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Abstract: This paper aims to classify local demagnetisation and inter-turn short-circuit (ITSC) on
position sensorless permanent magnet synchronous motors (PMSM) in transient states based on
external stray flux and learning classifier. Within the framework, four supervised machine learn-
ing tools were tested: ensemble decision tree (EDT), k-nearest neighbours (KNN), support vector
machine (SVM), and feedforward neural network (FNN). All algorithms are trained on datasets
from one operational profile but tested on other different operation profiles. Their input features
or spectrograms are computed from resampled time-series data based on the estimated position of
the rotor from one stray flux sensor through an optimisation problem. This eliminates the need for
the position sensors, allowing for the fault classification of sensorless PMSM drives using only two
external stray flux sensors alone. Both SVM and FNN algorithms could identify a single fault of the
magnet defect with an accuracy higher than 95% in transient states. For mixed faults, the FNN-based
algorithm could identify ITSC in parallel-strands stator winding and local partial demagnetisation
with an accuracy of 87.1%.

Keywords: demagnetisation; inter-turn short circuit; machine learning; permanent magnet
synchronous motor; variable speed; variable load

1. Introduction

Fault diagnosis in permanent magnet synchronous motors (PMSM) has always re-
ceived a lot of attention, aiming at increasing the safety level in dynamic and critical
applications or preventing large economical losses due to unexpected downtime [1]. Un-
like industrial productions, PMSMs in wind turbines and electric vehicles are intensively
exposed to dust, mechanical, chemical, and thermal stresses in harsh environments and
thermal cycling due to the dynamic operations. This causes an inter-turn short-circuit
(ITSC) in the stator windings and demagnetisation on rotor permanent magnets (PM) of
PMSMs, resulting in reduced efficiency and increased cogging torque [2]. The ITSC is
a common fault in all motor types, e.g., induction motor and reluctance motor. How-
ever, demagnetisation is a fault that is unique to permanent magnet motors. A uniform
demagnetisation affects all magnets equally and significantly reduces the overall back
electromagnetic motive force (BEMF). A local demagnetisation only affects a specific region
of rotor magnets. The complexity of machine structure, variable speeds, and loads render
fault diagnosis challenges due to sensor requirements and nonstationary signals, attracting
significant research that has tackled ITSC and demagnetisation in industry and academia
in recent years, which is briefly discussed hereafter.

1.1. Related Works

Most research on ITSC implements the short-circuit in a single-strand stator winding.
The ITSC in such windings can be detected based on characteristic frequencies in the
current measurement. However, stator windings in PMSM can have multiple strands
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in parallel. Such stator windings have lower stator resistance and inductance, but the
maximum output of the BEMF is reduced. The impact of ITSC in multi-strand windings
on current signals is less compared to its single-strand counterpart. Multiple strands in
one phase with an ITSC may be unaffected by it. The fault signature will be different if the
ITSC is on a single stand or between two strands. Van Der Geest et al. [3] have numerically
analysed a PMSM with three parallel strands in the stator to study the effect of ITSC on
the copper losses. The authors proposed a fault detector, which was the fundamental
component of the difference between machine neutral voltage and the estimated inverter
neutral voltage based on three equal impedance. The method has been tested on both a
high-speed PMSM prototype and an off-the-shelf PMSM. It was not possible to implement
ITSC on the prototype; therefore, two additional turns were wound around two stator teeth
to resemble an ITSC. The research does check the performance of the fault detector in case
of “open strand fault”, partial demagnetisation, and misalignment in simulation. It was
found that the fault indicator was most sensitive to ITSC fault and could detect it with a
severity level down to 0.4%. However, it is not clearly specified if the ITSC is applied to
all strands or just a single strand. Furthermore, it is unclear whether the extra turns were
added to a single strand or to the end terminal. The fault indicator was tested in steady
state operation, but at different speeds. The loads in their experiments were either no-load
or at the rated condition. No variable speed or load profiles were used to test the detector.

Zhu et al. [4] investigated a partial demagnetisation fault, which was assumed to be
applied uniformly on all magnets. The rotor was demagnetised by increasing the internal
temperature by overloading. The current level of demagnetisation was estimated based on
the measured BEMF in two study cases, where the magnets had lost 17% and 33% of their
original strength. The merit of this method is that it does not cause any physical damage
or imbalance in the rotor, but the demagnetisation is implemented uniformly. The Vold–
Kalman filtering for an order tracking was used to detect demagnetisation alone in a PMSM.
Kao et al. [5] proposed a diagnosis algorithm, combining discrete wavelet transform and
convolution neural network (CNN), to separate between local demagnetisation and bearing
faults. Two strategies for demagnetisation were implemented: first replacing a piece of
the magnet with aluminium, and learning how to weaken the strength of the magnet.
The paper does not address the second method: how to weaken the magnet. However,
validating this approach for detecting demagnetisation is not convincing, since there is an
imbalance if the replacement material does not have the same density. The fault classifier
proposed in [5] is based on one-dimensional CNN, being trained for demagnetisation fault
and bearing fault, but the authors did not investigate the possibility for mixed fault context.
The classifier was trained and tested for 20 different constant speed settings, but there is no
variable speed profile in this work.

