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Detecting Eccentricity and Demagnetization Fault of Permanent Magnet Synchronous
Generators in Transient State

F.1 Abstract

This paper proposes an active learning scheme to detect multiple faults in permanent
magnet synchronous motors in dynamic operations without using historical labelled faulty
training data. The proposed method combines the self-supervised anomaly detector based
on local outlier factor (LOF) and a deep Q-network (DQN) supervised reinforcement
learner to classify inter-turn short-circuit, local demagnetisation and mixed faults. The
first fault, which is detected by LOF and verified by an expert during maintenance, is used
as training data for the DQN classifier. From that point onward, LOF anomaly detector
and DQN fault classifiers are working in tandem in identification of new faults, which
require an expert intervention when either of them identifies a fault. The robustness of
the scheme against dynamic operations, mixed fault and imbalanced training datasets is
validated via a comparative study using stray flux data from an in-house test setup.

F.2 Introduction

Permanent magnet synchronous motors (PMSM) in off-shore wind turbines and electric
vehicles are intensively exposed to mechanical and thermal stresses in dynamic operations
with thermal cycling. These result in inter-turn short-circuit (ITSC), and local demag-
netisation fault (DF) [1]. A local demagnetisation only affects a small region of rotor
magnets in early states, and induces a magnetic asymmetry in contrast to uniform DF,
which downgrade all magnets equally. Detecting and identifying these faults in incipient
stages allow for life prolonging operation or planned maintenance, reducing costs and
production down-times [2]-[4].

Fault detection and identification (FDI) methods for electrical machines have been ex-
tensively developed and categorised as: model-, signal- and machine learning (ML) based
methods [5]. The model-based methods aim to identify fault signatures by estimating
hard-to-measure parameters and computing a residual between a suggested model and
measurements. This approach relies on the accurate information of physical parameters
in the model or detailed dimensions of machines, which are difficult to acquire in reality
[6]. Signal processing methods detect a fault based on fault-related characteristic frequen-
cies. These methods are simple but are only applicable to single fault diagnosis. Further,
missing a fault characteristic frequency does not guarantee that a machine is completely
healthy. ML based methods have recently gained popularity since they are less demanding
on prior knowledge of a machine [7].

To address the lack of labelled faulty data issues, anomaly detection has been used
in various studies [8], [9]. These anomaly detectors and one-class classifiers (OCCs) train
on the observation from the healthy cases. A trained OCC can quantify the deviation
of a new data sample from the healthy samples. A large deviation from a healthy sam-
ple is considered as a faulty case. Krawczyk et. al. [10] separate the OCCs into four
categories namely; (1) Density-based methods e.g. local outlier factor (LOF) [11], (2)
Reconstruction-based methods such as auto-encoder [12] and contrastive learning [13],
(3) Boundary-based methods e.g., one-class SVM [8], (4) Ensemble-based methods which
combine OCCs to form a more flexible data description model [10]. It is important to
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use a proper comparative study to find the best OCC type for a given anomaly detec-
tion application. However to the authors’ knowledge, finding the best OCC method for
detecting anomaly in PMSMs has not been studied in the literature.

Another method to tackle the lack of labelled faulty data is using active learning
(AL). It is a set of semi-supervised learners [14], [15], which are used to accelerate the
labelling process of partially labelled dataset. They are trained on the labelled samples
and tests on the unlabelled samples. The prediction with the lowest confidence is passed
to an expert, who "actively" labels the dataset for the ML-based detection. An AL is
often called a cooperative learner when it significantly alleviates the labelling task for
the expert. Alternatively, a self-supervised anomaly detector can be implemented in an
AL scheme. Senananyaka et. al. [8] proposed a FDI development scheme without using
historical data from operating faulty motors. Within the study, a self-supervised one-
class SVM is first used to detect the anomaly. However, this OCC defines healthy domain
based on its kernel function and may include regions of low competence. It will have a
high rate of false negatives (FN) if the healthy and faulty classes overlap. The second
part of the presented FDI scheme is a convolutional neural network (CNN) classifier,
which is trained by samples identified by the one-class SVM and validated by an expert.
Further development of such a FDI will create a more competent CNN with knowledge
of faults, that have occurred. The authors in [8] trained and tested the FDI scheme
on a balanced dataset alone. However, obtaining a balanced dataset for ML-based fault
diagnosis methods is not feasible from PMSMs in offshore wind turbines. Developing a
novel fault diagnosis must take the imbalance in datasets into consideration.

