cβ

2,T (E), then I(Ξ) = I(Ξ̃).

For a given Fréchet space E and K ∈ N, let EK denote the direct sum of E with itself 
K-times. By virtue of the Sewing Lemma, one can construct an integral of Y ∈ Cβ

T (EK)
against Z ∈ Cα

T (RK) if α + β > 1 by letting Ξst = YsδZst =
∑K

k=1 Y
k
s δZk

st for all 
(s, t) ∈ Δ2

T and defining

t∫
0

YrdZr = I(Ξ)t, t ∈ [0, T ].

This integral construction coincides with the integral that L.C. Young [121] constructed. 
In particular, for Z ∈ Cα

T (RK) with α ∈
( 1

2 ,∞
)
, we may define Z ∈ C2

2,T (RK×K) by

Zst =
t∫

s

t2∫
s

dZt1 ⊗ dZt2 =
t∫

s

δZst2 ⊗ dZt2 , (s, t) ∈ ΔT ,

where we have used the δ notation defined above in the second equality. One can easily 
verify that (Z, Z) ∈ Cα

T (RK) × C2α
T (RK×K) satisfies

δ2Zst = δZsθ ⊗ δZθt, ∀(s, θ, t) ∈ Δ3
T , (A.2)

and

Sym(Zst) = 1
2δZst ⊗ δZst ∀(s, t) ∈ Δ2

T . (A.3)

The condition (A.3) is a geometric property which encodes the usual chain and product 
rules, upon which our variational theory is based. Paths Z ∈ Cα

T (RK) with α ∈ (1
2 , 1]

are referred to as Young paths. Young paths are distinguished from rough paths Z =
(Z, Z) ∈ Cα

T (RK) × Cα
T (RK×K), α ∈ (1

3 , 
1
2 ], which are defined to be paths such that 

an a priori postulated two-parameter path Z ∈ C2α
T (RK×K) satisfies (A.2). A subclass 

of rough paths are the geometric rough paths, for which a classical calculus can be 
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developed. In particular, (A.3) holds. For a few more words of motivation about rough 
paths see Appendix D.

Definition A.3. For a given α ∈
( 1

3 ,
1
2
]
, define the set Cα

g,T (RK) of geometric K-
dimensional α-Hölder rough paths on the interval [0, T ] to be the closure of

{
(Z,Z) ∈ C1

T (RK) ⊕ C1
2,T (RK×K) : Z =

∫∫
dZ ⊗ dZ

}

in Cα
T (RK) ⊕ Cα

2,T (RK×K) with respect to the metric

ρ(Z(1),Z(2)) = [Z(1) − Z(2)]α + [Z(1) − Z(2)]2α.

It follows that both (A.2) and (A.3) hold for all Z = (Z, Z) ∈ Cα
g,T (RK) by a limiting 

argument. For a given α ∈
( 1

2 , 1
]
, we denote Cα

g,T (RK) = Cα
T (RK).

Remark A.4. To have a uniform notation for all α ∈
( 1

3 , 1
]
, we write Z = Z ∈ Cα

g,T (RK)
if α ∈

( 1
2 , 1

]
.

It is possible to consider infinite-dimensional geometric rough paths, but for simplicity 
we restrict ourselves to finite-dimensional paths. However, we consider controlled rough 
paths (defined in the next section) in Fréchet spaces. We also remark that our theory 
can be extended to more irregular paths α < 1

3 , but this requires higher-order iterated 
integrals and more cumbersome notation.

There is a large class of Gaussian processes that belong to Cα
g,T (RK) for α ∈

( 1
3 ,

1
2
]
. 

We refer the reader to Appendix E for a slightly more in-depth discussion of Gaussian 
rough paths. The present discussion will be brief.

Example A.5 (Stratonovich Brownian motion). Consider a Brownian motion B : Ω ×
[0, T ] → RK on a complete probability space (Ω, F , P ) and let B be the stochastic 
iterated integral constructed from Stratonovich integration theory. By virtue of the Kol-
mogorov continuity theorem, one can find a event Ω̃ ∈ F with P (Ω̃) = 1 such that 
B(ω) = (B(ω), B(ω) ∈ Cα

g,T (RK) for any α ∈
( 1

3 ,
1
2
)
. This the Stratonovich lift of Brow-

nian motion. Indeed, the Stratonovich integral is a limit of integrals of piecewise-linear 
approximations of Brownian motion.

Example A.6 (Gaussian rough paths). More broadly, a Gaussian process Z : Ω × [0, T ] →
RK can be lifted to a geometric rough path Z(ω) = (Z(ω), Z(ω) ∈ Cα

g,T (RK) for α ∈( 1
3 , α̃

]
, provided the correlation in time of the process is fast enough depending on α̃

(see Appendix E). In particular, fractional Brownian motion BH : Ω × [0, T ] → RK can 
be lifted to a strong geometric rough path BH(ω) = (BH(ω), BH(ω) ∈ Cα

g,T (RK) for all 
α ∈

( 1 , 1 )
for all ω in some event of probability one.
3 4H
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A.1.1. Controlled rough paths and integration
Let us first describe the integration theory for paths Z = (Z, Z) ∈ Cα

g,T (RK) such 
that α ∈

( 1
3 ,

1
2
]
.

Definition A.7 (Controlled rough path). We say a path Y ∈ Cα
T (E) is controlled by Z, if 

there exists a Y ′ ∈ Cα
T (EK) such that RY : Δ2

T → W defined by

RY
st = δYst − Y ′

sδZst = δYst −
K∑

k=1

Y ′ k
s δZk

st, (s, t) ∈ Δ2
T , (A.4)

satisfies RY ∈ C2α
2,T (E). For α ∈

( 1
3 ,

1
2
]
, we define the linear space DZ,T (E) of controlled 

rough paths to be those pairs Y = (Y, Y ′) ∈ Cα
T (E) ⊕Cα

T (EK) such that RY ∈ C2α
2,T (E). 

The function Y ′ is referred to as the Gubinelli derivative [65]. The space DZ,T (E) is a 
Fréchet space with seminorms

|Y|Z,p = |Y0|p + |Y ′
0 |p + [Y ′]α,p + [RY ]2α,p, p ∈ P. (A.5)

We note that any Y ∈ C2α
T (E) satisfies (A.4) with Y ′ ≡ 0. Moreover, Z itself is 

controlled with Z ′ ≡ id. However, the additional structure provided by Y ′ is natural in 
the context of rough differential equations (see Remark A.17). It is worth mentioning 
that Y ′ is not uniquely specified unless the path is truly rough (see Definition A.14
and Theorem A.15 below). The integration of controlled rough paths is an immediate 
consequence of Lemma A.1

Theorem A.8. Let Z = (Z, Z) ∈ Cα
g,T (RK) for a given α ∈

( 1
3 ,

1
2
]
. There exists a linear 

continuous map IZ : DZ,T (EK) → DZ,T (E) defined by IZ(Y) = (I(Ξ), Y ), where

Ξst = YsδZst + Y ′
sZst =

K∑
k=1

Y k
s δZk

st +
K∑

k=1

Y ′ kl
s Zlk, (s, t) ∈ Δ2

T ,

and I is as in Lemma A.1. We write

t∫
0

YrdZr = I(Ξ) ∈ Cα
T (E), t ∈ [0, T ].

Remark A.9 (Integral of controlled path against a controlled path). Let F, G denote a 
Fréchet space and B : F×E → G be continuous and bilinear. For Y = (Y, Y ′) ∈ DZ,T (E)
and X = (X, X ′) ∈ DZ,T (F ), we define

t∫
s

B(Xr,dYr) = (δIΞ)st, where Ξst = B(Xs, δYst) + B(X ′
s, Y

′
s )Zst, (s, t) ∈ Δ2

T .

(A.6)
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Indeed, for all (s, θ, t) ∈ Δ3
T ,

δ2Ξsθt = −B(RX
sθ, R

Y
θt) −B(RX

sθ, Y
′
θ )δZθt −B(X ′

s, R
Y
θt)δZsθ −B(X ′

s, δY
′
sθ)δZsθ ⊗ δZθt

+ (B(X ′
s, Y

′
s ) −B(X ′

θ, Y
′
θ ))Zθt,

which implies in Ξ ∈ C3α
2,T (G), so that we may apply Lemma A.1. Notice that if Y ∈

C2α
T (E) and Y ′ ≡ 0, then (A.6) agrees with the Young integral. This definition is used in 

the Clebsch variational principle in order to define the integral of the Lagrange multiplier 
against an advected quantity (see Remark 2.7).

For Young paths, the extra structure provided by the Gubinelli derivatives is not 
needed.

Definition A.10 (Controlled paths in the Young case). We define DZ,T (E) = Cα
T (E) if 

α ∈
( 1

2 , 1
]
.

Remark A.11. To have a uniform notation for all α ∈
( 1

3 , 1
]
, we write Y = Y ∈ DZ,T (E)

if α ∈
( 1

2 , 1
]
. We also remark that obviously the controlled space does not depend on Z

in this case.

A.1.2. The rough chain and product rule
Let E and F be Fréchet spaces and C(E; F ) denote the space of continuous maps. 

Let C1
b (E; F ) denote the space of bounded functions Φ : E → F such that the limit

DΦ(e)h = lim
ε→0

Φ(e + th) − Φ(e)
t

exists for all e, h ∈ E and DΦ : E × E → F is continuous and bounded. We define 
Cm

b (E; F ) for m ≥ 2 analogously (see [69][Def. 3.1.1 & Section I.3.6]). Let Nα = 0 if 
α = 1, Nα = 1 if α ∈

( 1
2 , 1

)
and Nα = 2 if α ∈

( 1
3 ,

1
2
)
. The following lemma says that 

controlled rough paths are stable under composition and products. Their proof can be 
found in Lemma 7.3 and Corollary 7.4 of [59].