Iglesias-Martinez et. al. [6] investigated the use of bi-coherence and a fuzzy C-means
algorithm for detecting winding asymmetries in induction motors. External coil sensors
with 1000 turns and an external diameter of 8 cm were placed in proximity to the motor,
measuring radial, tangential, and axial components of the stray flux. The stray flux signals
were recorded during the start-up of the motor; then, they were used in a fuzzy C-means
machine learning fault classifier, resulting in an accuracy of about 90%. Zamudio-Ramirez
et. al. [7] proposed also smart sensors for the online detection of individual and combined
faults in induction motors, such as broken rotor bar and misalignment. The sensor solution
consists of three hall sensors oriented towards the three Cartesian directions. Their analysis
concluded that the axial and radial stray flux components were the most effective in the
transient analysis. The classification was performed with linear discriminant analysis
and feedforward neural network (FNN), where the time-frequency representations were
computed from the MUSIC algorithm during startup. The classifiers were trained by data
from different mechanical faults such as broken rotor bar and misalignment, but mixed
faults were missing in the study. The neural network was trained on measurements from
startup duration alone, without other operations.



Sensors 2022, 22, 1216 3 of 19

Gurusamy et al. [8] conducted a theoretical study on how loading would affect
the fundamental and third harmonic of the measured stray flux based on finite element
analysis. The information of stray flux was extracted from selected points in the finite-
element analysis. The results showcased how the harmonics would change in magnitude,
depending on the location of the fault. Simulations were verified with experimental work.
The third harmonic of the stray flux was proposed as the fault indicator, since it was
less affected by loading conditions than the fundamental component. However, the third
harmonic may indicate many kinds of asymmetries in the magnetic circuit. Furthermore,
the ITSC detector was only tested for constant speed or load operations.

1.2. Contribution

Conventional methods of detecting faults in stator winding and PMs of PMSMs
methods focus on off-line tests, steady-state operations, and require a high number of
available sensors in the drives. However, PMSMs are always controlled and dynamically
operated based on the driver’s demands. Furthermore, modifying the existing drive system
for automatic fault detection must be avoided in critical systems and applications, where
sensorless controls are preferred due to reliability or reduced maintenance cost. Stray flux
has recently gained popularity in the literature for fault detection of ITSC, demagnetisation,
and mechanical faults due to its sensitivity and is simple to install outside of a drive system.
Existing research focuses on model or signal-based algorithms, requiring multiple stray
flux sensors and speed measurements for detecting faults in variable speed conditions.
Furthermore, seeded demagnetised magnets were inappropriately implemented in the
existing research, causing imbalances or without an overheat demagnetisation. To the
author’s knowledge, most existing machine learning-based fault classifications are trained
and tested on the same datasets or the same operational profiles, rendering a challenge
of trustworthiness on other datasets or working conditions. To address the mentioned
challenges, this paper aims to achieve the following:

1. Increase the robustness of potential machine learning classifiers against transient
operating conditions and different operation profiles by resampling at a fixed angular
increment.

2. Eliminate the need of position sensors in the resampling process (order tracking).
3. Introduce a heat treatment method for inducing local partial demagnetisation fault.
4. Train the machine learning algorithms, ensemble decision tree (EDT), k-nearest neigh-

bour (KNN), support vector machine (SVM), and feedforward neural network (FNN)
and compare their performance in different operation profiles and with or without
the presence of mixed faults in the datasets.

5. Investigate the variation of the classifier accuracy based on features computed from
data collected by stray flux, current, and torque signals.

6. Recommend minimum length of data sample for an accurate fault classification.

The rest of this paper is organised as follows: Section 2 describes the proposed tech-
nique for fault diagnosis under stationary as well as nonstationary conditions, which was
followed by a description of how the fault was implemented in Section 3. Section 4 de-
scribes the experimental setup of the in-house test bench. The results are presented and
discussed in Section 5. This paper ends with concluding remarks in Section 6.

2. Methodology

The block diagram in Figure 1 shows the proposed pre-treatment of measurements
for computing features before passing it through a machine learning classifier. First, data
samples were collected and labelled based on their fault case and operation condition.
The rotor position was estimated with an optimisation problem. The estimated position
was used for resampling of the original datasets, with data points sampled at a fixed
time increment, to datasets sampled at a fixed angular increment. The resampled datasets
were split into smaller samples, which contain a fixed number of rotor revolutions. The
second step is to compute the spectrograms of the resampled datasets with Fast Fourier
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Transform (FFT), which is normalised based on the fundamental frequency. This gives
a fundamental frequency spike with an order number equal to 1 and a magnitude of 1.
Therefore, any fault classification approach based on analysing these spectrograms needs
to study the composition of the harmonics. Third, an envelope of the spectrogram was
obtained by splitting the spectrogram into intervals with a length of 0.5 order centred
around the half harmonics [0.5, 1, 1.5, . . . , 39.5, 40] and then finding the maximum in each
interval. This simple method produces an envelope of the spectrogram, which includes
the harmonic peaks with fewer entries. In addition, the pre-treatment will order normalise
the spectrogram and make classification more robust against speed change. The resulting
envelopes of the spectrograms are chosen as the selected features for classifications, being
trained and tested on EDT, KNN, SVM, and FNN.
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Figure 1. Block diagram of preparation of features.