Imbalance in a dataset is often measured by the ratio (\) between negative (healthy)
and positive (faulty) samples. The problem of imbalance data set is amplified due to
noise, overlap between classes, and if one class is represented by multiple clusters [16]. A
common method for "rebalancing" the imbalanced data set is to oversample the minority
class and undersample the majority class. Both of these processes can be executed by
random sampling. However, the minority class also has an option for generating new
synthetic samples with different variations of synthetic minority oversampling technique
(SMOTE) or extraction maximisation imputation-based class imbalanced learning [17].
Zhang et. al. [12] proposed a self-supervised feature learning scheme for bearing fault
in steady state with less than 50 labelled training samples per class. A CNN is trained
with augmented data to match the computed pseudo labels, which consist of statistical
features and features extracted from an auto-encoder. This allows for rich feature mining
from a small number of positive samples. However, the existing studies could deal with
imbalanced datasets for detecting single faults alone in steady states while using a lot of
historical data at faulty conditions.

This study aims to develop a novel scheme of mixed fault diagnosis in sensorless PMSM
drives under dynamic operations while addressing the problems of imbalanced datasets
using limited samples from faulty conditions. Within the framework, an anomaly detector
is developed based on a LOF to define more complex domains in healthy cases to tackle
overlapping classes. The proposed scheme is proven to be robust against dynamic oper-
ations at different operation profiles by resampling at a fixed angular increment without
using any position sensor. This suggested scheme, using external flux sensors alone, allows
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for developing a plug-and-play automatic fault detection without modifying the existing
drive systems in critical or offshore applications, where sensorless controls are preferred
due to reliability or reduced maintenance cost.

F.3 Proposed Fault Diagnosis Scheme

The proposed FDI scheme shown in Figure F.1 is developed based on an online fault
diagnosis scheme in [8]. The pretreatment after data collections involves resampling of
the original time-series data at a fixed angular increment. The rotor position is estimated
from one stray flux measurement with an optimisation problem, being detailed in Section
ITI. The resampled data is split into intervals of 30 revolutions, which are converted to
the frequency domain by fast-Fourier transform (FFT). The spectrograms are normalised
with respect to both amplitude and frequency of the fundamental component. Then, the
spectrograms are enveloped by splitting the spectrogram into intervals with a length of
0.5 order centred around the half harmonics (0.5, 1, 1.5, ...) to find the maximum in
each interval. This saves the storage space while maintaining the information on the half
harmonics. The pretreatment makes the FDI scheme robust against transient operation
condition and can be implemented in sensorless drives.

‘ Start '

A 4

Data
s True
acquisition ;

A 4

Healthy?

i T

False Update Updlate
|

Label Add to
Update . L
correction training set

f J

False True

Anomaly detector

Correct
fault?

Figure F.1: Flowchart of the proposed FDI scheme. Note: Arrows coloured in red, blue
and black represent information flow related to classifier, detector or both; Green objects
represent processes/actions; purple boxes represent detector and classifier, red diamonds
represent decisions

The FDI scheme starts with detecting anomaly using a self-supervised anomaly de-
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tector, since historical data at faulty is not available. If the anomaly detector gives a
false positive (FP), which is determined by an expert, it then needs to be updated with
these FPs to learn the new region of healthy case. True positive samples marks the end
of the first stage of the FDI scheme since the samples of faulty case are now available for
training of the fault classifier. The second stage keeps the fault detector, but it works
alongside with the fault classifier. An investigation by an expert is required when either
the detector or classifier identifies a fault. If a fault is detected and classified as a previ-
ously discovered fault, the fault search can be narrowed down during maintenance. Note
that in the first iteration of stage 2, the classifier only knows of one fault. However, more
data during operations will result in a more knowledgeable and confident FDI, which can
speed up the maintenance process, reducing unexpected downtime and cost. The detailed
description of the FDI is given in Algorithm 1.