Lemma A.12.

(i) If Y = (Y, Y ′) ∈ DZ,T (E) and Φ ∈ C1
T (CNα

b (E; F )), then Φ(Y) = (φ(Y ), Dφ(Y )Y ′)
∈ DZ,T (F ).

(ii) Let B : F×E → G be continuous and bilinear. If X = (X, X ′) ∈ DZ,T (F ) and Y =
(Y, Y ′) ∈ DZ,T (E), then B(X, Y) = (B(X, Y ), B(X ′, Y ) + B(X, Y ′)) ∈ DZ,T (G).

In order to construct the integration theory given above, we have actually not needed 
the geometric nature of the path (i.e., (A.3)). However, to obtain an extension of the 
ordinary chain and product rule, we require (A.3) to hold (see [59][Section 7.5]).
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Lemma A.13.

(i) For a given, Y0 ∈ E, β ∈ CT (E), and (σ, σ′) ∈ DZ,T (EK), let

Yt = Y0 +
t∫

0

βrdr +
t∫

0

σrdZr, t ∈ [0, T ]. (A.7)

If Φ ∈ C1
T (CNα+1

b (E; F )), then for all t ∈ [0, T ]

Φt(Yt) = Φ0(Y0) +
t∫

0

(∂tΦr(Yr) + DΦr(Yr))βrdr +
t∫

0

DΦr(Yr)σrdZr.

(ii) For a given, X0 ∈ F , β̃ ∈ CT (F ), and (σ̃, ̃σ′) ∈ DZ,T (FK), let

Xt = X0 +
t∫

0

β̃rdr +
t∫

0

σ̃rdZr, t ∈ [0, T ],

and Y be as specified in (i). Let B : F × E → G be continuous and bilinear. Then 
for all t ∈ [0, T ],

B(Xt, Yt) = B(X0, Y0) +
t∫

0

(
B(β̃r, Yr) + B(Xr, βr)

)
dr

+
t∫

0

(B(σ̃r, Yr) + B(Xr, σr)) dZr.

In Section 3.3, we need the decomposition of paths Y satisfying the relation (A.7) to 
be unique. A decomposition of a path Y satisfying (A.7) is unique if the rough path Z
is truly rough (Theorem 6.5 of [59]). Examples of truly rough paths include fractional 
Brownian motion BH with H ∈

( 1
3 ,

1
2
]
.

Definition A.14 (Truly rough path). Let α ∈
( 1

3 ,
1
2
]

and Z ∈ Cα
g,T (RK). We say Z is truly 

rough if for all s in a dense set in [0, T ],

lim sup
t↓s

|δZst|
|t− s|2α = ∞.

Theorem A.15. If Z is truly rough and

Yt = Y0 +
t∫
βrdr +

t∫
σrdZr = Ỹ0 +

t∫
β̃rdr +

t∫
σ̃rdZr, ∀t ∈ [0, T ],
0 0 0 0
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where Y0, Ỹ0 ∈ E, β, β̃ ∈ CT (E), and (σ, σ′), (σ̃, ̃σ′) ∈ DZ,T (EK), then β ≡ β̃ and 
(σ, σ′) ≡ (σ̃, ̃σ′).

A.1.3. Solutions of rough differential equations (RDEs)
We will now introduce the definition of solution to an RDE. Let V denote a Banach 

space.

Definition A.16. Let u ∈ CT (Cb(V ; V )) and ξ ∈ C1
T (CNα

b (V ; V )K). We say Y is a solution 
of

dYt = ut(Yt)dt + ξt(Yt)dZt, Y0 = v ∈ V, (A.8)

on the interval [0, T ], if Y = (Y, ξ(Y )) ∈ DZ,T (V ) and

Yt = v +
t∫

0

ur(Yr)dr +
t∫

0

ξr(Yr)dZr, ∀t ∈ [0, T ]. (A.9)

Remark A.17. The rough integral in (A.9) is well-defined by virtue of Lemma A.12.

The following lemma concerns equivalent notions of solutions. Its proof is a direct 
application of Theorem A.8 and A.13. The first formulation is referred to as the Davie’s 
formulation [45] and the second naturally extends to the manifold setting.

Lemma A.18. Y is a solution of (A.8) on the interval [0, T ] if and only if

(i) Y �
st := δYst−

∫ t

s
ur(Yr)dr−ξs(Ys)(δZst) −Dξs(Ys)ξs(Ys)(Zst), (s, t) ∈ Δ2

T , satisfies 
Y � ∈ C3α

2,T ;
(ii) f(Yt) = f(v) +

∫ t

0 Df(Yr)ur(Yr)dr +
∫ t

0 Df(Yr)ξr(Yr)dZr, ∀t ∈ [0, T ], ∀f ∈
C∞

b (V ; R).

The proof of existence and uniqueness for RDEs uses a Picard iteration argument in 
the controlled rough path topology (i.e., (A.5)). We refer the reader to, e.g., [59][Section 
8.5] for a proof. Moreover, in Section B.1 we give more details about flows on Euclidean 
spaces.

Theorem A.19. There exists a unique continuous solution map

S : V × CT (C1
b (V ;V )) × C1

T (CNα+1
b (V ;V )K) × Cg,T (RK) → DZ,T (V )

(v, u, ξ,Z) 
→ (Y, ξ(Y )).
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A.2. Differential geometry

A.2.1. Basic setting and the Lie derivative
Let M denote a smooth compact, connected, oriented d-dimensional manifold without 

boundary. For an arbitrarily given rank p vector bundle E over M , denote by ΓC∞(E)
the space of smooth sections endowed with the Fréchet topology defined through a cover 
of total trivializations of E. Denote by C∞ = ΓC∞(R) the space of smooth functions on 
M , XC∞ = ΓC∞(TM) the space of smooth vector fields on M , T lk

C∞ = ΓC∞(T lkTM)
the space of smooth (l-contravariant, k-covariant) tensor fields on M . Denote Ωk

C∞ =
ΓC∞(ΛkT ∗M) as the space of smooth alternating k-forms on M . We let DensC∞ :=
Ωd

C∞ . It is worth remarking that non-orientability and tensor-densities can be easily 
accommodated by introducing weighted densities (see, e.g., [108,1,116]). However, we 
avoid this extension for brevity in the presentation here.

Denote the wedge and tensor product by ∧ and ⊗, respectively. Let d : Ωk
C∞ → Ωk+1

C∞

denote the exterior derivative operator and iu : Ωk
C∞ → Ωk−1

C∞ denote the interior product 
operator for an arbitrarily given u ∈ XC∞ . For given F ∈ DiffC∞ and τ ∈ T lk

C∞ , the 
push-forward and pull-back are defined by

F∗τ = (TF )∗ ◦ τ ◦ F−1 and F ∗τ = (F−1)∗τ, (A.10)

respectively, where TF ∈ C∞(TM ; TM) is the tangent map of F , which extends to an 
isomorphism (on fibers) (TF )∗ ∈ C∞(T lkTM ; T lkTM).

For a given time-dependent vector field u ∈ C∞(R ×M ; TM), let η : R2 ×M → M

denote the two-parameter smooth flow of diffeomorphisms generated by u6; that is, for 
all (s, t) ∈ R2, ηtθ ◦ ηθs = ηts, and η·sX is the unique integral curve

η̇tsX = ut(ηtsX), ηssX = X ∈ M.

For given u ∈ C∞(R × M ; TM) and t ∈ R, the Lie derivative £ut
: T lk

C∞ → T lk
C∞ is 

defined by

£ut
τ = d

dθ

∣∣∣∣
θ=t

(ηθt)∗τ ⇔ d

dt
ηtsτ = ηts£ut

τ.

If u is independent of time, we define £uτ = d
dt

∣∣
t=0 η

∗
t τ , where ηt = ηt0 is the corre-

sponding one-parameter flow map. It is well-known that the Lie derivative (see, e.g., 

6 The time-dependent vector field u may be associated with a time-independent vector field ū ∈ C∞(R ×
M, TR ×TM) on the manifold TR ×TM via ūt(p) = {ut(p), 1t} ∈ TtR ×TpM for all (t, p) ∈ R ×M . Thus, 
the two-parameter flow may be defined in terms of the one-parameter flow of ū by ηt−s(x, s) = {ηts, t}. It 
follows from ηst ◦ ηts = id that for all s ∈ R

d

dt
ηst = −Tηst ◦ ut = −(ηst)∗ut ◦ ηst.

Equivalently, for all f ∈ C∞, h· = η·s∗f = (ηs·)∗f ∈ Cm solves the PDE ∂tht + £ut
ht = 0.
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[78,1]) is the unique operator on the tensor algebra ⊕l,kT lk
C∞ that i) commutes with 

tensor contractions, ii) is natural with respect to restrictions, and iii) satisfies for a given 
local chart (U, φ) and all f ∈ C∞|U , u, v ∈ XC∞ |U ,

£uf = u[f ] = ui∂xif = iudf and (£uv)i = uj∂xjvi − vj∂xjui.

It follows that for all u ∈ XC∞ |U , α ∈ Ωk
C∞ |U , and τ ∈ T lk

C∞ |U ,

(£uα)i1···ik = uj∂xjαi1···ik + αj···ik∂xi1u
j + · · · + αi1···j∂xiku

j

(£uτ)j1···jli1···ik = uj
t∂xjτ j1···jli1···ik − τ j1···jli1···ik ∂xj1u

j − · · · − τ j1···ji1···ik∂xjlu
j + τ j1···jkj···ik ∂xi1u

j

+ · · · + τ j1···jli1···j ∂xiku
j .

(A.11)

Thus, for given u ∈ C∞(R ×M, TM), the Lie derivative £ut
is a first-order differential 

operator on the bundles ΛkT ∗M and T lkTM . For non-vanishing μ ∈ Ωd
C∞ , the operator 

divμ : XC∞ → C∞ is defined by the relation

£uμ = (divμ u)μ.