2.1. Resampling Time-Series Data

Measured signals in PMSM, e.g., flux, current, and voltage are cyclical and ideally have
a sinusoidal shape. In the case of a four-pole motor, every two cycles in these measurements
represent one revolution of the rotor. Normally, datasets are sampled at constant time
intervals. There will be more data points per cycle at lower speeds. For example, there
are 400 data points per cycle if a four-pole motor is running at 750 rpm with a sampling
frequency of 10 kHz. The number decreases to 100 data points per cycle when the motor is
running at 3000 rpm. This imbalance of samples per cycle is the main cause for the peaks
spreading over a wide range of frequencies in the spectrogram of signals with time-varying
frequencies, which is computed by FFT. A solution to this is to resample the data from
equal time steps to equal angular steps [9].

Figure 2 shows the results of the resampling process with a chirp function. The blue
rings represent samples from the original dataset, where the data points are spaced at an
equal time distance. Figure 2 highlights that more samples are concentrated at the first
interval, when the instantaneous frequency is at its lowest. The red points represent the
resampled dataset with the equal angular distance, where every interval have the same
number of samples regardless of frequency. The resampling process can be viewed as a
transformation from time-domain to θ-domain. After the transformation, the datasets can
be split into intervals defined by a fixed number of cycles instead of a fixed time interval.
Longer samples, regardless of being defined by time intervals or cycles, will increase the
order resolution in the spectrograms and improve the confidence in the present peaks. The
minimum number of cycles needed for computing features will be discussed in the results.



Sensors 2022, 22, 1216 5 of 19

Resample

Time

Frequency Order

FFT FFT

Position 𝜃 

Figure 2. Visualising the benefit of the resampling process from time- to θ-domain.

2.2. Estimation of Position

The resampling process requires the information of the rotor position or position
sensor [10]. However, being dependent on encoders, resolvers, or tachometers will exclude
the applicability in sensorless PMSM drives, since these sensors are not available. Removing
a position sensor will improve the system reliability and enhance the performance of any
fault classification method. Etien et al. [11] proposed a nonlinear adaptive algorithm with
phase-locked loop and orthogonal signal generators. This method is suited for online
detection but does require tuning a PI controller. Lu et al. [12] computed the phase from
a filtered current signal, which is turned into a unipolar signal by an absolute function.
The signal is divided into frames, which is every half cycle of the sine function. The phase
angle is computed from the inverse sine of the ratio between the instantaneous value of
the function within the current frame and the maximum value of the previous frame. This
method is more prone to noise, because of the few key data points defining the maximum
value of each frame. The method suggested in this paper is to find the fundamental
frequency via an optimisation problem. Hou et al. [13] proposed ridge regression for
obtaining instantaneous frequencies in time-frequency representation. Then, this method
requires wavelet or short-time Fourier transform. The suggested method does not need
such algorithms for estimating the fundamental frequency. Assuming the speed changes is
negligible in a short time period (0.1 s is used in this study), the fundamental component of
the signal can be defined as follows:

h(t) = sin(2π f1t + θ ) (1)

where f1 is the fundamental frequency and θ is the phase angle. The fundamental frequency
can be obtained via FFT, but short-time periods are needed for an accurate estimate, which
negatively affects the frequency resolution. Instead, the fundamental frequency is estimated
by the optimisation problem:

[ f1, θ] = arg min
f1,θ

(
(x(t)− h(t))2

)
. (2)

The range for the optimal value of f1 can be narrowed down between the standstill
and nominal speed, i.e., f1 ∈ [0, 100] Hz. The value of the objective function in (2) repeats
itself when θ is increased from 0 to 2π, keeping the f1 constant. The modulo operator is
used such that θ ∈ [0, 2π]. Steps to estimate the fundamental component in the stray flux
signal are described as follows.

1. Extract a small time sample with period T from the original time-series data.
2. Compute the objective function for frequencies in the interval [0, 100] Hz with an

incremental step of 5 Hz. The optimal φ for a given f1 is found by the Golden Section
Search in the interval [0, 2π]. The values for f1 and φ, that yield the smallest value of
(2) are the initial guesses in step 3.
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3. Find the optimal solution for f1 and φ by the Simplex Search method in [14] with the
initial guesses given in step 2.

4. Repeat step 1 to 3 for the next time step until the end of the time sample.

The output of the estimator is dependent on all data points in the sample of each
iteration. Therefore, it would be less prone to noise and require no tuning. One weakness to
this approach for obtaining the fundamental frequency is a local convergence. Signals with
an immoderate signal-to-noise ratio will tend to reach 0 Hz instead of the desired solution.
One approach to avoid this problem is to increase the lower boundary in the brute force
analysis in step 2, e.g., 10 Hz.

2.3. Machine Learning Methods

This section aims to investigate the performance fault classifications of features com-
puted from stray flux measurements. The following supervised machine learning algo-
rithms are investigated: DT, KNN SVM, and FNN. Each sensor produces an envelope of
the spectrogram with 41 elements; thus, the number of inputs is the product between 41
and the number of sensor measurements added to compute the features.