Algorithm 1 Detailed description of FDI scheme

Require: Healthy case data set, threshold, maintenance expert

while No discovered faulty cases do
Compute Anomaly score with OCC
if Anomaly criterion = TRUE then:
Expert investigation
if Fault = TRUE then:
Perform maintenance
Label newly discovered fault and train classifier
else if Fault = FALSE then
Update OCC
end if
end if
end while
while At least one discovered fault class do
Compute Anomaly score with OCC
Predict fault class with classifier
if A fault is detected by classifer or OCC then:
Expert investigation
if Fault = TRUE then:
Perform maintenance
if Fault = New then
Label new fault and update classifier
else if Fault = Old then
Label new fault samples and update classifier

end if
else if Fault = FALSE then
Updata OCC
end if
end if
end while
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F.3.1 Anomaly detection

The existing anomaly detectors using self-supervised learners need samples from healthy
cases to identify any anomalies, which later can be labelled by an expert for initiating
the training of a fault classifier in a later stage. The suggested one-class SVM in [§] is
replicated, and 10 % of the training data is assumed to be outliers. The drawback with
this OCC is its assumption of defining the region of healthy case with the kernal function.
Regions of low competence may be included to increase the chance of FN. To address this
demerit, a density based method LOF in [11] is used in this work to replace the one-class
SVM. Like the k-nearest neighbours, the pair-wise distance between all the samples in the
training dataset needs to be computed. This will make the LOF computationally heavy
when the library of samples in the healthy case become too large. This problem can be
solved by selective samplings [18].

The samples in datasets are grouped into clusters. An outlier can be isolated by a
threshold value of the average distance to its nearest neighbours. However, the samples
of the healthy dataset do not necessarily have a uniform density in its cluster in feature
space. Thus anomalies can be closer to a cluster, depending on the region in the feature
space [11]. LOF isolates outliers based on the sample density psamp in feature space.

P (P) = (% S ap, on)) (F.1)

where k is an integer, d(P,0,) is the pair-wise Euclidean distance between point P and
its nearest neighbours o,. Then the sample density of each of the neighbour points o,
(Psamp(0n)) needs to be computed. LOF is here defined as:

k

LOF(P) = % %})(&%} (F.2)
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Figure F.2: Illustration of LOF in a 2D-feature space with P (black), o, (orange), d(P, 0;)
(red), distance between o7 to its nearest neighbours (gray), and rest of samples in the

cluster (blue)

Figure F.2 illustrates the principle of LOF. The sixth nearest neighbours for point
P are coloured in orange, while the rest of the dataset is coloured in blue. Point o; is
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used as an example, where 0; and its sixth nearest neighbours have grey connections. An
anomaly is detected if LOF is greater than a set threshold. This implies that the new
observation P is located in a region, which is a too "sparsely" populated region in feature
space.

