
Received February 17, 2022, accepted March 30, 2022, date of publication April 7, 2022, date of current version April 26, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3165548

SFTSDH: Applying Spring Security Framework
With TSD-Based OAuth2 to Protect
Microservice Architecture APIs
AYAN CHATTERJEE 1, MARTIN W. GERDES1, PANKAJ KHATIWADA 2,
AND ANDREAS PRINZ 1
1Center for e-Health, Department of Information and Communication Technology, University of Agder, 4630 Kristiansand, Norway
2Department of Information Security and Communication Technology, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway

Corresponding author: Ayan Chatterjee (ayan.chatterjee@uia.no)

This work was supported in part by the University of Agder.

ABSTRACT The Internet of Medical Things (IoMT) combines medical devices and applications that use
network technologies to connect healthcare information systems (HIS). IoMT is reforming the medical
industry by adopting information and communication technologies (ICTs). Identity verification, secure
collection, and exchange of medical data are essential in health applications. In this study, we implemented
a hybrid security solution to secure the collection and management of personal health data using Spring
Framework (SF), Services for Sensitive Data (TSD) as a service platform, and Hyper-Text-Transfer-
Protocol (HTTP (H)) security methods. The adopted solution (SFTSDH = SF + TSD + H) instigated the
following security features: identity brokering, OAuth2, multifactor authentication, and access control to
protect the Microservices Architecture Application Programming Interfaces (APIs), following the General
Data Protection Regulation (GDPR). Moreover, we extended the adopted security solution to develop
a digital infrastructure to facilitate the research and innovation work in the electronic health (eHealth)
section, focusing on solution validation with theoretical evaluation and experimental testing. We used a
web engineering security methodology to achieve and explain the adopted security solution. As a case study,
we designed and implemented electronic coaching (eCoaching) prototype system and deployed the same in
the developed infrastructure to securely record and share personal health data. Furthermore, we compared the
test results with related studies qualitatively for the efficient evaluation of the implemented security solution.
The SFTSDH implementation and configuration in the prototype system have effectively secured the eCoach
APIs from an attack in all the considered scenarios. The eCoach prototype with the SFTSDH solution
effectively sustained a load of (≈) 1000 concurrent users in the developed digital health infrastructure.
In addition, we performed a qualitative comparison among the following security solutions: SF security,
third-party security, and SFTSDH, where SFTSDH showed a promising outcome.

INDEX TERMS API Security, TSD, spring framework, HTTP, OAuth2, eCoach.

I. INTRODUCTION
IoMT has been an emerging ecosystem of wireless and
connected medical-grade devices. It provides exciting oppor-
tunities in the healthcare sector to collect, transfer, and
store personal health data over a network without necessi-
tating human-to-human or human-to-computer interaction
[1], [2]. IoMT is a combination of Internet-connected
medical devices (including wearable devices and stan-
dalone devices for remote patient monitoring) and patient

The associate editor coordinating the review of this manuscript and

approving it for publication was Mansoor Ahmed .

information [3]–[6]. The connectivity between medical
devices simplifies clinical workflow management and
improves patient care in medical institutions and remote
areas [5]–[8]. In the IoMT ecosystem, IoMT devices collect
or perceive data and information about health and personal
well-being and then send them to databases or other IoMT
devices or clouds or nodes (for example, fog or edge comput-
ing nodes) over the Internet [7]–[11].

The lack of security awareness may promote the following
attacks on the IoMT ecosystem: illegal penetration attempts
(e.g., cross-site forgery (CSRF), cross-site scripting (XSS),
cross-source resource sharing (CORS) and Clickjacking),

41914 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-0407-7702
https://orcid.org/0000-0002-0037-2547
https://orcid.org/0000-0002-0646-2877
https://orcid.org/0000-0003-2034-1403

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

asset destruction, record theft, denial of service (DoS), dis-
tribution DoS (DDoS), man-in-the-middle attack (MITM),
content sniffing (CS), brute force attack (BF), Internet
protocol (IP) spoofing and therapeutic manipulation (TM)
[5]–[7]. The Open Web Application Security Project
(OWASP) discovered that IoMT security vulnerabilities
include the following [5]–[7]:
• Inadequate authentication and authorization,
• Exposed Application Programming Interfaces or APIs
(e.g., mobile, web, cloud),

• Inefficient data transmission encryption,
• Vulnerable network services,
• Privacy issues, and
• Deficient security configurability
Therefore, guaranteeing the safety of IoMT is an acute

problem to be resolved. Due to the rapid growth of IoMT solu-
tions and the continuous development of IoMT technology,
security assurance has caused issues for IoMT users and orga-
nizations adopting IoMT technology. These problems exist,
especially when choosing appropriate and reliable safety
measures for the situation. Thus, authorized, and authenti-
cated users or devices should only access the IoMT healthcare
system. Insufficient authentication may cause an attacker to
enter the system and access the user’s private healthcare data.
More andmoremalicious attackers target medical servers and
digital medical systems because personal medical data and
information are precious in the illegal market [3], [5]–[7].
Therefore, medical service providers require even more
robust security measures, which inevitably increase the
cost of creating, operating, and maintaining these medi-
cal services. Due to security breaches, retrieving and elim-
inating stolen data is both challenging and critical. The
government and medical institutions must formulate strict
regulations and severe penalties to protect patients’ health
records.

The reliability and credibility of eHealth scientific research
and associated services rely on the health data protection
plans and guidelines regarding security, privacy, and confi-
dentiality. The Health Insurance Portability and Accountabil-
ity Act of 1996 (HIPAA or the Kennedy–Kassebaum Act) of
the United States (USA) [12] and the EU GDPR [13] are two
worldwide accepted standards (or Privacy Rule) for the pro-
tection of individually identifiable health information. The
principles of the privacy law cover the use and disclosure of
health information from individuals - called ‘‘protected health
information’’. The primary purpose of the privacy policy is
to ensure that individuals’ health information is adequately
protected while facilitating the flow of health information
required to provide and promote high-quality health care
and protect the health and well-being of the public. Personal
data is the information that can identify a person, directly
or indirectly [12]–[14]. It primarily includes online identi-
fiers such as IP addresses, cookies, digital fingerprinting,
and location information that may identify people [12]–[14].
The GDPR [13] has the following six general data security
standards:

• Fairness and lawfulness
• Limitation of purpose
• Minimization of data
• Precision
• Limitation of storage
• Honesty and confidentiality
Norwegian data protection policies (NORMEN) [14],

another Norwegian health and care provider standard for
information protection and privacy, is an agreed collection
of information security standards based on legislation. In the
modern digital data era, it is no longer possible to run
research on sensitive data on local facilities, with limited
capacities and no possibility to share results with collabo-
rators. Research environments at universities and university
hospitals have expressed a need for ample storage space for
sensitive research data to handle.

This research aims to develop a secure digital health infras-
tructure with SFTSDH security solution for research and
innovation services, providing secure hosting and operation
of application services, collection, storage, processing, and
provisioning of data, and test the security solution with the
deployment of an eCoach prototype system as a case study.
We adopted Representational State Transfer (REST)-based
microservices architecture (MSA) with Spring Framework to
develop lightweight eCoachAPIs with independently deploy-
able services to increase granularity and agility. Limited
studies focused on applying security solutions at the MSA
level, which has been addressed in this research. The different
gaps between this study and the existing studies have been
captured in Section III. This research addresses the following
research questions –
1. How to protect REST APIs from external vulnerabilities

with an integrated security solution approach (SFTSDH)?
2. How to extend the SFTSDH with VPN, Bcrypt hash,

API key, network firewall, and SSL protocol to build a digital
health infrastructure?
3. How scalable and effective is the adopted security solu-

tion approach?
SFTSDH implements security features, such as identity

brokering, OAuth2, multi-factor authentication, CORS, and
user management to protect the REST APIs from illegitimate
access and external attacks, such as CSRF, XSS, Clickjack-
ing, content sniffing, and brute force. An eCoach prototype
system has been deployed in the developed digital health
infrastructure to conduct a formal security analysis of the
integrated security solution scheme as a case study. In addi-
tion, performance analysis and qualitative analysis have been
performed to show how scalable and effective is the adopted
security solution approach.

The rest of this paper is designed as follows. Section II
describes the essential preliminaries required for the adopted
security solution. Section III describes related work and
emphasizes the difference between existing and our work,
focusing on the architectural aspects besides different secu-
rity features. In Section IV, we present our developed digital
health system architecture.

VOLUME 10, 2022 41915

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

Section V describes the adopted security solution.
In Section VI, we describe experimental results. The paper
is concluded in Section VII.

II. ESSENTIAL PRELIMINARIES
The needed technical background to realize the SFTSDH
security solution has been described in this Section. In health-
care systems (e.g., eCoach [18]–[21]), personal health data
are collected from various sources (e.g., wearables, fitness
trackers, medical devices, assessment tools, self-reports, and
user applications). According to the GDPR and Norwegian
law, personal research data and information are sensitive
and must be stored and processed under strict regulations
[13], [14]. There are different security methods described
in Section III to protect REST APIs. However, in combina-
tion with SF [15] and TSD platform [16], the HTTP secu-
rity paradigm [17] may offer a parallel approach to prevail
security functionalities, their features, session management,
secure communication, and access management solutions for
REST APIs. The reasons behind adopting SF, TSD platform,
and HTTP security paradigm in our security solution are:

(a.) Spring Framework [15], [22] provides a comprehen-
sive programming and configuration model for modern Java-
based enterprise applications on any deployment platform.
A key element of Spring is application-level infrastructure
support. Spring focuses on the ‘‘pipeline’’ of enterprise appli-
cations so that developers can focus on application-level
business logic without unnecessary contact with a specific
deployment environment.