2.3.1. Ensemble Decision Tree

The “trees” in decision tree classification starts at the first node known as the trunk,
then it branches out to more if-else statements. The final nodes of the tree are called
leaves, which get numeric values in the case of regression tree and discrete categories in
case of classification tree. An EDT consists of a forest with smaller decision tress called
“stumps”. They usually only have one node with two leafs each. The “stumps” are weak
learners on their own, but combined ones can predict with high accuracy where the class is
decided with a majority vote. However, the votes from each “stump” got a weight, which
is obtained from training. The EDT in this study uses the AdaBoost method for training
with 100 training cycles with the learning rate of 1. The maximum number of splits per tree
is set at 1, and each leaf has a minimum of 1 observation [15].

2.3.2. K-Nearest Neighbours

KNN is one of the simplest supervised machine learning algorithms, but it is still
an effective tool. The principle of the classification process is that new observations are
categorised based on the previous observations closest to them. The number of neighbours,
k, is used to decide the class of the new observation. It is adjusted to make the classifier
more robust and less likely to overfit. The votes from the closest neighbours are counted,
and the class with the highest number of votes dictates the outcome of the classifier [16].
In this paper, k was set to 15, which was obtained via trial-and-error during training.
The distance is computed with Euclidean distance, and the potential ties in four-class
classification are settled by the label of the nearest neighbour among the tied groups. Ties
are not possible in fault detection (two-class classification), since k is an odd number. Each
of the features is standardised by centring and scaling with respect to their mean and
standard deviation.

2.3.3. Support Vector Machine

In an SVM, the input data are mapped into a high-dimensional feature space using
a kernel function. The objective is to maximise the margin between the classes and give
the best separation of the training data [17]. In this paper, the linear kernel function was
used. The nature of SVM is to classify between two datasets. These methods are called
“one-versus-all” and “one-versus-one”. The first method uses multiple SVMs where each
one determines if an observation belongs to their respective class. Ideally, only one SVM
will identify the observation as their own class, which dictates the outcome of the classifier.
The second type of multi-class SVM was used in this study. Multiple SVMs are trained to
separate between two classes, which is unique to each SVM. A decision is reached with a
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plurality vote. Each of the features is standardised by centring and scaling with respect to
their mean and standard deviation.

2.3.4. Feedforward Neural Network

The mathematical model [7] for the output y in each neuron in an FNN is given as

y = f

(
N

∑
n=1

wnxn + b

)
(3)

where wn and b are the weights and bias applied to the inputs xn, and f (·) is the activation
function. The rectified linear unit (Relu) activation function was selected. A block diagram
of the FNN used in this paper is shown in Figure 3, consisting of two fully connected layers.
The first one contains 100 neurons, while the other is equal to the number of classes. In case
of fault detection, it is 2, and it is 4 for classification with mixed faults. It also has a batch
normalisation layer, which makes it faster and more stable. The last two layers are the
softmax layer and the classification layer. The network is trained with an adaptive moment
estimation [18] with a learning rate of 0.001, gradient decay of 0.9, squared gradient decay
factor of 0.99, and denominator offset of 10−8. The mini-batch size and number of epochs
are set to 16 and 10, respectively.

Input Layer Layer
Fully Connected Batch Normalization

Layer
Relu
Layer

Softmax
Layer

Classification 
Layer Layer

Fully Connected

Fault case

Figure 3. Block diagram of FNN used for fault classification.

3. Implementation of Faults
3.1. Implementing Local Demagnetisation

Demagnetisation faults in permanent magnet motors are usually implemented by
removing parts of the magnets [19] and replacing them with a non-magnetic material [20].
This is to counteract the imbalance in the rotor. Another option is to install weaker magnets
in the rotor through manufacturers [21]. The mentioned implementations do not mimic
the demagnetisation due to thermal cycling in dynamic operations of sensorless PMSM
drives. This study presents a demagnetisation process by heat treatment. The temperature
distribution on magnets is not uniform. The investigations performed by Fernandez
et al. [22] and Reigosa et al. [23] showcased how the temperature is distributed under
different applied currents in thermal equilibrium. The study was applied on PMSM with
interior magnets, where they concluded that the hottest spot on average over time is in the
middle of the magnet. Thus, this region is most likely to be affected by demagnetisation
due to overloading.

Several attempts for local demagnetisation were executed involving an electric dis-
charge machine, blow torch, and heat gun. None of the solutions can achieve a satisfactory
result, where one magnet became partially demagnetised without causing significant phys-
ical damage to the rotor. Note that these methods were tested on a separate rotor that was
not used in the final test. The best option, to our knowledge, is to heat one side of the
rotor on a 1500 W electric cooking plate made of iron. A solid aluminium block with the
dimensions of 200 mm × 90 mm × 20 mm was placed between the rotor and the cooking
plate due to its low permeability. This ensures a safe placement and removal of the rotor on
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the hot cooking plate. A wet towel was placed on the rotor to cool the other poles. The heat
treatment is shown in Figure 4.

