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Abstract

Permanent magnet synchronous motors (PMSMs) have played a key role in commercial
and industrial applications, i.e. electric vehicles and wind turbines. They are popular due
to their high efficiency, control simplification and large torque-to-size ratio although they
are expensive. A fault will eventually occur in an operating PMSM, either by improper
maintenance or wear from thermal and mechanical stresses. The most frequent PMSM
faults are bearing faults, short-circuit and eccentricity. PMSM may also suffer from
demagnetisation, which is unique in permanent magnet machines. Condition monitoring
or fault diagnosis schemes are necessary for detecting and identifying these faults early in
their incipient state, e.g. partial demagnetisation and inter-turn short circuit. Successful
fault classification will ensure safe operations, speed up the maintenance process and
decrease unexpected downtime and cost. The research in recent years is drawn towards
fault analysis under dynamic operating conditions, i.e. variable load and speed. Most of
these techniques have focused on the use of voltage, current and torque, while magnetic
flux density in the air-gap or the proximity of the motor has not yet been fully capitalised.

This dissertation focuses on two main research topics in modelling and diagnosis of
faulty PMSM in dynamic operations. The first problem is to decrease the computational
burden of modelling and analysis techniques. The first contributions are new and faster
methods for computing the permeance network model and quadratic time-frequency dis-
tributions. Reducing their computational burden makes them more attractive in analysis
or fault diagnosis. The second contribution is to expand the model description of a sim-
pler model. This can be achieved through a field reconstruction model with a magnet
library and a description of both magnet defects and inter-turn short circuits.

The second research topic is to simplify the installation and complexity of fault diag-
nosis schemes in PMSM. The aim is to reduce required sensors of fault diagnosis schemes,
regardless of operation profiles. Conventional methods often rely on either steady-state or
predefined operation profiles, e.g. start-up. A fault diagnosis scheme robust to any speed
changes is desirable since a fault can be detected regardless of operations. The final con-
tribution is the implementation of reinforcement learning in an active learning scheme to
address the imbalance dataset problem. Samples from a faulty PMSM are often initially
unavailable and expensive to acquire. Reinforcement learning with a weighted reward
function might balance the dataset to enhance the trained fault classifier’s performance.
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Abstrakt

Permanentmagnet-synkronmotorar (PMSM) har spela ei nøkkelrolle i kommersielle og in-
dustrielle applikasjonar, for eksempel når det gjeld elektriske køyretøy og vindturbinar.
Dei er populære på grunn av sin høge effektivitet, framgang i reguleringteknikk og stort
dreiemoment i forhold til storleiken, men dei er dyre. Ein feil vil eventuelt oppstå i ein
PMSM, anten ved misleghald eller slitasje frå termiske og/eller mekaniske påkjenningar.
Dei vanlegaste feilane i ein PMSM er lagerfeil, kortslutning og eksentrisitet. I ein PMSM
kan det også skje demagnetisering, noko som er unikt for permanentmagnetmaskinar. Til-
standsovervaking eller feildiagnostisering er nødvendig for å oppdage og identifisere desse
feila tidleg. Dette gjeld blant anna partiell demagnetisering og kortslutning. Vellykka
klassifisering av feil vil sikre forsvarleg drift, framskunde vedlikehaldsarbeidet og redusere
uventa nedetid og kostnader. Forskinga dei siste åra er retta mot feilanalyse under dy-
namiske driftsforhold, det vil seie variabel last og fart. Dei fleste av desse teknikkane har
fokusert på målingar av spenning, straum og dreiemoment. Bruken av magnetisk fluk-
stettleik i luftgapet eller i nærleiken av motoren for feilsøking er ennå ikkje fullt utforska.

Denne avhandlinga fokuserer på to forskingstema, modellering og diagnostisering av
feil i PMSM med variabel fart og last. Det første problemet var å redusere ressurs-
mengda som trengst for å modellere og analysere PMSM med feil. Dei første bidraga
er nye og raskare metodar for å nytte seg av ein permeans-nettverksmodell og Cohens
klassefunksjon. Denne ressursreduksjonen for å rekne med desse teknikkane vil føre til at
dei blir meir attraktive når det gjeld analyse og feildiagnosering. Det andre bidraget er
å utvikle ein feltrekonstruksjons-modell med eit magnetbibliotek som kan beskrive både
magnetiske defektar og kortslutningar i ein PMSM.

Det andre temaet som er forska på, er å forenkle installasjonen av feildiagnostikkmeto-
dar i PMSM. Målet er å redusere talet på sensorar, som er nødvendige for feildiagnostiser-
ing, uavhengig av drift. Konvensjonelle metodar er ofte avhengige av anten konstant fart
eller forhandsdefinerte fartsprofilar for eksempel ved oppstart. Ein feildiagnoseteknikk
som er motstandsdyktig mot fartsendringar er ønskjeleg sidan ein feil då kan oppdagast
uavhengig av drift. Det siste bidraget er implementeringa av «Reinforcement Learning» i
ein aktiv maskinlæringsmetodikk for å løyse problemet med ubalanserte datasett. Målin-
gar frå ein defekt PMSM er ofte utilgjengeleg før installasjon, i tillegg er dei ressurskrev-
jande å skaffe. «Reinforcement Learning» med ein vekta belønningsfunksjon kan balansere
datasettet og auke kor nøyaktig feilklassifiseraren kan bli etter treningsprosessen.
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n1, n2 First and last sample per
iteration of computing QTFD

on nth neighbour to point P

P Permeance matrix

P New sample point

p Number of pole pairs

Q Critic function

Qt Target critic function

R Resistance matrix

R Reluctance

RAG Reluctance in air-gap

RAir-gap Reluctance in air-gap

RR Reluctance in rotor

RRotor Reluctance in rotor

RS Reluctance in stator yoke

RStator Reluctance in stator yoke

RST Reluctance in a stator tooth

RTooth Reluctance in a stator tooth

RM Reluctance in Magnet

RMagnet Reluctance in Magnet

R Radial distance from rotor
centre to middle of air-gap

R(t, τ) Auto correlation function in
continuous form (Paper D)

R(nτ , nt) Auto correlation in discrete
form (Paper D)

RF Short circuit resistance

Rmea Measured resistance

RS Per phase resistance (Paper C)

RS Strand resistance (Paper E)

R1, R2 Resistor after strand resistance
is slit

r Polar coordinate of FRM basis
functions

rr Rotor radius

rs Stator inner radius

rshaft Radius of rotor shaft

rt Reward to DQN agent at step
t

s(t) Analytic signal

st Action perform by DQN agent
at step t

s1 First sample

T Time window

t Time

VC1, VC2 Induced voltage in search coil
1 and 2

va, vb, vc Phase voltages

wn Weight matrix in FNN fully
connected layer

w1, w2 Width measurements of stator
tooth

x(t) Input sample in continues form

x(n) Input sample in discrete form

xn The nth feature input

y Output of node in a FNN fully
connected layer

yt Value function at step t

β Contact angle between bearing
ball

γ Discount factor





 

δ Threshold for fault detection

Θ Critic network parameters

Θt Target network parameters

θ Angular position of motor
(Paper A)

θ Polar coordinate of FRM basis
functions (Paper C)

θ Kernal frequency domain
(Paper D)

θ Phase shift of fundamental
component (Paper E)

θref Reference potion of rotor

θmag Magnet pitch

θe Electrical position of PMSM

θm Mechanical position of PMSM

θslot Stator slot pitch

λ Imbalance ratio

λn Flux linkage for phase n

µ(l) Permeability as a function of
length l (Paper B)

µ Short circuit severity
(Paper C)

µf Short circuit severity

µr Relative permeability

µrec Recoil permeability

µ0 Permeability in vacuum

σFe Diagonal matrix description of
resistivity of iron core

σ Adjusting parameter in kernel
function of CWD and ZAM

σCu20 Resistivity of copper at 20 ◦C

σsamp Sample density

τ Induced torque (Paper C)

τ Running time (Paper D)

τ Torque measurement
(Paper E)

τ Smoothing factor for updating
target network (Paper F)

τArk Torque computed with
Arkkio’s method

τload Load torque

ΦCoil Flux source representing
influence by phase windings in
PNM

Φs Flux source vector in PNM

ΦMag Flux source representing
magnets in PNM

ϕ Phase shift in FClass (Paper A)

ϕi Magnetic flux in stator tooth i
(Paper C)

ϕ(θ, τ) Kernel function (Paper D)

ϕ Stray Flux measurement
(Paper E)

ϕCWD Kernel function for
Choi-Williams distribution

ϕWVD Kernel function for
Wignler-Ville distribution

ϕZAM Kernel function for
Zhao-Atlas-Marks distribution

ω Frequency domain (Paper D)

ω(t) Time varying angular velocity
(Paper A)

ωm Motor angular speed

ω̇m Time derivative of ωm







Chapter 1

Introduction

1.1 Background

The main principle of electrical motors and generators is the interaction between the
magnetic fields in the rotor and stator to align or follow the path of least reluctance. The
magnetic field of the rotor in a loaded permanent magnet synchronous motor (PMSM) will
have an offset called the load angle relative to the fields of the stator [1]. Asynchronous
motors got a rotor magnetic field induced by the current in the rotor bars induced by the
stator fields. The rotor has a slip relative to the rotating fields in the motor, being called as
asynchronous motors. For many years, they have been the workhorse in the industry due
to their reliability and low-cost [2]–[5]. However, more energy-efficient components like
PMSMs are a part of the solution to solve the problem of ever-increasing energy demand
and climate change. Figure 1.1 shows a dismantled four-pole PMSM. This motor type
has a high torque-to-size ratio, which depends on the strength of the permanent magnets
(PM). Developments in frequent converters and sensorless PMSM drive strategies make
PMSMs more desirable for industrial applications like pumps, fans, robotics, offshore wind
turbines, and electric vehicles. The PMSM is exposed to mechanical and thermal stresses
in dynamic operations. Consequently, faults in PMSMs for such applications occur more
often than in industrial productions. These induced faults will cause hazardous conditions
and production loss.

The fault rates reported in literature are 40-50 % on bearing faults, 30-40 % on stator
faults and the rest on rotor faults [6], [7]. These numbers are related to reports from
the 1980s on asynchronous motors [8]. It is assumed that bearing faults and stator faults
are common in PMSMs. However, the rate of occurrence for demagnetisation faults
(DF) is unclear. DF is unique to PM motors and will result in reduced efficiency and
back electromagnetic motive force (BEMF), but the cogging torque increases [9], [10]. A
magnet can be completely or partial demagnetised. The DF can be uniform on all poles or
local on a single pole. Uniform DF is more difficult to detect because there is no magnetic
asymmetry, but the PMSM has less available torque [6].

Many severe electrical faults, e.g., line-to-line and phase-to-ground short circuits, start
with the deterioration of the insulation caused by wear or overloading. The incipient
stage is called the inter-turn short circuit (ITSC). It might induce large currents, which
generate excessive heat and deteriorate the insulation [11], [12]. Faults like ITSC and
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Figure 1.1: Dismantled PMSM - Model Type: "IE5-PS2R 90 L"

Table 1.1: List of faults in PMSM

Electrical Mechanical Magnetic
Inter-turn Short Circuit Eccentricity Uniform Demagnetisation
Line-to-line short circuit Bearing fault Non-uniform Demagnetisation
Phase-to-ground short circuit Imbalance Broken magnet
Open circuit fault Loose foot
High resistance connection

DF will cause asymmetric pulls, causing mechanical faults like eccentricity. Mechanical
faults include, but not limited to, bearing faults, rotor imbalance, shaft misalignment,
bent shaft, and loose foot. These faults can be caused by poor lubrication, mistakes in
installation, overload, or corrosion. Bearing faults can occur on the inner race, outer race,
bearing cage or bearing balls. Eccentricity refers to the uneven air-gap distance between
the rotor and stator [13]. Table 1.1 lists a few common PMSM faults under the categories
electrical, mechanical, and magnetic faults.

Fault detection and identification (FDI) schemes are necessary for condition mon-
itoring (CM) of PMSMs, ensuring safe operation and reducing unexpected downtime.
Conventional FDI or CM methods applied in the industry are still limited to specific
machine operations and often rely on steady-state operation, ideally with similar load
and speed. The PMSMs in wind turbines, electric vehicles, and robotics operate with
dynamic operations based on drive commands. Therefore, FDI schemes for PMSMs must
be sufficiently robust against variable load and speed. The FDIs can be divided into three
different categories, model-based, signal-based and machine learning (ML) based methods
[9].

Model-based methods aim to identify fault signatures through mathematical models,
i.e., electric equivalent-circuit (EEC), permeance network model (PNM), field reconstruc-
tion model (FRM) and finite element analysis (FEA). The latter is the most accurate, but
simulating a few seconds of a PMSM in dynamic operation with a time-stepped FEA may





 

require several hours of computing. Extensive studies of machine models may reveal fault
patterns for different faults in various operating conditions without damaging expensive
motors. Alternative strategies with model-based fault detection are to estimate hard-to-
measure parameters with an inverse problem or measure a residual between predicted and
measured signals [14]. There is always a continuous effort to find simpler models with suf-
ficient accuracy for online applications. This may involve simplifying model descriptions,
making them faster to compute or giving a clearer overview of the model.

Signal-based methods rely on different signal processing techniques, which reveal fault
signatures. The term signal-based method is a misnomer since all FDI techniques involve
a level of signal processing of the measured signal. It refers, however, to fault diagnosis
methods, which solely use signal processing techniques to highlight fault signatures from
prior knowledge. They detect faults when a fault indicator exceeds a predefined threshold
[6], e.g., the root mean square of a signal or the peak at a characteristic frequency.
These indicators are often the results of extensive model-based studies. The time-series
signal from a PMSM operating with variable speed often is transformed into frequency-
or a time-frequency domain with techniques like fast Fourier-transform (FFT), Wavelet
transforms, and quadratic time-frequency distributions (QTFD) [10]. An online FDI has
the following key attributes: early detection, high accuracy, low computation burden, and
low installation cost. Installation cost may include the required number of sensors and
their location on the PMSM. FDIs scheme relying on measurements of stray flux may
offer a non-invasive solution with more detailed information on the magnetic asymmetry
than conventional methods using current and vibration sensors [5].

ML-based methods are data-driven models, being customisable for different applica-
tions, i.e., support vector machine (SVM), convolutional neural network (CNN), feedfor-
ward neural network (FNN) and reinforcement learning (RL). These are less demanding
on prior knowledge of the PMSM but may require labelled data from both healthy and
faulty cases for accurate classification [15]–[17]. Acquiring experimental data is a key
part of fault diagnosis research for validating proposed techniques in model-based and
signal-based FDI or training in ML approaches. Usually, training and testing samples of
faulty PMSMs are unavailable or very expensive. Supervised ML algorithms have labelled
training and testing datasets. These algorithms are faster to train but are highly spe-
cialised for a single task, e.g., discrimination between health classes. Unsupervised ML
algorithms do not have labelled data but identify the clusters of the dataset in the feature
space. These methods require more samples in the training dataset. Self-supervised ML,
e.g., one-class SVM, local outlier factor (LOF) and auto-encoders, use only healthy case
data. They have not been applicable for fault diagnosis [18]. They might be useful to
combine with active learning (AL), which requires data from the faulty case after the first
detected fault [16]. An ML classifier still faces a problem of imbalanced data when the
samples of no-fault (NF) cases outnumber the faulty data samples. Severe data imbalance
will make the classifier collapse, i.e., every sample is classified as a healthy case.





         


1.2 Objectives

This dissertation focuses on two main topics being actively researched. The first topic
investigates reducing the computational burden in analysis of faulty PMSM in dynamic
operations. Many mathematical models of PMSM focus on either accuracy or compu-
tational efficiency. FEA gives the highest accuracy but simulating a few seconds of an
operating PMSM with transient loads and speeds may take several hours. Therefore, it is
desirable to decrease the computational burden of models or signal processing techniques
while maintaining sufficient accuracy.

The second objective is to develop FDI schemes of PMSM and investigate methods
of reducing the effort required for implementing them. First, installing new sensors may
affect the performance of the PMSM, and one should keep the numbers to a minimum and
install them externally, e.g., measuring stray flux. Second, PMSM often operates with
variable loads and speed, thus any FDI needs to adapt to the dynamic operation. Finally,
all ML-based FDIs require training data from the different healthy classes. Historical
data of faulty PMSM is very restricted in dynamic operations, while the data of healthy
PMSM is abundant. This imbalanced data problem hinders the training of machine
learners. Novel FDI schemes, requiring fewer faulty training samples, might be a more
desirable option in fault diagnosis of PMSMs.

1.3 Contributions of the dissertation

The scientific contributions of this dissertation are withdrawn from six research papers
published or submitted to international conferences proceedings and journals.

Paper A: Detecting Eccentricity and Demagnetisation Fault of Permanent
Magnet Synchronous Generators in Transient State
Summary: In Paper A, the surface mounted PMSM is studied with FEA. The research
builds on the work of Da et. al. [19], presenting a system of 12 search coils measuring
air-gap flux for producing polar plots with different characteristics for different faults.
The proposed FDI aims to find the minimum number of required search coils. In the case
of a four-pole PMSM, the minimum number of search coils required to identify magnetic
asymmetries are two. They are located on the opposite side in the stator. The induced
search coil voltages during dynamic operation of a permanent magnet synchronous gen-
erator (PMSG) are analysed by FEA. A fault is detected if the difference stays below a
threshold. In perfect magnetic symmetry, the voltage difference is equal to 0. This method
is limited to machines with an even number of stator teeth. The change of magnitude
obtained by enveloping the voltage difference can be used to diagnose demagnetisation
and eccentricity. The FDI is verified with FEA results for a PMSM accelerating during
start-up.

Contribution: A fault diagnosis scheme is proposed with three conditions in a deci-
sion tree obtained from an FEA of a four-pole PMSM. It discriminates between healthy
case, DF, SE, and DE in dynamic operations based on input from two search coils mea-





 

suring magnetic flux in stator teeth.

This paper has been published as:
S. Attestog, H. V. Khang and K. G. Robbersmyr, "Detecting Eccentricity and Demag-
netization Fault of Permanent Magnet Synchronous Generators in Transient State," 2019
22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin,
China, 2019, pp. 1-5, doi: 10.1109/ICEMS.2019.8921753.

text
Paper B: Modelling Demagnetised Permanent Magnet Synchronous Genera-
tors using Permeance Network Model with Variable Flux Sources
Summary: Paper B presents a method to describe the rotation of the rotor in a perme-
ance network model (PNM) with variable magnetic flux sources. This method can lower
the computational burden compared to the conventional methods with variable airgap
permeance, which are empirically obtained. If the centre of the rotor does not change
over time, it is not necessary to invert the permeance matrix in every time step. The pro-
posed method does not require any variable permeance function for the airgap obtained
numerically in an FEA. This allows more focus on the strategic design of the permeance
network for accurate computation. The proposed model is verified by comparing it to an
FEA with identical geometry.

Contribution: A PNM is proposed to replaces variable permeance for describing ro-
tor revolution with variable flux sources. It replaces the air-gap permanence function,
which is acquired empirically and is dependent on the rotor position. The new approach
has a smaller computational burden since the permeance matrix does not need to be in-
verted every time-step in case of no dynamic eccentricity.

This paper has been published as:
S. Attestog, H. Van Khang and K. G. Robbersmyr, "Modelling Demagnetized Perma-
nent Magnet Synchronous Generators using Permeance Network Model with Variable
Flux Sources," 2019 22nd International Conference on the Computation of Electromag-
netic Fields (COMPUMAG), Paris, France, 2019, pp. 1-4, doi: 10.1109/COMPUMAG
45669.2019.9032791.
text
Paper C: Field Reconstruction for Modelling Multiple Faults in Permanent
Magnet Synchronous Motors in Transient States
Summary: Paper C presents a FRM to model faults in surface-mounted PMSM. This
model type was first proposed and developed by Bahimi and Khoobroo [20]. However,
Paper C gives a new feature for the FRM and verifies its strengths. The new feature is
a magnet library, which stores basis functions describing magnets with different defects.
The developed FRM also includes the description of ITSC, which has not been presented
in previous papers. The developed model can simulate magnet defects and ITSC and
has the potential to simulate both faults simultaneously. Further, the model can present
detailed results of current, terminal voltage, EMF, torque, flux linkage, stator tooth flux
density and induced search coil voltage. The model is verified with both FEA and exper-





         


imental data acquired from the in-house test bench.

Contribution: A FRM is developed implementing a basis function library of magnet
defects and ITSC model description. The proposed library removes the need to compute
a new rotor basis function in a static FEA for every combination of magnets with differ-
ent defects. The basis function for each magnet defect is computed individually in static
FEAs and later superimposed in the FRM.

This paper has been published as:
S. Attestog, H. Van Khang and K. G. Robbersmyr, "Field Reconstruction for Modeling
Multiple Faults in Permanent Magnet Synchronous Motors in Transient States," in IEEE
Access, vol. 9, pp. 127131-127140, 2021, doi: 10.1109/ACCESS.2021.3112224.
text
Paper D: Improved Quadratic Time-frequency Distributions for Detecting
Inter-turn Short Circuits of PMSM in transient States
Summary: Paper D presents a new approach to compute QTFD with less computation
burden. Previous implementations of QTFD can only be applied to signals lasting a few
seconds. The proposed method allows generating spectrograms with Choi-Williams’s dis-
tribution and Wigner-Ville distribution and is applied to samples of 120 s. They have
been verified on a numerical example function and validated with experimental measure-
ments. The time resolution is unaffected by window size, but frequency resolution sets a
minimum limit for the window. A larger window space increases the computation time
and sets the maximum limit in the case of online applications. The test on the experi-
mental data proved that the proposed method could capture the signal components on
noisy data with sharper peaks than STFT.

Contribution: An approach is proposed for producing QTFD (Cohen class functions),
which reduces the computational burden. This expands the utility of QTFD for signal
processing in online applications.

This paper has been published as:
S. Attestog, H. V. Khang and K. G. Robbersmyr, "Improved Quadratic Time-frequency
Distributions for Detecting Inter-turn Short Circuits of PMSMs in Transient States," 2020
International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 2020, pp.
1461-1467, doi: 10.1109/ICEM49940.2020.9271050.
text
Paper E: Mixed Fault Classification of Sensorless PMSM Drive in Dynamic
Operations Based on External Stray Flux Sensors
Summary: In Paper E, an FDI scheme for ITSC and DF is implemented for a surface
mounted PMSM operating with both transient working conditions and mixed fault. It
implements order tracking based on the rotor position, to estimate rotor position with
an optimisation problem and a single stray flux sensor. The computed spectrograms
normalise with respect to both amplitude and frequency of the fundamental component,
which is sampled at every half harmonic up to the 40th order. Any ML tool must discrim-





 

inate based on the harmonic content. The output features arrays computed from current,
stray flux and torque are used to train four MLs: support vector machine (SVM), feed-
forward neural network (FNN), ensemble decision tree (EDT), and k-nearest neighbours
(KNN). The proposed algorithm is tested on experimental data from an in-house test
bench.

Contribution: An FDI scheme is proposed based on a simple machine learner (SVM,
FNN, EDT and KNN) and order tracking with an optimisation problem. The resulting
scheme is robust to dynamic operating conditions and eliminates any need for a position
sensor.

This paper has been published as:
S. Attestog, J. S. L. Senanayaka, H. Van Khang, and K. G. Robbersmyr, “Mixed Fault
Classification of Sensorless PMSM Drive in Dynamic Operations Based on External Stray
Flux Sensors,” Sensors, vol. 22, no. 3, p. 1216, Feb. 2022, doi: 10.3390/s22031216.
text
Paper F: Robust Active Learning Multiple Fault Diagnosis of Sensorless PMSM
Drives in Dynamic Operations Under Imbalanced Datasets
Summary: Paper F presents an FDI scheme for addressing the lack of faulty samples
and imbalanced datasets. This method builds on the work from Paper E with order-
tracking based on resampling the input signal at an equal angular increment. It is robust
against transient working conditions and eliminates the need for the position sensor. LOF
is used for anomaly detectors or detect faults when fault-signatures are unknown. The
fault classifier part of the FDI starts its training when the first fault is detected by LOF
and validated by an expert. The proposed fault classifier is developed based on the re-
inforcement learner deep Q-network. The most important with this reward function is
to "rebalancing" the imbalance dataset without the need for any oversampling techniques.

Contribution: An FDI is proposed for discriminating between ITSC and local DF in
PMSM in isolated and mixed fault cases with limited historical faulty data, using, lo-
cal outlier factor, a density-based one-class classifier and reinforcement learning. It also
implements the proposed order tracking method from Paper E. The resulting scheme is
robust against the imbalanced datasets and dynamic load and speed.

This paper is under revison:
S. Attestog, J. S. L. Senanayaka, H. Van Khang, and K. G. Robbersmyr, "Robust Active
Learning Multiple Fault Diagnosis of Sensorless PMSM Drives in Dynamic Operations Un-
der Imbalanced Datasets", IEEE Transactions on Industrial Informatics (under revision).





         


1.4 Outline of dissertation

This dissertation consists of seven chapters. The introduction in Chapter 1 gives an
overview of the dissertation and the research topics. Chapter 2 presents the state-of-art,
and chapter 3 presents the in-house test bench developed for the research. Chapter 4
covers the topic of modelling faulty PMSM through Papers A, B and C. Chapter 5 sum-
marise the implementation of the Cohen Class function with less computational burden
in Paper D. The studies of FDI with ML are presented in Chapter 6 through Papers E
and F. The final remarks and potential future improvements are in Chapter 7. Figure 1.2
shows the structure of this thesis and summarise the chapter contents.

Chapter 1
Introduction

Chapter 4

Motivation: Identification of 
potential fault indicators and 

reduce computational complexity

Method: Finite element model, 
permeance network model 

and field reconstruction model

Faults: Inter -turn short circuit, 
demagnetisation and eccentricity

Chapter 6

Motivation: Order -tracking without
any position sensors, mixed fault, 
diagnosis imbalanced dataset, and 

transient load speed

Method: Conventional supervised 
machine learning approach, position 

estimate with optimisation and 
reinforcement learning

Faults:Local demagnetisation, 
inter-turn short circuit

and mixed fault

Papers E and F

Chapter 7
Concluding Remarks

Chapter 2
State of the art

Chapter 3
The experimental test setup and data-acquisition

Chapter 5

Motivation: Modify QTFD 
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applicable for online application 

Method: Fusion of Cohen class 
distribution and STFT

Faults: Inter - turn short circuit

Paper DPapers A, B and C

Model-based analysis of faulty 
PMSM in dynamic operations

Reducing computational burden 
for quadratic time-frequency 

distribution

Robust data-driven fault diagnosis 
for sensorless PMSM drives

Figure 1.2: Summary of chapter contents





Chapter 2

State of the Art

This chapter presents state-of-the-art and identifies knowledge gaps for fault analysis of
PMSM. The appended papers address problems in PMSM fault analysis by proposing new
FDIs, or methods to model a faulty PMSM in dynamic operations. Fault analysis schemes
fall into three categories model-, signal- and ML-based methods. The next frontier in the
study of PMSM fault diagnosis is in dynamic operations. Many FDI schemes have been
developed, relying on the steady-state operation or a predefined speed operation. The final
goal is to propose FDIs, which could work well regardless of operation state and increase
their versatility. Table 2.1 summarises measured parameters used in fault diagnosis of
common PMSM faults. Literature reports fault diagnosis of PMSM in steady-state are
saturated and there exist FDIs utilising measurement of voltage, current, torque, magnetic
flux and vibration. An FDI scheme for PMSM operating in the transient state has been
proposed for current and torque [21], [22]. However, magnetic flux density in the air-gap
or stray flux has not been fully explored for PMSM in dynamic operations.

Table 2.1: Measured parameters used for fault diagnosis reported in literature

Measured Demagnetisation Eccentricity Electrical

Parameter Partial Uniform Static Dynamic Mixed ITSC HRC
Voltage x x x x ✓
Current ✓ x x ✓ ✓
Active power x x
Torque ✓ ✓ x x ✓
Speed x x x
Magnetic flux x x x x x x
Resistance x ✓
Inductance x
Turns ✓
Acoustics x x x x
Vibration x x x x x
References [19], [23] [23] [19], [24] [19], [24] [19], [24] [19], [22] [25]

Some text

∗ FDI validated for steady-state operation are marked with "x" and "✓" for transient-state operations.

9



         


2.1 Model-based analysis of faulty PMSM

Model-based methods revolve around mathematical descriptions of PMSM. The inverse
problem is a collection of techniques which require accurate and fast-to-compute mod-
els. FDIs based on inverse problems can estimate hard-to-measure parameters like the
number of shorted turns or determine faults based on the residual between estimated
and measured parameters [26]. Alternatively, accurate models of faulty PMSM give us a
deeper understanding of PMSM and how it behaves in different scenarios. Model studies
lay the groundwork for developing new FDI schemes before any testing on real motors.
The most accurate method to acquire knowledge of the behaviour inside a PMSM is to
solve Maxwell’s equation directly. However, electromagnetism is not the only subject
required for accurate PMSM models. Stator windings current, friction, and hysteresis
generate heat, and many material properties are temperature-dependent. Cooling of the
motor with conduction and convection is described with thermodynamics and fluid dy-
namics. Changing magnetic fields induces forces and causes vibrations described with
magnetostriction. Simulating an operating PMSM also requires knowledge of control the-
ory on how to tune the controllers for a proper dynamic response, which also requires a
description of the mechanics.

Solving differential equations for only describing the electromagnetic field is exhaus-
tively cumbersome for simple structures and even impossible to solve analytically [10].
The second best option is to solve it numerically with FEA. The model geometry of a
PMSM splits into a mesh where the governing equations are solved locally. The solution
of the FEA depends on the mesh. Its "fineness" increases until the results converge. FEA
provides the most detailed information on the PMSM, however simulating a couple of
seconds may take hours to compute. This produces a drive for developing models with
a smaller computationally burden but with sufficient accuracy. One modelling strategy
for creating new models is to modify previous models to include more physical phenom-
ena. The other one is to combine two modelling techniques to obtain individual merits or
compensate for any shortcomings in each method. Many hybrid models use static FEA
of PMSM to improve the accuracy of simpler models like EEC MEC and FRM [11]. Most
EEC, which include the description of ITSC, split one phase into two parts, shorted and
not shorted windings. A fault resistor connects in parallel across the shorted windings. It
represents the remainder of the insulation where the short circuit has occurred. Winding
function theory includes the description of geometric features and material properties [10]
in the EEC. These models are best suited for electrical faults like a phase-phase short
circuit, phase to ground, ITSC, open circuit, and high resistance connection [25], [27].
However, EEC can include the description of eccentricity and demagnetisation [18], [28].
These models are more demanding with the expertise of the PMSM’s structure. Never-
theless, it is considered the model type for PMSM with the least computational burden.

Magnetic equivalent circuit (MEC) equates the flow of magnetic flux as the flow of
current in EEC [29], [30]. Solving Kirchhoff’s voltage and current laws gives sufficient
accuracy for simple geometries. More complex structures are still solved with the same
laws, but are often called the permeance network model (PNM). It is equivalent to the
admittance matrix, which is applied to power flow problems and short circuit faults in





    

distribution networks. PNM is best suited for magnetic problems and describing magnetic
asymmetries, e.g. eccentricity and demagnetisation. The main drawback of PNM is its
description of rotor revolution. All of the nodes in the air-gap between the rotor and
stator domains are connected, where their permeance depends on the rotor position [31].
All entries in the permanence matrix related to the nodes in the border layer between
the rotor and stator need to update in each time step. The permeance matrix also needs
to be inverted due to the updated entries, which usually are close to 0. It will become
time-consuming for models with finer mesh. Gomez et al. proposed a PNM model that
borderlines with an FEA in mesh fineness and needs to re-mesh in every angular increment
[32].

The FRM technique recreates the air-gap magnetic flux density by superimposing
and phase-shifting the radial and tangential components of air-gap magnetic flux den-
sity exported from the static FEA. Conventional FRM assumes no deformation in motor
structure, no saturation, no end-coil effects, no hysteresis, and eddy current losses are
negligible [33]. The conventional method computes the rotor basis function with all mag-
nets defined in the static FEA. The linear assumption will allow for combining the basis
functions of each magnet by superposisition. Basis magnet functions with different defects
can be computed with static FEAs and stored in a library. New rotor basis functions are
generated by superimposing different magnet basis functions without the need for a static
FEA for every combination. No existing study has presented the possibility of a magnet
library.