For u, v ∈ XC∞ we let [u, v] = £uv and adu v := −£uv and note that

(£u£v − £v£u) τ = £[u,v]τ = −£adu vτ, ∀τ ∈ T lk
C∞ .

Moreover, for all u ∈ XC∞ and α ∈ Ωk
C∞ , we have

£uα = d(iuα) + iudα , (A.12)

which is referred to as Cartan’s formula.

A.2.2. Vector bundles: canonical pairings, adjoints, and function spaces
For a given vector bundle E, denote by E∗ the dual bundle. Let E∨ = E∗ ⊗ ΛdT ∗M

and we may extend the dual pairing between E and E∗ to a mapping 〈·, ·〉E : E∨×E →
ΛdT ∗M . The bundle E∨ is often called the functional dual bundle. We may then define 
the canonical pairing 〈·, ·〉Γ(E) : ΓC∞(E∨) × ΓC∞(E) → R by

〈s′, s〉Γ(E) =
∫
M

〈s′, s〉E , (s′, s) ∈ ΓC∞(E∨) × ΓC∞(E). (A.13)

The quantity 〈s′, s〉E ∈ DensC∞ in the integrand is a volume form and it is being 
integrated over the manifold M . The distributional sections of E and E∨ are defined 
by ΓD′(E) := ΓC∞(E∨)∗ and ΓD′(E∨) := ΓC∞(E)∗, respectively. The canonical pairing 
(A.13) induces the following dense embeddings:
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ΓC∞(E) ↪→ ΓD′(E) via s 
→ ls = 〈·, s〉Γ(E) and

ΓC∞(E∨) ↪→ ΓD′(E∨) via s̃ 
→ ls′ = 〈s′, ·〉Γ(E).

The pairing and definitions of distributions are canonical in the sense that no metric or 
volume form is needed to define them. We extend the pairing 〈·, ·〉Γ(E) to ΓD′(E∨) ×
ΓC∞(E) and ΓC∞(E∨) × ΓD′(E) in the usual way.

The adjoint of a linear differential operator L : ΓC∞(E) → ΓC∞(E), denoted by 
L∗ : ΓD′(E∨) → ΓD′(E∨), is defined by

〈L∗s′, s〉Γ(E) = 〈s′, Ls〉Γ(E), ∀(s′, s) ∈ ΓD′(E∨) × ΓC∞(E). (A.14)

It follows that L∗ restricts to L∗ : ΓC∞(E∨) → ΓC∞(E∨), and we write L = L∗∗ :
ΓD′(E) → ΓD′(E).

For a normal, local, and invariant Fréchet, Banach, or Hilbert function space F on 
Rd,7 we define a Fréchet, Banach, or Hilbert, respectively, of sections ΓF (E) via a cover 
of total trivializations.8 It follows that

ΓC∞(E) ↪→ ΓF (E) ↪→ ΓD′(E),

where the embedding ΓC∞(E) ↪→ ΓF (E) is dense. We refer the reader to [116][Ch. 3] for 
more details. Exactly the same construction applies to obtain a function space ΓF (E∨):

ΓC∞(E∨) ↪→ ΓF (E∨) ↪→ ΓD′(E∨).

In the present work, we assume that all function spaces F are normal, local, and invariant. 
In particular, we let

F = ΓF (R), XF = ΓF (TM), Dens∨F = F , T lk
F = ΓF (T lkTM), Ωk

F = ΓF (ΛkT ∗M),

F ∨ = ΓF (ΛdT ∗M) = DensF , X∨
F = ΓF (TM∨), (T lk

F )∨ = ΓF ((T lkTM)∨),

(Ωk
F )∨ = ΓF (ΛkT ∗M∨).

Any strong bundle pseudo-metric (·, ·)E : E × E → R induces an isomorphism � :
ΓF (E) → ΓF (E∗) with inverse denoted � : ΓF (E∗) → ΓF (E) for an arbitrarily given 
function space F . Moreover, a non-vanishing volume form μ ∈ DensC∞ induces an 

7 Let F denote a locally convex topological vector space of functions f : Rd → R such that C∞
c (Rd) ↪→

F ↪→ D′(Rd) := C∞
c (Rd)∗ and such that pointwise multiplication of functions in F by functions in C∞

c (Rd)
is a continuous operation. We say that a function space F is normal if the embedding C∞

c (Rd) ↪→ F is 
dense, local if F = {u ∈ D′(Rd) : φu ∈ F , ∀φ ∈ C∞

c (Rd)}, and invariant if any smooth diffeomorphism 
χ ∈ DiffC∞ induces an topological isomorphism on F via push-forward.
8 A total trivialization is a triple (U, φ, ψ) such that (U, φ) is a local chart of M and ψ : EU → U×Rrank(E)

is a trivialization of E over U . Any such trivialization induces an isomorphism hφ,ψ : ΓD′ (E|U ) → ΓD′ (φ(U)). 
A section s ∈ ΓD′ (E) belongs to ΓF (E) if for every total trivialization (U, φ, ψ), hφ,ψ(s|U ) ∈ F (φ(U))rank(E).
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isomorphism id⊗μ : ΓF (E∗) → ΓF (E∨) with inverse 1
μ : ΓF (E∨) → ΓF (E∗). For every 

s ∈ ΓF (E∗),

id⊗μ(s) = s⊗ μ.

To describe the inverse, note that for all densities ν ∈ DensC∞ , there exists dν
dμ ∈ C∞

such that ν = dν
dμμ. The inverse is induced by

1
μ

(s⊗ ν) = s
dν

dμ
, s⊗ μ ∈ ΓF (E∨). (A.15)

Composing these isomorphisms, we obtain an isomorphism � ⊗ μ : ΓF (E) → ΓF (E∨)
with inverse �

μ : ΓF (E∨) → ΓF (E). In particular, we may define a pairing (·, ·)ΓL2(E) :
ΓL2(E) × ΓL2(E) → R by

(s1, s2)ΓL2 (E) = 〈�⊗ μ(s1), s2〉Γ(E) =
∫
M

〈s
1, s2〉Eμ =
∫
M

(s1, s2)Eμ, s1, s2 ∈ ΓC∞(E),

which may be extended to ΓD′(E) × ΓC∞(E) via the isomorphisms (� ⊗ μ)∗ : ΓD′(E) →
ΓD′(E∨).

If (·, ·)E is a metric, we obtain a Hilbert structure on ΓL2(E), the space of square-
integrable equivalence classes of measurable sections. Furthermore, for every s ∈ R, 
there exists an order s elliptic operator A satisfying A : ΓW s

2 (E) → ΓW s−1
2

(E) and 

ΓW s
2 (E) ∼= A−1ΓL2(E), where W s

2 = (I − Δ)− s
2L2 denotes the Bessel-potential spaces, 

which provides a Hilbert structure to ΓW s
2 (E) [71,93]. Moreover, if L : ΓC∞(E) →

ΓC∞(E), then LT

⊗μ := �

μ ◦ LT ◦ � ⊗ μ : ΓC∞(E) → ΓC∞(E) is the adjoint of L relative 
to the pairing (·, ·)ΓL2 (E).

A.2.3. Riemannian manifolds and the Hodge decomposition
Any Riemannian metric g on M gives rise to a volume form μg defined in a local 

coordinate chart (U, φ) by

μg =
√

det[gij ] dx1 ∧ · · · ∧ dxd.

Furthermore, the metric g extends to bundle metrics on T lkTM and ΛkT ∗M in the usual 
way. In particular, we obtain the diffeomorphisms �, id⊗μg and � ⊗ μg discussed in the 
previous section. For every k ∈ {0, 1, . . . , d}, the metric and orientation gives rise to the 
inner product on Ωk

L2 defined by

(α, β)Ωk
L2

=
∫
M

g(α, β)μg =
∫
M

α ∧ �β, α, β ∈ Ωk
L2 ,

where we have used the Hodge-star diffeomorphism � : Ωk
F → Ωd−k

F defined by
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α ∧ �β = g(α, β)μg, ∀α, β ∈ Ωk
F .

The adjoint of d : Ωk
C∞ → Ωk+1

C∞ with respect to the L2-pairing is given by d∗ :=
(−1)dk+1 � d� : Ωk+1

D′ → Ωk
D′ .

The Hodge decomposition plays an essential role in incompressible fluids on manifolds. 
We now briefly describe the decomposition and the canonical pairing we use in the 
incompressible case.

Let ΔH = dd∗ + d∗d : ⊕d
k=0Ωk

D′ → ⊕d
k=0Ωk

D′ denote the Hodge Laplacian, which is 
formally self-adjoint and non-negative with respect to the inner product 

∑d
k=0(·, ·)Ωk . 

Let

Hk
Δ =

{
α ∈ Ωk

C∞ : ΔHα = 0
}

= {α ∈ Ωk
C∞ : dα = δα = 0}

denote the finite-dimensional space of harmonic k-forms. It follows that harmonic 0-forms 
are constant.