1

2

3 4

Figure 4. Thermal treatment setup consisting of (1) cooking plate, (2) solid aluminium block, (3) wet
towel, and (4) the rotor.

The rotor was placed on the hot aluminium block, which reached temperatures up
to 232 ◦C. The rotor was left on the hot surface for 5 min. The thermal paste was used to
improve the heat transfer between the objects.

The magnetic field around the rotor was measured before and after the thermal
treatment, as shown in Figure 5 with an Extech SDL900 magnetic field meter. Note that
the measurements after the heat treatment were done after the rotor had cooled down to
the ambient temperature. The wooden frame allowed the rotor to rotate, kept its rotor
axis horizontal, and prevented any translational movement. The measured magnetic field
strength surrounding the rotor decreases with distance. Therefore, the hall sensor in SDL900
was kept at a constant distance of 3 mm from the rotor surface.

1

2
3

45

Figure 5. Setup for magnet strength measurement: (1) Extech magnetic AC/DC magnetic field meter,
(2) measurement rod, (3) universal magnetic stand, (4) PM rotor, and (5) wooden frame.

Figure 6 shows the measured magnetic field surrounding the rotor before and after
the heat treatment. The measurement was repeated three times to reduce the measurement
error. The north poles are indicated by positive value with the south ones are negative. It
can be seen that the rotor after the heat treatment has a slight decrease of magnetic strength
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at two points on one pole. Further investigations reveal that those two spots lost up to 30%
of their original field strength.

Figure 6. Side-by-side comparison of measured magnetic field strength of the permanent magnet
rotor (a) before and (b) after the heat treatment.

3.2. Implementing Short Circuit Fault

In the studied PMSM, each phase winding has three strands in parallel. The advan-
tage of this configuration is a reduced overall phase resistor and phase inductance. The
drawback is a smaller BEMF. A simple analysis of the expected DC resistance measured
by a multimeter was conducted. The inductance is ignored, since it does not affect the
measured resistance in steady state.

It is assumed that the resistance of each strand is RS. Four taps were implemented
in one phase of the PMSM. The taps are shorted with the input voltage terminal U. This
arrangement ensures that no short-circuit occurs between two parallel strands. Resistances
between a tap and the end terminals were measured for each tap. A single multimeter can
often measure resistance, but the accuracy is limited by the low current induced by the
multimeter. Figure 7 shows the sensitive resistance measurement setup. A current source
of 1 A is used, which is significantly less than the nominal current 6 A of the studied PMSM.
The strand, where a tap is placed, is assumed to be split into two resistors R1 and R2. The
measured equivalent resistance Rmea between a tap in the middle of the coil and the end or
end terminals is defined as below.

R1

RSRS

R2

Neutral

U-Terminal

mV53.4

ADC-0.996

1 A

Figure 7. Sketch illustrating the setup for accurate resistance measurement.

Rmea = µf

(
1− 2

3
µf

)
RS, (4)
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where µf is the number of turns between the tap and the end terminals divided by the total
number of turns in the coil. The solution for µf is the second-order equation :

µf =
3
4
± 1

2

√
9
4
− 6

Rmea

RS
. (5)

The valid answer from (5) is identified based on the location of the tap relative to the
end terminals. If the tap is expected to be close to the U-terminal, it is reasonable to assume
that µf <

3
4 . It is also reasonable to assume that µf >

3
4 between the tap and neutral. The

ITSC severity of 5% was used in this study.

4. Experiment and Data Collection
4.1. In-House Test Bench

A schematic diagram of the test setup is shown in Figure 8, including a 400 V three-
phase drive and the Microlabbox operated with an office laptop. The hall sensors measuring
the stray flux were solid-state sensors of type SS495A. The output of these sensors are
ratio-metric and linear within the range [−67, 67] mT and has a sensitivity of 31.25 mV

mT .
Two sensors were soldered to a veroboard and wired to the Microlabbox, which delivered
power to the sensors and recorded the stray flux. One of the sensors was bent 90◦, such
that it could measure both the tangential and radial component of the stray flux. Two sets
of sensors were placed in proximity to the motor at the top and on the side. Furthermore,
the current sensors are located inside a cabinet to the top right corner of Figure 9 to
measure the input phase currents. The study motor has no position sensors; therefore, the
encoder on the generator measure s the rotor position to validate the suggested method of
position estimation.

Demagnetisation fault is introduced by replacing the rotor with no magnet defects
with a rotor that went through the heat treatment process described in Section 3.1 . Both
rotors belong to the same type of PMSMs: IE5-PS2R 100 L, with their key parameters
given in Table 1. ITSC faults are induced by wiring the external taps implemented in the
PMSM. A fault resistor (1 Ω) is used for mimicking the remaining insulation in an ITSC
and limiting the short circuit current. The motor is coupled to a generator with a torque
transducer in between. Both the encoder and torque transducer are powered by a 24 V
DC-supply. The output of the generator is rectified with a three-phase full-bridge rectifier.
Two 1000 µF capacitors are connected in series across the output terminal of the rectifier,
which removes the ripples of the DC output. The reason for two capacitors in series is that
the output of the rectifier at nominal speed does exceed the voltage rating of the capacitor
(400 V). The equivalent capacitance is 500 µF, but this is still sufficient to remove the voltage
ripples. The brake chopper is regulated by a pulse width modulation (PWM ) signal from
the Microlabbox, which needs to be amplified by a factor of 4 due to insufficient voltage
amplitude from the Microlabbox. The op-amp is powered by a 12 V DC supply. In an
ideal system, the duty cycle would be proportional to the reciprocal of the motor speed.
However, due to losses and imperfections, a look-up table is generated for the duty cycle ,
which dictates the required duty cycle for achieving a requested load in the speed range
between 1000 and 2000 rpm.
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Figure 8. Schematic diagram of test bench.