FRM maintains the accuracy of the FEA but is significantly faster to compute. It
is especially well suited for time-stepping simulation, multi-physics problems or finding
the optimal phase current waveform in a faulty PMSM [20], [34]. Kiani et. al. [35]
investigated the vibration level of a PMSM at different speeds and loads in steady-state
conditions. Each fault scenario required a computation time of 70 min in FRM, while
an equivalent FEA would require 100 days. Khoobroo et. al. [36] proposed a detection
scheme for ITSC faults in five-phase PMSMs based on flux observer. Torregrossa et. al.
[37] included partial demagnetisation and static eccentricity (SE) in an extended FRM.
It includes the description of the slotting effect and non-linear material by computing
the basis functions at different rotor positions and current excitation. The look-up table
generated from static FEAs enables the modelling of interior PMSM (IPMSM) with FRM.
It is hard to find any publication on FRM simulating PMSM with implemented ITSC
operating in transient-state or mixed with a DF.

2.2 Signal-based FDI

The term "signal-based" can be interpreted as a misnomer since all FDI techniques involve
a level of signal processing of the signals measured from an operating PMSM. However, it
is referred to as techniques that solely use signal processing techniques to highlight fault
signatures from prior knowledge or estimate parameters, detecting faults when they exceed
a set threshold [6]. It excludes techniques that require descriptive models of the specific
PMSM. It separates from ML-based since no iterative training process is required, and





         


Table 2.2: Signature frequencies for different faults

Fault Parameter Frequency Refrence
ITSC I 3fs and 7fs [38]
ITSC I (2k − 1)fs [8], [39]
ITSC I, Φ

(
kNs

p
± 1
)
fs [38], [40]

ITSC Φ
(

n
p
+ k
)
fs [38], [41]

DF I fs and 5fs [42], [43]
DF I

(
1± k

p

)
fs [43], [44]

Eccentricity I
(
1± 2k−1

p

)
fs [6]

Eccentricity Vib., V, Φ
(
1± k

p

)
fs [45]

DE I 2kfs [39]
Bearing outer race Vib. Nball

2p
fs

(
1− dball

dcage
cos(β)

)
[6], [46]

Bearing inner race Vib. Nball
2p

fs

(
1 + dball

dcage
cos(β)

)
[6], [46]

Bearing ball Vib. dcage
2pdball

fs

(
1−

(
dball
dcage

cos(β)
)2)

[6], [46]

Bearing cage Vib. 1
2p
fs

(
1− dball

dcage
cos(β)

)
[6], [46]

Bearing fault I fs ± kfv [10], [46]

the fault detection criterion is already known. The most common method is to extract
the frequency components in a signal. Table 2.2 lists several characteristic frequencies
found in literature for different faults. The letters/abbreviations I, V, Φ and Vib. refer
to current, voltage, magnetic flux and vibration, respectively. All of the equations for
fault signatures relate to the synchronous frequency of the motor fs, which equals the
mechanical frequency times the number of pole pairs p. Ns is the number of stator slots,
and the parameters n and k are integers. Calculating fault characteristic frequencies
requires the number of bearing balls Nball, ball diameter dball, cage diameter dcage and
the contact angle β between the bearing ball and cage. The parameter fv is side band
frequencies in the current computed from the other equations related to bearing faults.

Fast Fourier-transform (FFT) can quickly compute the frequency composition of a
signal, but it falls short when the speed of the PMSM is no longer constant. The peaks
in the spectrogram are "smeared" over several frequencies, resulting in a spectrogram
unsuited for fault diagnosis. A small step from FFT to the analysis of transient signals
is to split the input signal and then compute a spectrogram for each "instant". This is
short-time Fourier-transform (STFT). The main disadvantage of STFT is the compro-
mise between the resolution of the time and frequency. Selecting short intervals improves
the time resolution but decreases frequency resolution and vice versa. Other commonly
used techniques are wavelet transform [47], Hibert-Huang transform [48], chirplet trans-
form [49], and different techniques falling under the umbrella term QTFD or Cohen’s
class function [50], [51]. The first developed QTFD is the Wigner distribution, which was
applied in the analysis of quantum physics. It is often called Wigner-Ville distribution





    

(WVD) in the field of signal processing [52]. The first major drawback to WVD is the
cross-product problem [50], [53]. The solution is the filtering process from the kernel
function. This includes, but is not limited to, Zhao-Atlus-Marks (ZAM), Choi-Williams
distribution (CWD), and Gabor [51], [54], [55]. STFT computes the frequency composi-
tion for each time instant with a set interval. Cohen’s class function uses the whole signal
to compute each time instant. This allows it to plot signals with the variable frequency
with high accuracy. However, computing time-frequency distributions (TFD) with the
Cohen’s Class function involve solving a triple integral [52]. Computation time increases
with the length of the input sample and could be only applied to signals of a few seconds
[55]. The computational burden prevents the QTFDs from implementation in online ap-
plications. A more computationally efficient method for computing QTFDs will enable
them for online applications.

Another strategy against non-stationary signals is to order-normalise or track their
harmonics. The procedure is done after transforming into the frequency domain for sta-
tionary signals by scaling the frequency axis. The equations in Table 2.2 is still applicable,
but fs equals 1. Empirical mode decomposition is a data-adaptive multi-resolution tech-
nique for decomposing non-linear and non-stationary signals. It separates the signal into
intrinsic mode functions at different resolutions [56]. Vold-Kalman filters and Gabor or-
der tracking are applicable for tracking the amplitude for a finite set of harmonics in a
non-stationary signal. These methods are accurate, but the Vold-Kalman filter requires a
model with information on the studied PMSM, and Gabor order tracking has a problem
with order crossing [57], [58]. Another method for order-normalising the spectrogram is
to re-sample the input signal based on the rotor position. One strategy is to use the
position sensor, but this is not applicable to sensorless drives. Then the position or speed
has to be estimated with for example Hilbert transform [59], sliding mode observer [60]
and response analysis form high frequency signal injection [61]. Conventional methods
often rely on current and voltage measurement, but an FDI scheme relying on stray flux
has the potential of being less invasive. The unit responsible for condition monitoring of
the PMSM can be separated and installed externally if the position is estimated by the
same signal used for diagnosis, i.e. stray flux.

2.3 Machine learning-based FDI

2.3.1 Supervised and unsupervised machine learning

Supervised ML algorithms are trained and tested on fully labelled datasets. The training
time is often short and requires few samples relative to unsupervised learning. These
techniques are trained for a specific task, e.g. discriminating between a few healthy cases.
The main drawback is the acquisition of labelled datasets, being resource-expensive or
unavailable. Unsupervised ML algorithms do not require any labelled datasets and focus
on recognising patterns in the datasets, dimension reduction and feature mining. The most
common ML algorithms are support vector machines (SVM) [62], k-nearest neighbours
(KNN) [63], decision tree [64], convolution neural network (CNN) [16] and artificial Neural
network (ANN) [65].





         


An artificial neural network is an ML tool that resembles the human brain, where
nodes represent the neurons and gains represent the strength of the signal in the synapses.
The development of ANN has produced networks with many layers with thousands of
parameters. These networks fall under the category of deep learning [66]. A large number
of data samples of each class are required to train the network and optimise the parameter
for the classification task. Ullah et. al. [67] trained deep neural networks under the
principle of transfer learning. The majority of the network is pre-trained, but the last
couple of layers retrain for a classification task. They are trained on the features computed
from the pre-trained part of the network. In principle, a network trained to identify cats
and dogs can retrain to discriminate between ITSC and DF. The field of PMSM fault
classification has also been drawn back to ANN with few and simpler architectures. A
highly specialised classifier may only need a few layers, being called as shallow learning
[65]. Distinguishing between shallow and deep learning is defined by the number of layers.
However, no exact limit has been specified.

2.3.2 Active learning and imbalance dataset problem

Labelled datasets are usually unavailable when a new ML-based FDI is installed on a
PMSM. One approach to avoid the labelled data problem is using self-supervised MLs.
They can be considered as a subset of unsupervised techniques since they work with
unlabelled datasets. One type of self-supervised learning applied in the field of PMSM
fault analysis is the one-class classifiers (OCC), which can be trained only on healthy
datasets [68]. A trained OCC can quantify the deviation of a new data sample from the
healthy samples. A large deviation from a healthy sample is considered a faulty case.
There are four types of OCC; (1) Density-based methods e.g. local outlier factor (LOF)
[69], (2) Reconstruction-based methods such as auto-encoder [70] and contrastive learning
[71], (3) Boundary-based methods e.g., one-class SVM [16], (4) Ensemble-based methods
which combine OCCs to form a more flexible data description model [68]. The best
OCC in PMSM fault detection probably depends on the PMSM drive setup. However,
comparing the OCCs has not been studied in literature.

Active learning (AL) is a semi-supervised ML algorithm where the training and testing
datasets are partially labelled. These algorithms are trained on the labelled samples in the
first iteration. Then they give a prediction on the unlabelled dataset with a confidence
score. Predictions with high confidence are added to the labelled dataset in the next
iteration. An expert (technician/engineer) will "actively" label the predictions with a
low confidence score. AL is often called cooperative learning if it significantly relieves
the workload for the expert [72], [73]. Jagath et. al. [16] proposed an active learning
FDI which is combined a one-class SVM as the detector and CNN as the identifier. It
avoids the need of no labelled samples in faulty cases but does not address the problem of
imbalanced datasets. The training of the classifier is initiated after the first verified fault.
However, the fault classifier may collapse and start classifying all cases as healthy since it
still will achieve high accuracy. The problem occurs due to the data imbalance between the
majority and minority classes in the training process. Normally, the imbalanced datasets
are re-balanced by over- and under-sampling the datasets before the training process [74].





    

However, this adds another step of the signal processing before the training of any ML
classifier. Under-sampling may resulting loss of useful information in the data set and
oversampling makes over-fitting more likely.

Reinforcement learning (RL) may offer a solution to balance the datasets in the train-
ing process of the ML classifier. RL is a goal-orientated computational approach, in which
an agent is trained to achieve a task inside an environment. The agent receives a reward
or a penalty based on its state in the environment and actions. RL holds a vast array of
possible applications. Song et. al. [75] implemented deep RL in a speed control strategy
for a PMSM. Cao et. al. [76] proposed a method for finding the optimal multi-layer
network through RL. They defined a set of 22 available layers in the RL algorithm to
create the ML classifier. Li et. et. [77] proposed a method with a conditional genera-
tion adversarial network for expanding the ITSC dataset, consisting of negative sequence
current and torque. It is an alternative to the synthetic minority oversampling technique
(SMOTE) [74] applied to the dataset before training an ML classifier. The method is
validated in the detection of ITSC in PMSM. Lin et. al. [78] proposed a deep Q-Network
(DQN) with a weighted reward function for image classification. This approach offers a
solution for PMSM fault classification, which integrates the dataset balancing into the
training process of the classifier. However, this has not been validated for PMSM faults
in dynamic operation or mixed fault (MF).







Chapter 3

Test-setup and data-acquisition

This chapter describes the in-house test-setup developed during the research period. It is
difficult to obtain data from faulty PMSM, so the aim is to acquire measurements when
such a motor operates with faults. The recorded data is used for training and validation
of proposed algorithms in Papers D, E and F.

3.1 The developed in-house test-setup

The test setup revolves around the test motor, which is coupled to a load generator
with a torque transducer in between. ITSC and DF are implemented on the test motor,
operating under different operation profiles with variable load and speed. The test motor
and load generated are mounted on a test bench made of duraluminium (AL-7075). The
test bench has threaded holes and T-shaped slots-rails along its length and width. The
ABB commercial drive supplying the test motor receives power from a 400 V power outlet.
All operations are controlled via Dspace on an office laptop. Figure 3.1 shows a schematic
overview of the setup and Figure 3.2 shows the test setup.

Current
sensors

0.5 mF

Rectifier Capacitor Brake
Chopper

PWM

Speed ref

GeneratorMotor

Torque
sensor

  Flux
sensors

Drive

Microlabbox

Grid

Position  
sensor

Figure 3.1: Schematic overview of the test setup
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Figure 3.2: Overview of the test bench with (1) resistor bank, (2) flyback diode, (3)
threephase rectifier with capacitor bank, (4) 12 V DC-supply, (5) IGBT brake chopper
with OP-Amp, (6) hall sensors, (7) test motor, (8) torque sensor, (9) load generator, (10)
short circuit resistor, (11) Microlabbox, (12) 24 V DC-supply, (13) ABB drive, (14) office
laptop and (15) cabinet containing the current sensors

3.1.1 Motor and load generator

The electrical motors, surface-mounted PMSM "IE5-PS2R 90 L" are coupled to an IPMSM
"90YSK-30FWJ302", which acts as the load generator. The two electrical machines are
showcased in Figure 3.3 and respective nameplate parameters are listed in Table 3.1. The
motor "IE5-PS2R 90 L" is selected because of easy access to stator winding and PMs for
implementation of ITSC and local DF.





   

(a) (b)

Figure 3.3: The electrical machines of the test setup: (a) test motor and (b) load generator

Table 3.1: Test motor and load generator parameters

Test motor Load generator
Model IE5-PS2R 90 L 90YSK-30FWJ302
Output power 2.2 kW 3 kW
Nominal voltage 280 V 400 V
Nominal current 5 A 6.4 A
Nominal speed 3000 rpm 3000 rpm
Nominal torque 7.0 Nm 9.6 Nm
Number of poles 4 4
Phase resistance 0.8 Ω 2.3 Ω

Direct axis inductance 6 mH 11.5 mH
Quadrature axis inductance 6 mH 27.5 mH
Nominal efficiency 90.2 % 92.6 %
Weight 18 kg 14 kg

3.1.2 Load regulator

A brake chopper in Figure 3.1 regulates the load consisting of the insulated-gate bipolar
transistor (IGBT) "IXA70I1200NA" with a rated collector-emitter voltage of 1200 V. It
breaks the circuit when turning ON and OFF at a switching frequency of 1 kHz. A
500 µF capacitor bank is connected across the output terminals of the three-phase full-
bridge rectifier, removing the ripples from the voltage input of the brake chopper. The
duty cycle used in the control of the brake chopper is a function obtained empirically
by running the system at different speeds. An Op-Amp amplifies the PWM signal from
the Microlabbox since its amplitude is insufficient to switch ON the IGBT. The resistor
of the brake chopper is a variable 3.3 kW resistor bank set to 25 Ω. The brake chopper
regulates the load with high precision for predefined dynamic load and speed profiles.
Flyback diodes are connected across the resistor bank to give a path for the stored energy
in the resistor bank.





         


3.1.3 Sensors

The three phase-currents are measured with the current sensors inside the electrical cabi-
net shown in Figure 3.2. The hall sensors, miniature ratio-metric linear solid-state sensors
used to measure stray flux density, are placed in proximity to the PMSM. One sensor is
bent 90◦ for measuring of both radial and tangential components. Each sensor is con-
nected to the Microlabbox for 10 V supply and recording. Torque is measured with a
torque transducer between the motor and the generator. Key parameters for all three
sensors are listed in Table 3.2. The position sensor, mounted on the load generator, is
an incremental encoder with a rated speed is 3000 rpm and requires a supply voltage of
24 V. Channels A and B of the incremental encoder transmit signals with 5000 pulses
per revolution with a magnitude of 5 V and the third channel Z gives one pulse for every
rotation.

Table 3.2: Key parameters for current-, torque-, and stray flux sensors

Parameter Current Torque Stray flux
Model name LTS 6-NP T22 SS490
Supply voltage 5 V 11.5 V to 30 V 4.5 V to 10.5 V
Measuring range ± 19.2 A ± 50 Nm ± 67 mT
Sensitivity 104.16 mV

A 100 mV
Nm 31.25 mV

mT
Linearity error <0.1 % <0.3 % <1.0 %
Max. temperature 80 ◦C 60 ◦C 125 ◦C
Min. temperature -40 ◦C 0 ◦C -40 ◦C

3.2 Inter-turn short-circuit - Implementation

The test motor "IE5-PS2R 90 L" has three parallel strands per phase winding, lowering
self-inductance, phase resistance and BEMF. In the case of a short circuit on one single
strand, the remaining two strands are unaffected. Therefore these motors are more tol-
erant to ITSC. Assuming copper resistivity at 25 ◦C, counting the number of turns and
measuring the necessary geometric features of the PMSM will give an estimated phase
resistance of 0.85 Ω. The nameplate value of 0.8 Ω verifies the observation of three paral-
lel strands. Estimating the shorted turns between the end terminals compared to PMSM
with single strand windings is less straightforward. The severity of an ITSC is defined
as the number of shorted turns divided by the total number of turns in a phase winding.
In the case of a single strand per phase, the severity level of ITSC is proportional to the
measured resistance across the turns. In the case of parallel strands, however, the sum of
the measured resistances between the tap and the two end terminals can be larger than
the phase resistance measured between the end terminals. Another aspect of the ITSC
in parallel strand PMSMs is that a short circuit may occur between two of the strands.
When the two points on the strands have identical electrical positions relative to the end
terminals. This ITSC has a severity of 0 % by the conventional definition of ITSC severity
[27].
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Figure 3.4: Sketch of sensitive resistance measurement

It is impossible to distinguish between the three parallel strands by visual inspection.
To simplify the problem, the input phase terminal is chosen as one of the ends of the short
circuit. It is a common point for all three strands. A short circuit tap is implemented
on the phase winding by locally removing the coating on a single strand with sandpaper.
Then the exposed copper surface is soldered with a wire, ensuring high electrical conduc-
tivity and easy access from outside the motor. The equivalent resistance between the tap
and the end terminals is measured before soldering. The resistance of the shorted turns is
in the magnitude of milliohms. A current of 1.0 A is passed through the phase winding,
and the voltage drop is measured between the tap and end terminal. Figure 3.4 shows
the schematic for the setup of sensitive resistance measurement. The circuit of a phase
winding is described with three resistors Rs in parallel, where one of them splits into R1

for shorted windings and R2 for unsorted windings. Four taps are implemented in the
stator, and the measured resistances are listed in Table 3.3.

The measured resistance is the equivalent resistance viewed by the multi-meters and
is not equal to the resistance of the shorted windings. The parameter of interest is the
ratio between R1 and RS, which is defined as the ITSC severity µf. A DC-circuit analysis
results in the following description of the equivalent resistance:

Rmea = µf

(
1− 2

3
µf

)
Rs (3.1)

Solving for µf gives,

µf =
3

4
± 1

2

√
9

4
− 6

Rmea

Rs
. (3.2)





         


Table 3.3: Measurement of equivalent resistance in PMSM with implemented ITSC

Node 1 Node 2 Voltage (mV) Current (A) Rmea (mΩ)
U 1 53.4 0.9977 53.5
U 2 140.2 0.9977 140.5
U 3 375.8 0.9977 376.7
U 4 118.3 0.9977 118.6
N 1 859.3 0.9977 861.3
N 2 882.9 0.9977 884.9
N 3 887.6 0.9977 889.6
N 4 878.8 0.9977 880.8
U N 841.4 0.9977 843.3

Table 3.4: Estimated value of µf

U-teminal Neutral Total
Tap 1 2.2 % 97.8 % 100.0 %
Tap 2 5.8 % 94.5 % 100.3 %
Tap 3 6.0 % 93.3 % 99.3 %
Tap 4 4.8 % 95.1 % 99.9 %

One indicator for finding the correct solution for (3.2) is to identify which end terminal is
closer to the short-circuit tap, i.e. is it more likely that the short circuit severity is larger
or smaller than 75 %? The estimated severity levels µf implemented in the PMSM is
estimated from the results in Table 3.3 and listed in Table 3.4. The equation derivation is
proven correct since the estimated µf for R1 and R2 adds to 100 %. The final result of the
circuit analysis is shown in Figure 3.5 with the placement of the implemented short-circuit
taps. The measurement between the node is conducted to locate of each tap.

Neutral

U-Terminal

2.2 %

6.0 %
4.8 %

5.8 %

1

23

4

(a)

1234

U

N

(b)

Figure 3.5: Placement of short circuit taps in phase U in (a) circuit sketch and (b) image
of the PMSM





   

3.3 Local partial demagnetisation - Implementation

Demagnetisation faults in PM machines are usually implemented by removing parts of
the magnets [79] or replacing them with non-magnetic materials [80]. The latter results
in an imbalance in the rotor. Another option is to install weaker magnets in the rotor
through the manufacturers [42]. The mentioned methods do not mimic the demagnetisa-
tion caused by thermal cycling in dynamic operations of PMSM drives. The investigations
by Fernandez et. al. [81] and Reigosa et. al. [82] show the temperature distribution of
an IPMSM under different applied load currents. It is concluded that the hottest spot on
average over time is in the middle of the magnet surface. This region is thus more likely
to be affected by demagnetisation caused by overloading. The heat treatment proposed
in Paper E involves local heating with a 1500 W electric cooktop. An aluminium block is
placed on the iron hob. This allows for placement and removal of the PM rotor safely due
to the low permeability of aluminium. The other rotor poles were cooled with a wet towel
to ensure that they did not demagnetise during the heat treatment. Figure 3.6a shows
the proposed heat treatment in progress. The rotor on the hot aluminium block is heated
to 232 ◦C. The rotor is left on the hot surface for 10 minutes. Thermal paste is applied to
the contact between the rotor and aluminium block to improve the heat transfer between
the objects.

The magnetic field meter "Extech SDL900 AC/DC" measured the strength of the
magnets before and after the heat treatment in the measurement setup in Figure 3.6b.
The rotor is cooled to ambient temperature after the heat treatment. A wooden frame
allowed the rotor to rotate while recording the measurement across its surface. It also kept
the rotor axis horizontal while preventing any translational movement. The hall-sensor in
the SDL900 is placed 3 mm above the rotor. Figure 3.7 shows the measured magnetic field
surrounding the rotor before and after the heat treatment. The measurement is repeated
three times to reduce measurement variations. A positive value indicates a North pole,
while the South poles are negative. One North pole of the rotor lost 30 % of its original
strength at two spots.

(a) (b)

Figure 3.6: The setups for (a) inducing local demagnetisation and (b) measuring magnetic
field over the rotor surface





         


(a) (b)

Figure 3.7: Measured magnetic field strength surrounding the PM rotor (a) before- and
(b) after heat treatment

3.4 Operation profiles

Three different operation profiles are used in the experimental studies in Papers E and
F. The first profile includes an operation with several combinations of loads and speeds,
both constant or changing at a fixed rate. The two remaining profiles are generated by
a random sequence of numbers and a first-order delay. Profile 2 keeps the load constant
at 60 % of full load, while the speed constantly changes. The last profile keeps the
reference speed constant at 1200 rpm, while the load changes unpredictably. The PMSM
runs under these profiles with the health conditions: healthy, DF, 5 % ITSC and mixed
fault (DF and ITSC). The Microlabbox records current, torque, stray flux, and rotor
position with a sampling frequency of 10 kHz. For the proposed FDIs in Papers E and
F, the measurements collected during the operation of Profile 1 are for both training and
testing. The samples from Profile 2 and Profile 3 are for testing only.
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Figure 3.8: Profile 1: variable load and speed
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Figure 3.9: Profile 2: constant load and variable speed
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Figure 3.10: Profile 3: variable load and constant speed







Chapter 4

Model-based analysis of faulty PMSM
in dynamic operations

Model-based analysis of faulty motors allows for estimating hard-to-measure parameters
and development of new fault indicators and FDI schemes. The benefit of these anal-
ysis is to save cost by reducing the number of electrical motors required for testing.
These analysis needs to be computationally efficient for simulating PMSM with magnetic
asymmetries in dynamic operations. Faster models are more desirable, if they provide
sufficient accuracy as compared to more computationally heavy models like FEA. This
chapter summarises the work in the model-based analysis of faulty PMSM published in
Papers A, B and C. Section 4.1 describes the FEA model of the faulty PMSG used for
verifying the proposed FDI and PNM. The proposed FDI in Section 4.2 aims to minimise
the required number of search coils. Estimated motor speed makes the FDI robust against
speed changes. Section 4.3 presents a more computational-efficient PNM of faulty PMSM.
It replaces the variable air-gap permeance with variable flux sources for describing rotor
revolutions. The geometry in the FEA is updated to simulate a PMSM for the devel-
opment and verification of the FRM in Section 4.4. The proposed FRM expands upon
its utility with a magnet defect library and implements both DF and ITSC in the model
description.

4.1 Developed FEA of PMSM for verification

The FEA of PMSM is built with commercial software for multi-physics analysis, COMSOL
Multiphysics®. Figure 4.1 plots a quarter of the PMSM geometry, which is based on the
design in [83]. The geometry is symmetrical with respect to the horizontal and vertical
axis. Two search coils measuring magnetic flux (pink domains) are placed on separate
stator teeth located at the top and bottom of the stator. The induced search coil voltages
are computed and used for the verification of the FDI scheme proposed in Paper A and
the PNM in Paper B. Table 4.1 lists the motor parameters.

Table 4.2 lists the properties of the material used in the model. The stator and rotor
(grey) are made of iron. The electric conductivity is 11.2 MS

m in the radial direction, but
it is 1 S

m along the axial direction for mimicking the lamination of the core. The iron is
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Figure 4.1: A quarter of PMSG geometry

Table 4.1: Parameters of PMSG model in Paper A and Paper B

Symbol Quantity Parameter description
p 2 Number of pole pairs
Ns 24 Number of stator slots
N 120 Number of turns per stator slot
dmag 4.5 mm Magnet thickness
dtooth 5.9 mm Thickness of stator tooth top
g0 2.2 mm Average air-gap distance

Lrotor 200 mm Length of rotor
Ltooth 16.2 mm Length of stator tooth
Lyoke 16.1 mm Thickness of stator yoke
rr 34.0 mm Rotor radius
rs 40.7 mm Stator inner radius
w1 4.5 mm Width of stator tooth 1
w2 9.0 mm Width of stator tooth 2
θslot 15◦ Stator slot pitch
θmag 73.1◦ Magnet pitch
B 0.01 Nm

rad
s

Viscous friction

JRotor 0.1 kgm2 Rotor inertia





        

Table 4.2: Material properties in the FEA

Material property Soft Iron Copper Air Unit
Relative permeability Non linear see Figure 4.2 1 1 -
Relative permittivity 1 1 1 -

Electrical conductivity 11.2 60 0 MS
m

Figure 4.2: BH-curve of the iron core

a non-linear magnetic material, and Figure 4.2 shows its the BH-curve. Properties for
copper define the phase windings (yellow, orange and brown) and the search coils (pink).
The air domains are coloured in white, while the North pole domains is in red (South
pole is not included in Figure 4.1. The linear model defines the magnets.

B = µ0µrecH + Br (4.1)

where field of Br points radial outward for North poles and inwards for South poles. It
has a magnitude of 0.5 T and a uniform demagnetisation on one pole can be described
by reducing the magnitude of Br. The parameter µ0 is the permeability in vacuum and
µrec is the recoil permeability of the magnet.

The domains related to the rotor are defined as rotating domain, governed by the
following equation for a rigid body.

ω̇m =
τLoad − τARK −Bωm

JRotor
(4.2)

The motor angular speed ωm increases due to applied load torque (τLoad) of 10 Nm. A
counter torque (τARK) from the generator is computed with Arkkio’s method [84]. Viscous
friction is also included in the model description. The output terminal of the PMSG is
Y-connected to a 50 Ω resistor per phase. Static eccentricity (SE) in the FEA model gives
the centre of the rotating domain (RD) an offset relative to the geometric centre of the
stator (S). The centre of the rotor (R) coincides with RD. On the other hand, the RD
coincides with the centre of the stator and not R during dynamic eccentricity (DE). Figure
4.3 shows an exaggerated sketch illustrating the difference between the eccentricities. RD
will coincide with neither the stator nor rotor axis during mixed eccentricity (ME), which
is a mix of SE and DE.
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Figure 4.3: Sketch of (a) static eccentricity and (b) dynamic eccentricity

4.2 Proposed FDI with reduced number of search coils

Da et. al. [19] proposed a fault diagnosis scheme with 12 search coils placed with equal
angular distance in the stator. The magnitude of induced search coil voltages is presented
in a polar plot. Different shapes in the polar plot represent different fault signatures. An
FDI with only two search coils for detecting magnetic asymmetries like DF, SE and DE,
is presented in Paper A. It is built on similar principles from Da et. al. [19], but fewer
search coils will reduce the effort required for implementation. The FDI detects a fault if
the square of the voltage difference between the search coils is greater than a threshold δ.

FDet = (VC1 − VC2)
2 > δ (4.3)

The induced voltages in the strategically placed search coil will ideally be identical. The
fault detection criterion is δ, which reduces the false positive rate due to noise. The work
of Da et. al. [19] produced polar plots for different faults, e.g. eccentricity, short circuits,
and DF. In a healthy case, the polar plot will be a perfect circle. In the case of eccentricity,
the "circle" will be off centre. This offset will stay fixed in the case of SE or orbit around
the geometric motor center axis in the case of DE. Uniform DF on one pole will cut off a
part of the polar plot circle in the region of the demagnetised magnet. The shape will also
rotate at the same speed as the motor. The proposed method aims to reduce the number
of search coils, assuming that the envelope of the search coil voltage reflects the varying
radius in the polar plot. Different faults produce different shapes on the envelope. The
second assumption FDI scheme is to define shape in the polar plot with the equation for
an ellipse.

FClass = A cos (2ω(t)t+ ϕ) +B cos (ω(t)t+ ϕ) + h(t) (4.4)

where ϕ is the phase shift and h(t) is the remainder after the first and second harmonics
are removed from the envelope function. Ideally, it is the local time average of the envelope
and will be constant when the PMSG runs at constant speed. h(t) is propositional to the
motor speed (ω(t)

2
for a four-pole), if the PMSM operates in a non-saturated state. The

fitting parameters for A and B were obtained in an optimisation problem, in which the





        

square error between the envelop and FClass in (4.4) is minimised. Figure 4.4 shows the
flowchart of the proposed FDI.

Start
VC1

and
VC2

Compute
FDet

FDet < δ

NF
Estimate
FClass

A > 0DF

B > 0DE SE

True

False

True

False

FalseTrue

Figure 4.4: Flowchart of the proposed FDI

4.2.1 Verification of FDI with FEA

The FEA model in Section 4.1 is used for verifying the proposed method in Figure 4.4
(Paper A). Uniform demagnetisation over a single North pole is described by reducing
its Br from 0.5 T to 0.4 T. The FEA describes SE and DE with severity of 23.0 %. The
PMSG is analysed with a prime mover torque of 10 Nm. Simulating 10 seconds in FEA
takes 10 hours of computation time. Figures 4.5 and 4.6 show an absolute value of the
induced search voltage with envelope in healthy case, SE, DE and DF.

In the healthy case and SE, the first (B) and second (A) harmonics of the envelope
are negligible. A SE can still be detected if the static offset is towards either search coil
because FDet is no longer 0 and may exceed the set threshold δ. However, a SE has not
been detected if the offset is perpendicular to the search coils. The distance between the
rotor and search coils is equal, and the induced voltages have equal amplitudes.

A single search coil may suffice for classifying DE and DF. Table 4.3 shows the am-
plitude of the first and second harmonic of the envelope. The signature of a DE in a
polar plot is a circle with an offset revolving around the origin [19]. This is reflected in
amplitude modulation of the induced voltage. The envelope will have a first harmonic.
Partial DF of a rotor pole cuts one side of the polar plots, which can be approximated as
an ellipse with an offset. The envelope has the first and second harmonics as reported in





         


Table 4.3. The amplitudes A and B are estimated from (4.4) with an optimisation prob-
lem. It is dependent on the speed of the motor, which is measured by position sensors in
a PMSG or PMSM drive setup.

(a) (b)

Figure 4.5: Induced search coil with envelope in case of (a) no-fault and (b) SE

(a) (b)

Figure 4.6: Induced search coil with envelope in case of (a) DE and (b) DF

Table 4.3: Estimated amplitude of harmonics in the enveloped curve

Type of fault A B

NF 0.0 0.0
SE 0.0 0.0
DE 0.02 0.33
DF 0.11 0.25





        

4.3 PNM with variable flux sources

MEC has a similar description like an EEC, but magnetic flux, magnetic motive force
(MMF), and reluctance respectively replace current, voltage, and resistance. The perme-
ance matrix P in PNM is the magnetic equivalent to the admittance matrix. It is the
matrix form of the node method derived from Kirchhoff’s current law.