Let F denote either the smooth F = C∞, the Bessel-potential F = W s
p , s ≥ 0, p ∈

[1, ∞), or the Hölder functions F = Cm,α, m ≥ 0, α ∈ (0, 1). The Hodge decomposition 
of Ωk

F is given by

Ωk
F = Hk

Δ ⊕ ΔHGΩk
F = Hk

Δ ⊕ d∗Ωk+1
F+1 ⊕ dΩk−1

F+1 , (A.16)

where G : Ωk
F → Ωk

F+2 satisfies ΔHGα = α − Hα, H : Ωk
F → Hk

Δ is the harmonic 
projection [100,117,97,105,94], and F+1 and F+2 are the one and two-more regular 
spaces (in the non-smooth case). That is, F+1 = W s+1

p and F+2 = W s+2
p , and similarly 

for Hölder spaces.
Letting k = 1 in (A.16), applying the diffeomorphism � : Ω1

F → XF , and defining

∇F+1 := �dF +1, XF ,μg
:= �Hk

Δ ⊕ �d∗Ω2
F+1 , & ẊF ,μg

:= �d∗Ω2
F+1 ,

we obtain an extension of the Helmholtz decomposition of (possibly non-smooth) vector 
fields to manifolds:

XF = XF ,μg
⊕∇F+1 = (H1

Δ)� ⊕ ẊF ,μg
⊕∇F+1, (A.17)

which is an orthogonal decomposition with respect to the inner product (·, ·)XL2 : XL2 ×
XL2 → R defined by

(u, v)XL2 =
∫
M

g(u, v)μg, u, v ∈ XL2 .

Using iuμg = �u
 and Cartan’s formula, we find divμg
u = −d∗u
 = 0 for all u ∈ XF ,μg

. 
Thus, XF ,μg

consists of divergence-free vector fields and ẊF ,μg
consists of harmonic-free 

and divergence-free vector fields.
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Let us recall the canonical pairing (A.13) 〈·, ·〉X : X∨
C∞ × XC∞ → R:

〈α⊗ μ, u〉X =
∫
M

α(u)μ,

and diffeomorphism � ⊗μg : XC∞ → X∨
C∞ , which satisfies 〈� ⊗μg(v), u〉X = (v, u)XL2 for 

all u, v ∈ XC∞ . Applying the diffeomorphism � ⊗ μg to (A.17), we get

X∨
C∞ = (id⊗μg)Ω1

C∞ = (id⊗μg)H1
Δ ⊕ (id⊗μg)δΩ2

C∞ ⊕ (id⊗μg)dC∞.

Define the ‘projection’ operators P : X∨
C∞ → (id⊗μg)H1

Δ ⊕ (id⊗μg)d∗Ω2
C∞ and Ṗ :

X∨
C∞ → (id⊗μg)d∗Ω2

C∞ , which act only on the one-form component. Clearly, if we 
restrict the canonical pairing 〈·, ·〉X to X∨

C∞ × XC∞,μg
and X∨

C∞ × ẊC∞,μg
, then the 

pairing is degenerate; indeed,

〈α⊗ μ, u〉X = 0, ∀u ∈ XC∞,μg
=⇒ P (α⊗ μ) = 0,

〈α⊗ μ, u〉X = 0, ∀u ∈ ẊC∞,μg
=⇒ Ṗ (α⊗ μ) = 0.

Notice that the kernel of P is (id⊗μg)dC∞ and the kernel of Ṗ is (id⊗μg)H1
Δ ⊕

(id⊗μg)dC∞. To restore non-degeneracy, we mod out by the kernel; the following defi-
nition is standard [7,80,81].

Definition A.20. Let X∨
F ,μg

:= X∨
F
/
(id⊗μg)dF+1 and Ẋ∨

F ,μg
= X∨

F
/
(id⊗μg)H1

Δ ⊕
(id⊗μg)dF . Moreover, we define the canonical pairings 〈·, ·〉Xμg

: X∨
C∞,μg

×XC∞,μg
→ R

and 〈·, ·〉Ẋμg
: Ẋ∨

C∞,μg
⊗ ẊC∞,μg

→ R by

〈[α⊗ μ], u〉Xμg
= 〈α⊗ μ, u〉X, ∀ ([α⊗ μ], u) ∈ X∨

C∞,μg
× XC∞,μg

〈[α⊗ μ], v〉Ẋμg
= 〈α⊗ μ, v〉X, ∀ ([β ⊗ ν], v) ∈ Ẋ∨

C∞,μg
× ẊC∞,μg

,
(A.18)

where the [α⊗ μ] denotes an equivalence class with representative α⊗ μ. It follows that 
� ⊗ μg : XF ,μg

→ X∨
F ,μg

and � ⊗ μg : ẊF ,μg
→ Ẋ∨

F ,μg
are diffeomorphisms.

It can easily be checked the definition is well-defined in the sense that the right-
hand-sides of (A.18) are independent of the representative. Indeed, for any two given 
representatives α⊗ μ and β ⊗ ν of an equivalence class of X∨

F ,μg
, we have

P (α⊗ μ) = P (β ⊗ ν) ⇐⇒ α⊗ μ = β ⊗ μ + df ⊗ μg for some f ∈ F+1,

and for any two given representatives α⊗ μ and β ⊗ ν of an equivalence class of Ẋ∨
F ,μg

Ṗ (α⊗μ) = P (β⊗ν) ⇐⇒ α⊗μ = β⊗μ+(df+c)⊗μg for some f ∈ F+1 & c ∈ H1
Δ.
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Appendix B. Auxiliary results

B.1. Rough flows on Euclidean space

Theorem B.1. There exists a continuous map

Flow : Cα
T

(
XC∞

b
(Rd)

)
× C∞

T

(
XC∞

b
(Rd)K

)
× Cg,T (RK) → Cα

2,T (DiffC∞(Rd))

such that the flow ηts = Flow(u, ξ, Z)ts, (s, t) ∈ [0, T ]2 satisfies the following properties:

(i) for all (s, θ, t) ∈ [0, T ]3, ηtt = Id and ηtθ ◦ ηθs = ηts;
(ii) Y· = η·s(X) ∈ Cα([s, T ]; Rd) is the unique solution of the equation

dYt = ut(Yt)dt + ξt(Yt)dZt, Ys = X ∈ Rd;

(iii) η is the unique two-parameter flow satisfying (i) and

|ηts − μts|∞ ≤ C|t− s|3α, ∀(s, t) ∈ [0, T ]2,

for a constant C, where μ ∈ Cα
2,T (DiffC∞(Rd)) is the C∞-approximate flow given 

by

μts := exp

⎛
⎝us(t− s) +

K∑
k=1

ξk(s)Zk
st +

∑
1≤k<l≤K

[ξk(s), ξl(s)]Akl
st

⎞
⎠ ,

or equivalently by μts(X) := Y1 such that

Ẏθ = us(Yθ)(t− s) +
K∑

k=1

ξk(s)(Yθ)δZk
st +

∑
1≤k<l≤K

[ξk(s), ξl(s)](Yθ)Akl
st,

θ ≤ 1, Y0 = X ∈ Rd;

(iv) for all f ∈ C∞
b (Rd; R) and s ∈ [0, T ], η = f(η−1

·s ) ∈ Cα([s, T ]; C∞(Rd; R)) satisfies

ηt +
t∫

s

£ur
grdr +

t∫
s

£ξrgrdZr = f ;

in C∞
b (Rd); that is, (ξ[g], −ξ[ξ[g]]) ∈ DZ([s, T ]; C∞

b (Rd)).

Remark B.2. Claims (i-iii) are a direct extension of Corollary 11.14 of [60]; one can easily 
verify the Davie’s estimates (Corollary 11.14 of [60]). We do not impose that our drift 
coefficient is Lipschitz in time because it is the solution of a rough partial differential 
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equation driven by the path Z in our framework, and hence it can only be expected to 
be α-Hölder continuous. We also allow for time dependence in the vector field ξ since 
this is used in Section 3.3 to take variations. Claim (iv) is a minor extension of Theorem 
16 of [8,11] (or Theorem 1.27 of [50]), which uses the method of approximate flows. It is 
possible to weaken the required regularity in space and time of the coefficients, but for 
simplicity, we do not pursue this.

Claim (iv) is the initial-value first-order linear transport rough partial differential 
equation (RPDE) for the inverse flow. We understand g as the classical solution in the 
spatial variable and in the sense of controlled rough paths in time. In [30][Corollary 
8], the method of characteristics solution theory for initial-value RPDEs (in the case 
u ≡ 0) is established and the solutions are characterized as being a limit point of gn =
f(Xn

t ), where Xn is the solution of the time-reversal along a sequence of smooth paths 
Zn = (Zn, Zn) converging to Z in the rough path topology. It is not clear that one can 
deduce a stronger notion of solution (in the sense of controlled rough paths) from this 
result in a simple manner (see, also, Remark 2.10 of [48]). The works [48] and [12] prove 
the well-posedness of the final-value transport equation and its adjoint, the initial-value 
continuity equation, in the sense of controlled rough paths. We were not able to find the 
exact result in the literature.

Nevertheless, the solution of the RPDE can be derived using theory of unbounded 
rough drivers ([10,47]), which is analogous to the energy method in deterministic PDE. 
Indeed, one may first derive a solution g ∈ C([s, T ]; Wn

2 (Rd)) under the assumption 
u ∈ CT (Cm(Rd; Rd)), ξ ∈ Cm+3(Rd; Rd), and f ∈ Wm

2 (Rd) for any m ∈ N0 by 
adapting Theorem 2 of [72] and Section 5.2 of [39]. Then one may obtain a solution 
u ∈ Cα

T (C∞(Rd; R)) by applying the Sobolev embedding. Finally, one can apply the 
pull-back version of the Lie chain rule Theorem 3.3 to show that g(η·s) = f .

B.2. Rough Fubini’s theorem

Let T > 0, α ∈
( 1

3 , 1
]
, and Z ∈ Cα

g,T (RK). By virtue of the fact that rough integration 
is a linear continuous map, we can easily obtain a version of Fubini’s theorem. Let 
(X, A, μ) be a σ-finite measured space and W be a Banach space. Denote by L1(X; W )
the Banach space of equivalent classes of Bochner integrable functions f : X → W

endowed with the norm

|f |L1(X;W ) =
∫
X

|f |V dμ, f ∈ L1(X;W ).