Figure 9. Overview of the test bench with (1) resistor bank, (2) flyback diode, (3) three-phase rectifier
with capacitor bank, (4) 12 V DC supply, (5) IGBT brake chopper with op amp, (6) hall sensors,
(7) PMSM, (8) torque sensor, (9) generator, (10) fault resistor, (11) Microlabbox, (12) 24 V DC-supply,
(13) ABB drive, (14) office laptop, and (15) cabinet containing the current sensors.

Table 1. Nameplate parameters for IE5-PS2R 90 L.

Parameter Value

Output power 3 kW
Nominal speed 3000 rpm
Number of poles 4
Nominal current 6 A
Nominal voltage 315 V
Phase resistance 0.6 Ω
Phase inductance 6 mH
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4.2. Description of Collected Datasets

Stray flux was measured for three different nonstationary operating conditions with a
sampling rate of 10 kHz. The rotor position, input current, and torque were measured for
all three profiles. Observation used for training and testing in the ML tools is computed
from smaller samples. They are from three operation profiles, which are split based on a
fixed number of revolutions of the rotor. The output of the resampling process obtained
400 samples per revolution. Section 5 will use the term “cycles”, which is double the
number of revolutions of the rotor. Profile 1 contains a regular pattern, where the speed
ramps up and down between 1000 and 2000 rpm. The load changes between 25% and 75%
of the full load. The profile shown in Figure 10a includes combinations of increases and
decreases of the load when the speed is increasing, decreasing, or constant. The second
operation profile in Figure 10b keeps the reference speed constant at 1200 rpm, but the load
changes with a pattern, which is randomly generated and repeats itself every 30 s. The last
profile keeps the load steady at 60%, and the reference speed profile was also generated
with random numbers. It is plotted in Figure 10c. The total period is 120 s for all three
profiles. In the remainder of this paper, these profiles will be referred to as Profile 1, Profile
2, and Profile 3.
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Figure 10. Visual representation of the three operation profiles: (a) Profile 1—Variable load and
variable speed. (b) Profile 2—Constant load and variable speed and (c) Profile 3—Variable load and
constant speed.

Data collection of all conditions of the PMSM was repeated for all mentioned profiles
in the following fault condition: There were healthy conditions, ITSC with 5% severity,
local partial demagnetisation, and a mixed faulty case of ITSC and demagnetisation.

5. Result and Discussion
5.1. Position Estimation

The purpose of estimating the rotor position is to remove the need for any position
information or sensor in the fault classification and make the classifiers robust against speed
changes. A fault classifier scheme using stray flux alone would be easier to implement in
existing sensorless PMSM drives, since an external flux sensor can be placed in proximity
of the PMSM. The optimisation problem, which estimated the speed, was able to estimate
the electrical position θe from a flux signal with an average relative error of less than 0.5%.
Therefore, the position measurements were replaced by the estimated position for the
resampling process. The estimated electrical angle position and the measured value from
the encoder are plotted in Figure 11.
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Figure 11. Comparing estimated θe with measured θe.

5.2. Comparing Physical Parameters

The performance of the four learning classifiers, EDT, KNN, SVM, and FNN, is inves-
tigated. The recorded data of operation Profile 1 with regular change in speed and load
is split in 80% for training and 20% for testing. The observation in Profile 1 is shuffled
randomly before the split to prevent over-fitting of the classifiers. After training, all al-
gorithms were tested on the whole datasets of Profile 2 and Profile 3 , which were also
shuffled, and the remaining observation from Profile 1. The performance of algorithms
is varied depending on the training data. Therefore, the average achieved accuracy and
training time are obtained by a Monte Carlo analysis, where the algorithm is repeatedly
trained and tested 100 times. The training time is reported in Table 2 . All the algorithms
had a training time less than 3 s. However, the computation times of EDT and FNN of the
first and second orders of magnitude are larger than the other two.

Table 2. Training time of the machine learners.

Number of Classes EDT KNN SVM FNN

2 0.60 s 0.011 s 0.084 s 1.3 s
4 2.8 s 0.010 s 0.12 s 2.1 s

The letters “τ”, “I”, and “φ” in Figures 12–14 refer to the use of torque, current, and
stray flux signals for training the algorithms, respectively. The number refers to how many
sensors were used to compute the features in each observation. For the torque signal, there
is only one transducer coupled between the motor and generator. Three current sensors or
one sensor per phase are used to collect current signals. There are four hall sensors in the
setup, which can record the radial and tangential components in proximity of the motor
through data acquisition . In the comparison study between physical parameters, only one
pair of hall sensors is used.