F.3.2 Fault identification

After the anomaly detection, the multiple fault identifications are implemented by a rein-
forcement learning (RL) based classifier in this study. RL has already proven its effective-
ness in information theory, simulation-based optimisation, control theory and statistics
[19], [20] and developed for bearing fault diagnosis alone [21] while the imbalance issues
were not addressed. The proposed RL scheme based on a double deep Q-network (DQN)
in |22] will be compared with the recently developed using a CNN architecture for fault
identification in [8]. The problem with the existing CNN classifier is that it is not suited
for imbalance datasets. The proposed DQN fault classifier can compensate the imbalance
datasets without any oversampling. RL usually uses the analogy of teaching the agent to
play a game. In the fault classification, the RL agent plays a "quiz game". It is formulated
in form of 1D arrays as features, where the agent needs to give a response on classification.
The Q-learning aims to set up a Q-table that contains the policy to maximise a reward
depending on the input. In DQN, the Q-table is replaced with a neural network. Figure
F.3 illustrates the interaction between the DQN agent and its environment. The illustra-
tion inside the DQN shows the layers of the critic network with four layer: Input layer
(243 nodes), fully connected layer (100 nodes), ReLU activation function layer and the
second fully-connected layer. The number of nodes in the final layers is equal to number
classes in the training data.

Fully Connected RelU Fully Connected
Input Layer Layer Layer Layer

DQN agent
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I dt
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Order

Figure F.3: Block diagram of DQN interacting with the environment

The action of the agent is associated with the label of the training dataset. If there is
only two classes in the training set, it is sufficient to define the action space as A = {0, 1}.
In this study, the action space is defined as A = {[0,0], [0, 1], [1,0],[1,1]}. The entries in

171



Detecting Eccentricity and Demagnetization Fault of Permanent Magnet Synchronous
Generators in Transient State

A represent healthy or no fault (NF), DF, ITSC and mixed fault (MF), respectively. MF
is the mix of DF and ITSC. The encoding of the labels is for the DQN only, which needs
to be decoded after the prediction.

The reward function [22] is weighted based on the ratio between negative (healthy
case) and positive (faulty case) samples.

1, a; = L; = Healthy
—1, a; # L; = Health
r, = t # t y (F?))
A, a; = Ly = Faulty
=\, a; # L, = Faulty

The performance of a classifier to identify positive samples will decline when the imbal-
ance ratio A is increased. Eventually, the network will classify every sample as negative
regardless of input. This phenomenon is called a collapse and is caused by the fact that
the negative samples receive a greater sway in the training of the network since they are
in majority. The role of r; is to tackle the trend towards a collapse by balancing the
weights of the negative and positive samples in the training process. The training process
of the DQN is described in Algorithm 2 [23], where © is the parameter critic and 7 is the
smoothing factor for updating the target critic, which has the parameter ©,. There is no
terminal state for Sy, ;.

Algorithm 2 Training Algorithm for DQN

Require: Positive and negative samples

for N, episode do
Pick a random sample s; from the training set
for Ngiep-1 steps do
if Exploration then
Pick a random action a; from A
else
a; = max = Q(s;,4|0)
end if "
Execute a; and observe the reward r;
Randomly pick s;,; from training set
Store the experience (s, as, ¢, St41)
Compute and store the value function:
Yo = 1 + yarg maxQy(sey1, ai11|Oy).

Compute the f(t)ss for a mini-batch with M samples:
L= 55" (- Qs ail0))
Update the critic by one-step minimisation
Update the target critic parameters: ©, = 70 + (1 — 7)©
Update the decaying probability for exploration
Repeat
end for
end for
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F.4 Experimental setup and data collection

F.4.1 In-house test bench

The studied four-pole, 2.2 kW PMSM is coupled to a generator with a torque transducer
in between as shown in Figure F.4. The output of the generator is rectified by a three-
phase full-bridge rectifier with a 500 pF capacitor bank, being connected across the output
terminals, to remove the ripples of the DC output. The brake chopper is regulated by a
PWM signal, which needs to be amplified by a factor of 4 due to the voltage amplitude
insufficiency from the Microlabbox. The PWM signal is defined by the duty cycle, which is
an ideal system that would be proportional to the reciprocal of the motor speed. However,
due to losses and imperfections, a look-up table is generated for the duty cycle. It dictates
the required duty cycle for achieving a requested load in the speed range between 1000
rpm and 2000 rpm.