Recall that for an arbitrary Banach space V and linear map L ∈ L(W, V ),

L

∫
X

fdμ =
∫
X

Lfdμ, ∀f ∈ L1(X;W ). (B.1)

The following lemma is then a straightforward application of (B.1), Theorem A.8, and
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L1(X;Dα
Z,T (V K)) ⊂ DZ,T (L1(X;V )K),

which itself follows from Fatou’s lemma.

Lemma B.3 (Rough Fubini). If F = (F, F ′) ∈ L1(X; Dα
Z,T (V K)), then for all (s, t) ∈ Δ2

T ,

∫
X

t∫
s

FrdZrdμ =
t∫

s

∫
X

FrdμdZr.

B.3. Fundamental lemma of the calculus of rough variations

Let T > 0, α ∈
( 1

3 , 1
]
, and Z ∈ Cα

g,T (RK).

Lemma B.4. Assume that Y = (Y, Y ′) ∈ DZ,T (RK) and λ ∈ CT (R) satisfy

b∫
a

λtφ̇tdt =
b∫

a

φtYtdZt (B.2)

for all φ ∈ C∞
T (R) such that φ0 = φT = 0. Then for all (s, t) ∈ Δ2

T ,

δλst =
t∫

s

YrdZr. (B.3)

Remark B.5. On the right-hand-side of (B.2), we have used that (φ, 0) ∈ DZ,T (R), and 
thus that φY = (φY, φY ′) ∈ DZ,T (RK) by Lemma A.12.

Proof. Step 1. We will begin by showing that equality (B.2) must hold for any Lipschitz 
φ ∈ C1

T (R) such that φ0 = φT = 0, where φ̇ on the left hand side is the bounded 
weak derivative (which exists by Rademacher’s theorem [70][Theorem 6.15]). Consider 
a mollifier on R defined by ρn(θ) := nρ(nθ), n ∈ N, where 

∫
R ρ(θ)dθ = 1 and supp ρ ⊂

[0, T ]. Because φ vanishes at the end points, we can extend φ by zero

φ̃t =
{

φt t ∈ [0, T ]
0 t /∈ [0, T ]

and note that φ̃ ∈ C1
T (R) has the same Lipschitz constant as φ. For a given n ∈ N, 

define

φn
t := φ̃ ∗ ρn(t) =

∫
φ̃t−θρn(θ)dθ =

b∫
φθρn(t− θ)dθ, t ∈ R,
R a
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which is clearly bounded in CT (R). For all n ∈ N and s, t ∈ [0, T ], we find

∣∣φn
t − φ̃t

∣∣ =

∣∣∣∣∣∣
∫
R

(φ̃t−θ − φ̃t)ρn(θ)dθ

∣∣∣∣∣∣ �
∫
R

|θ|ρn(θ)dθ = n−1
∫
R

|θ|ρ(θ)dθ

and

|δφn
st| =

∫
R

(φ̃t−θ − φ̃s−θ)ρn(θ)dθ � |t− s|
∫
R

ρn(θ)dθ = |t− s|.

By Arzela-Ascoli’s theorem, φn → φ uniformly, and, in fact, in Cβ
T (R) for all β < 1. A 

classical argument shows that

lim
n→∞

T∫
0

φ̇n
t λtdt =

T∫
0

φ̇tλtdt.

For fixed Y ∈ DZ,T (RK), the mapping ψ 
→ ψY := (ψY, ψY ′) is a linear and continuous 
operation from Cβ

T (R) to DZ,T (RK) for all β ≥ 2α. Moreover,

|ψY|Z ≤ |ψ|β |Y|Z(|Y |∞ + |Y ′|∞). (B.4)

Thus, by the continuity of the rough path integral (Theorem A.8), we obtain

lim
n→∞

b∫
a

φn
t YtdZt =

b∫
a

φtYtdZt,

which completes step 1.

Step 2. We will now construct a sequence of Lipschitz functions {φn}n∈N ⊂ C1
T (R)

converging to the characteristic function 1[s,t], for s, t ∈ R such that 0 < s < t < T , and 
then pass to the limit on both sides of (B.2) to obtain (B.3). We then extend the equality 
to (s, t) ∈ Δ2

T by continuity. Toward this end, for large enough n ∈ N and r ∈ [0, T ], 
define

φn
r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 r ∈ [s, t]
n(r − s) + 1 s ∈ [s− n−1, s]
n(t− r) + 1 s ∈ [t, t + n−1]
0 otherwise

,

so that |φn|∞ = 1 and |φ̇n|∞ = n where φ̇n is the weak derivative defined by
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φ̇n
r =

⎧⎪⎨
⎪⎩

n r ∈ [s− n−1, s]
−n r ∈ [t, t + n−1]
0 otherwise

.

A classical argument shows that

lim
n→∞

T∫
0

λrφ̇
n
r dr = δλst.

Since the rough integral is an increment, we have

T∫
0

φn
rYrdZr =

s∫
s−n−1

φn
r YrdZr +

t∫
s

YrdZr +
t+n−1∫
t

φn
r YrdZr.

If we can show that the first and last integrals converge to zero as n → ∞, then we are 
finished. We will only show that the last term converges to zero, as the argument for the 
first integral is easier. Let C denote a constant that is independent of n and may vary 
from line to line. By Theorem A.8 and the fact that |φnY|Z ≤ Cn by (B.4), we find

t+n−1∫
t

φn
rYrdZr = φn

t YtδZt,t+n−1 + φn
t Y

′
tZt,t+n−1 + Rn

(
t, t + n−1) ,

where

|Rn(t, t + n−1)| ≤ C(([Z]α + [Z]2α)|φnY||t + n−1 − t|3α ≤ Cn1−3α → 0,

as n → ∞. Moreover,

∣∣φn
t YtδZt,t+n−1 + φn

t Y
′
tZt,t+n−1

∣∣ ≤ |Y |∞[Z]αn−α + |Y ′|∞[Z]2αn−2α → 0,

as n → ∞, which completes the proof. �
Appendix C. The variational principle for incompressible fluids on smooth paths

The purpose of this section is to explain the variational principles we formulate in this 
paper in the simplified setting of an incompressible homogeneous ideal fluid evolving on 
the torus with a smooth perturbation. The beginning of the section can be read with no 
knowledge of differential geometry. The rest of the section assumes some basic knowledge 
of differential geometry (see Section A.2).

We also explain the presence of the so-called line-element stretching term in our main 
equation. The presence of this term distinguishes our equations from a pure transport 
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perturbation of the deterministic Euler equation on flat space in velocity form. In partic-
ular, we show that the stretching term arises as a direct consequence of the variational 
principle and not by how momentum is characterized; that is to say, our variational 
principle indirectly enforces a covariant formulation, which naturally leads to a Kelvin’s 
circulation theorem, helicity conservation in dimension three, and enstrophy conservation 
in dimension two.

By appealing to the Helmholtz decomposition (Hodge decomposition), we explicitly 
show the decomposition of the pressure terms into the unperturbed and perturbed part, 
which motivates the corresponding decomposition in the rough case. As a result of 
the presence of the stretching term, our equations do not preserve mean-freeness (i.e., 
harmonic-freeness) unless we impose an additional constraint in the variational principle. 
By imposing this constraint, the velocity u can be recovered directly from the vorticity 
ω̃ = ∇ ×u via the Biot-Savart law. In vorticity form, our equations are a pure transport 
perturbation of the deterministic Euler equation in dimension two. The associated vortic-
ity equation in the Brownian setting has been studied in the literature with u recovered 
directly from the vorticity ω via Biot-Savart [28,43,42,27].

We consider an incompressible homogeneous fluid moving on the flat d-dimensional 
torus Td with the standard volume form dV . Denote by X the space of smooth vector 
fields, XdV the space of smooth divergence-free vector fields and ẊdV the space of smooth 
divergence and mean-free vector fields. It follows that

X = XdV ⊕∇C∞ = ẊdV ⊕Rd ⊕∇C∞,

where the decomposition is orthogonal with respect to the L2-inner product. Let 
P : X → XdV , Q : X → ∇C∞, Ṗ : X → ẊdV , and H : X → Rd denote the corre-
sponding projections (see Section A.2.3 and (A.17)). We recall that in dimension three, 
curl : ẊdV → ẊdV is an isomorphism, and in dimension two, curl : ẊdV → C∞ is an 
isomorphism. Denote the inverse of curl by BS (for Biot-Savart).

We assume that the Eulerian velocity field v : [0, T ] → XdV of the fluid admits a 
decomposition into a sum of a dynamical velocity variable u : [0, T ] → ẊdV and a known
model vector field ζ : [0, T ] → XdV :

vt = ut + ζt, (C.1)

The vector field ζt in (C.1) admits the specified decomposition

ζt(x) = ξ(x)Żt =
K∑

k=1

ξk(x)Żk
t , (t, x) ∈ [0, T ] × Td,

where ξ ∈ ẊK
dV and Z : [0, T ] → RK in this appendix is a differentiable path, as opposed 

to the rough paths in the main text.
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Review of geometric ideal incompressible fluid dynamics. In ideal incompressible fluid 
dynamics, the fluid flow is obtained as a smooth, time-dependent volume-preserving 
diffeomorphism η : [0, T ] × Td → Td by integrating the velocity vector field

η̇t = vt ◦ ηt = ut ◦ ηt + ξt ◦ ηt, η0 = id .