(b.) TSD (service for sensitive data) [16] is a GDPR
supported platform for collecting, examining, and offering
sensitive information consistent with the NORMEN. The
TSD is an IT platform for research, regardless of whether
it is sometimes utilized for clinical exploration and business
research. TSD has been created and worked by the Univer-
sity of Oslo (UiO) and is a piece of NorStore, the public
foundation for dealing with logical information. All the ser-
vices and data are protected inside of TSD from illegitimate
access. The TSD offers services such as client registration
(signup, confirmation, getting an API key, and password
reset), authentication and authorization with access tokens,
file import and export in JavaScript Object Notation (JSON)
(simple file upload and download, resumable file upload
and download, resuming uploads and download, four differ-
ent types of access tokens for both basic authorization and
TSD authorization services (survey_import, survey_export,
survey_admin, and survey_member), queries for filtering,
encryption (Base64 encoded) of JSON and file data. In this
research, TSD has been considered a third-party Identity and
Access Management (IAM) platform.

(c.) HTTP [17], [23] is a ubiquitous protocol and one of
the foundations of the network. HTTP is a stateless protocol
based on messages (requests, responses), headers (key-value
pairs), and optional bodies. The HTTP protocol works on the
Transmission Control Protocol (TCP) [23]. TCP is one of
the core protocols in the Internet protocol stack. It provides

reliable, orderly, and error-checking data stream transmis-
sion, making it an ideal choice for HTTP [23]. Some essential
features of HTTP in a web security context are [17], [23]:
query string, URL encoding, cookies, built-in authentication
mechanism (e.g., Basic and Digest), and Headers. Basic
and Digest are two built-in methods of HTTP. However,
other authentication methods are Windows NT LAN Man-
ager (NTLM), IWA (Integrated Windows Authentication
or Kerberos), Transport Layer Security (TLS), or Secure
Socket Layer (SSL) client certificates. In addition, forms
authentication, OAuth2, Security Assertion Markup Lan-
guage (SAML), JWT (JSON Web Token), and many other
types of authentication options reuse features in HTTP (such
as form data or headers) to authenticate the client [23]. HTTP
headers are used to pass additional information in requests
and responses. Usually, custom headers start with X- (for
example, X-Content-Type-Options header, X-Frame-Options
header, etc.), but this is just a widely adopted convention, not
by the HTTP protocol [23].

The MSA [24] helped to avoid the following drawbacks
associated with traditional monolithic approaches to software
development [25], [26]: bundled deployment as a single stack,
limited scalability, DevOps challenges, and high resource
cost. Subsequently, we deployed the eCoach prototype in
the intended secure digital infrastructure and performed
functional testing for acceptability. REST endpoint security
includes the following methods: HTTP-based authentication
scheme with basic or bearer token, API keys, OAuth2 with
the access token and refresh token, and OpenID Connect
(e.g., OpenID, BankID). OpenID Connect (OIDC) [27] is
a thin layer on top of OAuth2 that adds insights concern-
ing the client signing into the client profile. TSD supports
the following four types of authentication schemes: basic,
two-factor, ID-porten, and dataporten. We used TSD’s two-
factor authentication scheme and access token-based autho-
rization method for REST API security. eHealth scientific
research and related services’ reliability and believability
depend on the health data security plans and rules regarding
security, and confidentiality. For this research, we got an eth-
ical endorsement from The Norwegian Center for Research
Data (NSD) and Regional Ethical Committee (REK) for over-
seeing information for our eHealth research in Norway.

III. RELATED WORK
A. eHEALTH SECURITY AND PRIVACY REQUIREMENTS
Articles associated with eHealth research reveal the subse-
quent security and privacy requirements in healthcare systems
for both on-premises and cloud-based [28], [29]: EHR secu-
rity, user authentication, governing amenability, authorized
access, secrecy, ethical consent, legal issues, the relevance of
data access, data ownership, data uniformity, data separation,
security audits, archiving, requirements for third-party certifi-
cates (such as SAS70 Type II, PCI DSS Level 1, ISO 27001,
and FISMA), protection against external security threats
(such as DoS, DDoS, MITM, IP spoofing), security policies,

41916 VOLUME 10, 2022

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

TABLE 1. Security solutions with existing MSSA with respect to the key attributes of a secure web application architecture.

TABLE 2. Security solutions with existing MSSA with respect to the implemented security features.

security protocols, and database access management. The
identified vital security terms can be disseminated in the
following four categories: authentication (multi-factor, form-
based, access token, and API key), authorization (OAuth2,
OpenID, Dataporten, and CORS), encryption (digital cer-
tificate, SSL, RSA, Bcrypt, SHA-256, Base64, and MD5)
and external security threats (CSRF, DDoS, MITM, XSS,
brute force, and IP spoofing). Authentication is used to verify
personal identity; identity verification is related to verifying
credentials. The plan determines whether the person is a
legitimate user. Authorization is a mechanism used to deter-
mine whether a particular service is available to authenti-
cated users. It verifies that users have the right to person-
ally access resources such as records, databases, and files.
Usually, authorization is performed after authentication to
verify the user privileges. Encryption uses an algorithm to
encrypt, encrypt data and then use a key to decrypt, which
is the information of the receiving group. External threats
are the possibility that people outside the system may use
malicious software, hacking, disruption, or social engineering

to exploit system vulnerabilities. Healthcare research shows
various studies [24], [30]–[39] associated with security and
protection in electronic health records (EHRs), secure health
monitoring framework, security conventions, and endorse-
ment plans, security contemplations in medical services
applications, strategies for medical services security, and
interoperability, healthcare cloud, big data security, medi-
cal services security consistence, security execution, security
difficulties, and success factors. However, studies related to
security solutions at the Microservice Solution Architecture
Level (MSSA) are limited.

B. MSSA
Salibindla [40] surveyed MSSA and Microservice API
security methods (e.g., OAuth, HTTPS), focusing on the
security of communication protocols. A security architecture
[54]–[59] consists of security principles, methods, and mod-
els designed to align with business goals and help protect
organizations from cyber threats. The key attributes of a
secure web application architecture are [54]–[59]: Inter-tier

VOLUME 10, 2022 41917

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

authentication (e.g., LDAP, Kerberos, Mutual SSL, IP Vali-
dation, ID Portal), Server-side validation (e.g., secure Proxy,
protection against external attacks), Secure communication
(e.g., HTTPS), data encryption and logging. The microser-
vice open security architecture framework provides a com-
prehensive overview of the vital security issues, principles,
components, and concepts that are the basis for the archi-
tectural decision-making involved in designing an effective
security architecture. Xie et al. [41] published a result on
Spring API Security architecture and implementation without
verifying the effectiveness of the Spring Security Frame-
work (SSF) and OAuth2 when these technologies were used
to enforce Microservice API endpoint authentication and
authorization. Nguyen et al. [25] conducted a proof of con-
cept (PoC) of a Microservice application using SSF and
OAuth2 to reduce the knowledge gap on Microservice and
API security. However, they did not test how the solution
would work after integrating with a third-party IAM plat-
form. Dikanski et al. [26] completed a conceptual study to
identify and execute authentication and authorization pat-
terns in the SSF to reduce the gap between the design
and implementation of pattern-based protection to include
high-quality security characteristics in software systems.
Nevertheless, their study suffered from the SSF’s actual
performance to protect Microservice at the API endpoint
level with integration with IAM platform. Alofi et al. [42]
proposed a secure and cost-effective model based on the
Message Queuing Telemetry Transmission (MQTT) protocol
to protect IoT resources through access control to RESTful
Web services. Beer et al. [43] proposed an adaptive security
architecture based on neural networks to protect RESTful
Web services in enterprise computing environments through
three functional principles-intelligent methods for predicting,
preventing, and learning to detect future threats. The core of
their security solution is to protect HTTP transactions based
on Public Key Infrastructure (PKI) and related encryption
technologies. The interpretation results show that compared
with the supported network/transport layer security, the pro-
posed security solution is suitable for protecting REST and is
better than SOAP-based Web services. Since RESTful Web
services are stateless, they usually do not have any session to
perform the challenge-response mechanism. TLS/SSL pro-
vides secure peer authentication.

Nevertheless, when the authentication request is based on
delegation, this mechanism is not sufficient to allow the site to
authenticate on behalf of its users. HTTP security (HTTPS) is
widely used confidentiality, but it only provides hop-by-hop
protection. An excellent RESTful solution follows a token-
based approach. Serme et al. [44] proposed a security model
based on confidentiality and digital signatures to protect
RESTful messages. These messages carry undeniable tokens
and provide data secretly by encrypting their contents. They
proposed a protocol to ensure the communication security of
RESTful services. They provide encryption, signatures, and
their combination. They do not intend to offer an equivalent
secure session for RESTful services because it is related to the

transport layer security of HTTP, which has been resolved in
protocols such as SSL and TLS. Backere et al. [45] Designed
a security solution for RESTful Web services using non-
RESTful elements to outperform TLS.

The summary of the security solutions concerning essen-
tial attributes of a secure web application architecture and
security features are described in Table 1 and Table 2 and
are further compared with our adopted SFTSDH security
approach. Table 1 and Table 2 show how our SFTSDH solu-
tion is different from the existing studies.