Figure F.4: Overview of the test bench with (1) resistor bank, (2) flyback diode, (3)
three-phase rectifier with capacitor bank, (4) 12 V DC-supply, (5) IGBT brake chopper
with OP-Amp, (6) hall sensors, (7) PMSM, (8) torque transducer, (9) generator, (10)
short circuit resistor, (11) Microlabbox, (12) 24 V DC-supply, (13) ABB drive, (14) office
laptop and (15) cabinet containing the current sensors
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The solid state hall sensors, Type SS495A, measure the stray flux. The output of these
sensors is linear and ratio-metric within the range [-67, 67] mT and has a sensitivity of
31.25 % Two sensors were soldered to a Veroboard and wired to the Microlabbox, which
delivers power to the sensors and records the measurement. The sensors could measure
both tangential and radial components of the stray flux. Two sets of sensors were placed
in proximity to the PMSM at the top and on the side.

F.4.2 Description of collected datasets

Stray fluxes are measured for three different non-stationary operating conditions with
a sampling rate of 10 kHz. The time-series data is resampled with 400 samples per
rotor revolution and split into samples with a length of 30 revolutions. Each sample is
transformed into the frequency domain to produce the features for each observation used
for training and testing of the proposed algorithm. The test setup is operated with the the
three operation profiles shown in Figure F.5. Profile 1 consists a regular pattern, where
the speed ramps up and down between 1000 rpm and 2000 rpm, and the load changes
between 25 % and 75 % of the full load. Profile 2, which keeps the load constant at
60 % of the full load, while the speed changes with a randomly generated speed profile.
Profile 3 keeps the speed constant at 1200 rpm, and then the load is randomly generated,
where it repeats itself every 30 s. Stray flux measurement was collected from the PMSM
operating in all mentioned profiles in the following fault condition: NF, ITSC with 5 %
severity, local partial DF, and a MF case with both I'TSC and DF. The DF is induced
by one pole on a hot plate where two spots in the middle on one North pole have lost
30 % of original magnetic strength. The studied PMSM has 3 parallel strands, thus the
severity is a estimated value of the shorted turns between the phase terminal on a single
strand while the two other strands are unaffected. The I'TSC is induced with a 1 {2 short
circuit resistor, for mimicking the remaining insulation coating in the I'TSC.
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Figure F.5: The three studied operation profiles: (top) Profile 1 with variable load and
variable speed, (middle) Profile 2 with constant load and variable speed, and (bottom)
Profile 3 with variable load and constant speed
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F.5 Results and Discussions

F.5.1 Performance of anomaly detection

The one-class SVM and LOF need to define their respected criterion for anomaly identifi-
cation. The sensitivity of the one-class SVM is defined by the outlier fraction, where the
portion of outliers in the training dataset is set to 10 %. The output of the trained one-
class SVM under testing is a numeric score, which is less than 0 in case of an anomaly as
suggested in [8]. The LOF does require trial and error to determine a suitable threshold.
A value close to 1 will make the detector more sensitive but has the risk of increasing the
FP rate. The threshold for LOF was set to 1.1, which means that a new point is classified
as an anomaly/fault if the regions of its k' nearest neighbours are on average of 10 %
denser than the region of the new point. The parameter k is set to 5.

The one-class SVM and LOF classifiers are first trained on the healthy datasets from
Profile 1 with the result shown in Tabel F.1 and Table F.2. The healthy dataset was split
by 83.3 % (250 samples) for training and 16.7 % (50 samples) for testing. All the samples
from each the faulty cases from any operation profile are used for testing (900 samples in
total). Initially, the training set includes only samples from Profile 1. The performance
of the one-class SVM has an accuracy of 84 % when tested on the same profile during
training. The accuracy of the one-class SVM anomaly detector proposed in [8], when
testing on each of the fault cases, varies between 57 % and 98.3 %. The proposed LOF
algorithm, on the other hand, predicts all the fault cases as anomalies almost perfectly.
However, the proposed LOF has a high FP rate. To address this issue, more samples in the
healthy dataset from Profiles 2 (50 samples) and 3 (50 samples) are added to the training
data to improve in the proposed FDI scheme with AL. As a result, the accuracy of the
proposed LOF anomaly detector improves constantly when more samples are added. The
compared one-class SVM detector suffers from the newly added data samples, where its
accuracy in healthy cases improves, but FN rate increases. This proves that the proposed
LOF anomaly detector could effectively identify anomalies better than the existing one
when more knowledge of healthy cases is added during normal operations.