In fact, η may be regarded as a curve in the group of volume-preserving diffeomorphisms 
on M , denoted by G = DiffdV (Td) and endowed with some appropriate topology. The 
Lagrangian, or material, velocity, is the velocity of the particle labelled by X ∈ Td at 
time t. The Lagrangian velocity is given by Ut(X) = η̇tX = vt(ηtX); that is, U = v ◦ η. 
The Eulerian velocity, which is the velocity of the particle currently in position x ∈ Td

at time t (i.e., x = x(X, t) = ηtX), can be expressed as

vt(x) = Ut(X) = Ut(η−1
t x) or vt = η̇tη

−1
t = Tηt

Rη−1
t

η̇t,

where the notation in the right-most expression is the right action (technically the tan-
gent lift of the action) of the inverse map η−1

t on the tangent vector η̇t ∈ Tηt
G by the 

inverse map η−1
t . The action by the inverse map translates the tangent vector η̇t at ηt

back to the identity g = TidG ∼= XR(G) ∼= XdV (the space of divergence-free vector 
fields). It follows that vt = η̇tη

−1
t is invariant under the action of the diffeomorphisms 

from the right given by ηt → ηth for any fixed diffeomorphism h ∈ DiffdV . This sym-
metry corresponds to the well-known invariance of the Eulerian fluid velocity vector 
field vt under relabelling of the Lagrangian coordinates as X → hX. As discussed in 
Section 3.2, right-invariance is the key to understanding the Kelvin circulation theorem 
from the viewpoint of Noether’s theorem.

Clebsch constrained variational principle. In order to derive an equation for u, we will 
apply a Clebsch constrained variational principle. For arbitrary u : [0, T ] → ẊdV and 
λ, a : [0, T ] × Td → Rd, we define

S(u, a, λ) =
T∫

0

∫
Td

[
1
2 |ut|2 +

d∑
q=1

λq
t (∂taat + (vt · ∇)aqt )

]
dV dt, (C.2)

where until otherwise specified we will work in the Euclidean coordinate system. Hence-
forth, we will also drop the summation over q ∈ {1, . . . , d}.

The history of the Clebsch constrained variational principle δS(u, a, λ) = 0 goes back 
to [38], as reviewed for fluid dynamics, e.g., in [106]. The first term in the Clebsch action 
integrand in (C.2) corresponds to the kinetic energy of the unperturbed velocity u in the 
decomposition (C.1), rather than that of the total velocity, v. The second term indirectly 
imposes the constraint η̇ = v ◦ η through the advection relation. Indeed, the method of 
characteristics shows for a given a0 : Td → R that the path at = a0(η−1

t ) = ηt∗a0 (the 
push-forward of a0 by ηt) satisfies the advection equation
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∂tat + (vt · ∇)at = ∂tat + (ut · ∇)at + (ξ · ∇)atŻt = 0.

To continue, we consider variations of the form

uε = u + εδu, aε = a + εδa, λε = λ + εδλ, ε ∈ (−1, 1),

for arbitrarily given δu : [0, T ] → ẊdV and δa, δλ : [0, T ] × Td → Rd such that 
δu, δa, δλ|t=0,T ≡ 0. Upon taking these variations of the action functional, one finds

0 = δS(u, a, λ) =
T∫

0

∫
Td

[
(u + λ∇a)·δu+λ (∂tδa + (v · ∇)δa)+δλ (∂ta + (v · ∇)a)

]
dV dt.

(C.3)
Here, the dot product with ‘·’ denotes the inner product on Rd relative to the Euclidean 
coordinate system (i.e., the flat metric δij). We note also that since u and δu are con-
strained to be mean-free and divergence-free, we have

∫
Td

(u + λ∇a) · δudV =
∫
Td

(
u + Ṗ λ∇a

)
· δudV.

By using integration by parts in space and time, we find that (u, a, λ) is a critical 
point of S if and only if

u = −Ṗ (λ · ∇a), ∂tλ + (v · ∇)λ = 0, ∂ta + (v · ∇)a = 0.

It follows that

∂tṖ u = −Ṗ ∂tλ∇a− Ṗ λ∇∂ta = Ṗ ((v · ∇)λ)∇a + Ṗ λ∇((v · ∇)a)

=
(
Ṗ ((v · ∇)λ)∇a + Ṗ λ(v · ∇)∇a

)
+ Ṗ λ∂xja∇vj

= −Ṗ (v · ∇)u− Ṗ (∇v)T · u.
(C.4)

Here ((∇v)T · u)i := δijuk∂xjvk, and we have used the δij in order to maintain the 
geometric index convention even though we are working on flat space. Therefore,

∂tut + Ṗ (vt · ∇)ut + Ṗ (∇vt)T · ut = 0 ⇔ ∂tut + (vt · ∇)ut + (∇vt)T · ut = −∇pt + ct.

(C.5)
In terms of the projections Q and H, we find

−∇p = Q(vt · ∇)ut + Q(∇vt)Tut = Q(ut · ∇)ut +
(
Q(ξ · ∇)ut + Q(∇ξ)Tut

)
Żt

ct = H(vt · ∇)ut + H(∇vt)T · ut = H(∇vt)Tut = H(∇ξ)T · utŻt =
∫

(∇ξ)T · utdV Żt.
Td
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We note that the pressure p enables us to enforce the constraint that u is incompressible 
and the constant (in space) c enables us to enforce that u is mean-free. Substituting in 
v = u + ξŻ, we find

∂tut + (ut · ∇)ut +
(
(ξ · ∇)ut + (∇ξ)T · ut

)
Żt = −∇p̃t + ct, p̃t = pt + 1

2 |ut|2.

In dimension two and three, one can readily check an equivalent formulation in terms of 
the vorticity ω̃ = Curlu:

∂tω̃t + (vt · ∇)ω̃t − 1d=3(ω̃t · ∇)vt = 0, u = BS(ω). (C.6)

From this point on, we assume the reader is familiar with basic differential geometry 
(see Section A.2). Let us introduce an arbitrary coordinate system on a Riemannian 
manifold with metric g. Denote by {dxi}di=1 a global frame of Ω1. Moreover, let the 
musical notation � : X → Ω1 denote the isomorphism between vector fields and one-
forms. Equation (C.5) can be expressed covariantly as

∂tu


t + £vtu



t = −dp̃ + c
t, (C.7)

where the Lie-derivative operator £vt acts on the one-form u
 to produce the one-form 
£vtu


, given by

£vtu

 = £vt(gkiukdxi) =

(
vjt∂xj (gkiuk) + gkju

k∂xivjt

)
dxi

=
(
vjtu

k∂xjgki + gkiv
j
t∂xjuk + gkju

k∂xivjt

)
dxi.

Here dp̃ is exterior derivative of the scalar-field p̃.
Let ω = du
 ∈ Ω2 denote the vorticity two-form obtained by applying the exterior 

derivative operator d. Since the exterior derivative commutes with the Lie derivative, 
one finds

∂tωt + £vtωt = 0. (C.8)

The two characterizations of the vorticity ω and ω̃ satisfying, (C.6) and (C.8), re-
spectively, are related by the Hodge-star operator � : Ω2 → Ωd−2. In dimension two, 
ω̃ = �ω ∈ Ω0, and in dimension three, ω̃ = � � ω ∈ ẊdV . In order to obtain equation 
(C.6) directly from (C.8), one uses that �� and the Lie derivative commute (see, e.g., 
[14][Section A.6]).

Kelvin circulation theorem. The covariant formulation immediately implies a Kelvin 
circulation theorem. Let γ denote a closed loop in Td. Then using Reynolds transport 
theorem,
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d

dt

∮
ηt(γ)

u

t =

∮
ηt(γ)

(∂tu

t + £vtu



t) =

∮
ηt(γ)

dp̃ = 0,

where one transforms the integration around the moving loop ηt(γ) to the loop γ in 
the material frame by applying the pull back η∗t to the integrand, then takes the time 
derivative, applies the dynamic definition of the Lie-derivative, transforms back and 
substitutes the covariant equation of fluid motion (C.7).

Helicity conservation. In three dimensions, the helicity, defined as

Λ(ω̃) =
∫
T3

u
 ∧ ω =
∫
T3

u
 ∧ du


measures the linkage of field lines of the divergence-free vector field ω̃ [7]. Owing to (C.7)
and (C.8), we have

∂t(u
 ∧ ω) = −£vt(u
) ∧ ω − u
 ∧ £vtω − dp̃ ∧ ω,

and hence

dΛ
dt

(ω̃) = d

dt

∫
T3

u
 ∧ ω =
∫
T3

dp̃ ∧ du
 =
∫
T3

d(p̃du
) = 0 .

Thus, the linkage number of the vorticity vector field Λ(ω̃) is preserved by the 3D Euler 
fluid equations (C.7).

Enstrophy conservation in two-dimensions. In two dimensions, for any f ∈ C∞, we 
find

∂tf(ω̃t) + (vt · ∇f)(ω̃t) = 0,

and hence ∫
T2

f(ω̃t)dV =
∫
T2

f(ω̃0)dV.

In particular, taking f(x) = x2, we find
∫
T2

|ω̃t|2dV =
∫
T2

|ω̃0|2dV,

which implies that enstrophy is conserved in two-dimensions.

Momentum representation. The Lie derivative of the volume form dV along v is zero 
since £vdV = (div v) dV = 0. Thus, we can also write equation (C.5) as
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∂tmt + £vtmt = dp̃⊗ dV + ct ⊗ dV, (C.9)

where mt = u
⊗dV ∈ X∨ := Ω1 ⊗Dens denotes the space of smooth one-form densities. 
In Sections 2, 3.3, and 3.4, the momentum is regarded as a one-form density in order to 
conveniently incorporate both the inhomogeneous and compressible settings and work 
canonically. One can always transform between equivalent formulations once a metric 
and volume form have been fixed. We will now explain how one can derive the various 
equivalent formulations directly from the Clebsch action functional.

Clebsch constrained variational principle revisited. Let us now explain how we can 
directly derive (C.7) and (C.9) from the Clebsch action functional. The first term on the 
RHS of (C.3) can be expressed in the following three equivalent coordinate-free ways:

(i)

(u + λ∇a, δu)XL2 =
∫
Td

g(u + λ∇a, δu)dV, where (·, ·)XL2 : X× X → R;

(ii)
〈u
 + λda, δu〉 =

∫
Td

iδu(u
 + λda)dV, where 〈·, ·〉 : Ω1 × X → R;

(iii)
〈u
 ⊗ dV + da⊗ λdV, δu〉X =

∫
Td

iv
[
(u
 ⊗ dV + da⊗ λdV )

]
,

where 〈·, ·〉X : X∨ × X → R.