C. STATE-OF-THE-ART
This study aims to reduce the MSA and API security knowl-
edge gap and protect REST APIs by creating an MSA
application prototype using SFTSDH (see Table 2). In con-
junction with Spring Framework, TSD platform, and HTTP
methods, we implemented a parallel API protection solution
(SFTSDH)with pre-existing security features such as identity
brokering, OAuth2, multi-factor authentication, and CORS.
We performed unit testing to validate the security solution at
the modular level. Moreover, we created a self-signed SSL
certificate with Keytool to protect sensitive information on
theweb using public key (RSA) encryption [46]. On top of the
SSL protocol, we used ‘‘eduVPN’’ to provide a safer E-2-E
connectionwith service encryption and changed IP addresses.
It did not only help data traffic to pass all themid-points safely
but also provided access control by allowing legitimate VPN
users to access the REST endpoints of the eCoach prototype
system. Finally, we validated the scalability of the adopted
approach as a performance metric. In our solution approach,
all the implemented security features are described in Table 3.

IV. SYSTEM MODELING
Personal health and wellness data are usually collected over
time through wearable sensors, offline and online interac-
tions, smartphone apps, self-reporting questionnaires, and
feedback forms [18]–[21]. To collect contextual weather data
over time, both free and paid weather APIs and various
weather sensors are available in the AppStore or marketplace.
For ubiquitous tracking and distinct levels of physical activity
measures, high-end, time-dependent activity data collection
with wearable BLE-enabled devices has become known and
achievable. Wearable activity sensors are connected via Blue-
tooth communication technology (BLE) to a smartphone.
The eCoach smartphone application can seamlessly track and
transfer high-resolution raw acceleration data to safe storage
for further processing with a scheduler module. Some activ-
ity data are questionnaire-dependent (self-reporting), such
as non-wear time and intense activity information. Physio-
logical data can be collected (e.g., weight, blood pressure,
heart rate, SPO2, body assessment data) either invasively
(e.g., glucose level, lipid profile) or non-invasively. Based
on the self-reported questionnaire, behavior data (dietary and
habit) are collected either regularly or irregularly (alternating
days or weekly). Baseline data (demographic data, medical
history, personal preferences, initial weight and height, initial

41918 VOLUME 10, 2022

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

TABLE 3. Well-established security features implemented in the SFTSDH security solution.

blood pressure, initial lipid profile, initial glycemic response,
and initial body assessment data) are being collected for
demographic statistics or population clustering, or individual
target assessment during the participant’s initial recruitment
or monthly basis.

In this context, we have developed a digital health infras-
tructure after extending the SFTSDH features with VPN,
Bcrypt hash, API key, firewall, and SSL as depicted in
Figure 1. Moreover, we deployed a health eCoach prototype
system in the developed infrastructure to execute a formal
security testing of the adopted SFTSDH solution and it is
depicted in Figure 2 and Figure 3 for a smartphone applica-
tion (app.) version and a web version, respectively. We main-
tained a modular structure for our eCoach prototype system
with the following modules [21]: activity (for device provi-
sion, collection and visualization of activity intensity, activity
pattern, activity classification, posture detection, and step
count over time), scheduler (for periodic notification genera-
tion and activity data transfer), eCoachUI (user interface for

forms, dashboard, and basic information), eCoachBusiness
(for the management of user login, complaint, performance,
and data), weather (for the collection of weather data from
OpenWeather using API-Key authentication and visualiza-
tion of weather trends), and fhir (for data interoperability
with HL7 protocol and medical ontology [47]). FHIR stands
for Fast Healthcare Interoperability Resources for providing
semantic and structural interoperability in personal and per-
son generated health data with FHIR resources and clinical
vocabularies.

A project p-1075 was created on 11th March 2020 under
the name ‘‘diferi’’ on behalf of UiA on TSD side. The
TSD infrastructure (see Figure 1) was established to sup-
port researchers, digital service operators, healthcare service
providers, and third-party system and solution vendors to
carry out research and innovationwork jointly with the Centre
for e-Health at UiA, the Centre for eHealth Research I4Helse,
and other research groups, partners, and customers. The
TSD infrastructure collects, stores, and exchanges different

VOLUME 10, 2022 41919

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

FIGURE 1. The developed digital health infrastructure with extended SFTSDH features.

health-related data. It supports incoming data generated from
the following dissimilar sources:
• UiA Private Network or Secured Research and Inno-
vation Infrastructure that collects data from sensors,
questionnaire, usability lab and the living lab (Boligsim-
ulator) and project terminals.

• Research participants or Public Communication Infras-
tructure that collects data from wearable sensors,
non-wearable sensors, and questionnaire.

• Research and Innovation Partners or External Infrastruc-
ture that collects data from sensors, questionnaire, and
project terminals.

TSD infrastructure supports project specific servlets (PSS),
data storage, and inbuilt servlets. TSD infrastructure can host
multiple services in respective VMware. All the collected
data are sent to specific services (e.g., eCoach) deployed
in the TSD virtual machines (VMware) using HTTPS, fol-
lowing the TSD authentication and authorization rules, and
further stored in the central TSD database. TSD infrastructure
additionally supports standard-based EHR or patient-journal-
system (PJS), secure access to the data for project-specific
services (e.g., for processing and evaluation of the data for
decision-support services), and the secure provisioning of
the data to facilitate smooth exchange and interoperability

41920 VOLUME 10, 2022

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

FIGURE 2. The proposed security solution for our health eCoach prototype system for web version.

FIGURE 3. The proposed security solution for our health eCoach prototype system for smartphone app. version.

between infrastructure components and project partners. The
project aims at the following outcomes:
• Components in the digital health infrastructure for
secure collection and storing of health data.

• Establishment of a pilot service for project-specific data
collection and processing.

• The environment to store Audio & Video (A/V) record-
ings securely.

• Providing seamless, secure, and full access for UiA users
and external partners to the digital infrastructure.

Following a general decision by UiA/IT, the TSD infras-
tructure within this pilot project will be established within
the TSD platform at the University of Oslo. In line with

this, an EHR or PJS for standard-compliant reception and
provisioning of health data has been set up within TSD.
A secure communication mechanism and access control have
been established between the TSD proxy gateway and the
EHR/PJ server. As a pilot study to test the established infras-
tructure with a project-specific prototype service for research,
eCoach services have been deployed and integrated into
the secure digital infrastructure. That pilot services receive
project-specific person-generated data (PGDs) from external
user devices and applications and store the data in the TSD
database following semantic and structural interoperability.
The pilot services boost project-specific data processing,
decision support, real-time communication with user devices

VOLUME 10, 2022 41921

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

FIGURE 4. Data collection modules of the health eCoach prototype system.

and applications in a public communication infrastructure
(i.e., outside the secure digital infrastructure).

The Usability Lab and the Living Lab (Boligsimulator)
of the I4Helse environment at UiA support the audio-visual
observation, monitoring and recording of test scenarios for
research and innovation purposes. Audio-Visual recordings
from human test participants must be treated as personal,
privacy-relevant data, and must be handled securely. For this,
the secure digital infrastructure within the TSD system will
be connected to the audio/video lab facilities at UiA/I4Helse,
to allow secure transmission, storage, analysis, and access
to the recorded content. Shared data access requires strong
security and access control. At the same time, established
access control solutions at UiA and external partner insti-
tutions, such as Feide, BankID will be supported. These
access control mechanisms will be integrated with the access
control solution of the TSD system to extend the robustness
of the solution. In this study, we have focused on project
aims (a) and (b). The remaining project aims (c) and (d) are
of the future research focus.

TSD does not allow outgoing API calls inside the projects
and is open for the registered networks only. TSD’s internal
IP addresses are not published to external DNS services.
Therefore, we set up a project-specific proxy at UiA. Each
service deployed inside the TSD infrastructure is accessible
from outside TSD with exposed REST-APIs using OAuth2.
TSD can provide an infrastructure to host multiple disjoint
projects and connect services to a secure, centralized database
server. TSD PostgreSQL database is protected by its access
control list (ACL) rules and authentication mechanism. Fur-
ther details related to the service deployment inside TSD as a
docker image and its access outside TSD using the necessary
security tokens are discussed in Section V.

A. DATA COLLECTION
The activitymodule is responsible for activity device registra-
tion, device allocation, seamless collection of sensor observa-
tions, and sending it back to the eCoach business module for
storing data in a PostgreSQL database. We used a wearable

MOX-2 [48] activity monitor to collect personal activity data
for the following measurement parameters – physical activ-
ity classification (low intensity, medium intensity, and high
intensity), posture detection (sedentary, standing, and weight-
bearing), physical activity intensity (counts per minutes), and
steps. It is an activity monitor based on a BLE accelerometer
embedded. Consuming low power, the device can seamlessly
measure and transmit high-resolution raw acceleration data
and multiple activity parameters per second for seven consec-
utive days (up to 60 days). Activity data collection is a two-
step process: a. activity data collection from MOX-2 activity
sensor to personal mobile in CSV format using BLE protocol,
and b. periodic uploading of CSV data from mobile location
to activity module for persistent storage and further analysis
using a scheduler service using HTTP-POST (see Figure 4).
The weather module periodically contains weather updates
from OpenWeather REST APIs (latest and hourly) with API-
Key authentication and sends them back to eCoach business
logic for stable storage. The questionnaire module consists of
six question sets – daily, alternative day, weekly, interview,
baseline (monthly), and feedback form. The participant sub-
mits the questionnaire, which is stored back in the database
through eCoach business logic.