F.5.2 Training times of fault classifiers

To compare the computational effectiveness of the proposed DQN fault classifier and
existing one, the average training times of DQN and the CNN benchmark are reported in
Table F.3 while increasing the imbalance in datasets. The classifiers were trained with two
classes (healthy and faulty), and with all four classes of healthy, DF, ITSC and MF. The
training time for the DQN stays close to constant around two minutes while the training
time of the CNN declines when increasing the imbalance as reported in Table F.3. The
imbalance ratio A is increased by removing samples in the faulty case. Number of steps in
each of the episode in the DQN is set to 400, which would explain why the training time
does not change. The CNN-based classifier on the other hand uses all available samples in
each step in the training. It is noted that the imbalance of the training dataset in case of
four-class is computed by the imbalance of each respected fault class. The ratio between
healthy and each faulty case is considered as a more relevant metric in the compensation
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Table F.1: Accuracy of one-class SVM outlier detector

Fault test case Test Extra samples from Profile 2 and 3

(Criterion) Pro. 0 50 100 150 200 250

Healthy 1 84.0 820 80.0 80.0 80.0 80.0
(Score > 0) 2 80.0 98.0 98.0 98.0 98.0 98.0
3 46.0 70.0 80.0 80.0 84.0 90.0
DF 1 717 553 56.0 56.0 51.7 53.0
(Score < 0) 2 57.0 46.0 45.7 443 41.0 41.0
3 840 583 54.7 51.0 44.7 443
ITSC 1 823 553 53.7 53.0 46.3 45.7
(Score < 0) 2 90.7 543 48.0 39.7 227 21.7
3 983 77.0 747 67.0 59.0 57.0
MF 1 66.7 440 46.0 43.0 39.7 38.7
(Score < 0) 2 733 320 303 23.7 16.3 15.0
3 93.0 623 587 517 427 37.0

Table F.2: Accuracy of LOF outlier detector

Fault test case Test Extra samples from Profile 2 and 3

(Criterion) Pro. 0 50 100 150 200 250

Healthy 1 860 860 830 8.0 80.0 98.0
(LOF<11) 2 140 720 940 80.0 86.0 84.0
3 80 520 83.0 80.0 82.0 90.0
DF 1 100 100 980 98.0 100 100
(LOF >1.1) 2 100 980 100 100 100 100
3100 92.0 940 940 98.0 98.0
ITSC 1 100 100 100 100 100 100
(LOF >11) 2 100 100 100 100 100 100
3100 100 100 94.0 100 100
MF 1 100 980 100 96.0 100 100
(LOF >1.1) 2 100 940 960 100 100 98.0
3100 92.0 84.0 920 960 96.0
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Table F.3: Recorded training time of DQN and CNN

Tmb. DQN CNN

ratio 2 classes 4 classes 2 classes 4 classes
1 133.5 125.0 279.1 525.7
1.25 131.9 123.0 233.6 437.9
1.67 132.1 120.5 209.6 348.7
2.5 131.1 122.2 187.2 284.8
5 129.4 122.0 163.2 196.4
10 129.6 124.0 140.7 155.3
15 126.5 118.4 141.1 154.9
30 127.1 119.7 142.9 139.3

described in the reward function. This study, equal imbalance (Imb.) ratios A are applied
for each fault case.