PFm = Φs, (4.5)

RR

RM

RAG

RAG

RAG

RST

RSY

ΦMag

ΦCoil

Figure 4.7: Unit equivalent circuit of PNM

The nth diagonal entry is the sum of reciprocal of all the reluctances connected to
the nth node. The rest of the entries is the negative of the reciprocal of the reluctance
connected between the two nodes. The enumeration represents the row and column
number in P . For example, the entry in row 1 and column 3 is 1

R1,3
. It is noted that the

P is symmetrical since R1,3 = R3,1. Normally, a PNM describes rotor revolutions with a
variable permanence in the air-gap depending on the rotor position. All nodes in between
the rotor and stator domains are then connected. The resulting P needs to be updated
every time step, requiring inverting for computing the magnetic potential in each node.
The new approach for describing rotation in a PNM is using variable flux sources.

Figure 4.7 shows the unit block for the MEC described in Paper B. The motor geometry
splits into Ns sectors (stator slots). The unit circuits of each sector connect into a chain.
The circuit completes when the ends of the chain are connected to make a ring. Figure
4.8 visualises the development of the PNM by redrawing the MEC into a network with
an example of three MEC units (PMSM usually have more than three stator slots). The
reluctances are highlighted in different colours in Figure 4.7. Each of the rotor reluctances
RR connects from one node to the next in the bottom left corner in Figure 4.8. The final
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Figure 4.8: Example PNM with three elements redrawn in a network circuit





        

Figure 4.9: Illustration of moving rotor in PNM (counter clockwise)

RR is connected from the last node to the first for completing the circle. There is a similar
set-up for reluctances of the air-gap (RAG) and stator yoke (RSY).

The proposed PNM requires a Ns connection between the rotor and stator. A PNM
describing rotor revolution with variable permeance needs N2

s connection across the air-
gap. However, the proposed method makes the flux sources, representing the magnets
vary when the motor is running. First, the function of the flux contribution from the
magnets is defined for the initial position of the PMSM with no current excitation in the
stator winding. The function is obtained from static FEA. This function is phase-shifted
with respect to the rotor position. Figure 4.9 illustrates the principle, and the red and
blue domains represent the North and South poles, respectively.

4.3.1 Verification of the proposed PNM with FEA

The proposed PNM is verified with the FEA described in Section 4.1. Figure 4.10 shows
the polar plot of the magnetic flux density in the air-gap. The motor stands still with
no current in the phase windings. The polar plots show the case of no demagnetisation
in blue and complete demagnetisation on one North pole in red. The PNM captures the
shape of the polar plot produced by the FEA. However, the mesh of the PNM model is
too coarse to capture the finer details caused by the slotting effect. The magnetic field in
the region of the demagnetised magnet has decreased, while the opposite has increased.
In the setting of MEC, the flux sources at the demagnetised magnet are set to 0 Wb,
but the remaining flux source is unchanged. Less magnetic flux flowing in the magnetic
circuit explains why the magnitude of the air-gap magnetic flux over the remaining magnet
(South poles) has decreased.

The second comparison between proposed PNM and time-stepping FEA is studied
when the PMSG runs at 1300 rpm with a resistive load. The simulation studies compare
the PMSG with no-fault and partial DF. The DF case is defined as one North pole losing
20 % of its original strength, i.e. decreasing Br from 0.5 T to 0.4 T. The results from
the PNM match well those from the FEA, showing the overall shape of the magnetic flux
density in a stator tooth. The proposed PNM can compute ten seconds of simulated time
in less than one second. Using FEA takes several minutes but provides more information.
However, the PNM is sufficient if the average magnetic flux density in a stator is the
parameter of interest.
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Figure 4.10: Polar plot of the air-gap in stationary condition with no current from (a)
FEA and (b) PNM
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Figure 4.11: Magnetic flux computed by FEA or PNM in a stator tooth for (a) healthy
case and (b) one demagnetised magnet





        

4.4 Proposed FRM with magnet defect library

The FRM technique recreates the air-gap magnetic flux density by superimposing and
phase-shifting the radial and tangential components of magnetic flux density exported
from the static FEA. The conventional FRM for electrical machines has proved its main
strength with efficient computations of magnetic fields and forces in healthy or faulty
PMSM in steady-state [20], [35]. This model-based study aims to develop a magnet library
of different magnet defects and include ITSC in the FRM framework. The developed FRM
simulates a combined fault between ITSC and magnet defect in a PMSM in a transient
state. FRM recreates the air-gap magnetic flux density based on superimposing and
phase-shifting the contribution by magnets and stator windings. The basis functions are
exported from static FEAs, and their normal (radial) and tangential components are
written as:

BN(θ + θm, I(t)) = BnPM(θ + θm) +BnS(θ, I(t))

BT (θ + θm, I(t)) = BtPM(θ + θm) +BtS(θ, I(t))

(4.6)

The air-gap magnetic flux density composes of the contribution from the PM and
phase windings. A library containing the basis functions of magnets with different defects
is developed in Paper C. The magnet library allows for the fast generation of new rotor
basis functions with superposition and phase-shift. Flowchart in Figure 4.12 illustrates
the developed FRM. Each magnet basis function (BnPM and BtPM) is computed in static
FEA. The construction of BnS(θ, I(t)) and BtS(θ, I(t)) follows a similar procedure where
a unit basis function. They are computed with an excitation current, e.g. 10 A (DC),
and then used for recreating the basis function for phase A. However, this depends on the
winding configuration. A second option is to include all windings for a phase in the static
FEA. The other two phases are obtained by phase-shifting the basis function with 120◦

and 240◦.
The basis function for the shorted windings is subtracted from the phase where the

ITSC is located. The magnitude of the magnetic field contribution in the air-gap from the
phase windings is proportional to its respective phase currents and the shorted windings
are proportional to the fault current. All stator basis functions are normalised with respect
to the excitation current used in the static FEA (10 A). The EEC part of the FRM is
defined with the following equations [85]

va
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0

 = R


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−eF

 (4.7)

where R and L are the resistance and inductance matrices as:

R =


RS 0 0 −µRS

0 RS 0 0

0 0 RS 0

−µRS 0 0 RF + µRS

 (4.8)
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Figure 4.12: Flowchart of proposed FRM





        

and

L =


LS MS MS −µ(1− µ)LS

MS LS MS −µMS

MS MS LS −µMS

−µLS −µMS −µMs µ2LS

 (4.9)

The FEA is crucial for the development of accurate FRM. The model geometry is
based on the PMSM, "IE5-PS2R 90 L", from the in-house test bench. Figure 4.13 plots a
quarter of the model geometry, but the whole geometry is needed to simulate the magnetic
asymmetries. Table 4.4 lists key parameters of the PMSM. The FEA uses the material
properties in Table 4.2.

w2
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mag slot
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Figure 4.13: Geometry of the PMSM studied in Paper C
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Figure 4.14: Block diagram of PMSM model system





         


Figure 4.14 shows the overall structure of the simulated PMSM with the integration
of the field-oriented controllers and descriptions of the electrical and mechanical systems.
The FRM description of the system is obtained by replacing the FEA part with its
mathematical description.

Table 4.4: Geometric dimensions and parameters of the in-house motor

Symbol Quantity Parameter description
p 2 Number of pole pairs
Ns 36 Number of stator slots
N 80 Number of turns per stator slot
dmag 1 mm Magnet thickness
dtooth 2 mm Thickness of stator tooth top
g0 4.0 mm Average air-gap distance

Lrotor 100 mm Length of rotor
Ltooth 14.5 mm Length of stator tooth
Lyoke 9.1 mm Thickness of stator yoke
rshaft 15 mm Rotor inner radius
rr 35 mm Rotor outer radius
rs 40 mm Stator inner radius
w1 4 mm Width of stator tooth 1
w2 5 mm Width of stator tooth 2
θslot 10◦ Stator slot pitch
θmag 80.8◦ Magnet pitch
nrated 3000 rpm Rated speed
kBEMF 90 mV

rpm Back EMF constant
Rs 2.1 Ω Per phase resistance
Ls 36 mH Self inductance
Ms 18 mH Mutual inductance

4.4.1 Verification of FRM with FEA

The FRM is verified by comparing the results from the FRM and FEA simulating the
PMSM in dynamic operations for 4 s. Table 4.5 lists the computation time of both models.
The FEA has a computation time, which is three orders of magnitude larger than FRM.

Table 4.5: Computation time comparison between FEA and FRM

Fault condition FEA FRM Ratio
Healthy 50906 s 49.9 s 1020
Missing magnet piece 54924 s 52.2 s 1052
ITSC (8 turns) 54877 s 49.3 s 1096
ITSC (72 turns) 55692 s 50.8 s 1080
Missing magnet piece and ITSC (8 turns) 64165 s 48.9 s 1312
Missing magnet piece and ITSC (72 turns) 64995 s 49.0 s 1326





        

(a) (b)

Figure 4.15: Short circuit current with FEA (red) and FRM (blue) under different ITSC
severities (a) 1.7 % and (b) 15 %
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Figure 4.16: Decoupled contributions to the air-gap magnetic flux density in the (a)
healthy case and (b) in case of missing a piece of one magnet





         


Figure 4.15 shows the current in the short circuit resistor computed with FEA and
FRM for two different levels of the short circuit. They have similar waveforms, proving
that the FRM can produce a similar result to FEA for a range of short circuit severity.
Figure 4.16 shows the decoupling of magnetic flux densities recorded at a single point in the
air-gap during the acceleration of the simulated PMSM. The rotor and stator contribution
can easily separate in the FRM as compared to the FEA. This opportunity will allow the
FRM to be used in inverse problems to diagnose magnet defects and their severity. The
transient responses at the beginning have some deviations between the models, but they
become similar in steady-state. This is probably due to the linear assumption in the
FRM, which is not applied to the FEA.

4.4.2 Experimental validation of FRM

The FRM is validated with the current measurement extracted from the in-house test-
bench. One fault signature for ITSC is an increase of the second harmonic of the extended
Park’s vector approach (EPVA) [86]. Stator currents are extracted from the proposed
FRM and used to compute the Park’s vector. The magnitude of the Park’s vector, |IP |,
is used in time-frequency analysis and is defined as

|IP | =
√
I2α + I2β (4.10)

where Iα and Iβ are the components of the current after the Clark transformation. The
spectrograms of the IP in cases of 0 % and 6 % at nominal speed (3000 rpm) are presented
in Figure 4.17. The results from the FRM show a 4.4 dB higher peak of the second
harmonic for the faulty PMSM than the healthy PMSM. This is shown in the measurement
where the second harmonic increases by 3.2 dB. It is noted that the obtained result by
FRM has a lower noise level than the experimental data but does show the general trend
of the chosen fault indicator [86].
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Figure 4.17: Spectrograms of IP obtained from FRM (left) and experiment (right)





        

4.5 Summary

This chapter summarises the work done with the model-based approach for analysing
faulty PMSM in dynamic conditions. An FDI scheme developed to to minimise the num-
ber of required installed search coils for detecting and identifying magnetic asymmetries
is presented. The FDI identifies different fault signatures for DF, SE and DE and works
with variable frequency, but requires information of the rotor positions. A more compu-
tational efficient PNM replacing variable air-gap permeance with variable flux sources is
also presented. This eliminates the need to invert the permanence matrix in every time
step due to rotor revolutions. The permeance matrix does not need to describe rotor rev-
olution, making it easier to describe changes in the air-gap over time, e.g. DE. Section 4.4
presents a library of magnet basis functions. New combinations of magnets can combine
to make a new rotor basis function without the need to compute in static FEA. The FRM
is verified with FEA and validated with experimental results. Further, it allows for an
easy decomposition of air-gap magnetic flux based on the contribution of the rotor and
stator. This feature can be implemented in an inverse problem to diagnose DF and its
severity. Finally, the proposed FRM can simulate a MF case with both ITSC and DF.







Chapter 5

Reducing computational burden for
quadratic time-frequency distribution

Condition monitoring for electrical machines in dynamic operation requires the analysis of
non-stationary signals. The conventional method of STFT applies the Fourier transform
for a finite window. Its weakness is the relation between resolution and window size. A
small window gives high time resolution but low frequency resolution, and vice versa for
a large window size. The time resolution of the QTFD is not affected by the window size.
This chapter summarises the work in Paper D, which presents a more computationally
efficient method for computing QTFD. The proposed algorithm in Section 5.1 is verified
on predefined multicomponent signals with variable frequencies and the effectiveness of
the algorithm is tested on measurement from a PMSM setup with ITSC and variable
speed conditions.

5.1 Proposed QTFD

Figure 5.1 illustrates the proposed implementation of QTFD for longer-lasting signals.
The main principle is to implement QTFD in a similar approach as the STFT. Its signal
is split into smaller intervals. In contrast to STFT, the window size has little effect on
the time resolution of the spectrogram produced with QTFD. This spectrogram is noisy
at the beginning and end. These parts are removed in each the input sample, which are
overlapping. The output of each step is combined in a final spectrogram. The step by
step of the algorithm is:

1. Extract a sample from the original array from entry n1 to n2. The initial values of
n1 and n2 are 1 and fsT (product of sampling frequency and time window)

2. Compute the QTFD with (5.5) for the sample

3. Cut off the first 20 % and last 20 % of the spectrogram (overlap)

4. Add the product of the overlap and fsT to n1 to n2 and repeat the process

5. Repeat until end of signal

45
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Figure 5.1: Flowchart of the proposed implementation of QTFD

QTFD is often called Cohen’s class function in honour of Leon Cohen [52], who derived
the generalised form to this family of distribution functions:

C(t, ω) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
A(θ, τ)ϕ(θ, τ)e−jθt−jτωdθdτ, (5.1)

where A(θ, τ) is the ambiguity function, which is obtained by transforming the auto-
correlation function into the ambiguity domain.

A(θ, τ) =
1

2π

∫ ∞

−∞
R(t, τ)ejθtdt (5.2)

θ-domain refers to a frequency domain where the filtering by the kernel function is applied.
On the other hand, ω is the frequency domain of the final QTFD. The auto-correlation
function is defined as the product of the analytic function and its complex conjugate.

R(t, τ) = s∗
(
t− τ

2

)
s
(
t+

τ

2

)
. (5.3)

Finally, the analytic function is the Hilbert transform of input measurement. R(t, τ) is
a function of time t and running time τ , resulting in that each time instant of the final
QTFD is dependent on past and future events within the time sample.

The Cohen-class distribution may at first be intimidating because it requires solving a
triple integral. However, it can be split into two Fourier- and one inverse Fourier transform
and can be rewritten into

C(t, ω) = Fτ→ωFθ→t

(
ϕ(θ, τ)F−1

t→θ (R(t, τ))
)

(5.4)

The subscript to F refers to the direction of transformation between the domains. Cohen’s
class function in discrete form in (5.5) is derived in detail in Paper D.

C(nt, nω) = FFTnτ→nω

(
FFTnθ→nt

(
ϕ(nθ, nτ )⊙ FFT−1

nt→nθ
(R(nt, nτ ))

))
(5.5)

The proposed algorithm was first tested on function with variable frequency and no
additive noise. Then it was tested on measurement from the PMSM setup in [59].
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Figure 5.2: Numerical test with (a) instantanouse frequencies of the original signal, (b)
spectrogram computed with STFT and (c) spectrogram computed with CWD

5.1.1 Numerical verification of the method

The performance of the proposed algorithm is first verified against the function

x(t) =
5∑

k=1

sin

(
2πk

(
5

2
sin (2t) + 25t

))
(5.6)

Figure 5.2(a) shows the frequency component function (5.6), having an amplitude equal to
1. Both STFT and the proposed QTFD have a window size of 1 s and 20 % overlap. The
STFT uses a Hanning window, and the proposed QTFD uses the CWD kernel function.
Both algorithms capture the waveform of the components, but the separation of the
fourth and fifth components, having the largest frequency modulation, becomes blurry
for STFT. Changing the time window did not improve the TFD produced by the STFT.
The resolution for the proposed is not affected by the change in window size but does
greatly affect the computation time. The waveforms in CWD have a smoother shape due
to the finer time resolution in the spectrogram.

5.1.2 Experimental validation of the method

Figures 5.3a shows the spectrogram generated by STFT for a phase current of the PMSM
in the healthy case. The sampling rate and window sizes are 1 kHz and 1 s, respectively.
The Hanning window function is applied to the window with an overlap of 20 %. STFT is
used as a benchmark to compare with the spectrograms generated by CWD. Figure 5.3b
shows the spectrogram generated from CWD. The harmonic peaks were captured and
proved that CWD is capable of capturing harmonic peaks. The fundamental frequency
is much more dominant in CWD as compared to the STFT. Element-wise square root
balance the size difference between the peaks but makes the spectrogram noisy.

Figure 5.4 shows the spectrograms obtained by STFT and CWD of the phase current
for the same PMSM operating under an ITSC. Both STFT and CWD can pick up the third
harmonic, which is the indicator for electrical faults. These experimental results prove
that CWD can pick up the same harmonic peaks as STFT. The fundamental component
is much more dominant in the CWD. The proposed method processes a time-series signal
of length 2 minutes (sampling frequency 1 kHz) in less than ten seconds.





         


(a) (b)

Figure 5.3: Spectrogram of phase current for healthy PMSM operating at variable speed,
(a) STFT and (b) CWD

(a) (b)

Figure 5.4: Spectrogram of phase current for PMSM with 10 % ITSC operating at variable
speed, (a) STFT and (b) CWD

5.2 Summary

In this chapter, a modified QTFD is presented for implementation in online monitoring.
The time resolution of the spectrogram produced with the proposed algorithm seems to
be unaffected by the window size. However, the computational burden increases with a
larger window, which is a limitation in online applications. The proposed method can
process a time-series signal in two minutes (sampling frequency 2 kHz) in less than ten
seconds. It does produce smoother components in the spectrogram than STFT, being
easier to distinguish. In the experimental test, the proposed method performs on par
with STFT but has sharper peaks in the spectrogram.





Chapter 6

Robust data-driven fault diagnosis for
sensorless PMSM drives

Both model- and signal-based FDI schemes require accurate information about the mon-
itored motor or system. However, acquiring data on faulty operations is often scarce,
resulting in imbalanced datasets. Classifiers trained on datasets with the healthy case
in the overwhelming majority will collapse and classify all input samples as a healthy
class. A desirable classifier should counter the imbalance dataset problem regardless of
operation profile. This chapter presents the two proposed FDIs based on ML and stray
flux sensors published in Paper E and Paper F. Both algorithms are trained and tested on
PMSM in dynamic operations. The proposed FDI in Section 6.1 aims to classify local DF
and ITSC on sensorless PMSM in transient states based on external stray flux and ML
classifier. The input signal is order-normalised with the rotor position estimated from one
hall sensor with an optimisation problem. Four supervised ML algorithms are tested in a
comparison study: EDT, KNN, SVM and FNN. Section 6.2 presents an FDI, aiming to
solve the imbalance training datasets problem in an AL framework. The proposed method
combines the self-supervised anomaly detector based on a LOF and a DQN classifier. The
proposed FDI is trained to classify healthy cases, ITSC, local DF and MF. The robustness
of the proposed method is validated experimentally from dynamic operations with ML
and imbalanced training datasets measured from the in-house test setup.

6.1 Order tracking with optimisation problem

The data-driven FDI using ML algorithm trained on data from stray flux sensors is pre-
sented in Paper E. The diagnosis scheme is suited for sensorless drives robust against
dynamic operations. FDI based on stray flux sensors will allow post-installation placed
externally on the PMSM. Stray flux has recently gained popularity in literature for fault
detection of ITSC, demagnetisation, and mechanical faults due to its sensitivity [5]. Ex-
isting research focuses on the model- or signal-based algorithms, requiring multiple stray
flux sensors and speed measurements for detecting faults in variable speed conditions. The
proposed algorithm is trained and tested on an operation profile with changing load and
speed. Two additional profiles are used for testing. Demagnetised magnets are inappro-
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Figure 6.1: Block diagram of preparation of features

priately implemented in the existing research, causing imbalances or damage to magnets.
Heat treatment with an electric hob is presented in Paper E for inducing local DF.

The block diagram in Figure 6.1 shows the proposed pre-treatment of the input signal
for computing features before passing it on to the ML classifier. Data samples were
order-normalised by resampling from a set time step to a fixed angular increment. Rotor
position is estimated by splitting the signal into sections before an optimisation problem
estimates the fundamental frequency f1. The objective function is:

[f1, θ] = argmin
f1,θ

(
(x(t)− h(t))2

)
(6.1)

where h(t) is the assumed function of the fundamental component,

h(t) = sin(2πf1t+ θ1). (6.2)

The phase angle θ1 is required for an accurate estimate of f1. Algorithm 1 describes the
process for estimating f1.

The estimated position dictates the resampling process of the original datasets with
linear interpolation. The original signal has a sampling frequency of 10 kHz, whereas the
output has 400 samples per rotor revolution. Figure 6.2 visuals the benefit of the resam-
pling process for order-tracking. The first cycle of the chirp function has more samples
than the last cycle. Transformation performed by the resampling balances the number of
samples per cycle, and the chirp function appears as a sine wave plotted against the rotor
position. The signal is split into intervals with a fixed number of rotor revolutions before
computing the spectrogram for each window with FFT. Both amplitude and "frequency"
of the spectrogram are normalised with the fundamental frequency. Any fault classifica-
tion approach based on analysing these spectrograms needs to study the composition of





        

Algorithm 1 Training Algorithm for DQN
Require: One stray flux measurement

while Computing position do
Step 1: Extract a small time sample with period T from the original time series

data.
Step 2: Compute the objective function for frequencies in the interval [0, 100] Hz

with an incremental step of 5 Hz. The optimal ϕ for a given f1 is found by the Golden
Section Search in the interval [0, 2π]. The values for f1 and ϕ, that yield the smallest
value of (6.1) are the initial guesses in step 3.

Step 3: Find the optimal solution for f1 and ϕ by the Simplex Search method with
the initial guesses given in step 2.

Step 4: Repeat for next time step
end while

the harmonics. The final step of the pre-treatment is to envelop the spectrogram. The
spectrogram splits into intervals with a length of a half order centred around the half
harmonics [0, 0.5, 1,..., 39, 39.5, 40] to find the maximum in each interval. The resulting
envelopes of the spectrograms are chosen as the selected features for classifications. The
results prove the effectiveness in the comparative study of the ML algorithms EDT, KNN,
SVM and FNN. They are tested on PMSM with no-fault, DF, ITSC or MF operating with
changing load and speed.

Resample

Time

Frequency Order

FFT FFT

Position 𝜃 

Figure 6.2: Visualising the benefit of the resampling process from time- to θ-domain

6.1.1 Experimental validation of FDI

The performance of the four learning classifiers, EDT, KNN, SVM, and FNN, is investi-
gated with experimental data from the in-house test bench described in Chapter 3. The
recorded data of operation Profile 1 with regular changes in speed and load is split into





         


80 % for training and 20 % for testing. The observation in Profile 1 is shuffled randomly
before the split to prevent over-fitting of the classifiers. The algorithms use all samples
from Profile 2 and Profile 3 for testing. An average achieved accuracy and training time
is obtained by a Monte Carlo analysis, where the algorithm is repeatedly trained and
tested 100 times. All the algorithms have a training time of less than 3 s. However, the
computation times of EDT and FNN are two orders of magnitude larger than the other
KNN and SVM.

Table 6.1: Average classification accuracy (%) for detecting DF, ITSC, and MF

Machine Operation DF ITSC MF

Learner Profile 1 τ 3 I 2 Φ 1 τ 3 I 2 Φ 1 τ 3 I 2 Φ

1 85.6 82.5 99.5 69.6 72.6 93.9 58.5 59.4 87.8
SVM 2 76.9 66.1 99.4 65.9 53.7 84.7 48.2 38.8 78.7

3 76.3 64.5 96.4 60.6 55.8 81.1 45.2 38.7 73.7
1 66.2 69.6 98.2 63.9 69.7 88.5 50.0 53.5 81.8

KNN 2 58.4 56.2 98.3 54.3 50.6 75.2 31.6 30.1 66.1
3 56.0 60.5 96.5 50.7 53.5 80.0 28.2 31.2 69.2
1 87.4 82.9 98.5 70.9 68.2 91.6 59.2 57.4 86.3

EDT 2 80.8 61.2 98.0 62.3 57.3 78.5 46.6 33.6 71.1
3 80.8 71.1 93.7 64.7 54.4 84.0 48.2 41.1 73.2
1 85.4 83.5 99.6 72.7 75.1 96.6 58.5 60.6 89.9

FNN 2 74.1 68.1 99.9 58.8 56.0 85.0 42.0 41.2 77.7
3 71.2 66.5 97.5 55.9 56.0 86.3 38.7 39.0 75.4

Table 6.1 reports the average achieved accuracy from all four algorithms. The letters
"τ", "I", and "Φ" refer to the use of torque, current, and stray flux signals to compute
the features in the training and test data. The numbers in front of the letters refer to
how many sensors are included in the computed features.

In the case of single fault case, the ML algorithms are trained and tested on datasets
with negative samples (no-fault) and positive samples (fault), in the case of either DF,
ITSC with 5 % severity or both (MF). All four algorithms achieve the highest accuracy
with stray flux data for detecting DF, while the accuracy for detecting ITSC stays above
80 %. All algorithms reach an average accuracy of over 90 % for detecting DF with stray
flux, regardless of the test profile. The accuracy is significantly lower for ML algorithms
trained on current or torque data. It ranges between 87.4 % and 56.0 %. The latter has a
significant disadvantage since there is only one torque transducer in the test setup. KNN
trained on a balanced dataset achieves the lowest accuracy overall. All algorithms have
a lower prediction accuracy for ITSC. However, SVM and FNN keep an accuracy above
80 %. The winding configuration of the PMSM with parallel strands makes it harder to
detect ITSC compared with single strand phase windings. Shorting 5 % of the turns on
one of three strands is less severe since the other two strands in parallel are unaffected.
The installed current sensors measure the sum of the three parallel strands, reducing any
influence from the shorted turns.
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Figure 6.3: Performance of FNN-classifier for detecting local DF with spectrograms com-
puted from different numbers of cycles in operations of (a) Profile 2 and (b) Profile 3

The ML algorithms are, in addition to fault detection, also trained for discrimination
among no-fault, local DF, local ITSC and MF. There is an equal number of observations
in each fault case. A classifier with an accuracy below 25 % is worse than random chance.
The EDT, SVM and FNN-based classifiers have the highest accuracy among the studied
algorithms. The accuracy of all the classifiers increases by including more signals in the
training data. The KNN-based classifier has an accuracy of just above 25 % when trained
and tested using current or torque data on Profile 2 and Profile 3. However, FNN reaches
an accuracy above 75.4 %, which is the best performance of the four tested algorithms.

The second analysis done in Paper E is to find the ideal length for the samples.
Larger samples give spectrograms with sharper peaks but take longer time to measure.
The sample length is defined in cycles because the input signal is resampled based on
the estimated rotor position. Figure 6.3 shows line plots of the detection accuracy of
local demagnetisation achieved by the FNN-classifier with the best performance in the
previous analysis. The study investigates the achieved accuracies in cases of features
computed from one torque sensor (1 τ), three current sensors (3 I), two hall sensors (2 ϕ)
and four hall sensors (4 ϕ). Combining the three different physical parameters did not give
significantly higher accuracy than the case of four flux sensors. The accuracy increases
with longer samples as shown in Figure 6.3. However, only the two cases with stray flux
converge with an accuracy above 90 %. The accuracy of FNN trained on samples from
four hall sensors converges at 20 cycles, but the ideal length is 30 cycles if the FNN only
uses two hall sensors.





         


6.2 Balancing datasets with reinforcement learning

The imbalance dataset problem results in a higher possibility for false negatives (FN)
or even a collapse of the classifier. Noise, overlapping classes, and one class represented
by multiple clusters will amplify the problem [87]. The imbalance datasets normally
are rebalanced by oversampling the minority class or undersampling the majority class.
Alternatively, the minority class can generate new samples with different variations of
SMOTE [88]. The proposed FDI scheme implementing RL in an AL setup would provide
another option to balance the classes in the dataset. The overall scheme proved robust
against variable load and speed operation with MF.

Start

Healthy?

True

Data 

acquisi�on

Correct

fault?

Update

Expert 
False

Update

Healthy?True

Add to 

training set

Label 

correc�on

False

Pretreatment

UpdateFalse

True

Anomaly detector

Classifier

Figure 6.4: Flowchart of the proposed FDI scheme. Note: Arrows coloured in red, blue
and black represent information flow related to classifier, detector or both; green objects
represent processes/actions; purple boxes represent detector and classifier, red diamonds
represent decisionss

The proposed FDI scheme shown in Figure 6.4 is developed based on an online fault
diagnosis scheme in [16]. The input signals are resampled with the same pre-treatment
described in Paper E. There is no available labelled sample in the faulty case in the first
stage of development. However, the anomaly detector is an OCC, which only requires
samples from the healthy case. If the anomaly detector gives a false positive (FP), it needs
to update its competence with these FPs. The LOF is the chosen anomaly detector, which
is a density-based OCC. LOF for a new point P for its k nearest neighbouring points on
is defined as:





        

Figure 6.5: Illustration of LOF in a 2D-feature space

LOF(P ) =
1

k

k∑
n=1

ρsamp(on)

ρsamp(P )
(6.3)

The density of point P , ρsamp(P ), is defined as:

ρsamp(P ) =

(
1

k

k∑
n=1

d(P, on)

)−1

(6.4)

where d(P, on) is the Euclidean distance between point P and its neighbouring point on.
Figure 6.5 illustrates the principle of LOF.

The exploration of true positive samples marks the end of the first stage of the FDI
scheme. The classifier only knows one fault in the first iteration, and the anomaly detector
works alongside the fault classifier. Further exploration of new fault samples will make the
FDI more knowledgeable and accurate. The aim is to narrow down the fault search during
maintenance. Jagath et. al. [16] used a CNN as a classifier, which is not necessarily well
suited for unbalanced dataset. The proposed algorithm replaced the CNN with a DQN
due to its potential in the weighted reward function for rebalancing the datasets [78].

rt =


1, at = Lt = Healthy

−1, at ̸= Lt = Healthy

λ, at = Lt = Faulty

−λ, at ̸= Lt = Faulty

 (6.5)

Imbalance in a dataset is measured by the ratio between negative (healthy) and positive
(faulty) samples, λ. RL often uses the analogy of teaching an agent to play a game [89]. In
the case of fault classification, the game is a "Quiz". We ask the agent, "What class does
this 1D-array of features belong to?". The weighted reward function gives a point if the
agent correctly classifies the healthy class and penalises one point due to misclassification.
The magnitude of the reward and penalty for the faulty class is increased with a factor
λ. The purpose of rt is to prevent the collapse of the classifier due to a severe imbalance
dataset, where all new samples will be classified as the majority class (healthy).
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Figure 6.6: Block diagram of DQN agent interacting with the environment

The agent has four possible actions (answers). They are defined in the action space A =

{[0, 0], [0, 1], [1, 0], [1, 1]}. The entries in A represent NF, DF, ITSC and MF, respectively.
The encoding of the labels is for the DQN. The prediction output is decoded for a human
reader. Figure 6.6 shows the interaction between DQN-agent and its environment where
the agent answers one question at a time. The schematics inside the agent represent the
layers of the critic network: input layer with 243 nodes, fully connected layer with 100
nodes, a rectified linear unit (ReLU) layer and a second fully connected layer with 2 or 4
nodes depending on the number of classes in datasets.

6.2.1 Experimental validation of FDI with DQN

The one-class SVM and LOF need to define their respective criterion for anomaly identi-
fication. The outlier factor determines the sensitivity of the one-class SVM, which is 10
%. The output of the trained one-class SVM under testing is a numeric score, which is
less than 0 in case of an anomaly, as suggested in [16]. The LOF does require trial and
error to determine a suitable threshold. A value close to 1 will make the detector more
sensitive but has a greater FP rate. The selected threshold is 1.1. A new sample point in
feature space is identified as an anomaly/fault if the regions of its kth nearest neighbours
are, on average 10 % more densely populated than its neighbourhood. Parameter k of the
LOF equals 5.