B. eCOACH SYSTEM (APP. VERSION VS WEB VERSION)
The eCoach endpoints are exposed as REST APIs. All the
modules are connected to a PostgreSQL relational database
system for persistent data storage using object-relational
mapping (ORM) via the HAPI-FHIR module for seman-
tic representation of PGDs using medical terminologies in
JSON. The activity, scheduler, and eCoachUI modules are
written using a Spring-Framework, and their exposed REST
APIs are tested with Spring-Boot Swagger. To monitor these
modules’ health, the Spring-Boot Actuator provides secure
endpoints, such as /metrics, /env, /beans, /trace, /health, and
/info, which are protected by a role-based authorization
scheme. The eCoach system can be accessed by both ver-
sions: a smartphone mobile app. (android) and a web. The
‘‘/ecoachui/home’’ and ‘‘/ecoachui/’’ APIs are exposed to the

41922 VOLUME 10, 2022

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

external user (but protected with VPN access, a firewall, and
SSL). Other APIs are protected with access-role to the TSD
platform. The user interface module is responsible for app
view, web view, and data visualization based on individual
access roles. We focus only on establishing a secure digital
health infrastructure, eCoach security implementation, and
security verification in this study. Concepts such as sensor
description, processing of time-dependent (activity, nutrition,
habit) and time-invariant (demographic) data, data visualiza-
tion, and the implementation of HAPI-FHIR (HL7 V. 4) are
beyond the scope of this paper.

Figure 2 and Figure 3 depict how the security solution
for the eCoach system has been developed with the TSD
platform for the smartphone app. version and web version,
respectively. In smartphones, all the personal and person-
generated health data (e.g., activity sensor data, question-
naire, and interview) are collected with an android eCoach
app. and transferred to the eCoach services hosted in the
TSD infrastructure for storing in the TSD central database.
Using web version, only questionnaire and interview data
can be captured and recorded in the TSD database. From
TSD, access to the external server is prohibited. Therefore,
the weather module is deployed outside of TSD infrastruc-
ture; however, inside of a VPN (EduVPN) and firewall-
protected ubuntu infrastructure (EduNet), provided by UiA
to access external resources as Weather APIs. Weather data
collected from Weather APIs are stored in a PostgreSQL
relational database inside EduNet. Networks inside EduNet
are accessible (e.g., SMTP-mail.outlook.com); however, they
must go through a proxy for external access. We deployed
the following three variants of the Scheduler module: (the
first one or v.1) inside of the TSD (for scheduled notification
generation and storing the result in the TSD database as a
notification message), (the second one or v.2) inside of the
EduNet (for periodic notification message collection from
TSD, combining it with the weather forecasting for contex-
tual recommendation generation, and store the personalized
notification message in TSD), and (the third one or v.3)
inside of the eCoach mobile application (for periodic activity
data transfer to TSD and periodic notification message col-
lection from EduNet to generate notification pop-up alerts).
Personal and person-generated health data inside the EduNet
is protected and free from identity disclosure. Moreover, our
eCoachUI module has two deployed versions: (v.1) inside of
the EduNet (user interface for eCoachWeb version) and (v.2)
inside of the mobile application as a user interface.

Only activity, scheduler (v.1), eCoachBusiness, and
the fhir sub-modules are deployed inside TSD. TSD
exposes their endpoints under the following three services:
/v1/p1075/ecoach/activity, /v1/p1075/ecoach/scheduler, and
/v1/p1075/ecoach/fhir. These services are protected with
OAuth2. The FHIR service is responsible for giving access
to HAPI-FHIR REST APIs for semantic and structural inter-
operability. On the first installation of the eCoachmobile app,
participants must register a system-generated user-identifier
that will be stored in the smartphone’s in-memory storage

(or SQLite database) with the Bcrypt encryption algorithm.
The user-identifier will help in session management and the
transfer of personalized activity data. With the de-registration
of the eCoach app., it will be auto removed from the mobile.
SQLite database will be further reused to store valid short-
lived (30 days) access tokens for TSD authorization. Inside
EduNet, we created a self-signed SSL certificatewithKeytool
(keytool -genkey -alias apache-tomcat -storetype PKCS12 -
keyalg RSA -keysize 2048 -keystore eCoach.p12 -validity
3650) to secure confidential web information using pub-
lic key (RSA) encryption. The Keystore file path was then
inserted into the configuration file of theApache-tomcat web-
server to alter the application start-up port from 8080 to 8443.

The eCoach prototype system consists of five user types:
researcher, developer, system admin, health professional,
and participants. These users are grouped into ADMIN
(researcher, developer, system admin) and USER (health pro-
fessional or nurse, and participants) for role-based access
management. Researchers and developers are responsible
for eCoach design, development, test, and validation study.
An ADMIN is responsible for infrastructure support. They
have no access to participant’s PGDs and dashboard. Trained
health professionals (e.g., professional nurses) are responsi-
ble for offline interviewing to facilitate participant screening
and collecting initial and baseline data. Furthermore, they can
view the dashboard to monitor the participant’s health status
and health progress. Participants have access to their self-
reporting questionnaire, feedback forms, and health monitor-
ing dashboard through the eCoachUI module.

C. METHODS FOR SECURITY IMPLEMENTATION AND
PERFORMANCE EVALUATION
There is no single protection method to meet all the security
and design requirements for our modular and distributed
eCoach prototype system. To realize and justify the adopted
security solution, we applied a web engineering security
methodology proposed by Aljawarneh et al. [49]. The soft-
ware engineering principles encourage the method built up on
top of the standard waterfall system development life cycle
(SDLC). The applied approach reduced substantial threat
exposures during all the SDLC phases by integrating security
and assessment factors at each SDLC phase which software
engineers and security professionals verified.

To determine the performance of the adopted security
approach, we evaluated the API scalability. Throughput and
latency were considered to measure the API scalability
[53], [60]–[62]. Network throughput refers to the average
data rate at which data or messages are successfully delivered
on a specific communication link. It is measured in bits per
second (bps). The maximum network throughput equals the
TCP window size divided by the communication packet’s
round-trip time (RTT). The method does not consider com-
munication overhead, such as network receiver window size,
machine limitations, or network latency [53], [60], [61].
Network latency is the time taken for a packet to be cap-
tured, transmitted, processed through multiple devices, and

VOLUME 10, 2022 41923

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

then received and decoded at the destination [53], [60], [61].
We generated HTTP request loads to check API scalability
as a ‘‘Thread Group’’ with Apache open-source software
JMeter (V 5.4.1) and captured corresponding throughput and
latency. For the load testing with JMeter [53], the following
three properties have been considered critical: the number of
threads or users, the ramp-up period in seconds, and the loop
count to set the test count. We repeated the experiment mul-
tiple times with a loop count value of five for individual load
and took a mean throughput and latency. Low latency and
high throughput are good performance indicators to support
real-time critical applications.

V. SECURITY IMPLEMENTATION SCHEME
This section describes our security solution implementation
and then its validation. We demonstrate security configura-
tion, sequence diagrams for user registration, authentication,
authorization, application deployment, and the login process
to access web resources from the TSD as IaaS (Infrastructure
as a Service). We tested the security performance of the
system in a real-time environment.

A. HYBRID SECURITY SCHEME AND ITS DEPLOYMENT
IN THE ARCHITECTURE
For Linux VMs, TSD uses Thinlinc remote access protocol
based on HTML5, with a Nginx proxy for two-factor authen-
tication. Thinlinc is a remote desktop framework that sup-
ports HTML5 to connect to their Linux machines using their
browser instead of a VNC client. Thinlinc uses TigerVNC
and provides an additional layer of user and agent VM
administration, allowing the automatic assignment of project
user-groups to Thinlinc agents installed on the Linux VMs.
Thinlinc infrastructure consists of a Thinlinc proxy and a
Thinlinc master. The proxy runs Nginx and a customized
log-in protocol. The Thinlinc master server is the machine
where the users are redirected to after authenticating through
the proxy. The master acts as the broker, keeping track of
all the Thinlinc agent machines, and redirecting users to the
correct agent machine. Users need to do an extra login on
the actual project VMs. Each service deployed inside of TSD
platform (e.g., /v1/p1075/ecoach, /v1/p1075/scheduler and
/v1/p1075/fhir), is associated with a unique long-lived API
Key ({‘‘api_key’’ = <key>}).
The keys are valid for one year and expire automatically.

It is the responsibility of the system administrator to order a
new key with an application-specific (e.g., eCoach) client_id
and password (superuser). The key is just a JWT token,
therefore, it can be decoded to verify if it has expired or
not. The API key is used as a bearer token in the HTTP
request header to generate short-lived access token (valid for
30 days). The admin can request five long-lived API keys in
total. If anyone abuses the API, then long-lived API token is
revoked. The complete APIKey generation, sign-up and login
processes are as depicted in Figure 5 and Figure 6.

TSD has pre-defined access tokens to investigate which
access tokens are theoretically available to give clients access

FIGURE 5. Admin sign-up and API key generation for TSD exposed
services.

FIGURE 6. Sign-up and login for project members.

to the specific API (GET /v1/p1075/auth/tokens/info). TSD
API supports the following two authenticationmethods: basic
and two-factor authentication. In the former, using just the
API key, users can get the short-lived access token to their
application to import data to TSD for the project to they
have consent. Applications using basic authentication cannot
export any data. In the latter, a google authenticator-based
OTP is required to import data to TSD and export data
from TSD. Both the authentication headers are explained in
Textbox I.