F.5.3 Performance of two-class classifiers

The proposed DQN and existing CNN fault classifiers are trained to identify a specific
single fault, namely DF or ITSC. Table F.4 list the results when the DQN and the
CNN classifiers are trained to identify these faults. Note, the accuracy results of the
fault classifiers are listed in Table F.4, in which green-coloured numbers show the high
accuracy results of over 98 % and red-coloured numbers indicate low accuracy results of
less than 50 %. This is to highlight the main trends of the results. The terms of positive
and negative samples will hereafter be interchangeably used with faulty and healthy case,
respectively. The imbalance is increased by reducing the number of positive samples in
the training dataset. All negative samples from the PMSM operating with Profile 1 are
used for training, but 50 of these samples are randomly picked for testing. 50 test samples
are randomly sampled from each faulty case and are sampled from the samples that are
not a part of the training dataset, when A > 1. It is noted that this selection is only
applied for the testing dataset from Profile 1. All samples from Profile 2 and Profile 3
are used for testing (300 samples per class per profile). The performance of the DQN
and CNN classifiers are compared with the metrics, true positive rate (TPR) and true
negative rate (TNR).

In the case of DF, only the samples of the motor with an induced local demagnetisation
are used as the positive training samples. The proposed DQN and existing CNN classifiers
are tested on all four-fault cases, namely DF, I'TSC, MF and NF or healthy, to investigate
what the two other faulty datasets (ITSC and MF) can be classified. The fault signatures
of MF may share common characteristics with both of DF and ITSC. Therefore, it is
possible for the MF samples to be classified as a fault by the classifier trained for detecting
DF or ITSC, which is why Table F.4 reports TPR for MF. Ideally, ITSC fault will not
be classified as a fault by the classifiers trained for DF and vice versa. This is why Table
F.4 reports TNR for the fault classifier were not trained before being used in testing.

The proposed DQN classifier and CNN achieve a TPR higher than 90 % for the fault
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Table F.4: Comparing TPR and TNR of DQN and CNN classifiers when trained for
identifying either DF or I'TSC

Local Demagnetisation Inter-turn short circuit
DQN CNN DQN CNN

Test Imb. TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR
Pro. ratio DF NF MF ITSC DF NF MF ITSC ITSC NF MF DF ITSC NF MF DF
1 1 100 999 958 100 972 984 73.7 999 985 979 128 994 954 96.6 2.9 99.8
1.25 100 999 976 998 963 981 712 999 95.7 972 94 99.6 932 936 6.7 986
1.67 100 99.7 99.6 100 958 989 71.0 100 97.1 981 11.5 988 8.1 979 58 988
2.5 100 999 995 988 955 993 698 999 982 965 149 984 816 979 16 999
) 100 987 99.6 99.1 929 986 643 999 964 956 147 989 676 969 21 998
10 100 96.1 999 979 821 99.8 49.8 100 96.2 928 19.0 977 554 967 3.0 99.7
15 999 934 996 958 694 975 358 99.7 934 903 157 985 435 99.7 20 995
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10 998 931 984 978 884 996 71.0 100 8.9 802 141 988 391 959 19 99.1
15 997 884 984 963 780 963 572 986 8.2 79.0 133 982 225 984 26  99.0
30 998 822 991 951 46.8 99.6 30.8 100 839 732 205 9.0 182 993 04 100

wt

wt

cases they are trained before testing when A\ = 1. The lowest TPRs for the proposed
DQN and compared CNN classifier are 82.0 % and 76.1 %, respectively when they were
trained for ITSC dataset and tested on profile 3 with a constant speed and variable loads.
The DQN classifier maintains a TPR of above 97.8 % when trained and tested for DF.
However, the TNR for the healthy case is dropping to 72.8 %. The CNN classifier improves
its TNR for the healthy case when the increasing the imbalance of the datasets . Fewer
FPs is normally a positive quality in a classifier, but TPR for the CNN drops to below 50
% when increasing the imbalance in a dataset. The accuracy trend for the CNN classifier
is reduced significantly when all samples are classified as healthy cases. The proposed
DQN clasifier, on the other hand, reduces the possibility of FN, but has overcompensated
slightly and increased FPs. Neither FP nor FN is desirable in FDI. However, both FN
and FP rates can be compensated in the proposed AL scheme by correcting relabel by
an expert, and the proposed DQN fault classifier has a second option with the weighted
reward function.