For single faults, all four machine learning algorithms were trained on Profile 1 in the
cases of only local demagnetisation or ITSC fault (severity 5%). The achieved accuracy
of the classifiers is on the y-axes in Figures 12 and 13 with a range between 50% and
100%. This highlights the differences in performance of the classifiers trained with different
physical measurements and operation profiles. In case of ITSC fault, all classifiers obtain
an accuracy less than 70% with the current and torque measurements. It appears that these
physical parameters are not sensitive to ITSC. This phenomenon can be explained based
on the configuration of the stator winding with three parallel strands. The short-circuit
tap s are connected to the phase terminal, which is a common point for all three strands.
The other end of the short-circuit was soldered to a single strand, making the remaining
strands in parallel unaffected. Therefore, the 5% ITSC fault has less impact on the motor
torque or total phase current, which is the sum of all the currents in the three strands.
However, the hall sensors are significantly more sensitive to the presence of the ITSC fault.



Sensors 2022, 22, 1216 14 of 19

The algorithms EDT, SVM, and FNN can reach an average accuracy over 90% when testing
on data of Profile 1. The purpose of the pre-treatment of the time-series datasets is to make
the machine learning algorithms more robust against transient operating conditions. The
strength of this process is further demonstrated by testing the machine learner on Profile
2 and Profile 3. None of the machine learners have been train with samples from these
operation profiles. The accuracy of the ITSC detector drops from around 95% to around
85%, with SVM and FNN having the highest accuracy. The drop in accuracy implies that
there is some over-fitting, and the machine learners can be confused by new unexpected
operating conditions. However, the accuracy of 85% is still considered respectable. This is
the accuracy when testing on one operation profile, which the machine learners have not
been trained for, and an ITSC fault with 5% severity on one out of three parallel strands in a
PMSM is less severe as compared to the case of one strand per phase. KNN has the lowest
accuracy in this case study. It is hardly better than random chance when being trained on
features computed from only torque or current data and tested on Profile 2 and Profile 3.
Data from stray flux sensors on the other hand achieve an average accuracy of around 80%.
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Figure 12. Detection accuracy with ITSC alone obtained by (a) EDT, (b) KNN, (c) SVM, and (d) FNN.
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Figure 13. Detection accuracy with demagnetisation alone obtained by (a) EDT, (b) KNN, (c) SVM,
and (d) FNN.

For the single fault of local demagnetisation, all four classifiers can reach an accuracy
larger than 90% with features computed from stray fluxes, as shown Figure 13. It is
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noted that the data from stray flux sensors allows all four classifiers to detect the local
demagnetisation with an accuracy of above 90%. The accuracy does not drop significantly
when being tested on the unseen operation profiles (Profile 2 and Profile 3). This indicates
that the asymmetry caused by local demagnetisation is detectable, and the classifiers
become robust to unseen load and speed changes for identifying these signatures. The
performance of the machine learners drops significantly if the current or torque data are
used instead of computing the input features. The KNN-based classifiers have overall the
worst accuracy among the tested algorithms. However, the accuracy achieved with features
computed from stray flux is on par with the rest.

For the mixed fault, the machine learning algorithms are not only trained for fault
detection but also for discrimination between local demagnetisation and ITSC. In this study,
there are four classes: no-fault, only local demagnetisation fault, only ITSC fault, or mixed
fault. There is an equal number of observations in each fault case; thus, the y-axes in all
of the bar plots in Figure 14 are limited to above 25%. The EDT, SVM, and FNN-based
classifier have the highest accuracy among the studied algorithms. The accuracy of all the
classifiers can be increased by using more data for training, e.g., if all four hall sensors
are included. The KNN -based classifier has an accuracy of just above 25% when being
trained and tested using current or torque data on Profile 2 and Profile 3. In addition, the
mixed fault does deteriorate the performance of the tested algorithms if they were trained
on separate faults. This indicated that the fault signatures of local demagnetisation and
ITSC in their incipient state are difficult to separate. However, the tested algorithms using
stay flux signals can improve the performance in detecting these magnetic asymmetry.
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Figure 14. Classification accuracy with mixed fault obtained by (a) EDT, (b) KNN, (c) SVM, and
(d) FNN.

All the average accuracies are plotted in Figures 12–14 and reported in Table 3. The
columns blow “Demagnetisation” and “ITSC” are in case of single fault. In case of demag-
netisation, all algorithms achieve an accuracy of above 90%, which is highlighted in bold.
The last three columns under the label "Mixed" refer to the mixed fault of demagnetisation
and ITSC.
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Table 3. Average classification accuracy (%) for detecting demagnetisation, ITSC, and mixed fault case.