Textbox I The Authentication Headers in the Request Header
POST
https://api.tsd.usit.no/v1/p1075/auth/basic/token
Authorization: Bearer $api_key
{

‘‘User_name’’:‘‘p1075-test’’,
‘‘password’’: ‘‘∗∗∗∗∗∗∗∗∗’’

}
OR
POST
https://api.tsd.usit.no/v1/p1075/auth/tsd/token?type=<type>
Authorization: Bearer $api_key
{

‘‘User_name’’:‘‘p1075-test’’,
‘‘otp’’:‘‘∗∗∗∗∗∗’’,
‘‘password’’: ‘‘∗∗∗∗∗∗∗∗∗’’

}

41924 VOLUME 10, 2022

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

FIGURE 7. Application deployment in TSD and accessing exposed service
APIs.

TSD’s network is strictly firewalled, and internal IP
addresses are not published to external DNS services. TSD
has a hierarchy of three DNS servers, two UNBOUND (the
resolves for the addresses inside TSD) and one BIND being
the source of authority and responds to queries from TSD and
UiO resolvers outside TSD (having only the IPv6 addresses).
TSD servers will not be able to ping or do DNS lookups
on addresses outside the primary firewall by TSD. There
is no Internet access to and from the project VMs, but we
can communicate between hosts within the project’s network,
either from the login node or the service host itself. We can
perform HTTP requests to the services once they are up and
running through a given proxy. All the applications hosted on
the TSD project VM are secured automatically and accessed
within the TSD network and cannot be accessed from the
external network. To access the APIs of our hosted services
within TSD, we need to follow the steps depicted in Figure 7.

Our eCoach modules were first deployed into a test server
(see Textbox II), and then it was hosted on the docker con-
tainer in the VM in TSD (see Textbox III). The direct connec-
tion between the TSD environment and the outside internet
and vice-versa is not possible due to the security policy of
TSD. Thus, we are unable to use the internet functionalities
from inside the VM and cannot access the docker hub to
pull the docker images of the developed application. Hence,
we need to follow an utterly offline procedure to build a
docker image, upload it on TSD using their proprietary file
upload procedure, load the image in the Docker container,
and run it as depicted in Figure 7. TSD provides PostgreSQL
and MSSQL as the DB services. TSD has mirrored the UiO
setup for DBs inside TSD, and every project in need of a
database (DB) will get its VM with a DB on it. The DB uses

block device storage from the HUS-VM, and there are four
DB administration computers. All DB traffic is encrypted
and uses SSL certificates from Uninett. For this project,
p1075-dbpg01.tsd.usit.no PostgreSQL DB host is created
and opened from the p1075-service-l.tsd.usit.no service host.
According to the security policies from the TSD on the
PostgreSQL server, we do not have superuser privileges. TSD
admin team can create application-specific databases and
DB-owners. This restriction is done to guarantee a proper
backup of PGDs. These DBs are only accessible from inside
the VM from the service host and the applications hosted in
the TSD but cannot be accessed from the public internet.

Textbox II Prerequisites to Deploy eCoach Modules Into the
Test Server

X Setup the working environment with JDK 8.0+ version
and Apache-Maven build tool (V 3.X)

X Download a module (e.g., activity) from GitHub with
clone or if its existing in the local codebase then
perform pull operation.

X Install the latest version of Apache-tomcat webserver
(e.g., V9.0.3).

X Create a database namely ‘‘ecoach’’ in PostgreSQL
(e.g., V13.0)

X Create a table ‘‘TBL_ACTIVITIES’’ under eCoach
database

X Configure activity module to PostgreSQL database in
the environment property file.

X Compiling and installing activity module→ generate
activty.war file.

X Deploy the web archive file (war) into the tomcat
webserver.

Textbox III Deploying eCoach Modules Into the Developed
Digital Infrastructure With TSD Integration

X Install docker desktop in the local PC or laptop.
X Download a module (e.g., activity) from GitHub with

clone or if its existing in the local codebase then
perform pull operation.

X Create a database namely ‘‘ecoach’’ in PostgreSQL
(e.g., V13.0) at TSD side.

X Create a table ‘‘TBL_ACTIVITIES’’ under eCoach
database

X Configure activity module to PostgreSQL database in
the environment property file.

X Compiling and installing activity module→ create
Dockerfile with OpenJDK:12-alpine→ generate
activity.tar docker image file.

X Upload the container image tarball (ecoach:activity)
into TSD project via the TSD Data Portal
(https://data.tsd.usit.no/).

X Load the docker image fhir.tar file (docker load -i
activity.tar) in TSD.

X Run the image file (docker run -d 8080:8080
ecoach:activity) in TSD.

TSD acts as an authorization server (AS) in the OAuth2
workflow. An authorization point works on the AS, allowing
our applications and HTTP endpoints to define our system’s
features. In our eCoach system, two actors who interact with

VOLUME 10, 2022 41925

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

FIGURE 8. Authorization Server (AS) use-case for eCoach prototype system.

FIGURE 9. Access-token generation from the existing refresh-token.

the AS are – ADMIN (resource owner) and USER (client
registered with AS) as the fundamental use cases depicted in
Figure 8. The resource server is an application that provides
clients with an access token to access the HTTP endpoint
resource server. It is a library set that includes HTTP end-
points, static tools, and interactive web pages. OAuth2 is a
mechanism for authorization to allow access to the client
resources.We focused on the grant form (authorization code),
client ID, and client secret to create an OAuth2 application.

JWT Token representing the claims between two parties is
a JSON Web Token [25]–[27]. Such tokens are of two types:
identity token (part of the OpenID Connect specification that
is a client-dedicated function namespace) and access token

TABLE 4. Specification of the experimental environment.

(part of the OpenID Connect and OAuth2 specification and
allows HTTP request that grants access to the service being
invoked on). We used asymmetric key encryption ES256

41926 VOLUME 10, 2022

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

TABLE 5. Specification and format of the used HTTP headers for API testing.

(SHA256 with ECDSA algorithm) to create a JWT signature.
Access tokens are typically short-lived and frequently expire
after only minutes. The additional refresh token sent by the
login protocol allows a new access token to be accessed by
the application after it expires (see Figure 9).

VI. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
Security testing method is intended to show vulnerabilities
in an information system’s security mechanisms that protect
data and retain functionality as expected. Security assess-
ments are carried out in manyways to verify security features.
Here, we used unit testing as a security testing method. Unit
testing was performed with Spring-Boot Swagger and Mock
MVC framework (Mockito) to validate the security function-
alities of different eCoach modules [50], [51]. In addition,
we set up Apache JMeter to perform scalability testing of
the adopted security solution in a digital health infrastructure.
We executed the security solution in a Linux environment (see
Table 4), protected with a VPN and network firewall. All the
essential HTTP headers for the API testing are specified
in Table 5.

B. EXPERIMENTAL RESULTS
This section discusses adopted security considerations, sce-
narios, and experimental outcomes. Experiments related to
CSRF, XSS, Clickjacking, content sniffing, and brute force
were performed with Mockito framework (v3.9.0), Swagger
(v2.2.1), and curl system command (v7.76.1). In our Spring
codebase (v2.4.5), we created five functional test cases with
Mockito for TSD basic (client_id + password) user authen-
tication, TSD two-factor user authentication (client_id +
password + OTP), and role-based authorization (OAuth2)
with an access token. We further implemented a negative

test case where the user received an expected error response
code HTTP 401 for an unauthorized resource API endpoint.
Table 6 defines the combined result of Mockito test per-
formance in a vanilla test setting where we compared our
API response time with preferred, acceptable, and delayed
response time in seconds (sec). The response metrics can
be classified into the following categories – mean response
time, peak response time, and error rate. We considered a
preferred response time of 0.1 sec, an acceptable response
time of <1 sec, and a delayed response time of <=10 sec.
We received amean response time in an acceptable time range
for all the API responses.

The spring-boot application extends the security classWeb-
SecurityConfig to protect against CSRF attacks. The CSRF
tokens are powerful, changeable, and created as session
tokens with specific properties that cannot be calculated or
predicted by the intruder. Both HTTP POST forms in the
‘‘JSP’’ or template files need to introduce the CSRF token.
If it is a JSON call, the token must be added to the HTTP
request header. Initially, we disabled TSD token-based secu-
rity setup and extended Spring’s default web security con-
figuration. Next, we executed the following four test cases
for CSRF attack with Swagger: CSRF disabled (valid cre-
dential, invalid credential) and CSRF enabled (valid cre-
dential and valid _csrf token, valid credential, and invalid
_csrf token). Successful authentication resulted in an HTTP
status code 200 or 201. However, we disabled the CSRF
token generation in actual security solution implementation.
The reason for disabling CSRF was that our developed
spring-boot application would be exposed to the public in
the future. Therefore, we replicated similar and more robust
web security standards with TSD’s two-factor authentication
and access token-based authorization. The successful test
results are captured in Table 6. To ensure protection against

VOLUME 10, 2022 41927

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

TABLE 6. Performance of unit-testing with Mockito framework.

TABLE 7. Determination of protection against XSS, Clickjacking, and content sniffing with response headers.

XSS, content sniffing, and Clickjacking we explored TSD’s
security defense. We tested the attacks with a client’s HTTP
POST request with a Swagger API call and investigated
whether XSS, Clickjacking, and content sniffing securities
are allowed in the response header: setup data and recorded
response headers are shown in Table 7. XSS is a category of
security vulnerability found in web applications as cross-site
scripting. The XSS attack was blocked by setting the value
as ‘‘block’’ to the ‘‘X-XSS-Protection’’ parameter in the
HTTP response header. Clickjacking is a method of tricking
a user into clicking on something other than what the user
perceives, thus potentially exposing sensitive information or
allowing others to gain control of their device while clicking
on harmless items, such as web pages. We blocked the Click-
jacking by setting the ‘‘nosniff’’ value to the ‘‘X-Content-
Type-Options’’ parameter in the HTTP response header. Con-
tent sniffing (or media type sniffing or MIME sniffing) is
a method of tracking and inspecting the content of a ‘‘byte
stream’’ to determine the file format of the data within it.
We blocked the content sniffing by setting the ‘‘DENY’’ value
to the ‘‘X-Frame-Options’’ parameter in the HTTP response
header.