The one-class SVM and LOF classifiers are first trained on the healthy datasets from
Profile 1, 250 samples, with the result shown in Table 6.2 and Table 6.3. The testing
dataset from Profile 1 consists of 50 samples. All samples from each faulty class from
any operation profile were in the test dataset, 900 samples in total. Initially, the training
set includes only samples from Profile 1. The accuracy of the one-class SVM anomaly
detector in [16], when testing on each of the fault cases, varies between 57 % and 98.3
%. The proposed LOF anomaly detector predicts all the fault cases as anomalies almost





        

perfectly, but it gets a higher FP rate than one-class SVM. The training dataset increases
with additional samples from healthy classes operating in Profiles 2 and 3. It is noted that
the number of extra samples in the table headers is the number added from each profile.
As a result, the accuracy of the proposed LOF anomaly detector is improved, but the
one-class SVM overall accuracy suffers from this addition. This proves that the proposed
LOF anomaly detector can effectively identify anomalies better than the existing one-class
SVM when more knowledge of the healthy class is presented.

Table 6.2: Accuracy of one-class SVM outlier detector

Fault test case Test Extra samples from Profiles 2 and 3

(Criterion) Pro. 0 50 100 150 200 250
Healthy 1 84.0 82.0 80.0 80.0 80.0 80.0
(Score ⩾ 0) 2 80.0 98.0 98.0 98.0 98.0 98.0

3 46.0 70.0 80.0 80.0 84.0 90.0
DF 1 71.7 55.3 56.0 56.0 51.7 53.0
(Score < 0) 2 57.0 46.0 45.7 44.3 41.0 41.0

3 84.0 58.3 54.7 51.0 44.7 44.3
ITSC 1 82.3 55.3 53.7 53.0 46.3 45.7
(Score < 0) 2 90.7 54.3 48.0 39.7 22.7 21.7

3 98.3 77.0 74.7 67.0 59.0 57.0
MF 1 66.7 44.0 46.0 43.0 39.7 38.7
(Score < 0) 2 73.3 32.0 30.3 23.7 16.3 15.0

3 93.0 62.3 58.7 51.7 42.7 37.0

Table 6.3: Accuracy of LOF outlier detector

Fault test case Test Extra samples from Profiles 2 and 3

(Criterion) Pro. 0 50 100 150 200 250
Healthy 1 86.0 86.0 88.0 88.0 80.0 98.0
(LOF ⩽ 1.1) 2 14.0 72.0 94.0 80.0 86.0 84.0

3 8.0 52.0 88.0 80.0 82.0 90.0
DF 1 100 100 98.0 98.0 100 100
(LOF > 1.1) 2 100 98.0 100 100 100 100

3 100 92.0 94.0 94.0 98.0 98.0
ITSC 1 100 100 100 100 100 100
(LOF > 1.1) 2 100 100 100 100 100 100

3 100 100 100 94.0 100 100
MF 1 100 98.0 100 96.0 100 100
(LOF > 1.1) 2 100 94.0 96.0 100 100 98.0

3 100 92.0 84.0 92.0 96.0 96.0

The CNN and proposed DQN fault classifiers are trained to discriminate between NF
and a fault case (DF or ITSC). However, they are tested on all four healthy classes (NF,





         


DF, ITSC and MF). Table 6.4 lists the results from this comparative study with true
positive rate (TPR) and true negative rate (TNR). Green numbers indicate a rate above
98 %, and red numbers are less than 50 %. Increasing the imbalance ratio λ is achieved
by decreasing the number of positive samples in the training set. All negative samples
from the PMSM operating with Profile 1 are in the training datasets, but 50 of these
samples are randomly selected for testing. The test datasets are balanced between the
health classes and have 50 randomly selected samples from each class. They are sampled
from the dataset, which is not used for training when λ > 1. This selection is only for the
test dataset from Profile 1. All samples from Profile 2 and Profile 3 are in the test (300
samples per health class per profile).

Both CNN and the proposed DQN classifiers achieve a TPR higher than 90 % for
the fault case the classifier has seen before with λ = 1. The lowest TPR for DQN and
CNN trained for ITSC is 82.0 % and 76.1 %, respectively. This is the case of the test
samples from Profile 3 with constant speed and variable loads. The DQN classifier for
DF maintains a TPR above 97.8 %. However, the TNR for the NF drops to 72.8 %. The
CNN classifier improves its hit rate for NF by increasing λ. A lower FP rate is a positive
quality in a classifier, but the TPR for the CNN drops to below 50 % when increasing
λ. The CNN collapses since all inputs are classified as NF. The proposed DQN classifier,
on the other hand, reduces the possibility of FN but has overcompensated slightly with
more FPs. Neither FP nor FN is desirable in FDI. However, FN and FP rates can be
compensated in the proposed AL scheme by correct relabeling by an expert. The proposed
DQN fault classifier has the second option with the weighted reward function.

The MF case includes DF and ITSC, thus DQN and CNN may classify it as either
health class. The results in Table 6.4 reveal that both DQN and CNN classifiers trained
for DF, identify MF as a fault. The TPR of MF is lower than that of DF. The CNN
also classifies MF as NF at a higher rate with larger λ. These results indicate a high
possibility for DF and MF sharing similar fault signatures. A fault classifier trained on
all four healthy classes may find it difficult to separate between DF and MF. Neither DQN
nor CNN classifier identifies MF as a fault when they are trained to identify ITSC fault.

The final comparative study between DQN and CNN are implemented on all four
classes: NF, DF, ITSC and MF. Figure 6.7 shows the hit rates (TNR and TPR) of
the DQN and CNN fault classifiers using the test dataset in Profile 3. The figure also
shows the overall accuracy. DQN and CNN classifiers have lower accuracy than four-class
classifiers. They start with an overall accuracy of 75 %, then decrease with increasing
λ. The accuracy of the CNN declines at a higher rate than DQN and heads towards a
collapse. Its hit rate for NF increases towards 100 %.

There are 12 miss rates in total for a four-class classifier. Figure 6.8 plots the miss
rates for both DQN and CNN fault classifiers, which are not close to 0. The comparison
still uses the test dataset from Profile 3. It is noted that the first and last letters in
the labels denote the predicted and true classes, respectively. Figure 6.8 reveals that the
proposed DQN fault classifier is confused between DF and MF, which were predicted in
the analysis of the two-class classifiers. The DQN classifier confuses ITSC with NF and
MF, while NF is generally confused with all health classes. This demonstrates that the
reward function may have overcompensated and needs adjustment. A combined decision





        

between fault classifier and anomaly detector may also reduce the rate of FPs since Table
6.3 reports a high accuracy for LOF. The CNN fault classifier does not misclassify NF
with any fault class. The confusion between DF and MF decreases with increasing λ and
is classified as NF instead. CNN starts to misclassify all ITSC as NF.

Table 6.4: Comparing TPR and TNR of DQN and CNN classifiers when trained for
identifying either DF or ITSC

Local Demagnetisation Inter-turn short circuit

DQN CNN DQN CNN

Test Imb. TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR
Pro. ratio DF NF MF ITSC DF NF MF ITSC ITSC NF MF DF ITSC NF MF DF

1 1 100 99.9 95.8 100 97.2 98.4 73.7 99.9 98.5 97.9 12.8 99.4 95.4 96.6 2.9 99.8
1.25 100 99.9 97.6 99.8 96.3 98.1 71.2 99.9 95.7 97.2 9.4 99.6 93.2 93.6 6.7 98.6
1.67 100 99.7 99.6 100 95.8 98.9 71.0 100 97.1 98.1 11.5 98.8 89.1 97.9 5.8 98.8
2.5 100 99.9 99.5 98.8 95.5 99.3 69.8 99.9 98.2 96.5 14.9 98.4 81.6 97.9 1.6 99.9
5 100 98.7 99.6 99.1 92.9 98.6 64.3 99.9 96.4 95.6 14.7 98.9 67.6 96.9 2.1 99.8
10 100 96.1 99.9 97.9 82.1 99.8 49.8 100 96.2 92.8 19.0 97.7 55.4 96.7 3.0 99.7
15 99.9 93.4 99.6 95.8 69.4 97.5 35.8 99.7 93.4 90.3 15.7 98.5 43.5 99.7 2.0 99.5
30 100 88.6 100 93.1 46.9 99.8 23.9 99.9 90.1 84.7 27.2 95.5 23.6 99.7 0.2 100

2 1 99.4 100 95.8 99.9 92.3 93.4 74.3 99.4 91.4 85.1 28.9 95.4 80.0 94.0 3.0 99.9
1.25 99.6 99.9 97.9 100 94.8 93.7 77.1 99.5 92.7 85.1 24.6 96.6 77.8 91.0 4.8 99.7
1.67 99.9 99.6 98.8 100 95.3 93.2 75.8 99.4 90.0 85.7 24.9 96.2 72.8 95.1 4.4 99.6
2.5 99.8 99.1 99.5 99.7 95.2 94.8 75.9 99.4 94.6 77.9 35.1 92.3 65.0 95.9 2.0 100
5 99.9 97.9 99.6 99.3 91.3 95.0 65.8 99.5 94.4 72.5 35.7 91.2 47.4 96.4 1.7 99.9
10 99.9 91.6 99.8 96.4 75.4 97.5 47.3 99.9 88.0 69.9 35.1 91.7 37.6 96.3 1.4 99.8
15 100 85.0 99.9 93.8 66.7 93.2 37.6 98.6 84.6 68.8 30.7 91.2 23.4 99.4 0.6 99.8
30 100 72.8 100 89.8 49.1 97.6 32.2 99.3 79.6 72.3 33.2 88.0 13.2 99.5 0.3 100

3 1 97.9 99.9 89.0 100 99.0 97.1 91.6 100 82.0 91.6 12.4 99.3 76.1 94.6 5.4 99.1
1.25 97.8 99.9 90.9 100 98.5 95.4 90.8 99.7 83.2 90.2 10.1 99.3 81.0 87.9 11.8 96.9
1.67 98.9 99.8 94.0 99.9 99.1 96.4 93.7 100 83.8 90.1 10.9 99.3 76.9 94.6 9.4 96.6
2.5 99.5 98.2 96.5 99.5 98.3 98.0 88.1 99.8 85.9 87.7 11.4 99.0 64.4 97.1 2.0 99.9
5 99.6 97.0 97.5 98.9 97.5 97.6 85.9 99.8 86.6 84.8 11.4 98.8 53.9 95.3 2.0 99.8
10 99.8 93.1 98.4 97.8 88.4 99.6 71.0 100 86.9 80.2 14.1 98.8 39.1 95.9 1.9 99.1
15 99.7 88.4 98.4 96.3 78.0 96.3 57.2 98.6 85.2 79.0 13.3 98.2 22.5 98.4 2.6 99.0
30 99.8 82.2 99.1 95.1 46.8 99.6 30.8 100 83.9 73.2 20.5 95.0 18.2 99.3 0.4 100
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Figure 6.7: Hit rates of DQN (top) and CNN (bottom) fault classifiers
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Figure 6.8: Miss rates of DQN (top) and CNN (bottom) fault classifiers





        

6.3 Summary

This chapter presented two FDI schemes based on ML. First, FDI scheme is proposed
for single and MFs of a sensorless PMSM drive in dynamic operations with two external
stray flux sensors. An order tracking method based on position estimation is proposed for
resampling the measurement before generating features for ML algorithms. Eliminating
the need for position sensors makes the proposed FDI applicable in sensorless PMSM
drives. The fault classifiers are trained using data from Profile 1 and achieve high accuracy
for detecting magnet defects or ITSC faults when being tested on the datasets in Profiles
2 and Profile 3. This work also introduces a method of inducing local demagnetisation
through heat treatments, resulting in less physical damage to the rotor.

The second FDI scheme has an AL framework with RL, which is built on Paper E. It
is trained and tested with dynamic operating conditions and MFs, where labelled training
samples are initially unavailable. Training and testing datasets are collected from the in-
house test-bench. The LOF anomaly detector trained only with data from Profile 1 gives
a high FP rate. Nevertheless, the proposed AL framework allows it to improve prediction
accuracy when adding new healthy case samples. Training of the DQN classifier starts
after the faulty class has been discovered. The reward function is weighted and depends
on the dataset imbalance ratio λ. The comparative study shows that the DQN fault
classifier is more robust against data imbalance than the CNN and can overcompensate
the weight of the minority class.







Chapter 7

Concluding remarks

7.1 Conclusions

The first research topic involvs mathematical models of faulty PMSM, which are fast to
compute with sufficient accuracy. Two improved models including a PNM in Paper B
and FRM in Paper C. Previous versions of PNM used variable permeance to model the
revolution of the rotor. This becomes computationally heavy for detailed PNMs with a
higher number of nodes. The proposed PNM replaces the variable permanence in the
air-gap with variable flux sources describing the magnets of the PMSM. It simplifies the
overview of the model, which can be used to model demagnetisation and has the potential
to be implemented in the short-circuit model. The computation burden decreases signifi-
cantly when the PNM does not simulate DE. Nevertheless, the proposed approach makes
the PNM easier to understand by separating the description of rotor revolution from the
permeance matric.

The FRM in Paper C is developed based on the principle of field reconstruction,
superimposing magnetic field contribution from the rotor and stator. The basis function
is computed with static FEA, but the computation time of the FEA is three orders of
magnitude larger than FRM. The proposed FRM has a magnet library with the basis
function of different magnet defects included. A new rotor basis function is generated by
superimposing magnet basis functions from the proposed library, which is faster than to
compute all the combinations in static FEAs. The proposed FRM is also the first reported
FRM with the implementation of a short circuit.

An approach to reduce the computation cost of acquiring QTFD is presented in Paper
D. The time resolution is less affected by the window size than STFT because each
time instant in the spectrogram takes the whole signal into account. One of the main
drawbacks is that the computational burden increases with the length of the processed
data sample. Therefore, previous work only worked with short time samples (a few
seconds). The proposed method splits the signal into smaller parts and combines them in
a single spectrogram. The proposed QTFD algorithm can transform a time sample with a
length of 120 s into a time-frequency domain in a few seconds. The resulting spectrogram
had sharper peaks, and the time resolution was unaffected by the selected window.

The second research topic focuses on implementing FDIs on PMSM in dynamic op-
erating conditions. An FDI with fewer flux sensors is presented in Paper A. The study
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is developed based on the previous publication [19], which used 12 search coils equally
spaced in the stator. The proposed method can reduce the number of required search
coils to 2. The envelope of the induced search coil voltages has different frequency com-
positions, which separates the health classes: NF, DF, SE and DE. The method is verified
with FEA, simulating the acceleration phase of a PMSG during start-up. It is limited
to PM machines with mirror symmetry and is dependent on the rotor position. A data-
driven diagnosis scheme utilising stray flux sensors is presented in Paper E. Spectrogram,
being order-normalised, is implemented to make the FDI robust against dynamic opera-
tions and the time-series data are re-sampled at a fixed angular increment. The proposed
method eliminates the need of any position sensor by estimating the relative position with
a stray flux sensor and an optimisation problem. This makes it possible for the FDI to
be installed externally on a sensorless drive.

The problem with unavailable training samples of faulty PMSM and imbalanced
datasets, which is a challenge for implementing data-driven FDI, is investigated in Paper
F. The study is built on the framework of AL with a fault detector and a fault classifier.
LOF is used as a fault detector, being more effective against data samples with overlap-
ping classes than one-class SVM. DQN is implemented as the classifier, which introduces
another approach to balance the dataset than under- and oversampling. The proposed
reward function is overcompensated with a slight increase of FP in datasets with a larger
imbalance.

7.2 Limitations and future work

The fault diagnosis scheme in Paper A with time-stepped FEA did reduce the number of
required sensors to the bare minimum. However, motor geometry (symmetry) might limit
this FDI application. In a four-pole motor, the sensors need to be placed on the opposite
side of the stator. The number of stator teeth needs to be even. In this case, the search
coils are perfectly placed 360◦ (electrical degrees) apart. In a two-pole motor, the search
coils should have opposite polarities since the induced voltages will be identical in theory.
However, no motors is perfectly symmetric, and a certain noise level is unavoidable. This
is why the difference in the induced voltages needs to exceed a set threshold for detecting
a fault.

The proposed model PNM does reduce computational burden since the permeance
matrix does not need to be inverted every time step. However, this benefit disappears
with a DE that needs to be modelled. Nevertheless, the new approach makes it easier
for the engineer to develop the new PMSM model with eccentricity. It separates the
mathematical description of the revolution of the rotor and the variation of air-gap dis-
tance. The proposed PNM may describe the rotation with the variable flux sources and
change eccentricity with the permeance matrix. Further development of the proposed
PNM should include more fault cases and address the computational burden.

The accuracy of the FRM, which is the second proposed model of a faulty PMSM,
is limited by the accuracy of the static FEA describing PMSM. However, the benefit of
reduced computational burden justifies its implementation. It can model any magnet





  

defects and ITSC, but its versatility can be increased by the description of eccentricity
faults.

The proposed method to compute QTFT is effective in numerical examples where the
images of the signal components had smoother shapes as compared to spectrograms com-
puted with STFT. However, the difference in performance is less clear with measurement
from a PMSM with ITSC fault. The noise made it unclear, and the cross-product prob-
lem makes WVD unattractive. This topic can be extended by filtering from the kernel
function of CWD or ZAM.

In Paper F a comparison of OCCs is performed between LOF and one-class SVM.
However, it would be beneficial to do an extensive comparison study of more OCCs
to reveal their strength and weaknesses. LOF is in this work more effective than one-
class SVM, due to the overlap between the health classes. However, LOF becomes more
memory intensive if more healthy case samples need to be added. Strategic removal of
the sample may help to maintain the computation burden of LOF and keep it attractive
for online applications. Reconstruction-based OCC like auto-encoders is widely popular
in the machine learning community and may be a competitive option, but it was not
successfully executed in this work. A second option is the fourth OCC type, or the hybrid
class, combining the three other categories for making use of their respective strength and
compensating for their weaknesses.

The compensation in the reward function is assumed to be the ratio between the
majority and minority classes. It is reported in the literature as being the most effective
for rebalancing the weights in imbalanced datasets, validated in an image classification
scheme. However, this assumption may be incorrect since the results in Paper F show
that the reward function is overcompensating, resulting in classifiers with higher FP rate.
It is reasonable to assume that reducing the ratio can be beneficial since the current value
is overcompensated and rebalancing healthy cases can result in a collapsing classifier.
Studying the "best" ratio in the reward function and maximising the overall accuracy of
the proposed FDI in Paper F might be a good topic for future work.
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A.1 Abstract

Eccentricity and demagnetization fault of a four-pole 1.5 kW surface mounted permanent-
magnet synchronous-generator (PMSG) were modelled by using time-discretised finite
element analysis (FEA). Both fault types are caused by magnetic asymmetry in the gen-
erator. The faulty behaviour of a PMSG under transient operating condition is studied
with FEA. Two search coils were wound around stator teeth on opposite sides of the rotor.
The induced voltage from these coils will be equal in healthy case. A fault is detected
when the induced voltages are non-identical. The simulation results revealed that the
envelope of the induced search coil voltage had sinusoids during dynamic eccentricity and
demagnetization. Finally, a novel fault scheme is proposed to detect the mentioned faults
during transient state.

A.2 Introduction

Wind turbine systems are usually based on doubled-fed induction generators or permanent
magnet synchronous generators (PMSG). PMSG is gaining in popularity thanks to its
simple structure, efficient energy conversion and low noise [1]. Offshore wind has been of
interest for a long time. One of the main barriers is the cost of maintenance. Faults in
permanent magnet synchronous machines are often caused by contamination, humidity,
mechanical tensions, overloading, high temperature, vibrations, and the partial discharge
of high-frequency switching from frequency converters [2]. The detection and identification
of faults in PMSGs in earlier stages is critical for safe, profitable and reliable operation
of offshore wind turbines.

The most common fault types in PMSGs are inter-turn short circuit, irreversible de-
magnetisation, and rotor eccentricity. The most popular fault detection technique in
commercial use is machine current signal analysis (MCSA) where Fast Fourier Transform
is used for processing the machine current signal. The faults is identified according to
certain harmonic patterns. The technique is limited to stationary operating condition.
Motors in electric vehicles and generators in wind turbine often operate with varying
speed and load. Short-Time Fourier−, Wavelet-, and Hilbert Huang Transform are then
used for analysis in transient operating conditions. Alternatively, the data generated is
fed into an artificial neural network, being trained to classify the different fault patterns
[3].

One of the best indicators for detecting mechanical faults like static and dynamic
eccentricity is vibration signatures. The fault is detected by analysing the measured
vibrations using signal processing techniques to identify the signature for a certain fault [4].
Another methods for detecting local demagnetisation and eccentricity is using analytical
model based on an inverse problem [5]. A well design analytical or lumped magnetic circuit
model can detect faults based on the measured terminal voltage, current and torque. An
online detection method was presented in [6], which could detect local demagnetisation
and dynamic eccentricity based on measurement from the Hall sensor [6].

Fault detection schemes involving search coils are intensively developed. The authors
in [7] presented a fault detection scheme to detect asymmetry in the magnetic circuit of





        
   

a permanent magnet synchronous motor (PMSM). Twelve search coils are placed evenly
spaced in the stator wound around their own stator tooth. The fault detection scheme
used linear time-invariant filter for tracking of the fundamental component of the induced
search coil voltage. This is then used to produce polar plots. The radius represents the
amplitude of the induced voltage in the search coil and the angle represents the locations
of the search coils. The shape of the polar plot indicated what type of faults was occurring
in the electrical machine [7]. The amplitude of the induced search coil voltage is dependent
on the speed of the electrical machine. This does not affect the overall shape of the polar
plots, but false alarms may occur due to transient operating conditions. Unless all induced
search coil voltages increase at the same rate simultaneously, keeping the shape of the
polar plot.

This paper will investigate the possibility of a fault classifier for differentiating de-
magnetisation, static eccentricity and dynamic eccentricity. It is inspired by the fault
detection scheme in [7]. The main contribution is to propose a detection scheme to detect
the mentioned faults by using a fewer search coils.

A.3 Finite Element Analysis PMSG

A 1.5 kW 4-pole surface-mounted PMSG with sinusoidally distributed double layer wind-
ings was simulated. The geometry of the model is shown in Figure A.1 and is based on the
motor design in [8]. The windings in each slot are divided into two coil-domains, where
each of them represents a bundle of 40 turns. The model is first solved in a stationary
solver where the rotor is standing still (Without applied torque or terminal voltage). This
result is used as the initial conditions for the time-stepping finite element analysis (FEA).
The governing equations of the electromagnetic model are below

∇×H = J , (A.1)

B = ∇×A, (A.2)

E = −∂A

∂t
, (A.3)

and
∇ ·B = 0. (A.4)

where H is the magnetic flux intensity, J is the current density, B is the magnetic flux
density, A is the magnetic vector potential and E is the electric field intensity. The
magnets are described with the linear model[9]

B = µrµ0H +Br. (A.5)

where µ0 is the permeability in vacuum and the relative permeability µr is set to 1.
The remanence magnetic flux Br is set to 0.5 T and is reduced to 0.4 T for modelling
demagnetised magnet.





       
  

Figure A.1: PMSG Model geometry

A.4 Proposed fault detection and classification scheme

A.4.1 Fault indicator

The proposed method for fault detection is to compare the signal of two strategically
placed search coils. The first search coil can be wound around any stator tooth. The
second coil needs to be wound around the stator tooth located on the opposite side of the
rotor. The voltage signal from these two search coils will theoretically be identical due to
the geometry. Due to this criterion, this method works best on electrical machines with
even number of stator teeth. The proposed fault indicator is:

FDet = (VC1 − VC2)
2. (A.6)

where VC1 and VC2 are the induced voltage in search coil 1 and 2, respectively. If FDet is
0, then no fault is detected, and if it is not equal to 0 a magnetic asymmetry is detected.
This is the case when the measurement has no noise. Measurements from a real sensor
will of course have noise. In this case, a threshold δ needs to be selected based on an
estimated variance in the signal. A fault is detected when FDet is greater than δ.





        
   

A.4.2 Fault Classifier

Originally the suggested classifier for this paper was:

FClass = ((a sin (ω(t)t+ ϕ) + k1)
2)

( + (b cos (ω(t)t+ ϕ) + k2)
2)0.5.

(A.7)

where a, b, k1 and k2 are shape fitting parameters of the envelope. The time varying
angular frequency ω(t) can be written as f(t), where f(t) is time varying frequency.
The fundamental frequency of the envelope is approximately a half of the fundamental
frequency to the original induced search coil voltage. This is shown later in the results.
Neither ω(t) or phase angle ϕ are used for classification of the faults in the generator, but
are important for fitting the curve. Equation (A.7) is inspired by the polar plots in [7].
If no fault was present in the machine, the shape of the polar plots was a perfect circle.
In the case of static eccentricity, the circle was move off centre. Assuming that the speed
was constant, the envelope of the induced search coil voltage will be constant over time
in both cases. The polar plots in the cases of dynamic eccentricity and demagnetisation
had a rotating movement over time. This will also be reflected in the envelop pattern in
the induced search coil voltage.

All the parameters used to classify faults in (A.7) have a physical meaning in terms of
the dynamic eccentricity and demagnetisation. Dynamic eccentricity is detected if k1 ̸= 0

or k2 ̸= 0 and demagnetisation is detected if a ̸= b. The equation is difficult to work with,
thus it is replaced with:

FClass = A cos (2ω(t)t+ ϕ)

+B cos (ω(t)t+ ϕ) + h(t).
(A.8)

Derivation of the expression inside the square root in (A.7) will result in an equation
with similar shape as (A.8). Both equation can fit the envelop of the induced search
coil voltage equally well. Some information is lost in the simplification, but (A.8) is still
sufficient for fitting the envelope curve for classification of faults. The parameters A and
B is still loosely related to the original classification parameter a, b, k1 and k2. The
classification algorithm based on (A.8) is shown in Figure A.2. The classification of fault
types depends on whether amplitude A or B is larger than 0. It is assumed that h(t)

is proportional to the speed of the rotor. In this study case, it has the shape of a step
response of the first order system. Both steady state value and time constant of h(t)

can be estimated by minimizing the square error between the envelope curve and h(t).
A and B is then estimated by minimizing the square error between data and (A.8) with
respect to A, B, ϕ and steady state value of ω(t). Function ω(t) is assumed to be the step
response of a first order system with same time constant as h(t). Alternative methods for
detecting the presence of the sinusoids in the envelope could have been short time Fourier
transform or the best linear unbiased estimator (BLUE).
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Figure A.2: Suggested fault classification scheme

A.4.3 Simulation

The fault classifier proposed in this paper was tested against simulation training data.
The finite element model of the PMSG was run in four different scenarios:

• Healthy: Rotor and stator are concentric and no demagnetised magnets.

• Demagnetisation: Rotor and stator are concentric, but Br for one South pole is
reduced to 0.4 T.

• Static eccentricity: No demagnetised magnet. Rotor and stator are eccentric, but
rotating domain shares centre with rotor. The severity is 23.0 %

• Dynamic eccentricity: No demagnetised magnets. Rotor and stator are eccentric,
but rotating domain shares centre with stator. The severity is 23.0 %.





        
   

In all four scenarios, the rotor had a 10 Nm applied prime mover torque, and the ter-
minals were star-connected to a resistive load of 50 Ω on each phase. Figure A.3 illustrates
the difference between the static and dynamic eccentricity. S, R and RD indicates the
centres for the stator-, rotor- and rotating domain, respectively. The sketch is exaggerated
for better illustrating the difference between the two types of eccentricities.

S

R

S RD

R RD

Static eccentricity Dynamic eccentricity

Figure A.3: Simple sketch of modelled eccentricities

A.5 Results and Discussion

Figs. A.4, A.5 and A.6 show the voltage difference between two search coils and the phase
current of the PMSG in the beginning of the simulation. The search coils are located on
top and bottom of the stator wound around their own stator tooth. The plots on the left
side of these figures reveal that the magnetic asymmetry can effectively be detected by
the voltage difference between two strategically placed search coils. The phase current is
not that simple. A sinusoid is generated in all three faulty cases, which looks similar to
the healthy case.

Figs. A.7a and A.7b show the plots of the absolute value of the search coils voltage
in healthy case and with static eccentricity fault, respectively. The measurement period
plotted in the figures was picked early in the simulation. The induced voltage has some
transient behaviour and both the amplitude and frequency are increasing. Both the en-
velopes of the healthy case and static eccentricity case is increasing steadily. No sinusoidal
components is present in the envelope signal. On the other hand, the sinusoidal compo-
nents are clearly present in the case of demagnetisation and dynamic eccentricity. This
is observed in Figs. A.8a and A.8b. The amplitude and frequency of the envelope seem
to increase over time when the amplitude and frequency of the original voltage signal
also increase. The main frequency component of the envelope curve seems to be a half
of fundamental frequency of the original signal. In the case of dynamic eccentricity, the
peaks of envelope curve appears at every fourth peaks of the absolute value of the induced
search coil voltage. Note that two peaks indicate one period for the absolute value of the





       
  

Figure A.4: Demagnetisation - Voltage difference between two strategically placed search
coils (left) and phase current (right)

Figure A.5: Static eccentricity - Voltage difference between two strategically placed search
coils (left) and phase current (right)





        
   

Figure A.6: Dynamic eccentricity - Voltage difference between two strategically placed
search coils (left) and phase current (right)

(a) (b)

Figure A.7: Envelope of absolute value of search coil voltage with (a) no faults and (b)
static eccentricity fault

search coil voltage, thus the fundamental frequency of the envelope curve is half of the
fundamental frequency of the induced search coil voltage.

The envelope curve in Figs. A.7a to A.8a is computed by the "envelope" function in
MATLAB. The technique, being proved to be most effective, was the peak value technique.
It tracks the maximum values (peaks) of a certain number of last data points. This number
was set as 80, but this can vary depending on the data. The number can not be too large
or too small. Neither case will not track the envelope and capture its characteristics.

Table A.1 shows the values of the amplitudes A and B from (A.8) in the voltage
signal generated from the simulation. The parameters are estimated by minimising the





       
  

(a) (b)

Figure A.8: Envelope of absolute value of search coil voltage with (a) demagnetisation
fault and (b) dynamic eccentricity

Table A.1: Estimated amplitude of sinusoids in the envelope curve

Type of fault A B

No-fault 0.0 0.0
Static Eccentricity 0.0 0.0
Dynamic Eccentricity 0.02 0.33
Demagnetisation 0.11 0.25

two objective functions. In the case of demagnetisation, the dataset shown in Figure A.4
includes 18001 data points in the period between 2.20 s and 2.66 s. This set was used to
estimate the parameters in function h(t). A smaller subset of 4596 data point was used to
estimate A and B. The dataset of the envelope curve from the remaining study cases are
shown in Figs. A.7a, A.7b and A.8b including 14001 data points each. A smaller subset
of 3096 data points in period between 1.40 s and 1.71 seconds were used to estimate A
and B. Both A and B were equal to 0 in healthy case and static eccentricity case. B was
present during dynamic eccentricity and both A and B had a larger value than 0 when
the PMSG was demagnetised.

The critical point for the fault classifier is the computing of the envelope. If the signal
is too noisy, then the fault of the PMSG can not be classified. The noise can be reduced
by filtering the signal, low pass filter, moving average filter or Savitzky-Golay filter. The
current method for computing the envelope is by taking the maximum from the last data
points. The envelope is captured at some parts of the dataset. Figure A.7a to Figure A.8b
show some examples where the envelope was captured. The issue with the current simple
method is that it will not capture the characteristics of the envelope when the fundamental
frequency of the induced voltage is too small or too large. This could be solved with an
algorithm where the number of data-points used for computing the envelope varies over
time depending on the current fundamental frequency of the induced voltage. This will
depend on the speed of the rotor.







A.6 Conclusion

In this paper, a new fault detection scheme was proposed using only 2 search coils. The
difference in voltage signals from two strategically placed search coils, being in opposite
sides of the rotor, can in theory detect magnetic asymmetry in the generator. The criterion
for placing the search coils limits this method to permanent magnet machines with even
number of stator teeth. The fault classification scheme was tested on simulations from a
finite element model of a PMSG, but will probably also work for a PMSM. Datasets of the
induced search coil voltage during transient state operation of the PMSG were extracted,
and sinusoidal components in the envelope was identified by minimising two objective
functions. Both study cases, with static eccentricity and no fault, had no sinusoidal com-
ponents. Either one or two sinusoidal component were present during dynamic eccentric
case or demagnetisation case, respectively.