Let us denote

(i) m = u ∈ X, (ii) m = u
 ∈ Ω1, (iii) m = u
 ⊗ dV ∈ X∨.

Let

(λ, a)L2 =
∫
Td

λadV, where (·, ·) : Ω0 × Ω0 → R.

It follows that

(i) (λ,£va)L2 = −(λ 	 a, v)XL2 , (ii) (λ,£va)L2 = −〈λ 	 a, v〉, or

(iii) (λ,£va)L2 = −〈λ 	 a, v〉X,

where

(i) λ 	 a = −λ∇a, (ii) λ 	 a = −λda, or (iii) λ 	 a = −da⊗ λdV,
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respectively.
A critical point of the Clebsch action S in (C.2) then satisfies

Ṗm = Ṗ (λ 	 a),

where we use the same notation Ṗ for the corresponding projection onto ‘divergence and 
harmonic-free’ parts (see Section A.2.3) in all three cases. In all three cases, following a 
similar calculation to the one given in (C.4), we obtain

∂tmt + Ṗ£vtmt = 0.

The first case (i) agrees with the direct calculus computation given above. In general, 
the main ingredients of this computation (see Section 5.1) are 1) the definition of 	, 2) 
the relation for all v, w ∈ X and a ∈ Ω0 (i.e., for all tensor fields, a) that

£v£wa− £w£va = £[v,w]a,

and 3) that

〈m, adv w〉 = 〈£vm,w〉,

for all of the above pairings. That is, ad∗
v m = £vm. If v is not divergence-free, then 

ad∗
v m = £vm is only true for the pairing 〈·, ·〉X.
Thus, one may characterize the ‘momentum’ m in various ways if a metric and volume 

form are fixed. However, the pairing 〈·, ·〉X is canonical in that it does not require a metric 
or volume form to be fixed (see the discussion in Section A.2.2), and we use this pairing 
above.

As a consequence of this discussion, we see that the line-element stretching term 
(∇vt)T · ut in equation (C.5) does not arise because we have characterized momentum 
in a certain way. This term appears even if we treat m as a vector and work in a 
fixed standard coordinate system. As derived here, the stretching term tells us that the 
Clebsch variational principle has produced covariant coordinate-free equations. This is 
simply the generalized-coordinate theorem for the covariance of variational principles, 
the first being the Euler-Lagrange equations in classical mechanics, which are valued for 
precisely this reason.

Hamilton-Pontryagin variational principle.
Another way to impose the constraint on the deterministic flow decomposition is 

through the Hamilton-Pontryagin variational principle. The Hamilton-Pontryagin action 
integral on [0, T ] is given by

S(u, η, λ) =
T∫ ∫ [

1
2 |ut|2 + λt ·

(
η̇tη

−1
t − vt

)]
dV dt.
0 Td
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Here, η : [0, T ] → DiffdV is an arbitrary time-dependent map. The second-term corre-
sponds to the Lagrangian dynamical constraint η̇ = v ◦ η. A variation of η is simply a 
two-parameter curve η : [−1, 1] × [0, T ] → DiffdV with equality of mixed-derivatives.

One refers to the stationary principle δS = 0 for the action integral above as the 
Hamilton-Pontryagin variational principle since the Lagrangian constraint variable λ
is the symmetry-reduced version of the adjoint variable in the Pontryagin maximum 
principle, as first discussed for fluids in [17]. To explain this analogue further, the cost 
may be regarded as the L2-norm of the (control) u, the path is constrained to satisfy 
η̇t = vt ◦ ηt, the endpoints of η are treated as fixed (i.e., η0 = id and ηT = ψ), and one 
seeks to find a path that minimizes the cost. However, in general, critical points are not 
global minimizers [25,26].

Appendix D. A few words of motivation for the theory of rough paths

Let {ξk}Kk=1 ⊂ XC∞ be a family of smooth vector fields on a closed manifold M . Let 
α ∈ (0, 1] and Z ∈ Cα

T (RK). Consider the ordinary differential equation

dYt =
K∑

k=1

ξk(Yt)dZk
t , Yt|t=0 = Y0. (D.1)

If we can solve (D.1), then we expect for any f ∈ C∞(M) that f(Y ) ∈ Cα
T (R), and hence

ξk[f ](Y ) = ξik(Y )∂xif(Y ) ∈ Cα
T (RK).

If we require 2α > 1, then the integral 
∫ t

0 ξk[f ](Ys)dZk
s in

f(Yt) = f(Y0) +
K∑

k=1

t∫
0

ξk[f ](Ys)dZk
t (D.2)

may be defined as a Young integral [121] (see Lemma A.1), and we expect to have 
stability properties of the solution in terms of the path Z; that is, the mapping Z ∈
Cα

T (RK) 
→ f(Y ) ∈ Cα
T (R) is continuous for all f ∈ C∞(M). However, if 2α ≤ 1, then 

Young integration is inadequate to develop a pathwise solution theory with a stability 
property.

A prime example of such a path is a realization of a K-dimensional real Brownian 
motion Zk

t = Bk
t (ω), ω ∈ Ω, for which it is known that on a set of probability one, 

B(ω) ∈ Cα
T (RK) for α < 1

2 . Indeed, T. Lyons showed [89] (see, also, Prop. 1.1. in [59]) 
that there exists no separable Banach space B ⊂ CT (RK) in which the sample paths of 
Brownian motion lie and for which the integral 

∫ ·
0 ftdgt : C∞

T (R) ×C∞
T (R) → C∞

T extends 
in a continuous way to B ×B → CT (RK). Since the integral 

∫ t

0 B1
s (ω)dB2

s (ω) is expected 
to be the solution of the simplest differential equation driven by a two-dimensional 
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Brownian motion B(ω) = (B1(ω), B2(ω)), the result of T. Lyons indicates that the 
development of a pathwise theory must take into account the additional structure of the 
solution Y and the path Z.

If, however, K = 1 or the vector fields commute (i.e. [ξk1 , ξk2 ] ≡ 0 for all k1, k2), then 
a solution theory can be developed for continuous paths Z ∈ CT (RK). Indeed, H. Doss 
and H. Sussman [49,110] showed that the solution can be defined by

Yt = exp
(

K∑
k=1

ξkZ
k
t

)
Y0,

where exp
(∑K

k=1 ξkZ
k
t

)
is the flow of the vector field 

∑K
k=1 ξkZ

k
t with t-fixed at time 

t = 1 (i.e., the time-one map). This is clearly a continuous function of Z and satisfies the 
equation exactly if Z is differentiable. In [110][pg. 21], H. Sussman discussed the connec-
tion of pathwise solutions with so-called Wong-Zakai results/anomalies (see, e.g., [114]) 
and clearly indicated that: (i) extending this result to K > 1 in the non-commutative 
case would require substantially new methods; and (ii) finding such an extension would 
lead to significant progress in our understanding of the anomalies.

The key idea for extending the pathwise theory came from T. Lyons [107,88,87] as a 
tour de force which combined iterated integrals [101,18,91,34], control theory [35,56,111,
57,112], system identification and filtering [96,23,22], numerical schemes [29,37,113,62,
67], and renormalization [66,56,40,16].

To describe this idea, let us assume for the moment that third-order brackets vanish 
(i.e., [ξk1 , [ξk2 , ξk3 ]] = 0 for all k1, k2, k3) and that Zk

t = Bk
t (ω) is a realization of a 

K-dimensional Brownian motion. Consider for all (s, t) ∈ Δ2
T , the time-one map

μst(ω) = exp

⎛
⎝ K∑

k=1

ξkδB
k
st(ω) + 1

2

K∑
k,l=1

[ξl, ξk]Blk
st(ω)

⎞
⎠

= exp
(

K∑
k=1

ξkδB
k
st(ω) +

∑
k<l

[ξl, ξk]Alk
st(ω)

)
,

where the quantity

Blk
st(ω) :=

⎛
⎝ t∫

s

t1∫
s

dBl
t2 ◦ dBk

t1

⎞
⎠ (ω) (D.3)

is the 2α-Hölder modification of the Stratonovich integral evaluated at ω and Alk
st(ω) =

1
2
(
Blk
st(ω) − Bkl

st(ω)
)
. Then Yt(ω) := μ0t(ω)Y0 is the pathwise solution of the SDE. Thus, 

the notion of path is enhanced to include the addition of the iterated-integral

B(ω) = (B(ω),B(ω)) ∈ Cα
T (RK) × C2α

2,T (RK×K), α <
1
,
2
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where ω belongs to a set Ω′ ∈ F of probability one. Of course, we are able to con-
struct a pathwise solution because probability theory (specifically, the L2(Ω)-closure of 
time-approximating discretizations of the quantity in (D.3)) enabled us to construct the 
iterated integral of the path Zk

t = Bk
t (ω), and the Kolmogorov continuity theorem al-

lowed us to obtain a 2α-Hölder version of the iterated integral. Furthermore, the map is 
stable in the sense that for any {Bn(ω)}n∈N such that Bn(ω) = (Bn(ω), Bn(ω)) → B(ω), 
one has μn

st(ω) → μst(ω) as n → ∞. It is in this sense that the Yt(ω) is a pathwise so-
lution. The reader familiar with Magnus expansions will notice that μ is essentially the 
second-order Magnus expansion and the expansion is exact because of the third-order 
bracket condition.