TABLE 8. Testing for the brute-force attack.

We enabled configurable security defense to ensure data
protection against brute force attacks. According to our cod-
ing, the user will get a chance of a maximum of three login
failures before their account gets locked. The account will
be activated based on the request ticket. Our analysis uses
Spring-Boot, a counter to increasing the number of attempts
with TSD to model the case attacker to execute the brute
force attack. We set up the data in Swagger and recorded the
response headers. Table 8 describes the unit test result of the
brute force attack against three test cases.

41928 VOLUME 10, 2022

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

TABLE 9. Scalability testing results with Y = 1, Z = 5, and variable loads (X).

TABLE 10. Scalability testing results with Y = 5, Z = 5, and variable loads (X).

TABLE 11. Scalability testing results with Y = 10, Z = 5, and variable loads (X).

FIGURE 10. Break-up of a response time in our SFTSDH solution for a
single authorized HTTP request.

To perform scalability testing in JMeter, we selected
an eCoach REST service with an approximated 1.19 KB
of a request body, 448.3 KB of the response body, and

a response time of 316 msec. (see Figure 10). Using JMeter
‘‘Thread Group’’ feature, concurrent threads or loads (X)
were created with three different values of ramp-up sec-
onds (Y) and a loop count value of five (Z). At each iter-
ation, X∗Z number of loads were created to capture mean
throughput and mean latency time. The results are described
in Table 9 – Table 11. A load is a numeric value representing
a total number of concurrent requests or threads. The pseudo-
code used for scalability testing is described in Textbox IV.
We have considered the following values for scalability
testing; however, the range can be increased for the future
studies:

X = {1, 10, 25, 50, 75, 100, 200, 300, 500}

Y = {1, 5, 10}

Z = {5}

VOLUME 10, 2022 41929

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

TABLE 12. Summary of the adopted functional and non-functional testing.

TABLE 13. Qualitative analysis on the effectiveness of SFTSDH with three flags – No (0), limited (1), and yes (2).

The result shows a direct proportion between throughput
and load, and latency time and load. However, reaching a
certain threshold, the throughput drops with increased load.

C. DISCUSSION
API endpoint security implicitly guarantees personal
health data privacy inside our implemented secure digital

41930 VOLUME 10, 2022

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

FIGURE 11. Mean throughput (/sec.) with increasing load for different ramp-up time in seconds.

FIGURE 12. Mean latency (sec.) with increasing load for different ramp-up time in seconds.

infrastructure. It is three-fold research. First, we concep-
tualize a secure solution with SFTSDH, VPN, network
firewall, and SSL. Second, we implemented the solution
for developing a digital health infrastructure where we
deployed an eCoach prototype system. Third, we perform
testing of the eCoach prototype system’s REST API end-
points against the common functional security testing (see
Table 12) and scalability testing. We created 17 test cases
for 11 test scenarios to evaluate the effectiveness of our
adopted security solution. The SFTSDH implementation
and configuration in the eCoach system have effectively
secured the eCoach APIs from an attack in all the sce-
narios. Moreover, we performed a qualitative analysis on
the effectiveness of SFTSDH in Table 13, after comparing
SFTSDH with Spring Security and other Third-party

Platform (e.g., Keycloak, Okta). Personal health data gov-
ernance using the SFTSDH security solution has fulfilled
the GDPR compliance checklist as specified in Table 14.
Therefore, the SFTSDH solution is safe from the typical
external illegitimate flooding requests as the external or
exposed eCoach services are protected by a VPN and a
firewall.

Due to licensing and subscription constraints, we could
not create a similar environment to the TSD infrastructure
and deploy other solutions (e.g., SF+ Okta, SF + Keycloak,
or solutions identified in literature) to test scalability against
throughput and latency. Therefore, we only performed scala-
bility testing for our work under defined settings and obtained
a promising result, as depicted in Figures 11 and 12. The
result shows an optimal throughput and latency at X = 200.

VOLUME 10, 2022 41931

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

Textbox IV Pseudo-Code for Scalability Testing
Step 1: /∗Initialization∗/

L = {n | n is an integer, and n ∈ Z+}
R = {n | n is an integer, and n ∈ Z+}
C = {n | n is an integer, and n ∈ Z+}
X ∈ L
Y ∈ R
Z ∈ C

Step 2: /∗Iteration and value capturing∗/
For i = 1 to size(Y) do

y = Y(i)
For j = 1 to size(X) do

x = X(j)
For k = 1 to size(Z) do

z = Z(k)
load = x ∗ z
/∗calculate metrices∗/
Calculate throughput (requests/sec), error%,

received data (KB/sec), delivered data (KB/sec), mean
latency (sec) and add the results to a list (List)

End
End

End
Step 3: /∗Iteration and metric value display∗/

For i = 1 to length (List) do
display (List(i))

End

TABLE 14. GDPR compliance checklist for SFTSDH.

Therefore, the digital health infrastructure with the SFTSDH
solution can sustain a load of 200∗5= 1000 concurrent users
efficiently.

Our future study will focus on the migration of the
deployed services from EduNet to the TSD platform after
resolving identified TSD constraints, such as accessing TSD
endpoints from public network using wireless technolo-
gies, basic webpage rendering without authorization, call-
ing third-party weather API from TSD, and generation of
auto-notification inside TSD in a synchronous manner. Auto-
notification support inside TSD will further reduce schedul-
ing overhead in the eCoach mobile application.

VII. CONCLUSION
An API endpoint is an interface that helps in exchanging
data between services. The service can access the expected
resources from the API to perform the necessary operations.
It plays a vital role in ensuring the regular and safe oper-
ation of the services and systems. Therefore, one of the
leading security factors in MSA applications is API security.
eCoach’s REST API endpoint security solution with the TSD
platform implicitly guarantees the privacy of personal health

data within our adopted SFTSDH solution scheme following
the GDPR and NORMEN regulations. This research accom-
plishes a prototype of an eCoach system that uses MSA
with the TSD platform to evaluate technology and security
integration. The research results show that the adopted digital
solution effectively protects the APIs and personal health data
(stored inside TSD). This study can be used as a TSD inte-
gration manual to protect personal health data in healthcare
research.

ABBREVIATIONS
HIS: Healthcare Information Systems
ICTs: Information and Communication

Technologies
IoMT: Internet of Medical Things
SF: Spring Framework
TSD: Services for Sensitive Data
HTTP: Hyper-Text-Transfer-Protocol
APIs: Application Programming Interfaces
GDPR: General Data Protection Regulation
eHealth: Electronic Health
eCoach: Electronic Coach
CSRF: Cross-Site Forgery
XSS: Cross-Site Scripting
CORS: Cross-Source Resource Sharing
DoS: Denial of Service
DDoS: Distribution DoS
MITM: Man-In-The-Middle Attack
CS: Content Sniffing
BF: Brute Force Attack
IP: Internet Protocol
TM: Therapeutic Manipulation
OWASP: Open Web Application Security Project
HIPAA: Health Insurance Portability and

Accountability Act
NORMEN: Norwegian Data Protection Policies
REST: Representational State Transfer
JSON: JavaScript Object Notation
IAM: Identity and Access Management
TCP: Transmission Control Protocol
IWA: Integrated Windows Authentication
TLS: Transport Layer Security
SSL: Secure Socket Layer
SAML: Security Assertion Markup Language
MSA: Microservice Architecture
NSD: Norwegian Center for Research Data
REK: Regional Ethical Committee
EHRs: Electronic Health Records
MSSA: Microservice Solution Architecture Level
SSF: Spring Security Framework
MQTT: Message Queuing Telemetry Transmission
PoC: Proof of Concept
PKI: Public Key Infrastructure
BLE: Bluetooth Short-Range Communication

Technology
PSS: Project Specific Servlets
PJS: Patient-Journal-System

41932 VOLUME 10, 2022

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

PGDs: Person Generated Data
BPS: Bits Per Second
RTT: Round-Trip Time
IaaS: Infrastructure as a Service
AS: Authorization Server
ACL: Access Control Rules

ACKNOWLEDGMENT
The authors would like to thank the University of Agder and
coauthors for supporting them to perform this research.

REFERENCES
[1] J. T. Kelly, K. L. Campbell, E. Gong, and P. Scuffham, ‘‘The Internet of

Things: Impact and implications for health care delivery,’’ J. Med. Internet
Res., vol. 22, no. 11, Nov. 2020, Art. no. e20135, doi: 10.2196/20135.

[2] S. A. Parah, J. A. Kaw, P. Bellavista, N. A. Loan, G. M. Bhat,
K. Muhammad, and V. H. C. de Albuquerque, ‘‘Efficient security
and authentication for edge-based internet of medical things,’’ IEEE
Internet Things J., vol. 8, no. 21, pp. 15652–15662, Nov. 2021, doi:
10.1109/JIOT.2020.3038009.