Future work will involve experimental verification of the fault classifier and a change in
the algorithm that makes it more automatic. This will make the classifier able to classify
the fault faster. The alternatives may be to use BLUE or an artificial neural network
which is trained to recognise envelope patterns discussed in this paper.
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B.1 Abstract

The partial demagnetisation in a four-pole 1.5 kW surface mounted permanent-magnet
synchronous-generator was modeled by permeance network model (PNM). The results
were compared to a 2-D time-stepping finite element analysis (FEA). Both models where
simulated in scenarios where one of the magnets where 20 % and 100 % demagnetised and
when none of the magnets where demagnetised. The results showed that the proposed
PNM with variable magnetic flux sources matched the results of the FEA. The proposed
method only need to invers the permeance matrix once before the time simulation, while
the traditinal PNM need to invers it in every time step. This make the proposed model
less computationally heavy when modeling electrical machines in healthy and faulty condi-
tions, like demagnetisation, short circuit, and static eccentricity. The difference is smaller
when modeling dynamic eccentricity, becuase the geometry of the airgap changes over
time.

B.2 Introduction

Demagnetisation normally occurs in a permanent-magnet synchronous-generator (PMSG)
due to low magnetic flux in high coercivity under high-temperature environments, be-
ing the result of poor cooling or overloading [1]. Finding the best indicators for this
phenomenon is important for controlling and maintenance of the PMSG. Measured pa-
rameters, namely currents, voltages, torques, or output powers, are normally analysed
using signal processing techniques in fault diagnosis. This conventional approach is fast,
but treats the generator like a black box. Further, run-to-failure tests or seeded faults are
often difficult, expensive and infeasible in certain machines. Understanding physical back-
ground of a fault allows finding the best measured parameters or fault indicators. Finite
element analysis (FEA) has been a useful approach for modelling motors with faults and
providing numerical data for testing fault diagnosis algorithm. However, computational
burden is the main disadvantage of FEA. Processing powers of modern computers are
increasing, but avoiding heavy computation is still important. Further, models and algo-
rithms used in condition monitoring need to be fast to solve, thus a too detailed model is
not suited for this purpose. Using permeance network models (PNM) or called magnetic
equivalent circuit is a promising solution, but modelling rotation in PNM was identified
as a main challenge to be addressed further [2]–[4].

One way to model rotation of the rotor in the PNM is the use of variable resistors
in the airgap domain [2]. The nodes connecting between the rotating domain (rotor)
and stationary domains (stator) are all connected to one another. Authors in [3] and [4]
focused on induction motors and permanent magnet synchronous machines, respectively.
The principle is that the permeance in the airgap will change over time when the rotor
moves. The permeance depending on rotor position is usually obtained by FEA. If the
network has n number of nodes both in the rotor and stator, which are all connected,
then 2n2+2n entries in the permeance matrix need to be updated, because of the change
in rotor position. Another approach is to re-mesh the network in the airgap domain when
the rotor moves as detailed in [5], which is almost like a FEA. The permeance matrix
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Figure B.1: Model geometry of permanent magnet synchronous generator

need to be inverted in every time step, because of the re-meshing. This is the majority of
the computational complexity. Other methods involve hybrid models between PNM and
FEA [6].

This work proposes a method to model rotation of the rotor in a PNM. The suggested
method involves adjusting the magnetic flux sources representing the magnets and chang-
ing their direction over time. This method would be less complex as compared to the
existing methods because it does not require any change of the entries in the permeance
matrix over time due to the rotation of the rotor. The time depended parameters will
be in the vector describing the magnetic flux sources in the network. Furthermore, the
developed PNM is used to model a PMSG under healthy and demagnetised conditions.

B.3 Permeance Network Model

This section will describe and explain the proposed method for describing the PNM with
variable magnetic flux sources. The geometry of a four-pole 1.5 kW surface mounted
PMSG with double layer distributed windings is shown in Figure B.1, which is also used
in the FEA for a comparative study.

B.3.1 Reluctance and Permeance

Permeance is the inverse of reluctance. The PMSG in Figure B.1 is subdivided into
smaller elements called flux tubes. The general equation for computing the reluctance of
the flux tube connected between nodes i and j is:





       
  

R =

∫ j

i

1

µ(l)A(l)
dl, (B.1)

where µ is the permeability and A(l) is the cross-sectional area along length l. The equa-
tions for the permeance of a few specific geometries are given in [7]. The permeance for
stator teeth was computed by the equations for box shape flux tubes while the remaining
flux tubes are calculated by the equations for trapezoids, which is different depending on
direction of the flux [7].

B.3.2 Magnetic Flux Sources

The equivalent circuit of a permanent magnet or other sources of magnetic motive force
(MMF) is a voltage source connected in series with a reluctance. A sketch of the equivalent
circuit is shown in Figure B.5. This circuit can be replaced with a current source connected
parallel with a reluctance [5] as shown in Figure B.3.

R− +
MMF

Figure B.2: Equivalent circuit of a magnetic motive force source

R

Φs

Figure B.3: Equivalent circuit of a magnet flux source

The relation between MMF and Φs is given by

Φs =
MMF
R

. (B.2)

The MMF sources induced by the phase currents Ia, Ib and Ic are computed by

MMFCoil = NaIa +NbIb +NcIc, (B.3)

where Na, Nb and Nc are vectors describing the number of turns in each stator slot and
direction of the windings of phase a, b and c, respectively. The first entry of MMFCoil is
the MMF source induced by the phase currents in the windings of stator slot number 1.

The value of Φs for a permanent magnet is equal to the product of its coercive force
and height [5]. A second approach is to select the magnetic flux density induced by the
magnet and multiply by the cross-sectional area of the flux tube in the PNM containing





       
     

the magnet. The flux sources describing the magnets of a healthy permanent magnet
machine is defined as

Φmag(θ) =


Φs if θ − θref ∈ [0, 5π

12
] ∪ [π, 17π

12
]

−Φs if θ − θref ∈ [π
2
, 11π

12
] ∪ [3π

2
, 23π

12
]

0 else

(B.4)

The reference angle θref is with respect to the position of the stator teeth in the model.
The position of the rotor needs to have a value between 0 and 2π. Alternatively, (B.4)
can be replaced by a single continuous equation obtained from Fourier transform, which
has the similar shape. If (B.4) is used, sudden jumps in the estimated flux density over
time will occur. Demagnetisation can be modelled by decreasing the magnitude of the
magnetic flux density from portions of the magnet.

B.3.3 Model Setup

Magnetic flux sources are used instead of MMF sources, because this reduces the size of
the matrix describing the network [5]. The governing equation of the PNM is

PFm = Φs, (B.5)

where

P =


P(1, 1) P(1, 2) · · · P(1, n)

P(2, 1) P(2, 2) · · · P(2, n)
...

... . . . ...
P(n, 1) P(n, 2) · · · P(n, n)

 , (B.6)

Fm =


Fm(1)

Fm(2)
...

Fm(n)

 (B.7)

and

Φs =


Φs(1)

Φs(2)
...

Φs(n)

 . (B.8)

The diagonal entries in permanence matrix P are the sum of permeances connected to a
node and the remain entries are the permeance between 2 different nodes multiplied by
-1. In the case of a PNM with n number of nodes and m number of magnetic flux sources,
the size of P is n × n. If the magnets and the MMF induced by the phase currents was
represented by the equivalent circuit in Figure B.2, the size of the matrix describing the
network would increase to (n+m)× (n+m).

Previous papers showed how rotation could be modelled by variable airgap permeances
[2] or re-meshing the network in the airgap [5]. These strategies must change the entries





       
  

Figure B.4: Illustration of moving rotor (counter clockwise rotation)
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Figure B.5: Unit equivalent circuit of permeance network

of the permeance matrix and invert it in every time step. It is proposed in this paper to
change the direction of flux sources representing the magnets instead. Figure B.4 shows
a sketch of a quarter of the motor at different rotor positions. The whole motor geometry
is subdivided into 24 sectors. Each of them includes one stator tooth, one stator slot and
parts of airgap, magnet, rotor and stator yoke. One of these sections can be described
with the magnetic circuit in Figure B.5. Within Figure B.4, the red domain is the North
pole with magnetic flux point radially outwards, and the blue domain is the South pole
with magnetic flux source pointing radially inwards. The magnetic flux in the source
switches between a positive value (North pole) and a negative value (South pole). The
flux sources in the domains without magnets between the North and South pole are equal
to 0 Wb. Variable magnetic flux sources can mimic the rotation of the rotor, and no entry
in the permeance matrix needs to change due to the rotation of the rotor and the matrix
only need to be inverted once before the time simulation. The exception is dynamic
eccentricity where the geometry of in the airgap change over time.
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Figure B.6: Caption place holder

B.4 Results and Discussions

This section will present and discuss the simulation results. A adaptive time-stepping FEA
defined by Maxwell’s equations were used as a benchmark comparison. The magnets in
the FEA were described with the linear model [8]. First simulation was a stationary
study with motor speed equal to 0 rpm, and the phase current amplitudes were 0 A.
This first simulation generates the initial conditions for time-stepping FEA simulations.
The machine was analysed in the generator mode. The terminals were connected to
resistive loads of 50 Ω, and the applied prime mover torque was 10 Nm. The achieved
steady state speed from the FEA was 1300 rpm and this was set as motor speed in the
PNM. Both in the stationary- and time-stepping simulations of the PMSG were modelled
in two scenarios, no fault and with one magnet with 20 % demagnetisation and 100 %
demagnetisation.

Figure B.6a shows the initial value of magnetic flux density in the middle of the air-
gap in the polar coordinate system for a healthy generator (blue) and a demagnetised
generator (red). The variation in amplitude in the area covered by magnets is due to
variation of air-gap length. It is shown that the magnetic flux density in the middle of the
airgap near the demagnetised magnets is much smaller compared to the non-demagnetised
magnet. The magnetic flux densities at South poles are also reduced, but increased at
the remaining healthy North pole. Therefore, search coils [9] or hall sensors [10] should
be installed for monitoring the condition of demagnetisation. The PNM has a coarser
resolution but the characteristics the airgap magnetic flux density is still captured in
Figure B.6b.

The magnetic flux density from one stator tooth in a healthy case was extracted in
the time domain as shown in Figure B.7a, in which the waveforms from the PNM and
the FEA have a good agreement. The resulting plots from the PNM have some sudden
jumps, but they occur when the the time derivative of the magnetic flux is large. The
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Figure B.7: Magnetic flux density in stator tooth computed with FEA and PNM with (a)
no fault and (b) 20 % demagnetisation on one magnet

magnetic flux sources in magnets are not defined by a continuous function, and at some
point the change in magnetic flux density is infinity large. This is not an issue because the
network does not include any inductors or capacitor, which would create some dynamic
responses. Figure B.7b shows the magnetic flux density through a stator tooth when one
of the North poles is demagnetised about 20 %. In other word, the strength of the magnet
is reduced to 80 % of original strength. The result from the PNM matches the curve from
the FEA.

From simulation time point of view, both PNM and FEA simulated 10 seconds of
operation, but the FEA accelerated from 0 to 1300 rpm and the PNM was operating in
steady state at a speed of 1300 rpm. The PNM could solve in less than 0.7 s, while the
FEA used several hours to complete a 10-second operation. The FEA model used a free
triangular mesh with 6609 element with average skewness of 0.78. When the rotor domain
moved in each time step, the rotor-mesh did not necessary align with the stator-mesh in
the boundary between them. The interpolation across this border boundary is one of the
main reason behind the large computational burden. The time step of the FEA decreased
when the rotor speed increased, but reducing the tolerance of the solver can improve the
computation time.

Saturation was not included in the current model, but the main purpose of this paper
was to show how variable magnetic flux sources could represent the rotations of the motor.
Saturation can easily be included by setting up a recursive algorithm and iteratively
updating the relative permeability of the non-linear material. To achieve this, the first
step is to obtain the magnetic flux flowing between the nodes in the network based on an
initial guess of the relative permeabilities of the materials defined in the model. Then,
the magnetic flux density and magnetic flux intensity are computed, updating of relative
permeability and repeating the process until it converges [5].







B.5 Conclusion

This paper proposed a method to model rotation of the rotor in a permeance network
model (PNM) with variable magnetic flux sources. This method can lower the compu-
tational burden significantly as compared to the traditional models with variable airgap
permeances or re-meshing of the network in the airgap. If the centre of rotor does not
change over time, it is not necessary to invert the permeance matrix in very time step. The
proposed method does not require any special variable permeance function computed in a
FEA, which allows more focus on strategic design of the permeance network for accurate
computation.

The proposed method was tested on a coarse PNM example, and a comparative study
was presented by comparing the results from the proposed model and a FEA, showing that
the proposed PNM is able to simulate an PMSG in healthy and faulty condition quickly.
The simulated results confirm that the demagnetisation can be detected effectively based
on the polar plot of magnetic flux density in the middle of the airgap of the generator by
using search coils or hall sensors.
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C.1 Abstract

Conventional field reconstruction model (FRM) for electrical machines has proved its
main strength in efficient computations of magnetic fields and forces in healthy permanent
magnet synchronous machines (PMSM) or faulty machines in steady states. This study
aims to develop a magnet library of different magnet defects and include inter-turn short-
circuit (ITSC) in the FRM for PMSM. The developed FRM can model a combination
fault between ITSC, and magnet defect in a PMSM in transient states. Within the
framework, an 8-turn ITSC was modelled in both finite element analysis (FEA) and
FRM, and then identified by the extended Park’s vector approach. The air-gap magnetic
field reproduced by the FRM shows a good agreement with the result from time-stepping
FEA. The computation speed is over 1000 times faster than an equivalent time-stepping
FEA. The suggested FRM allows for quickly understanding effect of faults in the rotor
and stator on the air-gap magnetic flux density and identifying unique signatures for such
defects.

C.2 Introduction

Modelling and simulation allow for a profound understanding of electrical machines in
healthy and faulty conditions. Usually, modelling of electrical machines requires a trade-
off among computational burden, complexity and accuracy. Electrical equivalent circuit
(EEC), winding function theory, magnetic equivalent circuit, and finite element analysis
(FEA) have been the most common modelling methods for electrical machines for many
decades. One modelling strategy of creating new models is to modify previous models to
include more physical phenomena. The other one is to combine two modelling techniques
to obtain individual merits or compensate for any shortcoming in each method. Among
others, field reconstruction model (FRM) is very efficient in computing magnetic fields
and forces in electrical machines [1]. This method was first developed about one and a
half decades ago, being briefly discussed hereafter.

The FRM technique recreates the airgap magnetic flux density by superimposing and
phase-shifting the radial and tangential components of magnetic flux density, exported
from the static FEA. It maintains the accuracy of FEA, but is significantly faster to
compute, especially in time-stepping simulation or solving multi-physics problems. The
authors in [2] investigated the vibration level of a permanent magnet synchronous motor
(PMSM) at different speeds, and loads in steady-state conditions. Within the work, each
fault scenario required a computation time of 70 min in FRM, while the equivalent FEA
would require 100 days. The authors in [3] published many papers on using FRM to deal
with fault detection of five-phase PMSMs and optimal current excitation.

Conventional FRMs have two variable inputs: rotor position and currents. This lin-
ear model fits well surface-mounted permanent magnet synchronous motor (SMPMSM)
because those machines do not work much in saturation conditions. The conventional
FRMs [4] must respect the following assumptions:

• No deformation in stator or rotor core structures due to internal forces





         
   

• No saturation condition

• Zero flux density in the axial direction

• No end-coil effect

• Hysteresis and eddy currents are neglected

To improve the existing FRMs, three versions of the FRMs have been proposed in
[5]–[7] during the last decade. These FRMs included the interaction between the magnets
and stator teeth, and slotting effect. The first one combined relative and differential
permeabilities, being obtained numerically in static FEA. The second one simplified the
motor geometry by employing conformal mapping and transforming the slotted stator to
a slotless stator. However, the permeability in the airgap requires a more complicated
equation, depending on the x- and y-coordinate. The last one considers the slotting effect
and non-linear material by computing the basis functions at different rotor positions and
current excitation. A look-up table is generated from the static FEAs. This allows the
FRM to model interior permanent magnet synchronous motors. Towards fault diagnosis,
the authors in [8] predicted partial demagnetisation and static eccentricity by FRM. In
this framework of static eccentricity, the non-uniform airgap has to be taken into account
by generating the basis functions for each stator phase separately, and then computing
the rotor basis function for all rotor positions. To our best knowledge, no existing FRM
is able to model multiple faults in a SMPMSM in transient states.

This work aims to develop a FRM for modelling SMPMSMs in transient states, allow-
ing for quickly investigating multiple faults in dynamic operations. The first contribution
is to build a magnet library for the FRM to model SMPMSMs in faulty conditions. One
magnet is quickly studied at a time in static FEAs. The suggested library consists of
several faulty magnets, which can be combined in any way for recreating the rotor basis
functions for the FRM. The second contribution is to include the effect of short circuit
in the FRM. A FRM was initially used for detecting inter-turn short circuit (ITSC) in
five-phase machines [9], but to the authors’ knowledge, this has not been fully explored
in transient states or mixed faults. The two modifications allow the proposed FRM to
model SMPMSMs with combined magnet defects and inter-turn short circuit in transient
states. The performance of the proposed FRM is verified by using time-stepping FEA.

C.3 Developed Field Reconstruction Model

The principle of the FRM is to create a set of basis functions for the magnetic field in
the airgap. In case of SMPMSMs, this includes the magnets in the rotor and armature
current in the stator. They are studied separately and exported from static FEAs and
later superimposed in the FRM [10].

BN(θ + θm, I(t)) = BnPM(θ + θm) +BnS(θ, I(t))

BT (θ + θm, I(t)) = BtPM(θ + θm) +BtS(θ, I(t)).

(C.1)





       
  

The basis functions are extracted from the airgap at the distance R from the center. The
static FEA generates the x- and y-components of the flux density, but they need to be
converted to polar coordinate r and θ for the FRM. However, the rotor basis function is
phase shifted by the rotor position θm. The exported functions of flux density depend
on both r and θ. For a simplification, r is chosen to be constant, thus is not needed in
the description in (C.1). The stator basis function is excited by the three phase currents
Ia(t), Ib(t), and Ic(t) represented by I(t) in (C.1). A block diagram of the proposed FRM
is shown in Figure C.1.
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Figure C.1: The suggested diagram of field reconstruction model





         
   

C.3.1 Rotor Basis Function and Magnet Library

The rotor basis function is obtained by setting the phase currents to 0 A. Conventionally,
all the magnets are defined in FEA when computing the rotor basis function. It is proposed
to only let one of the magnets be active and export radial (Br1PM,k) and tangential
(Bt1PM,k) components for the single magnet basis functions to the FRM. The complete
rotor basis functions (BrPM and BtPM) are then recreated in (C.2).

BnPM(θ) =
∑2p

k=1(−1)k−1Bn1PM,k

(
θ + π(k−1)

p

)
BtPM(θ) =

∑2p
k=1(−1)k−1Bt1PM,k

(
θ + π(k−1)

p

)
,

(C.2)

The integer k = [1, 2p], where p is the pole pair. In this study, a North pole was selected
as the active magnet, but the South pole can easily be computed by multiplying with -1.
The sign of the magnets is taken into consideration in (C.2), but is not included in Figure
C.1. A collection of individual magnet basis functions with different defects is put into
the magnet library. The radial components of different magnets are shown in the top left
corner of Figure C.1, but both radial and tangential components are included in pairs.
Any magnet can be replaced with any term in (C.2), thus any sets of magnets can be
combined and rearranged in the FRM without the need to study every set in static FEAs.
This is very time-saving in term of combinatorics and factorial function. Figure C.2 shows
the magnetic flux density at the rotor positions of 0◦ and 10◦, being as an example of a
reconstructed rotor including three healthy magnets and one faulty magnet, in which a
piece is missing [11].
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Figure C.2: Recreated rotor function at two different rotor positions with parts removed
from one magnet, (a) radial component and (b) tangential component

The single magnet basis function is computed at multiple angles of 1◦ increment in the
interval [0◦, 10◦], being used as a look-up table in the model. The contribution from the
rotor is computed by interpolation in the look-up table at an angle between 0◦ and 10◦.
This angle is the remainder after subtracting the position θm by the closest multiple of slot





       
  

pitch (10◦ for 36 slots motor), which is still smaller than θm. The output function is phase-
shifted by that slot pitch multiple. Switching the order between these two operations will
increase the computational burden. For example, when θm = 73.6◦, a function is extracted
by interpolating between 3◦ and 4◦, then phase-shifting that output function by 70◦. The
purpose of the look-up table is to include the slotting effect as described in [7].

The phase-shift process is conducted by removing parts of the basis function vector at
the beginning, which are added at the end or in the other way around, depending on the
direction of rotation. This can be done by using a look-up table. The rotor basis functions
are repeated two times in the interval of [0, 4π]. The air-gap field basis function is ex-
tracted with an interpolation for the interval of [θr,min, θr,min+2π]. The angle θr,min equals
θm mod 360◦. In other words, the smallest positive remainder of the fraction is θm

360◦
.

The accuracy of a FRM significantly depends on the original static FEA. The mesh
in the model can affect the final FRM. It is important to select the number of elements
along the air-gap equal to a multiple of 360◦ divided by the angular increment. This will
ensure that the meshes in the rotor and stator will perfectly align in every increment.
The rotor basis function will become noisy due to interpolation performed in FEA if the
nodes of the rotor and stator meshes are not perfectly aligned.

C.3.2 Stator Basis Function and Inter-turn Short Circuit

The conventional FRMs place only one wire in a stator slot with a current of 1 A [10],
and the stator basis function is recreated by phase-shifting and superimposition with
respect to winding distribution. When developing this model, placing only one wire did
not produce the accurate reproduction of the magnetic flux in the air-gap. The motor
studied in this paper has concentrated windings, thus a coil of 80 turns occupying two
stator slots is used as unit basis functions (BnLoop and BtLoop) for the stator. Figure C.3
highlights which coil in phase A is used to compute the unit basis function for the stator
and its current direction.

The first step to recreate the basis function for phase A is to phase-shift BnLoop and
BtLoop by 10◦ and 20◦ (1 and 2 slot pitches). Superimposing these functions gives the
contribution from half of the windings in phase A. The second half is obtained through
phase-shifting the first half by 180◦ and adding it to the first half. The procedure for
recreating the basis function for one phase will be different, depending on stator geometry
or winding configuration. However, the principle is the same: identifying a repeatable part
of the windings (preferably a coil) and recreating the stator basis function from this unit
function by phase-shifting and superimposing. Alternatively, generating the stator basis
functions can be done by defining all the windings [7]. Different stator geometries can be
defined in the FEA, which can be used for constructing a library of stator basis functions.
The remaining phases are obtained by phase-shifting the basis functions by 120◦ and
240◦. Figure C.4 shows the final stator basis functions of the studied motor with healthy
windings, which can be defined as follows.
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Figure C.3: Highlighting the used coil in generating stator basis function

BnS(θ, I(t)) =
1

Iref

∑
k=a,b,c Ik(t)Bnk(θ)

BtS(θ, I(t)) =
1

Iref

∑
k=a,b,c Ik(t)Btk(θ)

(C.3)

For a machine with an ITSC in phase A, a fault can be described with the following
modification written in (C.4).

BnS(θ, I(t)) =
Ia(t)
Iref

BnA:SC(θ) +
Ib(t)
Iref

BnB(θ)

+ Ic(t)
Iref

BnC(θ) + µ Ia(t)−IF (t)
Iref

BnLoop(θ)

BtS(θ, I(t)) =
Ia(t)
Iref

BtA:SC(θ) +
Ib(t)
Iref

BtB(θ)

+ Ic(t)
Iref

BtC(θ) + µ Ia(t)−IF (t)
Iref

BtLoop(θ)

(C.4)

where µtextf is the ratio of shorted turns in one coil and the total number of turn in that
coil (i.e. 80 turns in the studied motor). It is noted that the ITSC is a local phenomenon.
The block diagram in Figure C.1 illustrates how the ITSC is implemented in phase A.
The location of the ITSC faults can be re-positioned by phase-shifting BnLoop and BtLoop.
The right side of Figure C.1 illustrates how the basis function is modified in the suggested
block diagram. The shorted windings are excited by the current Ia − IF . An ITSC fault
can be introduced to any phase, but the basis function for the fault windings needs to be
phase-shifted to a valid location. The shorted windings for one phase need to be located
where that phase is defined. It is not physically reasonable for an ITSC to occur in phase
B if the shorted windings are located in phase C.
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Figure C.4: Stator basis function for (a) the recreated function for phase A and (b) one
80-turn coil

C.3.3 Torque Computation

The torque is computed by Maxwell’s stress tensor (MST).

τ =
LrotorR

2

µ0

∫ 2π

0

BT (θ + θm, I)BN(θ + θm, I)dθ, (C.5)

where LRotor is the length of the rotor, µ0 is the permeability in free space, and R is the
distance from the center of the motor to middle of the air-gap, where the magnetic flux
density is extracted. Keeping it constant for all angular positions θ allows for a simpler
expression. The torque in the developed FEA was computed with Arkkio’s method.

C.3.4 Flux Linkage and Electromotive Force

It is assumed that the radial component of the magnetic flux density in the airgap goes
through the stator teeth and contributes to the flux linkage.

ϕi = L

∫ 2π
Ns

(i)− π
Ns

2π
Ns

(i−1)− π
Ns

BN(θ + θm, I)dθ, (C.6)

where Ns is the number of stator teeth. The following summation results in the magnetic
flux linkage for each phase,

λn =
3∑

k=1

9∑
i=1

(
ϕi+k+3(n−1) + ϕi+k+18+3(n−1)

)
(C.7)

The flux linkages for phases A, B and C are obtained by replacing n with 1, 2 or
3, respectively. Note that (C.7) is specific for the geometry and winding distribution
of the motor model analysed in this paper. A different geometry will have a different
equation, but the principle is the same, summing the magnetic flux contribution within
the cross-section of the coil. The induced voltage is then computed by:





         
   

en = −CM
d (λn)

dt
(C.8)

The constant CM is the geometric factor depending on the number of turns, winding
distribution, motor geometry and flux leakage. In this paper, CM was set to 3. A simple
way to obtain CM is to perform a time-step simulation at a constant speed (i.e. 1000 rpm)
at no load in both FEA and FRM. The geometric factor CM is adjusted for matching the
amplitude of the excitation voltage.

C.3.5 Electrical model

The electric circuit model in the abc-reference frame is used in this study [12]. This
circuit allows the FRM to use a voltage input instead of a current input. In this work,
the SMPMSM operates in motor mode, thus the electric circuit model is shown as (C.9).

va
vb
vc
0

 = R


ia
ib
ic
iF

+ L
d

dt


ia
ib
ic
iF

+


ea
eb
ec

−eF

 (C.9)

where R and L are the resistance and inductance matrices given as:

R =


RS 0 0 −µRS

0 RS 0 0

0 0 RS 0

−µRS 0 0 RF + µRS

 (C.10)

and

L =


LS MS MS −µ(1− µ)LS

MS LS MS −µMS

MS MS LS −µMS

−µLS −µMS −µMs µ2LS

 (C.11)

The mutual inductance between the phase windings is neglected, but the mutual
inductance between the healthy and faulty windings in phase A is considered as in [13],
[14]. Some entries in the matrices are divided by 6 because the ITSC is applied to only
one sixth of the windings. All the excitation voltages are computed with (C.8), but the
flux linkage for eF is only for faulty turns. Normally, eF can be defined to be proportional
to the phase excitation voltages, depending on which phase the fault was located [13].
However, the FRM allows for computing the flux linkage in the faulty turns, being used
to compute the eF . It is also possible to estimate the back EMF constant for the motor
and assume that the electromotive force is sinusoidal like in [13], but this will dismiss
details in the model and reduce the model accuracy.

ef = −µCM
d

dt

(
10∑
i=2

ϕi

)
(C.12)





       
  

C.4 Developed Finite element model

The motor studied in this paper is a SMPMSM with concentrated windings. The motor
was disassembled for measuring key geometric parameters. They are listed in Table C.1
with other key parameters needed in the simulation. Only a quarter of the model is shown
in Figure C.5, but the geometry of the whole motor was simulated, due to asymmetries
caused by faults. The different colours (yellow, orange and brown) indicate the different
phase windings (phase A, B and C) in the stator. The electromagnetic model in the FEA
is defined by Maxwell’s equations.
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Figure C.5: Geometry of a quarter of the studied SMPMSM
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Figure C.6: Block diagram of FE model





         
   

The motor is controlled by PI-controllers with a inner current loop, which controls the
d- and q-components separately. The speed controller defines the reference value for the
Iq, while the reference value for Id is set as 0 A. No voltage modulation like space-vector
modulation of hysteresis is included in the model. The main focus of this paper is compare
the FRM with FEA when modelling faulty motors.

Figure C.6 illustrates the block diagram of the FEA model used as benchmark for
the FRM. The dynamics of the mechanical parts in the model is described by a simple
cylinder with applied torques and viscous friction.

ω̇m =
τ − τload − Bωm

Jrotor
(C.13)

The inertia of the rotor Jrotor and the viscose friction B are set at 0.05 kg · m2 and 0.01
N·m·s
rad , respectively. No load torque (τLoad) was required in this static FEA as mentioned

earlier.

Table C.1: Geometric dimensions and parameters of the in-house motor

Symbol Quantity Parameter description
p 2 Number of pole pairs
Ns 36 Number of stator slots
N 80 Number of turns per stator slot

Lrotor 100 mm Length of rotor
R 38.0 mm Radius used to compute torque by MST

rshaft 15.0 mm Rotor inner radius
rr 35.0 mm Rotor outer radius
rs 40.0 mm Stator inner radius

dmag 1.0 mm Magnet thickness
g0 4.0 mm Average air-gap distance

Ltooth 14.5 mm Length of stator tooth
dtooth 2.0 mm Thickness of stator tooth top
w1 4.0 mm Width of stator tooth 1
w2 5.0 mm Width of stator tooth 2
Lyoke 9.1 mm Thickness of stator yoke
θslot 10◦ Stator slot pitch
θmag 80.8◦ Magnet pitch
nrated 3000 rpm Rated speed
kBEMF 90 mV

rpm Back EMF constant
Rs 2.1 Ω Per phase resistance
Ls 36 mH Self inductance
Ms 18 mH Mutual inductance

The self-inductance on the real motor is 6 mH. The inductances computed in FEA is
used in FRM for the best comparison between the two simulation methods.





       
  

C.5 Results and Discussions

C.5.1 Comparison between FEA and FRM

The primary purpose of this paper is to investigate the performance of the suggested FRM
on modelling a faulty SMPMSM with the minimum requirement for the basis functions.
First, a static analysis was conducted for a comparison between FRM and FEA. The
induced torque was computed in the interval 0◦ and 360◦ with 1◦ increments and the
current excitation Ia = 10 A, Ib = 0 A, and Ic = 0 A. The computed torques by FEA
and the proposed FRM are plotted in Figure C.7, showing an almost perfect agreement
between the two methods. The faulty case is the case of a missing piece on one magnet.
This verifies the validity of superimposing contributions from the rotor and stator to the
magnetic field. The FEA takes 12 min 25 s to complete a simulation while the suggested
FRM takes 0.103 s to compute or 7233 times faster than FEA under the same simulation
requirement. This in turn is one order of magnitude larger than the existing FRM in [15].
However, the computational burden of the suggested FRM significantly increases when
including the calculation of flux linkages and back EMF. This issue will be discussed
further in detail when presenting the results of time-stepping simulations.
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Figure C.7: Induced torque at any rotor positions with the current excitation Ia = 10 A,
Ib = 0 A and Ic = 0 A in (a) healthy case and (b) missing magnet piece

The second analysis is implemented with time-stepping simulations in variable speeds.
The reference speed jumps between 50 rad/s and 100 rad/s as shown in Figure C.8, where
only the speed prediction from the FEA and FRM in the healthy case is plotted. The
speed responses from the faulty condition are close to identical. The following faults were
investigated in time-stepping simulations:

• Magnet defect: A piece of a one of the North pole is removed in the middle og the
magnet.

• An ITSC is applied to one of the unit coils in phase A with severity 1.7 % and 15
%. This is 1.6 % and 5.6 % of the total number of turns in phase A, respectively.