Use of the relation Blk
st(ω) + Bkl

st(ω) = δBl
st(ω)δBk

st(ω) shows that for all (s, t) ∈ ΔT

and f ∈ C∞(M),

f(Yt(ω)) = f(Ys(ω)) +
K∑

k=1

ξk[f ](Ys(ω))δBk
st(ω) +

K∑
k,l=1

ξl[ξk[f ]](Ys(ω))Blk
st(ω) + f �

st(ω),

(D.4)
where f � : Δ2

T → R satisfies for a constant C > 0

|f �
st(ω)| ≤ C|ξ|C3([B(ω)]α + [B(ω)]2α)2|t− s|3α.

Upon defining for all (s, t) ∈ ΔT and ω ∈ Ω′,

Ξst = ξk[f ](Ys(ω))δBk
st(ω) + ξl[ξk[f ]](Ys)Blk

st(ω) + f �
st(ω),

and invoking |f �
st(Ys)(ω)| ≤ C(ω)|t − s|3α and δ2Blk

sθt(ω) = δBl
sθ(ω)δBk

θt(ω), one can 
directly check that Ξ ∈ Cα,3α

2,T (R). Hence, one may apply Lemma A.1 to construct 
the integral IΞ = (

∫
ξ[f ]dB)(ω). This integral agrees with the Stratonovich integral (∫ t

s
ξ[f ](Ys) ◦ dBs

)
on a set of probability one (see Theorem A.8).

The expansion (D.4) is called the second-order Chen-Fleiss expansion in the system-
identification and control literature. Here, B can be interpreted as a control. Such 
expansions illustrate that all information of the controls impact on the system is con-
tained in the iterated integrals of the control. The Chen-Fleiss expansion can be obtained 
directly from (D.2) by formally iterating the integral (Taylor series) with Z = B and
then evaluating at ω. One immediately recognizes the advantage of the Magnus expan-
sion over the Chen-Fleiss series. Namely, the Magnus expansion is an exact solution of 
an approximating system, while the Chen-Fleiss series is not [79]. Nevertheless, such ex-
pansions are of great utility in the study of controllability and analysis of control systems 
[112].

From the above discussion, we understand that for all ω ∈ Ω′, (B(ω), B(ω)) belongs 
to the class of (Z, Z) ∈ Cα

T (RK) × C2α
2,T (RK×K) such that for all (s, t) ∈ ΔT

δ2Z
lk
sθt = δZl

sθδZ
k
θt, Zlk

st + Zkl
st = δZl

stδZ
k
st. (D.5)
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For α ∈
( 1

3 ,
1
2
]
, the closure of the set of Lipschitz paths in Cα

T (RK) ×C2α
2,T (RK×K) that 

satisfy the above properties is called the space of geometric rough paths.
The fundamental idea of T. Lyons is that (in the general case that the Lie brackets 

among the ξ do not vanish) the notion exists of the solution of equations driven by 
geometric rough paths Z = (Z, Z) and an accompanying well-posedness theory can be 
developed. There are many equivalent notions of the solutions of such equations (see 
Lemma A.18). For example, the Chen-Fleiss expansion up to level two can be used to 
define an intrinsic notion of the solutions by additionally specifying that the remainder 
f � belongs C3α

2,T (R) for any f ∈ C∞(M) [45]. Higher-order iterated integrals are needed 
if α < 1

3 . However, one still needs a means of constructing Z, and probability is the main 
tool used to do so. Effectively, then, the technical ingredient necessary to develop the 
basic theory of rough paths is the sewing lemma (Lemma A.1) [65]. To wit, the sewing 
lemma is used to establish the existence of integrals against Z and to obtain bounds on 
‘remainder’ f �

st. It is also possible to prove that there exists a unique two-parameter flow 
associated with the time-one map

μst(ω) = exp

⎛
⎝ K∑

k=1

ξkδZ
k
st(ω) + 1

2

K∑
k,l=1

[ξl, ξk]Zlk
st(ω)

⎞
⎠ , ∀(s, t) ∈ Δ2

T ,

even if the third-order Lie-brackets of ξ do not vanish. The main ingredient in this 
approach is the multiplicative sewing lemma, developed by I. Bailleul [8].

A prophethetical quote of M. Fleiss [56][pg. 33] translated into English reads,

We know (cf. Schwartz [103]) that it is generally impossible to multiply the distri-
butions and, in particular, that the powers δ2, δ3, · · · , of the Dirac impulse are not 
distributions. Similarly here, we cannot represent the square of a Dirac impulse by a 
series of Chen. However, it is possible to propose what is called in physics a renor-
malization (et. Güttinger [66]) based on natural combinatorial considerations.

T. Lyons showed that by postulating the existence of objects Z which satisfy (D.5), 
a solution theory can be developed for differential equations driven by rough paths. As 
explained above, probability is used to construct Z. Thus, probability can be understood 
as a tool to renormalize through its construction of otherwise analytically ill-defined 
quantities Z – and it is only this quantity that needs to be defined to construct a 
solution. M. Hairer extended the T. Lyons program by developing the theory of regularity 
structures as the basis of a solution theory for stochastic partial differential equations 
driven by white noise [68] (see, also, [59]). One of the key theorems in M. Hairer’s theory is 
the Reconstruction Theorem, which is a substantial generalization of the sewing lemma. 
As predicted by M. Fleiss [56] and H. Sussman [110], this theory has had a transformative 
impact on renormalization in statistical physics, and of our understanding of stochastic 
differential equations (in finite and infinite dimensions) and the so-called Wong-Zakai 
anomalies.
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Appendix E. Gaussian rough paths

A broad class of geometric rough paths are given by the Gaussian rough paths. Fix 
a complete probability space (Ω, F , P ) supporting a K-dimensional Gaussian process 
{Zt}t≤T with independent components and zero mean. Let Rk(s, t) = E[Zk

sZ
k
t ] denote 

the corresponding covariance functions and

Rst
k,uv = E[δZk

stδZ
k
uv] = Rk(s, u) + Rk(t, v) −Rk(s, v) −Rk(t, u).

The existence of a rough path lift for X is contingent upon sufficient rate of decay of the 
correlation of the increments. If for a given q ∈ [1, 32 ), there exist a constant C > 0 such 
that for all k ∈ {1, . . . , K} and (s, t) ∈ ΔT ,

sup
P([s,t]2)

∑
[ti,ti+1]×[si,si+1]∈P([s,t]2)

|Rti,ti+1
k,si,si+1

|q ≤ C|t− s|, (E.1)

where the supremum is taken over all finite partitions P([s, t]2) of the interval [s, t]2, 
then there is a random variable Z and set Ω̄ ∈ F for which P (Ω̄) = 1 and such that for 
all ω ∈ Ω̄, Z(ω) = (Z(ω), Z(ω))) ∈ Cα

g,T (RK) for α ∈ (1
3 , 

1
2q ). Furthermore, the lift is 

canonical in the sense that for all (s, t) ∈ Δ2
T ,

lim
|P([s,t])|→0

E

∣∣∣∣∣∣
∑

[ti,ti+1]∈P([s,t])
δZsti ⊗ δZtiti+1 − Zst

∣∣∣∣∣∣
2

= 0,

where P([s, t]) denotes a finite partition of the interval [s, t] and |P([s, t])| denotes its 
mesh size and the integral is understood in the sense of a limit of nets.

If X is stationary and

σ2
k(τ) := R

t(t+τ)
k,t(t+τ) (E.2)

is concave and non-decreasing as a function of τ on an interval [0, h] for some h > 0 and 
there is a constant C > 0 such that for all k ∈ {1, . . . , K} and τ ∈ [0, h],

|σ2
k(τ)| ≤ C|τ | 1q ,

then (E.1) holds. We refer the reader to [59][Ch. 10] and [58][Ch. 15] for a more thorough 
expositions.

Example E.1 (Fractional Brownian motion). The prototypical Gaussian process satisfy-
ing these assumptions is a K-dimensional fractional Brownian motion BH , H ∈ (1

3 , 1], 
which has the covariance function

RH(s, t) = 1 [
s2H + t2H − |t− s|2H

]
× IK ⇒ σ2

k(τ) = τ2H ,
2
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where IK is the K ×K-identity matrix and σ2
k(τ) is defined in (E.2). Thus, BH lifts to 

a geometric rough path BH(ω) = (BH(ω), BH(ω)) ∈ Cα
g,T (RK), α ∈ (1

3 , 
1

4H ) for all ω
in a set of probability one. In particular, for H = 1

2 , B := B
1
2 is a standard Brownian 

motion, B(ω) = (B(ω), B(ω)) ∈ Cα
g,T (RK), α ∈

( 1
3 ,

1
2
)
, and

Bst(ω) =

⎛
⎝ t∫

s

δBst2 ⊗ ◦dBt1

⎞
⎠ (ω), (s, t) ∈ Δ2

T .

We note that

Blk
st(ω) �=

t∫
s

δBl
st2(ω) ◦ dBk

t1(ω),

because stochastic integrals are defined for non-simple processes via an L2(Ω)-closure and 
there is no pathwise way (i.e., in the sense that it is robust under smooth approximations 
of the path) to make sense of the right-hand-side other than by simply defining via the 
left-hand-side.

Example E.2 (Volterra Gaussian processes). A Volterra kernel K : [0, T ]2 → R is a 
square integrable function such that K(s, t) = 0 for s ≥ t. One can find conditions on 
the kernels K : [0, T ]2 → R such that the corresponding Volterra Gaussian processes

Zt =
T∫

0

K(t, s)dBs, R(s, t) =
t∧s∫
0

K(t, r)K(s, r)dr,

can be lifted to a geometric rough path. We refer the reader to [31] for a more in 
depth discussion of Volterra Gaussian processes and even how to extend the setup to 
more irregular paths. Fractional Brownian motion, Riemann-Liouville, and more simply, 
Ornstein-Uhlenbeck processes are all examples of Volterra Gaussian rough paths.
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