[3] How the Internet of Medical Things is Impacting Healthcare. Accessed:
Jan. 25, 2022. [Online]. Available: https://healthtechmagazine.
net/article/2020/01/how-internet-medical-things-impacting-healthcare-
perfcon

[4] Internet of Medical Things (IoMT) Market Size 2021. Accessed:
Jan. 25, 2022. [Online]. Available: https://www.marketwatch.com/press-
release/internet-of-medical-things-iomt-market-size-2021-in-depth-
analysis-market-dynamics-with-top-players-impact-of-covid-19-case-
study-analysis-industry-impact-and-global-forecast-till-2026-2021-03-15

[5] A. Gatouillat, Y. Badr, B. Massot, and E. Sejdić, ‘‘Internet of medical
things: A review of recent contributions dealing with cyber-physical sys-
tems in medicine,’’ IEEE Internet Things J., vol. 5, no. 5, pp. 3810–3822,
Oct. 2018, doi: 10.1109/JIOT.2018.2849014.

[6] P. I. R. Grammatikis, P. G. Sarigiannidis, and I. D.Moscholiosb, ‘‘Securing
the Internet of Things: Challenges, threats and solutions,’’ Internet Things,
vol. 5, pp. 41–70, Mar. 2019, doi: 10.1016/j.iot.2018.11.003.

[7] Y. Sun, F. P.-W. Lo, and B. Lo, ‘‘Security and privacy for the internet of
medical things enabled healthcare systems: A survey,’’ IEEEAccess, vol. 7,
pp. 183339–183355, 2019, doi: 10.1109/ACCESS.2019.2960617.

[8] F. Belqasmi, R. Glitho, and C. Fu, ‘‘RESTful web services for service
provisioning in next-generation networks: A survey,’’ IEEE Commun.
Mag., vol. 49, no. 12, pp. 66–73, Dec. 2011, doi: 10.1109/MCOM.2011.
6094008.

[9] J. N. S. Rubí and P. R. L. Gondim, ‘‘IoMT platform for perva-
sive healthcare data aggregation, processing, and sharing based on
OneM2M and OpenEHR,’’ Sensors, vol. 19, no. 19, p. 4283, 2019, doi:
10.3390/s19194283.

[10] S. Banerjee, V. Odelu, A. K. Das, J. Srinivas, N. Kumar, S. Chattopadhyay,
and K.-K.-R. Choo, ‘‘A provably secure and lightweight anonymous user
authenticated session key exchange scheme for Internet of Things deploy-
ment,’’ IEEE Internet Things J., vol. 6, no. 5, pp. 8739–8752, Oct. 2019,
doi: 10.1109/JIOT.2019.2923373.

[11] A. H. M. Aman, W. H. Hassan, S. Sameen, Z. S. Attarbashi, M. Alizadeh,
and L. A. Latiff, ‘‘IoMT amid COVID-19 pandemic: Application, architec-
ture, technology, and security,’’ J. Netw. Comput. Appl., vol. 174, Jan. 2021,
Art. no. 102886, doi: 10.1016/j.jnca.2020.102886.

[12] D. Lange-Kuitse, ‘‘The health of patient privacy: The patient’s perspective
on the HIPAA protected health information,’’ Ph.D. dissertation, College
Educ. Int. Services, Andrews Univ., Berrien Springs, MI, USA, 2007, doi:
10.32597/dissertations/1699.

[13] C. Kuner, L. A. Bygrave, C. Docksey, and L. Drechsler, The EU General
Data Protection Regulation (GDPR): A Commentary, Mar. 2021, doi:
10.1093/oso/9780198826491.001.0001.

[14] NORMEN. Accessed: Jan. 25, 2022. [Online]. Available: https://www.
ehelse.no/normen

[15] F. Gutierrez, ‘‘Spring with spring boot,’’ in Pro Spring Boot.
Berkeley, CA, USA: Apress, 2016, pp. 89–105. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-1-4842-1431-2_5, doi:
10.1007/978-1-4842-1431-2_5.

[16] TSD. Accessed: Jan. 25, 2022. [Online]. Available: https://www.uio.no/
english/services/it/research/sensitive-data/

[17] J. Hodges, C. Jackson, and A. Barth, HTTP Strict Transport
Security (HSTS), document RFC 6797, 2012. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-04

[18] A. Chatterjee, M. Gerdes, A. Prinz, and S. Martinez, ‘‘Human coach-
ing methodologies for automatic electronic coaching (eCoaching) as
behavioral interventions with information and communication technology:
Systematic review,’’ J. Med. Internet Res., vol. 23, no. 3, Mar. 2021,
Art. no. e23533, doi: 10.2196/23533.

[19] A. Chatterjee, A. Prinz, M. Gerdes, and S. Martinez, ‘‘An automatic
ontology-based approach to support logical representation of observable
and measurable data for healthy lifestyle management: Proof-of-concept
study,’’ J. Med. Internet Res., vol. 23, no. 4, Apr. 2021, Art. no. e24656,
doi: 10.2196/24656.

[20] A. Chatterjee, M. W. Gerdes, and S. Martinez, ‘‘eHealth initiatives for
the promotion of healthy lifestyle and allied implementation difficulties,’’
in Proc. Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob),
Oct. 2019, pp. 1–8, doi: 10.1109/WIMOB.2019.8923324.

[21] A. Chatterjee, M. W. Gerdes, A. Prinz, S. G. Martinez, and A. C. Medin,
‘‘Reference design model for a smart E-coach recommendation system
for lifestyle support based on ICT technologies,’’ in Proc. 12th Int. Conf.
eHealth, Telemed., Social Med. (eTELEMED), 2020, pp. 52–58.

[22] Spring Framework. Accessed: Jan. 25, 2022. [Online]. Available:
https://spring.io/projects/spring-framework

[23] HTTP Security: A Security-Focused Introduction to HTTP. Accessed:
Jan. 25, 2022. [Online]. Available: https://www.acunetix.com/blog/web-
security-zone/http-security/

[24] W. Sun, Z. Cai, Y. Li, F. Liu, S. Fang, and G. Wang, ‘‘Security and privacy
in the medical Internet of Things: A review,’’ Secur. Commun. Netw.,
vol. 2018, Mar. 2018, Art. no. 5978636.

[25] Q. Nguyen and O. Baker, ‘‘Applying spring security framework and
OAuth2 to protect microservice architecture API,’’ J. Softw., vol. 14, no. 6,
pp. 257–264, Jun. 2019.

[26] A. Dikanski, R. Steinegger, and S. Abeck, ‘‘Identification and implemen-
tation of authentication and authorization patterns in the spring security
framework,’’ in Proc. 6th Int. Conf. Emerg. Secur. Inf., Syst. Technol.
(SECURWARE), Oct. 2012, pp. 14–30.

[27] D. Recordon and D. Reed, ‘‘OpenID 2.0: A platform for user-centric iden-
tity management,’’ in Proc. 2nd ACM Workshop Digit. Identity Manage.,
2006, pp. 11–16.

[28] J. J. Rodrigues, I. de la Torre, G. Fernández, and M. López-Coronado,
‘‘Analysis of the security and privacy requirements of cloud-based elec-
tronic health records systems,’’ J. Med. Internet Res., vol. 15, no. 8, p. e186,
Aug. 2013.

[29] K. Bennett, A. J. Bennett, and K.M. Griffiths, ‘‘Security considerations for
e-mental health interventions,’’ J. Med. Internet Res., vol. 12, no. 5, p. e61,
Dec. 2010.

[30] H. Huang, T. Gong, N. Ye, R.Wang, andY.Dou, ‘‘Private and securedmed-
ical data transmission and analysis for wireless sensing healthcare system,’’
IEEE Trans. Ind. Informat., vol. 13, no. 3, pp. 1227–1237, Jun. 2017.

[31] G. Yang, L. Xie,M.Mäntysalo, X. Zhou, Z. Pang, L. D. Xu, S. Kao-Walter,
Q. Chen, and L.-R. Zheng, ‘‘A health-IoT platform based on the inte-
gration of intelligent packaging, unobtrusive bio-sensor, and intelligent
medicine box,’’ IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2180–2191,
Nov. 2014.

[32] P. Gope and T. Hwang, ‘‘BSN-care: A secure IoT-based modern healthcare
system using body sensor network,’’ IEEE Sensors J., vol. 16, no. 5,
pp. 1368–1376, Mar. 2016.

[33] A. Tejero and I. de la Torre, ‘‘Advances and current state of the security
and privacy in electronic health records: Survey from a social perspective,’’
J. Med. Syst., vol. 36, no. 5, pp. 3019–3027, Oct. 2012.

[34] C. Papoutsi, J. E. Reed, C. Marston, R. Lewis, A. Majeed, and D. Bell,
‘‘Patient and public views about the security and privacy of electronic
health records (EHRs) in the UK: Results from a mixed methods study,’’
BMC Med. Informat. Decis. Making, vol. 15, no. 1, p. 86, Dec. 2015.

[35] M.A.Ameen, J. Liu, andK.Kwak, ‘‘Security and privacy issues inwireless
sensor networks for healthcare applications,’’ J. Med. Syst., vol. 36, no. 1,
pp. 93–101, Feb. 2012.

[36] T.-C. Hsiao, Y.-T. Liao, J.-Y. Huang, T.-S. Chen, and G.-B. Horng, ‘‘An
authentication scheme to healthcare security under wireless sensor net-
works,’’ J. Med. Syst., vol. 36, no. 6, pp. 3649–3664, Dec. 2012.

[37] J. Kwon and M. E. Johnson, ‘‘Meaningful healthcare security: Does
‘meaningful-use’ attestation improve information security performance?’’
MIS Quart., vol. 42, no. 4, pp. 1043–1067, Dec. 2018.