         
   

• Combination between the magnet defect and ITSC fault as previously listed.
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Figure C.8: Variable speed profile of SMPMSM computed by FEA and FRM in healthy
case

The time-consuming computation of the FEA model with the PI-controllers is carried
out for a comparative study in this paper, being listed in Table C.2. The time-stepping
FEA computed in 14 to 15 hours with a office laptop. Implementation of the faults in the
FEA increase the computation time, due to slight changes the geometry and increased
number of element in the mesh. The proposed FRM completes the time-stepping simu-
lation in about 50 s, with the same simulation requirements like FEA. The applied fault
has a little effect on the FRM computation. The ratio of computing time between FEA
and the proposed FRM is also given in Table C.2, indicating the difference in the compu-
tational burden. All the simulation cases studied in this paper prove that the proposed
FRM is three orders of magnitude faster than FEA, verifying statements from previous
published papers on FRM [15]. Furthermore, the developed FRM allows for fast extract-
ing results of parameters, terminal voltage, armature current, torque, flux linkage, back
EMF and induced search coil voltage wound around a stator tooth, and flux density from
any point in the airgap. The FRM model does also have the potential to reproduce the
signal of the stray flux, but it is necessary to export results from outside of the SMPMSM,
and not just from the airgap.

Table C.2: Computation time comparison between FEA and FRM

Fault condition FEA FRM Ratio
Healthy 50906 s 49.9 s 1020
Missing magnet piece 54924 s 52.2 s 1052
ITSC (8 turns) 54877 s 49.3 s 1096
ITSC (72 turns) 55692 s 50.8 s 1080
Missing magnet piece and ITSC (8 turns) 64165 s 48.9 s 1312
Missing magnet piece and ITSC (72 turns) 64995 s 49.0 s 1326

The torque is computed with different fault scenarios and plotted in Figure C.9. The
suggested FRM is able to compute a similar electromagnetic torque like FEA with similar





       
  

average value and level of torque ripples with the reference magnet. The reference magnet
is described with a remnant magnetic flux density of 1.08 T. The missing magnet piece
gives a slight decrease of torque, but the overall torque ripples are the same in the healthy
case as observed in Figure C.9a and Figure C.9b. The induced torque estimated by the
FRM is close to that of FEA with an error of less than 3 %. The ITSC fault results
in an increase of the torque ripples estimated by FEA and FRM, as shown in Figure
C.9c. Figure C.10 shows the corresponding d- and q-components when the SMPMSM is
operating under healthy conditions. Both the components in FEA and FRM have a close
agreement, but some spikes and dynamic responses in the FEA results were not captured
by the FRM. However, SMPMSMs are usually fed by a well-controlled converter, allowing
for limiting such spikes in a current regulator.
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Figure C.9: Comparison of torque estimation by FEA and FRM in case of (a) healthy
motor, (b) missing magnet piece, and (c) ITSC in one coil with severity 15 %

An ITSC was applied to one coil in phase A with the severity levels of 1.7 % (8
turns) and 15 % (72 turns). The short circuit current Isc, which is equal to the difference
between Ia and IF , flowing through the fault resistor RF is plotted in Figure C.11. The
predicted Isc by FRM is close to that of FEA in the severe case, but less agreed in the
lower severity. Results from the FRM are time-shifted slightly for better highlighting
the similarity between the current waveforms. Minor differences in the induced torque
cause the peaks imperfectly in phase. The simplified electrical model probably is the
main reason behind the deviation from FEA in less severe ITSC faults. RMS of Isc is
not deviated significantly between the two models. However, Isc is not a suitable fault
indicator in fault diagnosis, because typically only in-house tests or numerical simulations
have the possibility of estimating this quantity [14], [16]. Conventionally, SMPMSM drives
cannot measure Isc, but the presented result aims at confirming of the FRM’s capabilities
of reproducing the results from FEA.
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Figure C.10: The d- and q-component of the armature current in healthy case computed
by (a) FEA and (b) FRM
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Figure C.11: Short circuit current Isc in case of ITSC in one coil with severity (a) 1.7 %
and (b) 15 %

C.5.2 Fault indicators identified by FRM

The radial and tangential components of the magnetic flux density in the air-gap in the
healthy case are plotted in Figure C.12 for the first half second of the time-stepping
simulations, proving that the FRM can easily decouple the contribution to air-gap flux
given by rotor and stator. During the acceleration within the first 0.25 s, the contribution
from the stator field is more dominating than that from the rotor. However, the magnitude
decreases when the motor reaches a constant speed of 478 rpm (50 rad/s), but would
increase again if the motor needs to change speed or if load is applied to the rotor. The
sum of the field contributions shows a close agreement with the result from FEA, both in
magnitude and shape of the waveform.





       
  

Figure C.12: Decoupling the contribution to the radial component of the air-gap magnetic
flux density from the rotor and stator in case of no fault and comparison between FRM
and FEA

The magnets of the SPMSM are defined with a constant remnant magnetic flux, re-
sulting in the radial component of the magnetic flux density contributed by the rotor
as a trapezoidal shape or red curve in Figure C.12a. Therefore, a flux sensor located
in air-gap can track the shape of the magnetic flux density at no load conditions, and
compare the shape in later operations. If the shape begins to deviate over time, a magnet
defect can be detected. In case of magnet defects like missing magnet piece or partial
demagnetisation, this may appears as a period dip in the trapezoidal waveform as shown
in Figure C.13. This is the same principle as using search coil for detecting magnet faults
as described in [17]. A magnet defect like partial demagnetisation can be decoded with
only one sensor. Other asymmetries in the magnetic circuit like eccentricity would need
at least a minimum two sensors.
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Figure C.13: Decoupling the contribution to the normal component of the air-gap mag-
netic flux density from the rotor and stator in the case of missing magnet piece and
comparison between FRM and FEA





         
   

Stator short-circuit faults in electrical machines are often detected by an increase of
the third harmonic of the armature current. Within this work, the extended Park’s vector
approach (EPVA) [18] is chosen. Stator currents are extracted from the proposed FRM
and used to compute the Park’s vector. The magnitude of the Park’s vector, |IP |, is used
in a time-frequency analysis and is defined as

|IP | =
√
I2α + I2β (C.14)

where Iα and Iβ are the components of the stator current vector in the stationary reference
frame (α, β). Under an ITSC, the second harmonic of the current space vector increases
in the spectrogram obtained by the wavelet synchrosqueezed transform (WSST) [18]. In
case of missing magnetic, no second harmonic is visible in the Figure C.14.

Figure C.14: Spectrogram of IP in log scale with missing magnet piece computed in (a)
FEA and (b) FRM

Figure C.15: WSST of amplitude of state space vector IS in log scale with both 8 shorted
turns and missing magnet piece. Computed in (a) FEA and (b) FRM





       
  

Figure C.15 shows the results from the simulation where the SPMSM has 8 shorted
turns and missing magnet piece. The second harmonic is present at the frequencies 32
Hz and 64 Hz, depending on the motor speed profile in Figure C.8. This highlights the
2 · fs peak in Figure C.15, which is not present in either of the subfigures in Figure C.14.
Missing magnet piece does not generate thus second harmonic, thus it is caused by the
ITSC fault. The amplitude of the second harmonic becomes more viable when the severity
of ITSC fault increases. The result in Figure C.15 confirms the efficacy of the EPVA and
shows that magnet defects has little effect on the second harmonic.

The developed FRM in this work focuses on 2 electrical faults in PMSMs, namely
demagnetisation and ITSC, which were not addressed in literature. FRMs can also be
modified for other fault types like high resistance connection, line-to-line short circuit,
phase-to-ground short circuit and eccentricities faults as discussed in [8].

C.5.3 Experimental Validation

Experimental validations were conducted on a 4-pole 2.2 kW SMPMSM of an in-house
test setup. The motor is coupled to a generator (3 kW 4-pole SMPMSM) with a torque
sensor in between. The generator is wye-connected to a three-phase restive load. Figure
C.16 shows an overview of the in-house test bench. The whole setup was controlled via a
Dspace controller installed on office laptop. The Microlabbox sent out the control signal
to the ABB commercial drive and record signals of torque, current, and position. The
sensors were powered by the 24 V DC-power supply. The test motor got multiple taps
that can be used for ITSC. The available severity are 2 %, 5 % and 6 %. The taps
related for each specific fault severities were connected to an external fault resistor (1
Ω). It makes the artificial ITSC more realistic, since it represents the degeneration of the
insulation and limits the fault current. The current through the fault resistor reached 6.4
A at nominal speed in no-load condition.

The motor was run at 1500 rpm and 3000 rpm (nominal speed), at 50 % of rated
load. The load was estimated by the ABB-drive. The loading condition was increased
by decreasing the resistance in the resistor bank. First, no ITSC was implemented on
the motor. Measurements were recorded for 120 s at a sampling frequency of 10 kHz.
The motor was stopped for safe rewiring and implementation the ITSC. The resistance
of the resistor bank was also increased to the maximum when increasing the steady-state
speed from 1500 rpm to 3000 rpm since a larger speed translates to larger output load
when the resistance is kept constant. Identical scenarios were simulated in the FRM. The
results of the chosen fault indicator, second harmonic of IP is presented in Table C.3,
being obtained by Fast Fourier transform of two minutes long measurements, which were
normalised by their respected DC-component of IP . The general trend is that the second
harmonic is increasing with increasing severity of ITSC, but the trend has a greater slope
at higher speed.

The spectrograms of the IP in cases of 0 % and 6 % at nominal speed are presented
in spectrograms of Figure C.17. The simulation shows that the second harmonic of IP
will increase by 4.4 dB when a short circuit is implemented. This is also shown in the
experimental measurement where the second harmonic increased by 3.2 dB. It is noted
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Figure C.16: In-house test setup with (1) motor, (2) torque sensor, (3) generator, (4) fault
resistor, (5) resistor bank, (6) Microlabbox, (7) low voltage DC-supply, (8) ABB motor
drive, (9) cabinet containing current sensors, and (10) laptop

Table C.3: Amplitude of second harmonic of |IP | at different short circuit serveries

ITSC 1500 rpm 3000 rpm
0 % -48.7 dB -47.8 dB
2 % -46.0 dB -46.7 dB
5 % -46.1 dB -45.5 dB
6 % -46.3 dB -44.6 dB





       
  

that the obtained result by FRM has a lower noise level than the experimental data, but
does show the general trend of the chosen fault indicator [18].
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Figure C.17: Comparison between spectrogram of IP obtained from (a) FRM or (b)
experiment

C.6 Conclusion

This paper develops a field reconstruction model to model faults in SMPMSM. The key
features of the new model includes a developed magnet library and the implementation
of ITSC in FRM. The developed model can simulate magnet defects, ITSC and has the
potential to easy implement both faults in the same simulation. Further, the model can
present detailed results of current, terminal voltage, EMF, torque, flux linkage, stator
tooth flux density and induced search coil voltage.

The model presented in this paper performed over 1000 times faster than the com-
pared commercial FEA and was able to reproduce signals that can be analysed with fault
indicator for magnet defects and ITSC. If the model did not include the computation of
flux linkages and EMF, it is over 7000 times faster. Therefore, the integration of the flux
linkage increases computational burden significantly. This faster computing FRM (with-
out computation of flux linkage and EMF) may have potential for developing condition
monitoring of torque or magnetic flux density.
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D.1 Abstract

This paper aims to improve quadratic time-frequency distributions to adapt condition
monitoring of electrical machines in transient states. Short-Time Fourier transform (STFT)
has been a baseline signal processing technique for detecting fault characteristic frequen-
cies. However, limits of window sizes due to loss of frequency- or time-resolution, make
it hard to capture rapid changes in frequencies. Within this study, Choi-Williams and
Wigner-Ville distributions are proposed to effectively detect peaks at characteristic fre-
quencies while still maintaining low computation time. The improved quadratic time-
frequency distributions allow for generating spectrograms of a longer lasting data sig-
nal and capturing multi-component signals with a better separation of the components
than STFT. Further, the time resolution of the spectrograms generated by the proposed
method is not affected by the window size. The effectiveness of the proposed methods is
numerically verified from the data of an in-house test setup.

D.2 Introduction

Permanent magnet synchronous motors (PMSMs) are compact and highly efficient, mak-
ing them attractive in electric powertrains for wind turbines and electric vehicles, which
operate dynamically with variable speed and torque. Moreover, the powertrains are in-
tensively exposed to mechanical-, and electrical stress in harsh environments and thermal
cycling due to the dynamic operation. Consequently, detection and prevention of the
faults in such powertrains are more important and challenging. In condition-based main-
tenance the machines are monitored over time, which allows to determine when the next
maintenance is needed. Implemented correctly will reduce unexpected downtimes and
costs.

Condition monitoring for electrical machines in dynamic operation requires the anal-
ysis of non-stationary signals. Short-time Fourier transform (STFT) is often used for
this purpose. The resolution of the time-frequency representation, or spectrogram, is de-
pendent on the window size. A smaller time window results in a high time resolution
and fewer lines of resolution on the frequency axis. On the other hand, larger window
sizes cause a lower time resolution. Over the years, multiple techniques have been de-
veloped, i.e., Wavelet transform [1] and quadratic time-frequency distribution (TFD), to
address the computation burden and resolution. Quadratic TFD or Cohen Class function
has been used in quantum physics and Heisenberg’s uncertainty principle [2]. This fam-
ily of functions includes Wigner-Ville (WVD), Choi-Williams (CWD), Zhao-Atlas-Marks
(ZAM), and Rihaczek distributions. The difference among them is their kernel function.
The advantage of these distributions is that they can capture the transient behavior of a
signal, and time resolution is not affected by the length of the time sample. This property
makes quadratic TFDs attractive in many applications besides fault detection of electrical
motors, i.e., optical sensor, radar sensor, and wireless communication [3]–[5].

WVD is one of the oldest distributions and fast to compute. The demerit of this
distribution is the presence of cross-terms. Additional peaks and patterns occur when
applied to a signal with multiple components. Pseudo WVD or combining WVD with the





       
     

Gabor distribution can be a solution to address this challenge [6], [7]. Alternatively, an
improved eigenvalue decomposition-based approach for reducing the cross-term was pro-
posed in [8]. Minimizing the cross-term can also be done by changing the kernel function,
giving a different Cohen class function. Towards condition monitoring for PMSMs, CWD
was used for feature extraction in a demagnetization fault detection scheme [9]. The fault
indicator was based on a box-counting fractal dimension. The spectrogram is divided
into squares by a grid. The number of squares, where the signal is present, is counted. A
demagnetization fault increases the number of boxes due to a more chaotic signal.

Although considerable researches have been devoted to enhance the accuracy of quadratic
TFDs [6]–[13], limited research has focused on improving computation time of time-
frequency representations or spectrograms [14]. The spectrograms were limited to shorter
time samples. The largest time sample used in a bilinear TFD was found in [7], which
was 2.7 s with sampling frequency 1.5 kHz. The increasing computation time with longer
sample arrays restricts the application of quadratic TFDs in condition monitoring. This
paper aims to propose an improved quadratic TFDs to make quadratic TFDs better suit-
able for condition monitoring of electrical machines in transient states while reducing the
computational burden.

D.3 Mathematical background

D.3.1 Cohen Class Function

The general equation for Cohen class distribution function can be written as function of
time t and frequency ω.

C(t, ω) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
A(θ, τ)ϕ(θ, τ)e−jθt−jτωdθdτ (D.1)

where A(θ, τ) is the ambiguity function

A(θ, τ) =
1

2π

∫ ∞

−∞
R(t, τ)ejθtdt (D.2)

R(t, τ) is the auto correlation function, which is defined as

R(t, τ) = s∗(t− τ

2
)s(t+

τ

2
) (D.3)

where τ is running time. The analytic signal s(t) is defined as

s(t) = x(t) + jH(x(t)) (D.4)

where the real part x(t) is the original signal and the imaginary part H(x(t)) is the Hilbert
transform of the original signal.

H(x(t)) =
1

π

∫ ∞

−∞

x(τ)

t− τ
dτ (D.5)

The integrals in (D.1) and (D.2) are Fourier and inverse Fourier transformations:





       
  

Ft→ω(f(t)) =

∫ ∞

−∞
f(t)e−jωtdt (D.6)

F−1
ω→t(F (ω)) =

∫ ∞

−∞
F (ω)ejωtdω (D.7)

The indexes t → ω and ω → t are added for clarifying what domains the data is switched
between with the Fourier transformations. The general equation of Cohen class function,
defined by (D.1) and (D.2), is rewritten to

C(t, ω) = Fτ→ωFθ→t

(
ϕ(θ, τ)F−1

t→θ (R(t, τ))
)

(D.8)

The frequency domains θ and ω are different. The θ-domain is where the filtering by the
kernel function is applied, while ω is the frequency domain of the resulting TFD.

The kernel function ϕ(θ, τ) is the main difference between the Cohen class functions.
The simplest kernel functions is

ϕWVD(θ, τ) = 1 (D.9)

This gives the WVD, which can be written as

C(t, ω) = Fτ→ωR(t, τ) (D.10)

The main problem of WVD is the cross-term when the signal x(t) consists of multiple
components. The most commonly used TFDs, that minimizes the cross-term, are CWD
and ZAM, in which the kernel function is defined as:

ϕCWD(θ, τ) = e−
(θτ)2

σ (D.11)

and
ϕZAM(θ, τ) =

sin (πθτ)

πθτ
e

−2πτ2

σ (D.12)

Other notations of these kernel functions substitute σ with 1
α
. Keeping σ is preferred, since

reducing σ minimises the cross terms, while α has an inverse relation. Both ϕCWD(θ, τ)

and ϕZAM(θ, τ) become equivalent to ϕWVD(θ, τ) when σ goes toward ∞.
The integrals of the Cohen class distribution functions are defined from −∞ to ∞.

The next section will describe how to obtain the spectrograms for signals, that lasts for a
finite period, with Fast Fourier Transform (FFT).

D.3.2 Discrete form

First apply the window function d(n) to a measurement sample array x(n). The selected
window function is a hanning window.

d(n) =
1

2
+

1

2
cos
(
2π

n

N

)
(D.13)

where N is the element size of x(n) and n is the integer defined in the range
[
−N

2
, N

2
− 1
]
.

The Hilbert transform is applied for obtaining the analytical signal s(n) and a zero is
appended,





       
     

s(n) =

[
x(n) + jH (x(n))

0

]
. (D.14)

Then the elements of s(n) need to be organized in the auto correlation matrix R (nt, nτ ).
The row vector nτ and column vector nt are defined as,

nτ =
[
−N

2
· · · N

2
− 1
]

(D.15)

and

nt =
[
−N

2
· · · N

2
− 1
]T

(D.16)

R (nt, nτ ) is now written as,

R(nt, nτ ) = s∗(nt − nτ )⊙ s(nt + nτ ) (D.17)

Note that the multiplications performed in (D.17) is a Hadamard product. About a half
of the entries is not defined, because the sum or difference between nt and nτ is outside
of the definition range of x(n),

[
−N

2
, N

2
− 1
]
. These entries are set to 0. One way to solve

this problem (in a code) is to set all entries, that are not defined in R (nt, nτ ), equal to
the last entry of s(n), which is 0.

The ambiguity function is obtained by an inverse FFT from nt-domain to nθ-domain.

A (nθ, nτ ) = FFT−1
nt→nθ

(R(nt, nτ )) (D.18)

The characteristic function M (nθ, nτ ) equals the element wise product (Hadamard prod-
uct) between the ambiguity function and the kernel function.

M (nθ, nτ ) = ϕ(nθ, nτ )⊙ A(nθ, nτ ) (D.19)

The final TFD is obtained by a FFT from nθ-domain back to nt-domain and then by a
FFT from nτ -domain to nω-domain

C(nt, nω) = FFTnτ→nω (FFTnθ→nt (M (nθ, nτ ))) (D.20)

Both window function and kernel function have been applied to the signal x(n). Re-
ducing σ for a CWD minimizes the cross-terms but spreads it across all frequencies e.g.,
raises the noise floor. It appears as vertical lines in a CWD with horizontal time axis and
vertical frequency axis. The peaks of the frequency components are still present on top of
the noise floor. This effect was filtered out by subtracting the hundredths smallest values
of C(nt, nω) for each time instant nt.

D.4 Proposed Quadratic Time-Frequency Distribution

The essential parameters include the sampling frequency (fs), time window (T ), and
overlap (OL), which are selected at 1 kHz, 1 s, and 20 %, respectively, in this work.
Figure D.1 shows the flowchart of the proposed method with steps as follows.





       
  

1. Extract a sample from the original array from entry n1 to n2. The initial values of
n1 and n2 are 1 and fsT , respectively.

2. Execute the signal processing described in Section II on this sample and obtain the
quadratic TFD.

3. Cut off the first 20 % and last 20 % of the spectrogram (OL). In the case, for the
first second the spectrogram from 0.2 s to 0.8 s is extracted and put into the final
plot.

4. Add the product of the OL and fsT to n1 to n2 and repeat the process. In the
second iteration, the next sample extracted is from 0.8 s to 1.8 s. The third interval
will be from 1.6 s to 2.6 s.

5. Repeat until end of signal

Measurements

Extract sample 
in range 
[n1 , n2]

Generate 
Quadratic TFD

Compute new 
n1 and n2 

Subtract overlaps 
from TFD 

Add to final TFD

Figure D.1: Flowchart of the proposed quadratic TFD

D.5 Numerical test

In this section, the performance of the proposed quadratic TFDs is numerically investi-
gated and compared with that of using STFT. In this numerical example, a signal with 5
frequency components used and was defined as:

x(t) =
5∑

k=1

sin

(
2πk

(
5

c
sin (ct) + 25t

))
. (D.21)

The signal includes sinusoidal components with frequency modulation. The instantaneous
frequency of the signal component, where k = 1 and c = 1 rad

s , is a sinusoidal function
with amplitude of 1, frequency of 1

2π
Hz and bias of 25 Hz. The constant c is set to

1 rad
s . Figs. D.2a and D.2b show the spectrograms generated with CWD and STFT,

respectively. The window size was set 1 s with 20 % overlap. CWD was computed with
σ = 0.1. Both algorithms capture all five signal components as described by (D.21). c was
increased to 2 rad

s . The signal of (D.21) was separable in the CWD, but not separable in
the spectrogram generated by STFT. (See Figure D.3a and Figure D.3b) The resolution
improves when the window size is reduced to 0.1 s for STFT, but the signal component is





       
     

(a) (b)

Figure D.2: Numerical example - c = 1 and window 1 s - (a) STFT and (b) CWD

(a) (b)

Figure D.3: Numerical example - c = 2 and window 1 s - (a) STFT and (b) CWD

still hard to separate. The contours of the signal components in the CWD spectrogram
seem to be thinner and have a smoother shape.

Decreasing window size to 0.1 s reduces the computation time for CWD from 16.5
s to 1.3 s, while the computation time for STFT is increased from 0.014 s to 0.040 s.
The performance is considered acceptable for both methods since the total time for the
measurement array was 120 s. The reduction in computation time for CWD is obtained
since the CWD solves smaller matrices after each iteration. The algorithm solves a 100×
100 matrix with a window size of 0.1 s and a 1000 × 1000 matrix with a window size of
1 s. The sampling rate is 1 kHz. Both CWD and STFT need to perform more iterations
due to a smaller window. Another interesting finding is that increasing the window size
for CWD does not affect the time resolution of the spectrogram. Changes in frequency
can still be captured by CWD, while all the signal components will get merged in the
STFT at too larger window sizes. However, the window size only needs to be sufficiently
large for the CWD. Smaller window size will give problems with lines of resolution on the
frequency axis. Note that a larger window size increases the computation time.





       
  

Figure D.4: Computation time versus number of elements in array - CWD

Figure D.4 shows the computation time for executing one iteration of the proposed
algorithm presented versus the element size of the input sample. The overlap is set to 0
%. If the input array has an element size of 10000, it will take 7.5 s to solve. An array of
10000 elements can have a total time of 1 s with sample rate of 10 kHz or 10 s with sample
rate of 1 kHz. The second sample would be possible in condition monitoring, because the
total time would is larger than the computation time.

The replacement of values in the matrices of nt − nτ and nt + nτ is one of the time
consuming operations. This is solved with if-statements, where half of the entries end
up as 0 in R (nt, nτ ). One possibility for reducing computation complexity is to avoid
computing parts of the kernel function and auto-correlation matrix because those entries
have an insignificant effect on the final TFD. This is explored in detail in [14]. The
complexity of FFT (and inverse FFT) applied to a vector with N elements is O(N log(N)).
Both R (nt, nτ ) and M (nθ, nτ ) are square matrices with N rows and N columns. Inverse
FFT is executed once, and FFT is executed twice on N × N matrices. Therefore, the
computational complicity of all these transformations is O(3N2 log(N)), which explains
why the computational complexity increase exponentially in Figure D.4. The performance
of the algorithm can can be improved with faster computer or a more efficient code.

D.6 Experimental results and Discussions

The experimental setup consists of two 2.5 kW, 16 poles PMSMs as shown in Figure D.5,
in which one operates as a motor while another motor operates as a generator coupled
to a resistive load. An inter-turn winding short circuit fault with 10 % severity is seeded





       
     

in the motor. The setup is tested on two different speed profiles in both healthy and
faulty conditions. The first one is a multi-step speed-profile between standstill to 375 rpm
and back down to a full stop. The second speed-profile is an unpredictable speed-profile
where the speed increases and decreases around 250 rpm in an irregular manner. The
experimental setup is described in detail in [15].

Figure D.5: The in-house experimental setup.

Figure D.6a shows the spectrogram generated by STFT for a phase current of the
PMSM in the healthy case. Sampling rate and window size are 1 kHz and 1 s, respec-
tively. The hanning window function was applied to the window with an overlap of 20 %.
STFT is used as a benchmark to compare with the spectrograms generated by CWD and
WVD. Figure D.6b and D.6c show the spectrograms generated from CWD and WVD. The
kernel function for CWD has σ = 10−7. The harmonic peaks were captured and proved
that CWD is capable of capturing harmonic peaks. The fundamental frequency is much
more dominant in CWD as compared to the STFT. This may be due to the extremely
small σ. One attempt to solve this issue was done by applying an element-wise square
root of the CWD, but this makes the spectrograms noisier. The additional filtering by
subtracting the hundredths smallest value for each instant in time improved the quality of
the spectrogram. The WVD-based spectrograms have additional peaks, but other peaks
are not visible on the spectrograms. This is caused by the cross-term and the limits on
the color axis.

Figure D.7a, D.7b and D.7c show the spectrograms obtained by STFT, CWD, and
WVD of the phase current for the same PMSM operating under an inter-turn short circuit.
Both STFT and CWD was able to pick up the second harmonic, which is an indicator
for electrical faults. WVD seems to pick up all the integer harmonics. Similar results are
shown in Figure D.8a, D.8b and D.8c, which show the spectrograms for the second speed
profile generated by STFT, CWD, and WVD, respectively. These experimental results
proved that CWD can pick up the same harmonic peaks as STFT. The fundamental
component is much more dominant in the CWD. It was discussed earlier in the numerical
example, how the quadratic TFDs would perform better with more rapid speed changes.





       
  

(a)

(b)

(c)

Figure D.6: Spectrograms of phase current of healthy PMSM operating with the first
speed profile, (a) STFT, (b) CWD and (c) WVD





       
     

(a)

(b)

(c)

Figure D.7: Spectrograms of phase current of PMSM with 10 % ITSC operating with the
first speed profile, (a) STFT, (b) CWD and (c) WVD





       
  

(a)

(b)

(c)

Figure D.8: Spectrograms of phase current of PMSM with 10 % ITSC operating with the
second speed profile, (a) STFT, (b) CWD and (c) WVD





       
     

The second and third harmonics have merged in the first 10 s and around 50 s on
the spectrograms using STFT and CWD as shown in Figure D.8a and Figure D.8b,
respectively. The reason for this issue is that they are separable in the WVD (See Figure
D.8c). Multiplying the fundamental frequency with integers would also lead to the same
conclusion.

The spectrograms computed from the experimental data shows that the quadratic TFD
can capture the signal, but the current set-up does not give any additional information
compared to STFT. But further analysis shows that the signal components in the CWD
have sharper peaks. The spectrogram generated from the second speed profile was divided
into three frequency bands as listed in Table I. The first, third and fifth harmonics are
present and dominant in these bands. The time average kurtosis comparison between
CWD and STFT is presented in Table I. CWD have a larger kurtosis in all three frequency
bands, which indicates that it got higher and sharper central peaks.

Table D.1: Average kurtosis over frequency bands in the spectrgram generated by STFT
and CWD

Frequency band CWD STFT
0 Hz to 50 Hz 414.0 20.5

50 Hz to 150 Hz 9.6 2.6
150 Hz to 300 Hz 4.0 2.1

D.7 Conclusion

In this paper, we have proposed a solution to improve quadratic TFD for analyzing
non-stationary signals. The proposed method allows for generating spectrograms with
CWD and WVD for longer-lasting signals, as compared to the existing methods. The
numerical test showed that CWD could generate spectrograms with better separation of
multiple components than STFT if the frequency modulation is too large. Within the
framework, the time resolution is unaffected by window size, but frequency resolution sets
a minimum limit on the window. Larger windows increase the computation time and set
a maximum limit. The test on the experimental data proved that the proposed method
could capture the signal components on data with noise. The time average kurtosis for
generating spectrograms by CWD was larger than that of STFT for the first, third and
fifth harmonics of the signal. This indicates that CWD generates spectrograms with
sharper peaks.

Future work will include trying out other distribution functions that will overcome the
problems of the CWD, and make the fundamental frequency less dominant. The WVD
has a problem with cross-terms, but is much faster than other Cohen class functions.
Alternatively, a pseudo WVD could be implemented instead, which would reduce cross-
terms and maintain high computation speed and resolution.
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E.1 Abstract

This paper aims to classify local demagnetisation and inter-turn short-circuit (ITSC) on
position sensorless permanent magnet synchronous motors (PMSM) in transient states
based on external stray flux and learning classifier. Within the framework, four supervised
machine learning tools were tested: ensemble decision tree (EDT), k-nearest neighbours
(KNN), support vector machine (SVM), and feedforward neural network (FNN). All al-
gorithms are trained on datasets from one operational profile but tested on other different
operation profiles. Their input features or spectrograms are computed from resampled
time-series data based on the estimated position of the rotor from one stray flux sensor
through an optimisation problem. This eliminates the need for the position sensors, al-
lowing for the fault classification of sensorless PMSM drives using only two external stray
flux sensors alone. Both SVM and FNN algorithms could identify a single fault of the
magnet defect with an accuracy higher than 95% in transient states. For mixed faults,
the FNN-based algorithm could identify ITSC in parallel-strands stator winding and local
partial demagnetisation with an accuracy of 87.1%.

E.2 Introduction

Fault diagnosis in permanent magnet synchronous motors (PMSM) has always received a
lot of attention, aiming at increasing the safety level in dynamic and critical applications
or preventing large economical losses due to unexpected downtime [1]. Unlike industrial
productions, PMSMs in wind turbines and electric vehicles are intensively exposed to dust,
mechanical, chemical, and thermal stresses in harsh environments and thermal cycling due
to the dynamic operations. This causes an inter-turn short-circuit (ITSC) in the stator
windings and demagnetisation on rotor permanent magnets (PM) of PMSMs, resulting
in reduced efficiency and increased cogging torque [2]. The ITSC is a common fault in
all motor types, e.g., induction motor and reluctance motor. However, demagnetisation
is a fault that is unique to permanent magnet motors. A uniform demagnetisation affects
all magnets equally and significantly reduces the overall back electromagnetic motive
force (BEMF). A local demagnetisation only affects a specific region of rotor magnets.
The complexity of machine structure, variable speeds, and loads render fault diagnosis
challenges due to sensor requirements and nonstationary signals, attracting significant
research that has tackled ITSC and demagnetisation in industry and academia in recent
years, which is briefly discussed hereafter.