The MF case includes both DF and ITSC. Therefore, there is a possibility that this
fault case can be classified as one of those faults. This is in the context of fault classifiers,
that are trained for identifying the presence of a specific fault. The test result reveals that
both DQN and CNN classifiers, which are trained for DF, and it identifies MF as a fault.
The TPR reported under MF is lower as compared to the case, where the classifiers are
trained and tested on the same fault case. The TPR for the CNN classifier is also reduced
when increasing the imbalance in datasets. Neither DQN nor CNN classifier identifies MF
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as a fault when they are trained to identify ITSC fault. This result indicates that there
is a high possibility that DF and MF may share the same fault signatures. The fault
classifier, being trained on all four-fault cases included in this study, may find it difficult
to distinguish between DF and MF.

F.5.4 Performance of four-class classifier

The proposed DQN and CNN fault classifiers are further trained with all four fault classes:
DF, ITSC, MF and NF. Figure F.6 shows the hit rates of the DQN and CNN fault
classifiers using test dataset in Profile 3. This includes the TNR and TPR, which were
discussed in Section IV.C. The overall accuracy is also added in Figure F.6. It equals the
average of the four hit rates, since the test dataset is balanced between the four classes.
The proposed DQN and CNN fault classifiers suffer from being trained for all four faults.
They start with an overall accuracy of 75 %, then decrease with respect to the imbalance
of the dataset. Note each fault class has equal A\, which is the imbalance ratio given on
the axis. The performance of the CNN is worse than the DQN, since its accuracy declines
at a larger rate with a trend towards a collapse. Its hit rate for healthy case, i.e. NF, is
increased towards 100 % due to this trend.

Each fault class can be incorrectly classified into three classes. This in total gives 12
miss for a four-class classifier. Figure F.7 plots the miss rates for both DQN and CNN
fault classifiers, which were not close to 0. The comparison still uses the test dataset from
Profile 3. It is noting that the first and last letters in the labels denote the predicted
and true classes, respectively. Figure F.7a reveals that the proposed DQN fault classifier
is confused between DF and MF, which were predicted in the analysis of the two-class
classifiers. The DQN classifier confuses ITSC with NF and MF, while NF is generally
confused with all of the other health classes. This demonstrates that the reward function
may have overcompensated and needs to be adjusted. A combine decision between fault
classifier and anomaly detector may also reduce the rate of FPs since Table F.2 reports
a high accuracy for LOF. The CNN fault classifier does not misclassify NF with any of
the fault classes. The confusion between DF and MF do decrease when increasing the
imbalance, but these fault classes starts to be predicted as NF instead. Almost all samples
from fault case ITSC are misclassified as NF.
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F.6 Conclusion

This study proposed a fault diagnosis scheme trained and tested with both transient
operating condition and mixed faults, where labelled training samples were initially un-
available. The training and testing dataset are collected by stray fluxes from the in-house
test setup. The proposed method order-normalises the spectrogram by resampling the
time-series data at a fixed angular increment to make it more robust against dynamic
operations. The rotor position is estimated with a single external stray flux sensor, which
allows for an automatic fault diagnosis of sensorless PMSM drivetrains without modifying
the existing drives. The local outlier factor anomaly detector was only trained on samples
from Profile 1, which gave a high false positive rate. Nevertheless, the proposed active
learning framework allows for improving prediction accuracy when adding new healthy
case samples. Newly discovered health classes are used to train the proposed DQN clas-
sifiers at different imbalance ratios. The comparative study shows that the DQN fault
classifier is more robust than the existing CNN fault classifier, and can even have over-
compensated the weight of the minority class.
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