VOLUME 10, 2022 41933

http://dx.doi.org/10.2196/20135
http://dx.doi.org/10.1109/JIOT.2020.3038009
http://dx.doi.org/10.1109/JIOT.2018.2849014
http://dx.doi.org/10.1016/j.iot.2018.11.003
http://dx.doi.org/10.1109/ACCESS.2019.2960617
http://dx.doi.org/10.1109/MCOM.2011.6094008
http://dx.doi.org/10.1109/MCOM.2011.6094008
http://dx.doi.org/10.3390/s19194283
http://dx.doi.org/10.1109/JIOT.2019.2923373
http://dx.doi.org/10.1016/j.jnca.2020.102886
http://dx.doi.org/10.32597/dissertations/1699
http://dx.doi.org/10.1093/oso/9780198826491.001.0001
http://dx.doi.org/10.1007/978-1-4842-1431-2_5
http://dx.doi.org/10.2196/23533
http://dx.doi.org/10.2196/24656
http://dx.doi.org/10.1109/WIMOB.2019.8923324

A. Chatterjee et al.: SFTSDH: Applying Spring Security Framework With TSD-Based OAuth2

[38] K. Abouelmehdi, A. Beni-Hessane, and H. Khaloufi, ‘‘Big healthcare data:
Preserving security and privacy,’’ J. Big Data, vol. 5, no. 1, p. 1, Dec. 2018.

[39] C. S. Kruse, B. Smith, H. Vanderlinden, and A. Nealand, ‘‘Security tech-
niques for the electronic health records,’’ J. Med. Syst., vol. 41, no. 8,
p. 127, Aug. 2017.

[40] J. Salibindla, ‘‘Microservices API security,’’ Int. J. Eng. Res., vol. 7, no. 1,
pp. 277–281, Jan. 2018.

[41] L. Xie, L. Han, M.-H. Li, and X.-L. Dong, ‘‘Design and implement of
spring security-based T-RBAC,’’ in Proc. Int. Conf. Wireless Commun.,
Netw. Appl., 2017, pp. 183–188.

[42] K. Aloufi and O. Alhazmi, ‘‘Secure IoT resources with access control
over restful web services,’’ Jordan J. Electr. Eng., vol. 6, no. 1, p. 64,
2020.

[43] M. I. Beer andM. F. Hassan, ‘‘Adaptive security architecture for protecting
RESTful web services in enterprise computing environment,’’ Service
Oriented Comput. Appl., vol. 12, no. 2, pp. 111–121, Jun. 2018.

[44] G. Serme, A. S. de Oliveira, J. Massiera, and Y. Roudier, ‘‘Enabling
message security for RESTful services,’’ in Proc. IEEE 19th Int. Conf. Web
Services, Jun. 2012, pp. 114–121.

[45] F. D. Backere, B. Hanssens, R. Heynssens, R. Houthooft, A. Zuliani,
S. Verstichel, B. Dhoedt, and F. D. Turck, ‘‘Design of a securitymechanism
for RESTful web service communication through mobile clients,’’ in Proc.
IEEE Netw. Oper. Manage. Symp. (NOMS), May 2014, pp. 1–6.

[46] A. S. Tanenbaum et al., Computer Networks. Upper Saddle River, NJ,
USA: Prentice-Hall, 1996, pp. 1–17.

[47] M. A. Hussain, S. G. Langer, andM.Kohli, ‘‘LearningHL7 FHIR using the
HAPI FHIR server and its use in medical imaging with the SIIM dataset,’’
J. Digit. Imag., vol. 31, no. 3, pp. 334–340, Jun. 2018.

[48] S. van der Weegen, H. Essers, M. Spreeuwenberg, R. Verwey, H. Tange,
L. de Witte, and K. Meijer, ‘‘Concurrent validity of the MOX activity
monitor compared to the ActiGraph GT3X,’’ Telemed. e-Health, vol. 21,
no. 4, pp. 259–266, 2015.

[49] S. Aljawarneh, ‘‘A web engineering security methodology for e-learning
systems,’’ Netw. Secur., vol. 2011, no. 3, pp. 12–15, Mar. 2011.

[50] P. Khatiwada, H. Bhusal, A. Chatterjee, and M. W. Gerdes, ‘‘A proposed
access control-based privacy preservation model to share healthcare data in
cloud,’’ in Proc. 16th Int. Conf. Wireless Mobile Comput., Netw. Commun.
(WiMob), Oct. 2020, pp. 40–47.

[51] S. Acharya, Mastering Unit Testing Using Mockito and JUnit.
Birmingham, U.K.: Packt Publishing, 2014.

[52] GDPR Checklist for Data Controllers. Accessed: Jan. 25, 2022. [Online].
Available: https://gdpr.eu/checklist/

[53] A. A. Ismail, H. S. Hamza, and A. M. Kotb, ‘‘Performance evaluation of
open source IoT platforms,’’ in Proc. IEEE Global Conf. Internet Things
(GCIoT), Dec. 2018, pp. 1–5.

[54] R. Roman, J. Zhou, and J. Lopez, ‘‘On the features and challenges of
security and privacy in distributed Internet of Things,’’ Comput. Netw.,
vol. 57, no. 10, pp. 2266–2279, 2013.

[55] E. Torroglosa-García, A. D. Pérez-Morales, P. Martinez-Julia, and
D. R. Lopez, ‘‘Integration of the OAuth and web service family
security standards,’’ Comput. Netw., vol. 57, no. 10, pp. 2233–2249,
Jul. 2013.

[56] L. Malina, J. Hajny, R. Fujdiak, and J. Hosek, ‘‘On perspective of security
and privacy-preserving solutions in the Internet of Things,’’Comput. Netw.,
vol. 102, pp. 83–95, Jun. 2016.

[57] L. Babun, K. Denney, Z. B. Celik, P. McDaniel, and A. S. Uluagac, ‘‘A sur-
vey on IoT platforms: Communication, security, and privacy perspectives,’’
Comput. Netw., vol. 192, Jun. 2021, Art. no. 108040.

[58] L. Liu, D. Wang, J. Zhao, and M. Huang, ‘‘SA4WSs: A security archi-
tecture for web services,’’ in Information and Communication Technology.
Berlin, Germany: Springer, 2013, pp. 306–311.

[59] J. C. S. Santos, K. Tarrit, and M. Mirakhorli, ‘‘A catalog of security
architecture weaknesses,’’ in Proc. IEEE Int. Conf. Softw. Architecture
Workshops (ICSAW), Apr. 2017, pp. 220–223.

[60] M. Priyadarsini and P. Bera, ‘‘Software defined networking architecture,
traffic management, security, and placement: A survey,’’ Comput. Netw.,
vol. 192, Jun. 2021, Art. no. 108047.

[61] D. Arkhipkin, J. Lauret, and P. V. Shanmuganathan, ‘‘Modular and scalable
RESTful API to sustain STAR collaboration’s record keeping,’’ J. Phys.,
Conf. Ser., vol. 664, no. 5, Dec. 2015, Art. no. 052021.

[62] A. Chatterjee and A. Prinz, ‘‘Applying spring security framework
with keycloak-based OAuth2 to protect microservice architecture APIs:
A case study,’’ Sensors, vol. 22, no. 5, p. 1703, Feb. 2022, doi:
10.3390/s22051703.

AYAN CHATTERJEE received the B.Eng. degree
in computer science and engineering (CSE) from
the West Bengal University of Technology, India,
in 2009, and the master’s degree in informa-
tion technology from Jadavpur University, India,
in 2016. He worked as an Associate Consul-
tant at Tata Consultancy Services Ltd., India,
from 2009 to 2019, and was deputed to Denmark
and the Netherlands for three to four years as a
Java Architect and a Data Analyst. He is currently

pursuing the Ph.D. degree with the University of Agder, Norway, with spe-
cialization in ICT-eHealth. His research interests include IoMT,AI, statistical
analysis, persuasive computing, health data management, domain ontology,
user-centered design, software engineering, and data mining.

MARTIN W. GERDES received the M.Sc. degree
in electrical engineering (EE) fromRWTHAachen
University, Aachen, in 1998, emphasis on (ICTs),
and the Ph.D. degree in ICTs, with specializa-
tion in eHealth from the University of Agder
(UiA), Grimstad. He has been an Associate Pro-
fessor with the Department of Information and
Communication Technology, UiA, with teaching
and supervision experience, since 2014. His main
research interests include eHealth solutions for

remotemonitoring and patient support, AI technologies, ICT, and the Internet
of Things (IoT).

PANKAJ KHATIWADA received the B.Eng.
degree in electronics and communication engi-
neering from Kathmandu Engineering College,
Nepal, in 2013, and theM.Eng. degree in informa-
tion and communication technology from the Uni-
versity of Agder, Norway, in 2019. He is currently
pursuing the Ph.D. degree with the Department
of Security, Norwegian University of Science and
Technology (NTNU), Norway, with a specializa-
tion in eHealth. He worked as a Project Engineer at

Arya Nirman Sewa, Nepal, from 2013 to 2015, and responsible for handling
different electrical and communications technologies projects. His research
interests include health infrastructure, health data security, AI in healthcare,
and blockchain in health data.

ANDREAS PRINZ received the M.Sc. degree
in mathematics and the Ph.D. degree in com-
puter science from Humboldt-University zu
Berlin, Germany, in 1988 and 1990, respectively.
From 2007 to 2015, he was the Head of the
ICT Department, UiA, Grimstad, Norway, where
he has been the Scientific Head of the eHealth
Centre, since 2017. He is currently a Professor
with the Department of ICT, UiA, with teaching
and supervision responsibilities.

41934 VOLUME 10, 2022

http://dx.doi.org/10.3390/s22051703