E.2.1 Related Works

Most research on ITSC implements the short-circuit in a single-strand stator winding. The
ITSC in such windings can be detected based on characteristic frequencies in the current
measurement. However, stator windings in PMSM can have multiple strands in parallel.
Such stator windings have lower stator resistance and inductance, but the maximum
output of the BEMF is reduced. The impact of ITSC in multi-strand windings on current
signals is less compared to its single-strand counterpart. Multiple strands in one phase





          
    

with an ITSC may be unaffected by it. The fault signature will be different if the ITSC
is on a single stand or between two strands. Van Der Geest et al. [3] have numerically
analysed a PMSM with three parallel strands in the stator to study the effect of ITSC
on the copper losses. The authors proposed a fault detector, which was the fundamental
component of the difference between machine neutral voltage and the estimated inverter
neutral voltage based on three equal impedance. The method has been tested on both a
high-speed PMSM prototype and an off-the-shelf PMSM. It was not possible to implement
ITSC on the prototype; therefore, two additional turns were wound around two stator
teeth to resemble an ITSC. The research does check the performance of the fault detector
in case of "open strand fault", partial demagnetisation, and misalignment in simulation.
It was found that the fault indicator was most sensitive to ITSC fault and could detect
it with a severity level down to 0.4%. However, it is not clearly specified if the ITSC is
applied to all strands or just a single strand. Furthermore, it is unclear whether the extra
turns were added to a single strand or to the end terminal. The fault indicator was tested
in steady state operation, but at different speeds. The loads in their experiments were
either no-load or at the rated condition. No variable speed or load profiles were used to
test the detector.

Zhu et al. [4] investigated a partial demagnetisation fault, which was assumed to be
applied uniformly on all magnets. The rotor was demagnetised by increasing the internal
temperature by overloading. The current level of demagnetisation was estimated based
on the measured BEMF in two study cases, where the magnets had lost 17% and 33% of
their original strength. The merit of this method is that it does not cause any physical
damage or imbalance in the rotor, but the demagnetisation is implemented uniformly. The
Vold–Kalman filtering for an order tracking was used to detect demagnetisation alone in
a PMSM. Kao et al. [5] proposed a diagnosis algorithm, combining discrete wavelet trans-
form and convolution neural network (CNN), to separate between local demagnetisation
and bearing faults. Two strategies for demagnetisation were implemented: first replacing
a piece of the magnet with aluminium, and learning how to weaken the strength of the
magnet. The paper does not address the second method: how to weaken the magnet.
However, validating this approach for detecting demagnetisation is not convincing, since
there is an imbalance if the replacement material does not have the same density. The
fault classifier proposed in [5] is based on one-dimensional CNN, being trained for demag-
netisation fault and bearing fault, but the authors did not investigate the possibility for
mixed fault context. The classifier was trained and tested for 20 different constant speed
settings, but there is no variable speed profile in this work.

Iglesias-Martinez et. al. [6] investigated the use of bi-coherence and a fuzzy C-means
algorithm for detecting winding asymmetries in induction motors. External coil sensors
with 1000 turns and an external diameter of 8 cm were placed in proximity to the motor,
measuring radial, tangential, and axial components of the stray flux. The stray flux signals
were recorded during the start-up of the motor; then, they were used in a fuzzy C-means
machine learning fault classifier, resulting in an accuracy of about 90%. Zamudio-Ramirez
et. al. [7] proposed also smart sensors for the online detection of individual and combined
faults in induction motors, such as broken rotor bar and misalignment. The sensor solu-
tion consists of three hall sensors oriented towards the three Cartesian directions. Their





       
  

analysis concluded that the axial and radial stray flux components were the most effective
in the transient analysis. The classification was performed with linear discriminant anal-
ysis and feedforward neural network (FNN), where the time-frequency representations
were computed from the MUSIC algorithm during startup. The classifiers were trained
by data from different mechanical faults such as broken rotor bar and misalignment, but
mixed faults were missing in the study. The neural network was trained on measurements
from startup duration alone, without other operations.

Gurusamy et al. [8] conducted a theoretical study on how loading would affect the
fundamental and third harmonic of the measured stray flux based on finite element analy-
sis. The information of stray flux was extracted from selected points in the finite-element
analysis. The results showcased how the harmonics would change in magnitude, depend-
ing on the location of the fault. Simulations were verified with experimental work. The
third harmonic of the stray flux was proposed as the fault indicator, since it was less
affected by loading conditions than the fundamental component. However, the third har-
monic may indicate many kinds of asymmetries in the magnetic circuit. Furthermore, the
ITSC detector was only tested for constant speed or load operations.

E.2.2 Contribution

Conventional methods of detecting faults in stator winding and PMs of PMSMs methods
focus on off-line tests, steady-state operations, and require a high number of available
sensors in the drives. However, PMSMs are always controlled and dynamically operated
based on the driver’s demands. Furthermore, modifying the existing drive system for
automatic fault detection must be avoided in critical systems and applications, where
sensorless controls are preferred due to reliability or reduced maintenance cost. Stray flux
has recently gained popularity in the literature for fault detection of ITSC, demagnetisa-
tion, and mechanical faults due to its sensitivity and is simple to install outside of a drive
system. Existing research focuses on model or signal-based algorithms, requiring multiple
stray flux sensors and speed measurements for detecting faults in variable speed condi-
tions. Furthermore, seeded demagnetised magnets were inappropriately implemented in
the existing research, causing imbalances or without an overheat demagnetisation. To the
author’s knowledge, most existing machine learning-based fault classifications are trained
and tested on the same datasets or the same operational profiles, rendering a challenge
of trustworthiness on other datasets or working conditions. To address the mentioned
challenges, this paper aims to achieve the following:

1. Increase the robustness of potential machine learning classifiers against transient
operating conditions and different operation profiles by resampling at a fixed angular
increment.

2. Eliminate the need of position sensors in the resampling process (order tracking).

3. Introduce a heat treatment method for inducing local partial demagnetisation fault.

4. Train the machine learning algorithms, ensemble decision tree (EDT), k-nearest
neighbour (KNN), support vector machine (SVM), and feedforward neural network
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Figure E.1: Block diagram of preparation of features

(FNN) and compare their performance in different operation profiles and with or
without the presence of mixed faults in the datasets.

5. Investigate the variation of the classifier accuracy based on features computed from
data collected by stray flux, current, and torque signals.

6. Recommend minimum length of data sample for an accurate fault classification.

The rest of this paper is organised as follows: Section E.3 describes the proposed
technique for fault diagnosis under stationary as well as nonstationary conditions, which
was followed by a description of how the fault was implemented in Section E.4. Section
E.5 describes the experimental setup of the in-house test bench. The results are presented
and discussed in Section E.6. This paper ends with concluding remarks in Section E.7.

E.3 Methodology

The block diagram in Figure E.1 shows the proposed pre-treatment of measurements for
computing features before passing it through a machine learning classifier. First, data
samples were collected and labelled based on their fault case and operation condition.
The rotor position was estimated with an optimisation problem. The estimated position
was used for resampling of the original datasets, with data points sampled at a fixed time
increment, to datasets sampled at a fixed angular increment. The resampled datasets
were split into smaller samples, which contain a fixed number of rotor revolutions. The
second step is to compute the spectrograms of the resampled datasets with Fast Fourier
Transform (FFT), which is normalised based on the fundamental frequency. This gives
a fundamental frequency spike with an order number equal to 1 and a magnitude of





       
  

1. Therefore, any fault classification approach based on analysing these spectrograms
needs to study the composition of the harmonics. Third, an envelope of the spectrogram
was obtained by splitting the spectrogram into intervals with a length of 0.5 order centred
around the half harmonics [0.5, 1, 1.5,... , 39.5, 40] and then finding the maximum in each
interval. This simple method produces an envelope of the spectrogram, which includes
the harmonic peaks with fewer entries. In addition, the pre-treatment will order normalise
the spectrogram and make classification more robust against speed change. The resulting
envelopes of the spectrograms are chosen as the selected features for classifications, being
trained and tested on EDT, KNN, SVM, and FNN.

E.3.1 Resampling Time-Series Data

Measured signals in PMSM, e.g., flux, current, and voltage are cyclical and ideally have a
sinusoidal shape. In the case of a four-pole motor, every two cycles in these measurements
represent one revolution of the rotor. Normally, datasets are sampled at constant time
intervals. There will be more data points per cycle at lower speeds. For example, there
are 400 data points per cycle if a four-pole motor is running at 750 rpm with a sampling
frequency of 10 kHz. The number decreases to 100 data points per cycle when the motor is
running at 3000 rpm. This imbalance of samples per cycle is the main cause for the peaks
spreading over a wide range of frequencies in the spectrogram of signals with time-varying
frequencies, which is computed by FFT. A solution to this is to resample the data from
equal time steps to equal angular steps [9].

Resample

Time

Frequency Order

FFT FFT

Position 𝜃 

Figure E.2: Visualising the benefit of the resampling process from time- to θ-domain.

Figure E.2 shows the results of the resampling process with a chirp function. The blue
rings represent samples from the original dataset, where the data points are spaced at an
equal time distance. Figure E.2 highlights that more samples are concentrated at the first
interval, when the instantaneous frequency is at its lowest. The red points represent the





          
    

resampled dataset with the equal angular distance, where every interval have the same
number of samples regardless of frequency. The resampling process can be viewed as a
transformation from time-domain to θ-domain. After the transformation, the datasets can
be split into intervals defined by a fixed number of cycles instead of a fixed time interval.
Longer samples, regardless of being defined by time intervals or cycles, will increase the
order resolution in the spectrograms and improve the confidence in the present peaks.
The minimum number of cycles needed for computing features will be discussed in the
results.

E.3.2 Estimation of Position

The resampling process requires the information of the rotor position or position sensor
[10]. However, being dependent on encoders, resolvers, or tachometers will exclude the
applicability in sensorless PMSM drives, since these sensors are not available. Removing
a position sensor will improve the system reliability and enhance the performance of any
fault classification method. Etien et al. [11] proposed a nonlinear adaptive algorithm
with phase-locked loop and orthogonal signal generators. This method is suited for online
detection but does require tuning a PI controller. Lu et al. [12] computed the phase from
a filtered current signal, which is turned into a unipolar signal by an absolute function.
The signal is divided into frames, which is every half cycle of the sine function. The phase
angle is computed from the inverse sine of the ratio between the instantaneous value of
the function within the current frame and the maximum value of the previous frame. This
method is more prone to noise, because of the few key data points defining the maximum
value of each frame. The method suggested in this paper is to find the fundamental
frequency via an optimisation problem. Hou et al. [13] proposed ridge regression for
obtaining instantaneous frequencies in time-frequency representation. Then, this method
requires wavelet or short-time Fourier transform. The suggested method does not need
such algorithms for estimating the fundamental frequency. Assuming the speed changes is
negligible in a short time period (0.1 s is used in this study), the fundamental component
of the signal can be defined as follows:

h(t) = sin(2πf1t+ θ ) (E.1)

where f1 is the fundamental frequency and θ is the phase angle. The fundamental fre-
quency can be obtained via FFT, but short-time periods are needed for an accurate
estimate, which negatively affects the frequency resolution. Instead, the fundamental
frequency is estimated by the optimisation problem:

[f1, θ] = argmin
f1,θ

(
(x(t)− h(t))2

)
. (E.2)

The range for the optimal value of f1 can be narrowed down between the standstill and
nominal speed, i.e., f1 ∈ [0, 100] Hz. The value of the objective function in (E.2) repeats
itself when θ is increased from 0 to 2π, keeping the f1 constant. The modulo operator is
used such that θ ∈ [0, 2π]. Steps to estimate the fundamental component in the stray
flux signal are described as follows.





       
  

1. Extract a small time sample with period T from the original time-series data.

2. Compute the objective function for frequencies in the interval [0, 100] Hz with an
incremental step of 5 Hz. The optimal θ for a given f1 is found by the Golden Section
Search in the interval [0, 2π]. The values for f1 and θ, that yield the smallest value
of (E.2) are the initial guesses in step 3.

3. Find the optimal solution for f1 and θ by the Simplex Search method in [14] with
the initial guesses given in step 2.

4. Repeat step 1 to 3 for the next time step until the end of the time sample.

The output of the estimator is dependent on all data points in the sample of each
iteration. Therefore, it would be less prone to noise and require no tuning. One weakness
to this approach for obtaining the fundamental frequency is a local convergence. Signals
with an immoderate signal-to-noise ratio will tend to reach 0 Hz instead of the desired
solution. One approach to avoid this problem is to increase the lower boundary in the
brute force analysis in step 2, e.g., 10 Hz.

E.3.3 Machine Learning Methods

This section aims to investigate the performance fault classifications of features computed
from stray flux measurements. The following supervised machine learning algorithms
are investigated: DT, KNN SVM, and FNN. Each sensor produces an envelope of the
spectrogram with 41 elements; thus, the number of inputs is the product between 41 and
the number of sensor measurements added to compute the features.

E.3.3.1 Ensemble Decision Tree

The "trees" in decision tree classification starts at the first node known as the trunk,
then it branches out to more if-else statements. The final nodes of the tree are called
leaves, which get numeric values in the case of regression tree and discrete categories in
case of classification tree. An EDT consists of a forest with smaller decision tress called
"stumps". They usually only have one node with two leafs each. The "stumps" are weak
learners on their own, but combined ones can predict with high accuracy where the class
is decided with a majority vote. However, the votes from each "stump" got a weight,
which is obtained from training. The EDT in this study uses the AdaBoost method for
training with 100 training cycles with the learning rate of 1. The maximum number of
splits per tree is set at 1, and each leaf has a minimum of 1 observation [15].

E.3.3.2 K-Nearest Neighbours

KNN is one of the simplest supervised machine learning algorithms, but it is still an
effective tool. The principle of the classification process is that new observations are
categorised based on the previous observations closest to them. The number of neighbours,
k, is used to decide the class of the new observation. It is adjusted to make the classifier
more robust and less likely to overfit. The votes from the closest neighbours are counted,





          
    

and the class with the highest number of votes dictates the outcome of the classifier [16].
In this paper, k was set to 15, which was obtained via trial-and-error during training.
The distance is computed with Euclidean distance, and the potential ties in four-class
classification are settled by the label of the nearest neighbour among the tied groups.
Ties are not possible in fault detection (two-class classification), since k is an odd number.
Each of the features is standardised by centring and scaling with respect to their mean
and standard deviation.

E.3.3.3 Support Vector Machine

In an SVM, the input data are mapped into a high-dimensional feature space using a
kernel function. The objective is to maximise the margin between the classes and give
the best separation of the training data [17]. In this paper, the linear kernel function
was used. The nature of SVM is to classify between two datasets. These methods are
called "one-versus-all" and "one-versus-one". The first method uses multiple SVMs where
each one determines if an observation belongs to their respective class. Ideally, only one
SVM will identify the observation as their own class, which dictates the outcome of the
classifier. The second type of multi-class SVM was used in this study. Multiple SVMs
are trained to separate between two classes, which is unique to each SVM. A decision is
reached with a plurality vote. Each of the features is standardised by centring and scaling
with respect to their mean and standard deviation.

E.3.3.4 Feedforward Neural Network

The mathematical model [7] for the output y in each neuron in an FNN is given as

y = f

(
N∑

n=1

wnxn + b

)
(E.3)

where wn and b are the weights and bias applied to the inputs xn, and f(·) is the activation
function. The rectified linear unit (ReLU) activation function was selected. A block
diagram of the FNN used in this paper is shown in Figure E.3, consisting of two fully
connected layers. The first one contains 100 neurons, while the other is equal to the
number of classes. In case of fault detection, it is 2, and it is 4 for classification with
mixed faults. It also has a batch normalisation layer, which makes it faster and more
stable. The last two layers are the softmax layer and the classification layer. The network
is trained with an adaptive moment estimation [18] with a learning rate of 0.001, gradient
decay of 0.9, squared gradient decay factor of 0.99, and denominator offset of 10−8. The
mini-batch size and number of epochs are set to 16 and 10, respectively.
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Figure E.3: Block diagram of FNN used for fault classification

E.4 Implementation of Faults

E.4.1 Implementing Local Demagnetisation

Demagnetisation faults in permanent magnet motors are usually implemented by remov-
ing parts of the magnets [19] and replacing them with a non-magnetic material [20]. This
is to counteract the imbalance in the rotor. Another option is to install weaker magnets
in the rotor through manufacturers [21]. The mentioned implementations do not mimic
the demagnetisation due to thermal cycling in dynamic operations of sensorless PMSM
drives. This study presents a demagnetisation process by heat treatment. The tempera-
ture distribution on magnets is not uniform. The investigations performed by Fernandez
et al. [22] and Reigosa et al. [23] showcased how the temperature is distributed under
different applied currents in thermal equilibrium. The study was applied on PMSM with
interior magnets, where they concluded that the hottest spot on average over time is in the
middle of the magnet. Thus, this region is most likely to be affected by demagnetisation
due to overloading.

Several attempts for local demagnetisation were executed involving an electric dis-
charge machine, blow torch, and heat gun. None of the solutions can achieve a satisfac-
tory result, where one magnet became partially demagnetised without causing significant
physical damage to the rotor. Note that these methods were tested on a separate rotor
that was not used in the final test. The best option, to our knowledge, is to heat one side
of the rotor on a 1500 W electric cooking plate made of iron. A solid aluminium block
with the dimensions of 200 mm × 90 mm × 20 mm was placed between the rotor and
the cooking plate due to its low permeability. This ensures a safe placement and removal
of the rotor on the hot cooking plate. A wet towel was placed on the rotor to cool the
other poles. The heat treatment is shown in Figure E.4. The aluminium block reached
temperatures up to 232 ◦C. The rotor was left on the hot surface for 5 minutes. Thermal
paste is used to improve the heat transfer between the objects.

The magnetic field around the rotor was measured before and after the thermal treat-
ment, as shown in Figure E.5 with an Extech SDL900 magnetic field meter. Note that
the measurements after the heat treatment were done after the rotor had cooled down





          
    

to the ambient temperature. The wooden frame allowed the rotor to rotate, kept its ro-
tor axis horizontal, and prevented any translational movement. The measured magnetic
field strength surrounding the rotor decreases with distance. Therefore, the hall sensor in
SDL900 was kept at a constant distance of 3 mm from the rotor surface.

1

2

3 4

Figure E.4: Thermal treatment setup consisting of (1) cooking plate, (2) solid aluminium
block, (3) wet towel, and (4) the rotor

1

2
3

45

Figure E.5: Setup for magnet strength measurement: (1) Extech magnetic AC/DC mag-
netic field meter, (2) measurement rod, (3) universal magnetic stand, (4) PM rotor, and
(5) wooden frame





       
  

Figure E.6 shows the measured magnetic field surrounding the rotor before and after
the heat treatment. The measurement was repeated three times to reduce the measure-
ment error. The North poles are indicated by positive value with the South ones are
negative. It can be seen that the rotor after the heat treatment has a slight decrease of
magnetic strength at two points on one pole. Further investigations reveal that those two
spots lost up to 30% of their original field strength.

Figure E.6: Side-by-side comparison of measured magnetic field strength of the permanent
magnet rotor (a) before and (b) after the heat treatment

E.4.2 Implementing Short Circuit Fault

In the studied PMSM, each phase winding has three strands in parallel. The advantage of
this configuration is a reduced overall phase resistor and phase inductance. The drawback
is a smaller BEMF. A simple analysis of the expected DC resistance measured by a mul-
timeter was conducted. The inductance is ignored, since it does not affect the measured
resistance in steady state.

It is assumed that the resistance of each strand is RS. Four taps were implemented in
one phase of the PMSM. The taps are shorted with the input voltage terminal U. This ar-
rangement ensures that no short-circuit occurs between two parallel strands. Resistances
between a tap and the end terminals were measured for each tap. A single multimeter
can often measure resistance, but the accuracy is limited by the low current induced by
the multimeter. Figure E.7 shows the sensitive resistance measurement setup. A current
source of 1 A is used, which is significantly less than the nominal current 6 A of the stud-
ied PMSM. The strand, where a tap is placed, is assumed to be split into two resistors
R1 and R2. The measured equivalent resistance Rmea between a tap in the middle of the
coil and the end or end terminals is defined as below.

Rmea = µf

(
1− 2

3
µf

)
RS, (E.4)





          
    

R1

RSRS

R2

Neutral

U-Terminal

mV53.4

ADC-0.996

1 A

Figure E.7: Sketch illustrating the setup for accurate resistance measurement

where µf is the number of turns between the tap and the end terminals divided by the
total number of turns in the coil. The solution for µf is the second-order equation :

µf =
3

4
± 1

2

√
9

4
− 6

RMea

RS
. (E.5)

The valid answer from (E.5) is identified based on the location of the tap relative to the
end terminals. If the tap is expected to be close to the U-terminal, it is reasonable to
assume that µf <

3
4
. It is also reasonable to assume that µf >

3
4

between the tap and
neutral. The ITSC severity of 5% was used in this study.

E.5 Experiment and Data Collection

E.5.1 In-House Test Bench

A schematic diagram of the test setup is shown in Figure E.8, including a 400 V three-
phase drive and the Microlabbox operated with an office laptop. The hall sensors mea-
suring the stray flux were solid-state sensors of type SS495A. The output of these sensors
are ratio-metric and linear within the range [−67, 67] mT and has a sensitivity of 31.25
mV
mT

. Two sensors were soldered to a veroboard and wired to the Microlabbox, which
delivered power to the sensors and recorded the stray flux. One of the sensors was bent
90◦, such that it could measure both the tangential and radial component of the stray
flux. Two sets of sensors were placed in proximity to the motor at the top and on the
side. Furthermore, the current sensors are located inside a cabinet to the top right corner
of Figure E.9 to measure the input phase currents. The study motor has no position
sensors; therefore, the encoder on the generator measure s the rotor position to validate
the suggested method of position estimation.
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Figure E.8: Schematic diagram of test bench.

Table E.1: Nameplate parameters for IE5-PS2R 90 L.

Parameter Value
Output power 3 kW
Nominal speed 3000 rpm
Number of poles 4
Nominal current 6.0 A
Nominal voltage 315 V
Phase resistance 0.6 Ω

Phase inductance 6 mH

Demagnetisation fault is introduced by replacing the rotor with no magnet defects with
a rotor that went through the heat treatment process described in Section E.4.1 . Both
rotors belong to the same type of PMSMs: IE5-PS2R 100 L, with their key parameters
given in Table E.1. ITSC faults are induced by wiring the external taps implemented in
the PMSM. A fault resistor (1 Ω) is used for mimicking the remaining insulation in an
ITSC and limiting the short circuit current. The motor is coupled to a generator with a
torque transducer in between. Both the encoder and torque transducer are powered by a
24 V DC-supply. The output of the generator is rectified with a three-phase full-bridge
rectifier. Two 1000 µF capacitors are connected in series across the output terminal of the
rectifier, which removes the ripples of the DC output. The reason for two capacitors in
series is that the output of the rectifier at nominal speed does exceed the voltage rating of
the capacitor (400 V). The equivalent capacitance is 500 µF, but this is still sufficient to
remove the voltage ripples. The brake chopper is regulated by a pulse width modulation
(PWM) signal from the Microlabbox, which needs to be amplified by a factor of 4 due to
insufficient voltage amplitude from the Microlabbox. The op-amp is powered by a 12 V
DC supply. In an ideal system, the duty cycle would be proportional to the reciprocal of
the motor speed. However, due to losses and imperfections, a look-up table is generated
for the duty cycle , which dictates the required duty cycle for achieving a requested load
in the speed range between 1000 and 2000 rpm.





          
    

Figure E.9: Overview of the test bench with (1) resistor bank, (2) flyback diode, (3)
three-phase rectifier with capacitor bank, (4) 12 V DC supply, (5) IGBT brake chopper
with op amp, (6) hall sensors, (7) PMSM, (8) torque sensor, (9) generator, (10) fault
resistor, (11) Microlabbox, (12) 24 V DC-supply, (13) ABB drive, (14) office laptop, and
(15) cabinet containing the current sensors





       
  

E.5.2 Description of Collected Datasets
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Figure E.10: Visual representation of the three operation profiles: (a) Profile 1—Variable
load and variable speed. (b) Profile 2—Constant load and variable speed and (c) Profile
3—Variable load and constant speed.

Stray flux was measured for three different nonstationary operating conditions with a
sampling rate of 10 kHz. The rotor position, input current, and torque were measured for
all three profiles. Observation used for training and testing in the ML tools is computed
from smaller samples. They are from three operation profiles, which are split based on a
fixed number of revolutions of the rotor. The output of the resampling process obtained
400 samples per revolution. Section E.6 will use the term "cycles", which is double the
number of revolutions of the rotor. Profile 1 contains a regular pattern, where the speed
ramps up and down between 1000 and 2000 rpm. The load changes between 25% and 75%
of the full load. The profile shown in Figure E.10a includes combinations of increases and
decreases of the load when the speed is increasing, decreasing, or constant. The second
operation profile in Figure E.10b keeps the reference speed constant at 1200 rpm, but the
load changes with a pattern, which is randomly generated and repeats itself every 30 s.
The last profile keeps the load steady at 60%, and the reference speed profile was also
generated with random numbers. It is plotted in Figure E.10c. The total period is 120 s
for all three profiles. In the remainder of this paper, these profiles will be referred to as
Profile 1, Profile 2, and Profile 3.

Data collection of all conditions of the PMSM was repeated for all mentioned profiles
in the following fault condition: There were healthy conditions, ITSC with 5% severity,
local partial demagnetisation, and a mixed faulty case of ITSC and demagnetisation.





          
    

E.6 Result and Discussion

E.6.1 Position Estimation

The purpose of estimating the rotor position is to remove the need for any position infor-
mation or sensor in the fault classification and make the classifiers robust against speed
changes. A fault classifier scheme using stray flux alone would be easier to implement in
existing sensorless PMSM drives , since an external flux sensor can be placed in proximity
of the PMSM. The optimisation problem, which estimated the speed, was able to esti-
mate the electrical position θe from a flux signal with an average relative error of less than
0.5%. Therefore, the position measurements were replaced by the estimated position for
the resampling process. The estimated electrical angle position and the measured value
from the encoder are plotted in Figure E.11.
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Figure E.11: Comparing estimated θe with measured θe

E.6.2 Comparing Physical Parameters

The performance of the four learning classifiers, EDT, KNN, SVM, and FNN, is investi-
gated. The recorded data of operation Profile 1 with regular change in speed and load
is split in 80% for training and 20% for testing. The observation in Profile 1 is shuffled
randomly before the split to prevent over-fitting of the classifiers. After training, all al-
gorithms were tested on the whole datasets of Profile 2 and Profile 3 , which were also
shuffled, and the remaining observation from Profile 1. The performance of algorithms
is varied depending on the training data. Therefore, the average achieved accuracy and
training time are obtained by a Monte Carlo analysis, where the algorithm is repeatedly
trained and tested 100 times. The training time is reported in Table E.2 . All the algo-
rithms had a training time less than 3 s. However, the computation times of EDT and
FNN of the first and second orders of magnitude are larger than the other two.





       
  

Table E.2: Training time of the machine learners

Number of Classes EDT KNN SVM FNN
2 0.60 s 0.011 s 0.084 s 1.3 s
4 2.8 s 0.010 s 0.12 s 2.1 s

The letters "τ", "I", and "ϕ" in Figures E.12–E.14 refer to the use of torque, current,
and stray flux signals for training the algorithms, respectively. The number refers to how
many sensors were used to compute the features in each observation. For the torque
signal, there is only one transducer coupled between the motor and generator. Three
current sensors or one sensor per phase are used to collect current signals. There are
four hall sensors in the setup, which can record the radial and tangential components
in proximity of the motor through data acquisition . In the comparison study between
physical parameters, only one pair of hall sensors is used.

For single faults, all four machine learning algorithms were trained on Profile 1 in the
cases of only local demagnetisation or ITSC fault (severity 5%). The achieved accuracy
of the classifiers is on the y-axes in Figure E.12 and Figure E.13 with a range between
50% and 100%. This highlights the differences in performance of the classifiers trained
with different physical measurements and operation profiles. In case of ITSC fault, all
classifiers obtain an accuracy less than 70% with the current and torque measurements. It
appears that these physical parameters are not sensitive to ITSC. This phenomenon can
be explained based on the configuration of the stator winding with three parallel strands.
The short-circuit tap s are connected to the phase terminal, which is a common point
for all three strands. The other end of the short-circuit was soldered to a single strand,
making the remaining strands in parallel unaffected. Therefore, the 5% ITSC fault has less
impact on the motor torque or total phase current, which is the sum of all the currents
in the three strands. However, the hall sensors are significantly more sensitive to the
presence of the ITSC fault. The algorithms EDT, SVM, and FNN can reach an average
accuracy over 90% when testing on data of Profile 1 . The purpose of the pre-treatment of
the time-series datasets is to make the machine learning algorithms more robust against
transient operating conditions. The strength of this process is further demonstrated by
testing the machine learner on Profile 2 and Profile 3. None of the machine learners have
been train with samples from these operation profiles. The accuracy of the ITSC detector
drops from around 95% to around 85%, with SVM and FNN having the highest accuracy.
The drop in accuracy implies that there is some over-fitting, and the machine learners
can be confused by new unexpected operating conditions. However, the accuracy of 85%
is still considered respectable. This is the accuracy when testing on one operation profile,
which the machine learners have not been trained for, and an ITSC fault with 5% severity
on one out of three parallel strands in a PMSM is less severe as compared to the case
of one strand per phase. KNN has the lowest accuracy in this case study. It is hardly
better than random chance when being trained on features computed from only torque
or current data and tested on Profile 2 and Profile 3. Data from stray flux sensors on the
other hand achieve an average accuracy of around 80%.
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Figure E.12: Detection accuracy with ITSC alone obtained by (a) EDT, (b) KNN, (c)
SVM, and (d) FNN
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Figure E.13: Detection accuracy with demagnetisation alone obtained by (a) EDT, (b)
KNN, (c) SVM, and (d) FNN

For the single fault of local demagnetisation, all four classifiers can reach an accuracy
larger than 90% with features computed from stray fluxes, as shown Figure E.13. It is
noted that the data from stray flux sensors allows all four classifiers to detect the local
demagnetisation with an accuracy of above 90%. The accuracy does not drop significantly
when being tested on the unseen operation profiles (Profile 2 and Profile 3). This indicates
that the asymmetry caused by local demagnetisation is detectable, and the classifiers
become robust to unseen load and speed changes for identifying these signatures. The





       
  

performance of the machine learners drops significantly if the current or torque data are
used instead of computing the input features. The KNN-based classifiers have overall
the worst accuracy among the tested algorithms. However, the accuracy achieved with
features computed from stray flux is on par with the rest.

For the mixed fault, the machine learning algorithms are not only trained for fault
detection but also for discrimination between local demagnetisation and ITSC. In this
study, there are four classes: no-fault, only local demagnetisation fault, only ITSC fault,
or mixed fault. There is an equal number of observations in each fault case; thus, the
y-axes in all of the bar plots in Figure E.14 are limited to above 25%. The EDT, SVM,
and FNN-based classifier have the highest accuracy among the studied algorithms. The
accuracy of all the classifiers can be increased by using more data for training, e.g., if all
four hall sensors are included. The KNN -based classifier has an accuracy of just above
25% when being trained and tested using current or torque data on Profile 2 and Profile
3. In addition, the mixed fault does deteriorate the performance of the tested algorithms
if they were trained on separate faults. This indicated that the fault signatures of local
demagnetisation and ITSC in their incipient state are difficult to separate. However, the
tested algorithms using stay flux signals can improve the performance in detecting these
magnetic asymmetry.
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Figure E.14: Classification accuracy with mixed fault obtained by (a) EDT, (b) KNN,
(c) SVM, and (d) FNN.

All the average accuracies are plotted in Figure E.12 to Figure E.14 and reported in
Table E.3. The columns blow "Demagnetisation" and "ITSC" are in case of single fault.
In case of demagnetisation, all algorithms achieve an accuracy of above 90% , which is
highlighted in bold. The last three columns under the label "Mixed" refer to the mixed
fault of demagnetisation and ITSC.





          
    

Table E.3: Average classification accuracy (%) for detecting demagnetisation, ITSC, and
mixed fault case.