Machine Operation Demagnetisation ITSC Mixed

Learner Profile 1 τ 3 I 2 φ 1 τ 3 I 2 φ 1 τ 3 I 2 φ

1 85.6 82.5 99.5 69.6 72.6 93.9 58.5 59.4 87.8
SVM 2 76.9 66.1 99.4 65.9 53.7 84.7 48.2 38.8 78.7

3 76.3 64.5 96.4 60.6 55.8 81.1 45.2 38.7 73.7

1 66.2 69.6 98.2 63.9 69.7 88.5 50.0 53.5 81.8
KNN 2 58.4 56.2 98.3 54.3 50.6 75.2 31.6 30.1 66.1

3 56.0 60.5 96.5 50.7 53.5 80.0 28.2 31.2 69.2

1 87.4 82.9 98.5 70.9 68.2 91.6 59.2 57.4 86.3
EDT 2 80.8 61.2 98.0 62.3 57.3 78.5 46.6 33.6 71.1

3 80.8 71.1 93.7 64.7 54.4 84.0 48.2 41.1 73.2

1 85.4 83.5 99.6 72.7 75.1 96.6 58.5 60.6 89.9
FNN 2 74.1 68.1 99.9 58.8 56.0 85.0 42.0 41.2 77.7

3 71.2 66.5 97.5 55.9 56.0 86.3 38.7 39.0 75.4

5.3. Required Samples for Fault Classification

Normally, the length of samples used as input for FFTs is measured in time. Since the
time-series data have been resampled due to the transient operation condition, the length
of each sample is defined by the number of cycles. Stray flux and current signals measured
from a PMSM are cyclical due to their sinusoidal nature. One cycle is defined as one period
of the fundamental frequency in the measurement. It is equal to double the number of
rotor revolutions in the case of four-pole motors. The frequency or order resolution of the
spectrogram computed by FFT depends on the length of the sample; thus, a longer sample
would give more confidence in the presence of peaks. A longer sample will also equate to a
longer measuring period, which depends on the motor speed. For example, 30 revolutions
(60 cycles) of a four-pole PMSM running at 3000 rpm are equal to a measurement period of
0.6 s, but this will increase to 2.4 s when the motor is running at 750 rpm. Therefore, it is of
interest to find the minimum number of cycles required for accurate fault detection.

Figure 15 shows line plots of the detection accuracy of local demagnetisation achieved
by the FNN classifier, which has the highest accuracy at different numbers of cycles used
to compute the spectrogram. The achieved accuracies were invested in cases when the
features were being computed using data from one torque sensor (1 τ), three current sensors
(3 I), two hall sensors (2 φ), and four hall sensors (4 φ). Combination of the three different
physical parameters was also tested, but none of them gave a significant improvement as
compared to the case of using four flux sensors. The accuracy in all four cases showcased
in Figure 15 is increased if using data from more cycles. However, only the two cases
using stray flux data do converge. The accuracy converge if using four-flux sensors data of
20 cycles and two hall sensors data of between 30 and 40 cycles. The FNN-based classifier
takes longer to converge, implying that unseen speed changes may still offer a challenge
in training machine learning classifier. It is recommended that one pair of flux sensors
of at least 20 cycles, measuring tangential and radial components, should be used for a
reliable identification of magnet defects. If the data have a length of 20 cycles, i.e., 10 rotor
revolutions of the rotor, then the required measurement time for computing one set of
features is 0.8 s when the motor operates at 750 rpm or 0.2 s when it works at 3000 rpm.
The fault classifiers will perform better if being trained on features computed from longer
datasets, but they will take longer to acquire the first sample. The required computing time
of the next dataset of features can be significantly reduced if the dataset for the next set of
features is overlapped with the previous one.
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Figure 15. Performance of FNN-classifier for detecting local demagnetisation alone with spectrograms
computed from different numbers of cycles in operations of (a) Profile 2 and (b) Profile 3.

6. Conclusions

This paper presents a scheme of fault classification for single and mixed faults of a
sensorless PMSM drive in dynamic operations using two external stray flux sensors alone.
An order tracking method based on position estimation is proposed for resampling the
measurement before generating features for machine learning algorithms. This eliminates
the need for position sensors and makes the learning classifiers more robust to speed
changes. The fault classifiers are trained using data from Profile 1, but they achieve high
accuracy for detecting magnet defect or ITSC faults when tested on the datasets in Profiles
2 and Profile 3. This work also introduces a method of inducing local demagnetisation
through heat treatments.

The comparative study shows that current and torque signals are not sensitive enough
to detect the faults in the studied PMSM. However, data from two external stray flux sensors
allow the classifiers to detect faults significantly better, although all learning classifiers
are less robust to new speed profiles when trained for ITSC faults. FNN achieved the
highest accuracy of the learning classifiers test in this study. It is recommended that the
measurement period is set to a minimum of 10 rotor revolutions for computing one set of
features without a significant loss of accuracy.
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b Bias vector in feedforward neural network
f1 Fundamental frequency
f (·) Activation function (Rectified linear unit)
h(t) Element function describing fundamental component
I Phase current measurement
N Number of neurons in a layer of an feedforward neural network
Rmea Measured resistance
RS Resistance per strand in a phase winding
R1, R2 Slit parts from RS
t Time
wn Weight in the feedforward neural network
xn Input data to the feedforward neural network
x(t) Sample data
y Output of each neural in the feedforward neural network
θe Electrical position of the rotor
θ0 Phase shift angle
µ f Number of shorted turns relative to total number of turns in phase windings
τ Torque measurement
φ Stray flux measurement
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