Machine Operation Demagnetisation ITSC Mixed
Learner Profile 1 τ 3 I 2 ϕ 1 τ 3 I 2 ϕ 1 τ 3 I 2 ϕ

1 85.6 82.5 99.5 69.6 72.6 93.9 58.5 59.4 87.8
SVM 2 76.9 66.1 99.4 65.9 53.7 84.7 48.2 38.8 78.7

3 76.3 64.5 96.4 60.6 55.8 81.1 45.2 38.7 73.7
1 66.2 69.6 98.2 63.9 69.7 88.5 50.0 53.5 81.8

KNN 2 58.4 56.2 98.3 54.3 50.6 75.2 31.6 30.1 66.1
3 56.0 60.5 96.5 50.7 53.5 80.0 28.2 31.2 69.2
1 87.4 82.9 98.5 70.9 68.2 91.6 59.2 57.4 86.3

EDT 2 80.8 61.2 98.0 62.3 57.3 78.5 46.6 33.6 71.1
3 80.8 71.1 93.7 64.7 54.4 84.0 48.2 41.1 73.2
1 85.4 83.5 99.6 72.7 75.1 96.6 58.5 60.6 89.9

FNN 2 74.1 68.1 99.9 58.8 56.0 85.0 42.0 41.2 77.7
3 71.2 66.5 97.5 55.9 56.0 86.3 38.7 39.0 75.4

E.6.3 Required Samples for Fault Classification

Normally, the length of samples used as input for FFTs is measured in time. Since
the time-series data have been resampled due to the transient operation condition, the
length of each sample is defined by the number of cycles. Stray flux and current signals
measured from a PMSM are cyclical due to their sinusoidal nature. One cycle is defined
as one period of the fundamental frequency in the measurement. It is equal to double
the number of rotor revolutions in the case of four-pole motors. The frequency or order
resolution of the spectrogram computed by FFT depends on the length of the sample;
thus, a longer sample would give more confidence in the presence of peaks. A longer
sample will also equate to a longer measuring period, which depends on the motor speed.
For example, 30 revolutions (60 cycles) of a four-pole PMSM running at 3000 rpm are
equal to a measurement period of 0.6 s, but this will increase to 2.4 s when the motor
is running at 750 rpm. Therefore, it is of interest to find the minimum number of cycles
required for accurate fault detection.

Figure E.15 shows line plots of the detection accuracy of local demagnetisation achieved
by the FNN classifier, which has the highest accuracy at different numbers of cycles used
to compute the spectrogram. The achieved accuracies were invested in cases when the
features were being computed using data from one torque sensor (1 τ), three current
sensors (3 I), two hall sensors (2 ϕ), and four hall sensors (4 ϕ). Combination of the
three different physical parameters was also tested, but none of them gave a significant
improvement as compared to the case of using four flux sensors. The accuracy in all four
cases showcased in Figure E.15 is increased if using data from more cycles. However, only
the two cases using stray flux data do converge. The accuracy converge if using four-flux
sensors data of 20 cycles and two hall sensors data of between 30 and 40 cycles. The
FNN-based classifier takes longer to converge, implying that unseen speed changes may





       
  

10 20 30 40 50 60

A
cc

ur
ac

y 
(%

)

60

70

80

90

100

Cycles

(a)

Cycles

(b)

Figure E.15: Performance of FNN-classifier for detecting local demagnetisation alone with
spectrograms computed from different numbers of cycles in operations of (a) Profile 2 and
(b) Profile 3.

still offer a challenge in training machine learning classifier. It is recommended that one
pair of flux sensors of at least 20 cycles, measuring tangential and radial components,
should be used for a reliable identification of magnet defects. If the data have a length of
20 cycles, i.e., 10 rotor revolutions of the rotor, then the required measurement time for
computing one set of features is 0.8 s when the motor operates at 750 rpm or 0.2 s when
it works at 3000 rpm. The fault classifiers will perform better if being trained on features
computed from longer datasets, but they will take longer to acquire the first sample. The
required computing time of the next dataset of features can be significantly reduced if the
dataset for the next set of features is overlapped with the previous one.







E.7 Conclusion

This paper presents a scheme of fault classification for single and mixed faults of a sensor-
less PMSM drive in dynamic operations using two external stray flux sensors alone. An
order tracking method based on position estimation is proposed for resampling the mea-
surement before generating features for machine learning algorithms. This eliminates the
need for position sensors and makes the learning classifiers more robust to speed changes.
The fault classifiers are trained using data from Profile 1, but they achieve high accuracy
for detecting magnet defect or ITSC faults when tested on the datasets in Profiles 2 and
Profile 3. This work also introduces a method of inducing local demagnetisation through
heat treatments.

The comparative study shows that current and torque signals are not sensitive enough
to detect the faults in the studied PMSM. However, data from two external stray flux
sensors allow the classifiers to detect faults significantly better, although all learning
classifiers are less robust to new speed profiles when trained for ITSC faults. FNN achieved
the highest accuracy of the learning classifiers test in this study. It is recommended that
the measurement period is set to a minimum of 10 rotor revolutions for computing one
set of features without a significant loss of accuracy.
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F.1 Abstract

This paper proposes an active learning scheme to detect multiple faults in permanent
magnet synchronous motors in dynamic operations without using historical labelled faulty
training data. The proposed method combines the self-supervised anomaly detector based
on local outlier factor (LOF) and a deep Q-network (DQN) supervised reinforcement
learner to classify inter-turn short-circuit, local demagnetisation and mixed faults. The
first fault, which is detected by LOF and verified by an expert during maintenance, is used
as training data for the DQN classifier. From that point onward, LOF anomaly detector
and DQN fault classifiers are working in tandem in identification of new faults, which
require an expert intervention when either of them identifies a fault. The robustness of
the scheme against dynamic operations, mixed fault and imbalanced training datasets is
validated via a comparative study using stray flux data from an in-house test setup.

F.2 Introduction

Permanent magnet synchronous motors (PMSM) in off-shore wind turbines and electric
vehicles are intensively exposed to mechanical and thermal stresses in dynamic operations
with thermal cycling. These result in inter-turn short-circuit (ITSC), and local demag-
netisation fault (DF) [1]. A local demagnetisation only affects a small region of rotor
magnets in early states, and induces a magnetic asymmetry in contrast to uniform DF,
which downgrade all magnets equally. Detecting and identifying these faults in incipient
stages allow for life prolonging operation or planned maintenance, reducing costs and
production down-times [2]–[4].

Fault detection and identification (FDI) methods for electrical machines have been ex-
tensively developed and categorised as: model-, signal- and machine learning (ML) based
methods [5]. The model-based methods aim to identify fault signatures by estimating
hard-to-measure parameters and computing a residual between a suggested model and
measurements. This approach relies on the accurate information of physical parameters
in the model or detailed dimensions of machines, which are difficult to acquire in reality
[6]. Signal processing methods detect a fault based on fault-related characteristic frequen-
cies. These methods are simple but are only applicable to single fault diagnosis. Further,
missing a fault characteristic frequency does not guarantee that a machine is completely
healthy. ML based methods have recently gained popularity since they are less demanding
on prior knowledge of a machine [7].

To address the lack of labelled faulty data issues, anomaly detection has been used
in various studies [8], [9]. These anomaly detectors and one-class classifiers (OCCs) train
on the observation from the healthy cases. A trained OCC can quantify the deviation
of a new data sample from the healthy samples. A large deviation from a healthy sam-
ple is considered as a faulty case. Krawczyk et. al. [10] separate the OCCs into four
categories namely; (1) Density-based methods e.g. local outlier factor (LOF) [11], (2)
Reconstruction-based methods such as auto-encoder [12] and contrastive learning [13],
(3) Boundary-based methods e.g., one-class SVM [8], (4) Ensemble-based methods which
combine OCCs to form a more flexible data description model [10]. It is important to





          
    

use a proper comparative study to find the best OCC type for a given anomaly detec-
tion application. However,to the authors’ knowledge, finding the best OCC method for
detecting anomaly in PMSMs has not been studied in the literature.

Another method to tackle the lack of labelled faulty data is using active learning
(AL). It is a set of semi-supervised learners [14], [15], which are used to accelerate the
labelling process of partially labelled dataset. They are trained on the labelled samples
and tests on the unlabelled samples. The prediction with the lowest confidence is passed
to an expert, who "actively" labels the dataset for the ML-based detection. An AL is
often called a cooperative learner when it significantly alleviates the labelling task for
the expert. Alternatively, a self-supervised anomaly detector can be implemented in an
AL scheme. Senananyaka et. al. [8] proposed a FDI development scheme without using
historical data from operating faulty motors. Within the study, a self-supervised one-
class SVM is first used to detect the anomaly. However, this OCC defines healthy domain
based on its kernel function and may include regions of low competence. It will have a
high rate of false negatives (FN) if the healthy and faulty classes overlap. The second
part of the presented FDI scheme is a convolutional neural network (CNN) classifier,
which is trained by samples identified by the one-class SVM and validated by an expert.
Further development of such a FDI will create a more competent CNN with knowledge
of faults, that have occurred. The authors in [8] trained and tested the FDI scheme
on a balanced dataset alone. However, obtaining a balanced dataset for ML-based fault
diagnosis methods is not feasible from PMSMs in offshore wind turbines. Developing a
novel fault diagnosis must take the imbalance in datasets into consideration.

Imbalance in a dataset is often measured by the ratio (λ) between negative (healthy)
and positive (faulty) samples. The problem of imbalance data set is amplified due to
noise, overlap between classes, and if one class is represented by multiple clusters [16]. A
common method for "rebalancing" the imbalanced data set is to oversample the minority
class and undersample the majority class. Both of these processes can be executed by
random sampling. However, the minority class also has an option for generating new
synthetic samples with different variations of synthetic minority oversampling technique
(SMOTE) or extraction maximisation imputation-based class imbalanced learning [17].
Zhang et. al. [12] proposed a self-supervised feature learning scheme for bearing fault
in steady state with less than 50 labelled training samples per class. A CNN is trained
with augmented data to match the computed pseudo labels, which consist of statistical
features and features extracted from an auto-encoder. This allows for rich feature mining
from a small number of positive samples. However, the existing studies could deal with
imbalanced datasets for detecting single faults alone in steady states while using a lot of
historical data at faulty conditions.

This study aims to develop a novel scheme of mixed fault diagnosis in sensorless PMSM
drives under dynamic operations while addressing the problems of imbalanced datasets
using limited samples from faulty conditions. Within the framework, an anomaly detector
is developed based on a LOF to define more complex domains in healthy cases to tackle
overlapping classes. The proposed scheme is proven to be robust against dynamic oper-
ations at different operation profiles by resampling at a fixed angular increment without
using any position sensor. This suggested scheme, using external flux sensors alone, allows





       
  

for developing a plug-and-play automatic fault detection without modifying the existing
drive systems in critical or offshore applications, where sensorless controls are preferred
due to reliability or reduced maintenance cost.

F.3 Proposed Fault Diagnosis Scheme

The proposed FDI scheme shown in Figure F.1 is developed based on an online fault
diagnosis scheme in [8]. The pretreatment after data collections involves resampling of
the original time-series data at a fixed angular increment. The rotor position is estimated
from one stray flux measurement with an optimisation problem, being detailed in Section
III. The resampled data is split into intervals of 30 revolutions, which are converted to
the frequency domain by fast-Fourier transform (FFT). The spectrograms are normalised
with respect to both amplitude and frequency of the fundamental component. Then, the
spectrograms are enveloped by splitting the spectrogram into intervals with a length of
0.5 order centred around the half harmonics (0.5, 1, 1.5, ...) to find the maximum in
each interval. This saves the storage space while maintaining the information on the half
harmonics. The pretreatment makes the FDI scheme robust against transient operation
condition and can be implemented in sensorless drives.

Start
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True

Data 

acquisi�on

Correct

fault?

Update

Expert 
False

Update
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training set
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UpdateFalse
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Anomaly detector
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Figure F.1: Flowchart of the proposed FDI scheme. Note: Arrows coloured in red, blue
and black represent information flow related to classifier, detector or both; Green objects
represent processes/actions; purple boxes represent detector and classifier, red diamonds
represent decisions

The FDI scheme starts with detecting anomaly using a self-supervised anomaly de-





          
    

tector, since historical data at faulty is not available. If the anomaly detector gives a
false positive (FP), which is determined by an expert, it then needs to be updated with
these FPs to learn the new region of healthy case. True positive samples marks the end
of the first stage of the FDI scheme since the samples of faulty case are now available for
training of the fault classifier. The second stage keeps the fault detector, but it works
alongside with the fault classifier. An investigation by an expert is required when either
the detector or classifier identifies a fault. If a fault is detected and classified as a previ-
ously discovered fault, the fault search can be narrowed down during maintenance. Note
that in the first iteration of stage 2, the classifier only knows of one fault. However, more
data during operations will result in a more knowledgeable and confident FDI, which can
speed up the maintenance process, reducing unexpected downtime and cost. The detailed
description of the FDI is given in Algorithm 1.

Algorithm 1 Detailed description of FDI scheme
Require: Healthy case data set, threshold, maintenance expert

while No discovered faulty cases do
Compute Anomaly score with OCC
if Anomaly criterion = TRUE then:

Expert investigation
if Fault = TRUE then:

Perform maintenance
Label newly discovered fault and train classifier

else if Fault = FALSE then
Update OCC

end if
end if

end while
while At least one discovered fault class do

Compute Anomaly score with OCC
Predict fault class with classifier
if A fault is detected by classifer or OCC then:

Expert investigation
if Fault = TRUE then:

Perform maintenance
if Fault = New then

Label new fault and update classifier
else if Fault = Old then

Label new fault samples and update classifier
end if

else if Fault = FALSE then
Updata OCC

end if
end if

end while





       
  

F.3.1 Anomaly detection

The existing anomaly detectors using self-supervised learners need samples from healthy
cases to identify any anomalies, which later can be labelled by an expert for initiating
the training of a fault classifier in a later stage. The suggested one-class SVM in [8] is
replicated, and 10 % of the training data is assumed to be outliers. The drawback with
this OCC is its assumption of defining the region of healthy case with the kernal function.
Regions of low competence may be included to increase the chance of FN. To address this
demerit, a density based method LOF in [11] is used in this work to replace the one-class
SVM. Like the k-nearest neighbours, the pair-wise distance between all the samples in the
training dataset needs to be computed. This will make the LOF computationally heavy
when the library of samples in the healthy case become too large. This problem can be
solved by selective samplings [18].

The samples in datasets are grouped into clusters. An outlier can be isolated by a
threshold value of the average distance to its nearest neighbours. However, the samples
of the healthy dataset do not necessarily have a uniform density in its cluster in feature
space. Thus anomalies can be closer to a cluster, depending on the region in the feature
space [11]. LOF isolates outliers based on the sample density ρsamp in feature space.

ρsamp(P ) =

(
1

k

k∑
n=1

d(P, on)

)−1

(F.1)

where k is an integer, d(P, on) is the pair-wise Euclidean distance between point P and
its nearest neighbours on. Then the sample density of each of the neighbour points on
(ρsamp(on)) needs to be computed. LOF is here defined as:

LOF(P ) =
1

k

k∑
n=1

ρsamp(on)

ρsamp(P )
(F.2)

Figure F.2: Illustration of LOF in a 2D-feature space with P (black), on (orange), d(P, o1)
(red), distance between o1 to its nearest neighbours (gray), and rest of samples in the
cluster (blue)

Figure F.2 illustrates the principle of LOF. The sixth nearest neighbours for point
P are coloured in orange, while the rest of the dataset is coloured in blue. Point o1 is





          
    

used as an example, where o1 and its sixth nearest neighbours have grey connections. An
anomaly is detected if LOF is greater than a set threshold. This implies that the new
observation P is located in a region, which is a too "sparsely" populated region in feature
space.

F.3.2 Fault identification

After the anomaly detection, the multiple fault identifications are implemented by a rein-
forcement learning (RL) based classifier in this study. RL has already proven its effective-
ness in information theory, simulation-based optimisation, control theory and statistics
[19], [20] and developed for bearing fault diagnosis alone [21] while the imbalance issues
were not addressed. The proposed RL scheme based on a double deep Q-network (DQN)
in [22] will be compared with the recently developed using a CNN architecture for fault
identification in [8]. The problem with the existing CNN classifier is that it is not suited
for imbalance datasets. The proposed DQN fault classifier can compensate the imbalance
datasets without any oversampling. RL usually uses the analogy of teaching the agent to
play a game. In the fault classification, the RL agent plays a "quiz game". It is formulated
in form of 1D arrays as features, where the agent needs to give a response on classification.
The Q-learning aims to set up a Q-table that contains the policy to maximise a reward
depending on the input. In DQN, the Q-table is replaced with a neural network. Figure
F.3 illustrates the interaction between the DQN agent and its environment. The illustra-
tion inside the DQN shows the layers of the critic network with four layer: Input layer
(243 nodes), fully connected layer (100 nodes), ReLU activation function layer and the
second fully-connected layer. The number of nodes in the final layers is equal to number
classes in the training data.

Order
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Figure F.3: Block diagram of DQN interacting with the environment

The action of the agent is associated with the label of the training dataset. If there is
only two classes in the training set, it is sufficient to define the action space as A = {0, 1}.
In this study, the action space is defined as A = {[0, 0], [0, 1], [1, 0], [1, 1]}. The entries in





       
  

A represent healthy or no fault (NF), DF, ITSC and mixed fault (MF), respectively. MF
is the mix of DF and ITSC. The encoding of the labels is for the DQN only, which needs
to be decoded after the prediction.

The reward function [22] is weighted based on the ratio between negative (healthy
case) and positive (faulty case) samples.

rt =


1, at = Lt = Healthy

−1, at ̸= Lt = Healthy

λ, at = Lt = Faulty

−λ, at ̸= Lt = Faulty

 (F.3)

The performance of a classifier to identify positive samples will decline when the imbal-
ance ratio λ is increased. Eventually, the network will classify every sample as negative
regardless of input. This phenomenon is called a collapse and is caused by the fact that
the negative samples receive a greater sway in the training of the network since they are
in majority. The role of rt is to tackle the trend towards a collapse by balancing the
weights of the negative and positive samples in the training process. The training process
of the DQN is described in Algorithm 2 [23], where Θ is the parameter critic and τ is the
smoothing factor for updating the target critic, which has the parameter Θt. There is no
terminal state for St+1.

Algorithm 2 Training Algorithm for DQN
Require: Positive and negative samples

for Nepi episode do
Pick a random sample s1 from the training set
for Nstep-1 steps do

if Exploration then
Pick a random action at from A

else
at = max

at
= Q(st, at|Θ)

end if
Execute at and observe the reward rt
Randomly pick st+1 from training set
Store the experience (st, at, rt, st+1)

Compute and store the value function:
yt = rt + γargmax

at

Qt(st+1, at+1|Θt).

Compute the loss for a mini-batch with M samples:
L = 1

M

∑M
t=1 (yt −Q(st, at|Θ))2

Update the critic by one-step minimisation
Update the target critic parameters: Θt = τΘ+ (1− τ)Θ

Update the decaying probability for exploration
Repeat

end for
end for





          
    

F.4 Experimental setup and data collection

F.4.1 In-house test bench

The studied four-pole, 2.2 kW PMSM is coupled to a generator with a torque transducer
in between as shown in Figure F.4. The output of the generator is rectified by a three-
phase full-bridge rectifier with a 500 µF capacitor bank, being connected across the output
terminals, to remove the ripples of the DC output. The brake chopper is regulated by a
PWM signal, which needs to be amplified by a factor of 4 due to the voltage amplitude
insufficiency from the Microlabbox. The PWM signal is defined by the duty cycle, which is
an ideal system that would be proportional to the reciprocal of the motor speed. However,
due to losses and imperfections, a look-up table is generated for the duty cycle. It dictates
the required duty cycle for achieving a requested load in the speed range between 1000
rpm and 2000 rpm.

Figure F.4: Overview of the test bench with (1) resistor bank, (2) flyback diode, (3)
three-phase rectifier with capacitor bank, (4) 12 V DC-supply, (5) IGBT brake chopper
with OP-Amp, (6) hall sensors, (7) PMSM, (8) torque transducer, (9) generator, (10)
short circuit resistor, (11) Microlabbox, (12) 24 V DC-supply, (13) ABB drive, (14) office
laptop and (15) cabinet containing the current sensors





       
  

The solid state hall sensors, Type SS495A, measure the stray flux. The output of these
sensors is linear and ratio-metric within the range [-67, 67] mT and has a sensitivity of
31.25 mV

mT
. Two sensors were soldered to a Veroboard and wired to the Microlabbox, which

delivers power to the sensors and records the measurement. The sensors could measure
both tangential and radial components of the stray flux. Two sets of sensors were placed
in proximity to the PMSM at the top and on the side.

F.4.2 Description of collected datasets

Stray fluxes are measured for three different non-stationary operating conditions with
a sampling rate of 10 kHz. The time-series data is resampled with 400 samples per
rotor revolution and split into samples with a length of 30 revolutions. Each sample is
transformed into the frequency domain to produce the features for each observation used
for training and testing of the proposed algorithm. The test setup is operated with the the
three operation profiles shown in Figure F.5. Profile 1 consists a regular pattern, where
the speed ramps up and down between 1000 rpm and 2000 rpm, and the load changes
between 25 % and 75 % of the full load. Profile 2, which keeps the load constant at
60 % of the full load, while the speed changes with a randomly generated speed profile.
Profile 3 keeps the speed constant at 1200 rpm, and then the load is randomly generated,
where it repeats itself every 30 s. Stray flux measurement was collected from the PMSM
operating in all mentioned profiles in the following fault condition: NF, ITSC with 5 %
severity, local partial DF, and a MF case with both ITSC and DF. The DF is induced
by one pole on a hot plate where two spots in the middle on one North pole have lost
30 % of original magnetic strength. The studied PMSM has 3 parallel strands, thus the
severity is a estimated value of the shorted turns between the phase terminal on a single
strand while the two other strands are unaffected. The ITSC is induced with a 1 Ω short
circuit resistor, for mimicking the remaining insulation coating in the ITSC.
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Profile 3 with variable load and constant speed





       
  

F.5 Results and Discussions

F.5.1 Performance of anomaly detection

The one-class SVM and LOF need to define their respected criterion for anomaly identifi-
cation. The sensitivity of the one-class SVM is defined by the outlier fraction, where the
portion of outliers in the training dataset is set to 10 %. The output of the trained one-
class SVM under testing is a numeric score, which is less than 0 in case of an anomaly as
suggested in [8]. The LOF does require trial and error to determine a suitable threshold.
A value close to 1 will make the detector more sensitive but has the risk of increasing the
FP rate. The threshold for LOF was set to 1.1, which means that a new point is classified
as an anomaly/fault if the regions of its kth nearest neighbours are on average of 10 %
denser than the region of the new point. The parameter k is set to 5.

The one-class SVM and LOF classifiers are first trained on the healthy datasets from
Profile 1 with the result shown in Tabel F.1 and Table F.2. The healthy dataset was split
by 83.3 % (250 samples) for training and 16.7 % (50 samples) for testing. All the samples
from each the faulty cases from any operation profile are used for testing (900 samples in
total). Initially, the training set includes only samples from Profile 1. The performance
of the one-class SVM has an accuracy of 84 % when tested on the same profile during
training. The accuracy of the one-class SVM anomaly detector proposed in [8], when
testing on each of the fault cases, varies between 57 % and 98.3 %. The proposed LOF
algorithm, on the other hand, predicts all the fault cases as anomalies almost perfectly.
However, the proposed LOF has a high FP rate. To address this issue, more samples in the
healthy dataset from Profiles 2 (50 samples) and 3 (50 samples) are added to the training
data to improve in the proposed FDI scheme with AL. As a result, the accuracy of the
proposed LOF anomaly detector improves constantly when more samples are added. The
compared one-class SVM detector suffers from the newly added data samples, where its
accuracy in healthy cases improves, but FN rate increases. This proves that the proposed
LOF anomaly detector could effectively identify anomalies better than the existing one
when more knowledge of healthy cases is added during normal operations.

F.5.2 Training times of fault classifiers

To compare the computational effectiveness of the proposed DQN fault classifier and
existing one, the average training times of DQN and the CNN benchmark are reported in
Table F.3 while increasing the imbalance in datasets. The classifiers were trained with two
classes (healthy and faulty), and with all four classes of healthy, DF, ITSC and MF. The
training time for the DQN stays close to constant around two minutes while the training
time of the CNN declines when increasing the imbalance as reported in Table F.3. The
imbalance ratio λ is increased by removing samples in the faulty case. Number of steps in
each of the episode in the DQN is set to 400, which would explain why the training time
does not change. The CNN-based classifier on the other hand uses all available samples in
each step in the training. It is noted that the imbalance of the training dataset in case of
four-class is computed by the imbalance of each respected fault class. The ratio between
healthy and each faulty case is considered as a more relevant metric in the compensation





          
    

Table F.1: Accuracy of one-class SVM outlier detector

Fault test case Test Extra samples from Profile 2 and 3

(Criterion) Pro. 0 50 100 150 200 250
Healthy 1 84.0 82.0 80.0 80.0 80.0 80.0
(Score ⩾ 0) 2 80.0 98.0 98.0 98.0 98.0 98.0

3 46.0 70.0 80.0 80.0 84.0 90.0
DF 1 71.7 55.3 56.0 56.0 51.7 53.0
(Score < 0) 2 57.0 46.0 45.7 44.3 41.0 41.0

3 84.0 58.3 54.7 51.0 44.7 44.3
ITSC 1 82.3 55.3 53.7 53.0 46.3 45.7
(Score < 0) 2 90.7 54.3 48.0 39.7 22.7 21.7

3 98.3 77.0 74.7 67.0 59.0 57.0
MF 1 66.7 44.0 46.0 43.0 39.7 38.7
(Score < 0) 2 73.3 32.0 30.3 23.7 16.3 15.0

3 93.0 62.3 58.7 51.7 42.7 37.0

Table F.2: Accuracy of LOF outlier detector

Fault test case Test Extra samples from Profile 2 and 3

(Criterion) Pro. 0 50 100 150 200 250
Healthy 1 86.0 86.0 88.0 88.0 80.0 98.0
(LOF ⩽ 1.1) 2 14.0 72.0 94.0 80.0 86.0 84.0

3 8.0 52.0 88.0 80.0 82.0 90.0
DF 1 100 100 98.0 98.0 100 100
(LOF > 1.1) 2 100 98.0 100 100 100 100

3 100 92.0 94.0 94.0 98.0 98.0
ITSC 1 100 100 100 100 100 100
(LOF > 1.1) 2 100 100 100 100 100 100

3 100 100 100 94.0 100 100
MF 1 100 98.0 100 96.0 100 100
(LOF > 1.1) 2 100 94.0 96.0 100 100 98.0

3 100 92.0 84.0 92.0 96.0 96.0





       
  

Table F.3: Recorded training time of DQN and CNN

Imb. DQN CNN

ratio 2 classes 4 classes 2 classes 4 classes
1 133.5 125.0 279.1 525.7

1.25 131.9 123.0 233.6 437.9
1.67 132.1 120.5 209.6 348.7
2.5 131.1 122.2 187.2 284.8
5 129.4 122.0 163.2 196.4
10 129.6 124.0 140.7 155.3
15 126.5 118.4 141.1 154.9
30 127.1 119.7 142.9 139.3

described in the reward function. This study, equal imbalance (Imb.) ratios λ are applied
for each fault case.

F.5.3 Performance of two-class classifiers

The proposed DQN and existing CNN fault classifiers are trained to identify a specific
single fault, namely DF or ITSC. Table F.4 list the results when the DQN and the
CNN classifiers are trained to identify these faults. Note, the accuracy results of the
fault classifiers are listed in Table F.4, in which green-coloured numbers show the high
accuracy results of over 98 % and red-coloured numbers indicate low accuracy results of
less than 50 %. This is to highlight the main trends of the results. The terms of positive
and negative samples will hereafter be interchangeably used with faulty and healthy case,
respectively. The imbalance is increased by reducing the number of positive samples in
the training dataset. All negative samples from the PMSM operating with Profile 1 are
used for training, but 50 of these samples are randomly picked for testing. 50 test samples
are randomly sampled from each faulty case and are sampled from the samples that are
not a part of the training dataset, when λ > 1. It is noted that this selection is only
applied for the testing dataset from Profile 1. All samples from Profile 2 and Profile 3
are used for testing (300 samples per class per profile). The performance of the DQN
and CNN classifiers are compared with the metrics, true positive rate (TPR) and true
negative rate (TNR).

In the case of DF, only the samples of the motor with an induced local demagnetisation
are used as the positive training samples. The proposed DQN and existing CNN classifiers
are tested on all four-fault cases, namely DF, ITSC, MF and NF or healthy, to investigate
what the two other faulty datasets (ITSC and MF) can be classified. The fault signatures
of MF may share common characteristics with both of DF and ITSC. Therefore, it is
possible for the MF samples to be classified as a fault by the classifier trained for detecting
DF or ITSC, which is why Table F.4 reports TPR for MF. Ideally, ITSC fault will not
be classified as a fault by the classifiers trained for DF and vice versa. This is why Table
F.4 reports TNR for the fault classifier were not trained before being used in testing.

The proposed DQN classifier and CNN achieve a TPR higher than 90 % for the fault





          
    

Table F.4: Comparing TPR and TNR of DQN and CNN classifiers when trained for
identifying either DF or ITSC

Local Demagnetisation Inter-turn short circuit

DQN CNN DQN CNN

Test Imb. TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR
Pro. ratio DF NF MF ITSC DF NF MF ITSC ITSC NF MF DF ITSC NF MF DF

1 1 100 99.9 95.8 100 97.2 98.4 73.7 99.9 98.5 97.9 12.8 99.4 95.4 96.6 2.9 99.8
1.25 100 99.9 97.6 99.8 96.3 98.1 71.2 99.9 95.7 97.2 9.4 99.6 93.2 93.6 6.7 98.6
1.67 100 99.7 99.6 100 95.8 98.9 71.0 100 97.1 98.1 11.5 98.8 89.1 97.9 5.8 98.8
2.5 100 99.9 99.5 98.8 95.5 99.3 69.8 99.9 98.2 96.5 14.9 98.4 81.6 97.9 1.6 99.9
5 100 98.7 99.6 99.1 92.9 98.6 64.3 99.9 96.4 95.6 14.7 98.9 67.6 96.9 2.1 99.8
10 100 96.1 99.9 97.9 82.1 99.8 49.8 100 96.2 92.8 19.0 97.7 55.4 96.7 3.0 99.7
15 99.9 93.4 99.6 95.8 69.4 97.5 35.8 99.7 93.4 90.3 15.7 98.5 43.5 99.7 2.0 99.5
30 100 88.6 100 93.1 46.9 99.8 23.9 99.9 90.1 84.7 27.2 95.5 23.6 99.7 0.2 100

2 1 99.4 100 95.8 99.9 92.3 93.4 74.3 99.4 91.4 85.1 28.9 95.4 80.0 94.0 3.0 99.9
1.25 99.6 99.9 97.9 100 94.8 93.7 77.1 99.5 92.7 85.1 24.6 96.6 77.8 91.0 4.8 99.7
1.67 99.9 99.6 98.8 100 95.3 93.2 75.8 99.4 90.0 85.7 24.9 96.2 72.8 95.1 4.4 99.6
2.5 99.8 99.1 99.5 99.7 95.2 94.8 75.9 99.4 94.6 77.9 35.1 92.3 65.0 95.9 2.0 100
5 99.9 97.9 99.6 99.3 91.3 95.0 65.8 99.5 94.4 72.5 35.7 91.2 47.4 96.4 1.7 99.9
10 99.9 91.6 99.8 96.4 75.4 97.5 47.3 99.9 88.0 69.9 35.1 91.7 37.6 96.3 1.4 99.8
15 100 85.0 99.9 93.8 66.7 93.2 37.6 98.6 84.6 68.8 30.7 91.2 23.4 99.4 0.6 99.8
30 100 72.8 100 89.8 49.1 97.6 32.2 99.3 79.6 72.3 33.2 88.0 13.2 99.5 0.3 100

3 1 97.9 99.9 89.0 100 99.0 97.1 91.6 100 82.0 91.6 12.4 99.3 76.1 94.6 5.4 99.1
1.25 97.8 99.9 90.9 100 98.5 95.4 90.8 99.7 83.2 90.2 10.1 99.3 81.0 87.9 11.8 96.9
1.67 98.9 99.8 94.0 99.9 99.1 96.4 93.7 100 83.8 90.1 10.9 99.3 76.9 94.6 9.4 96.6
2.5 99.5 98.2 96.5 99.5 98.3 98.0 88.1 99.8 85.9 87.7 11.4 99.0 64.4 97.1 2.0 99.9
5 99.6 97.0 97.5 98.9 97.5 97.6 85.9 99.8 86.6 84.8 11.4 98.8 53.9 95.3 2.0 99.8
10 99.8 93.1 98.4 97.8 88.4 99.6 71.0 100 86.9 80.2 14.1 98.8 39.1 95.9 1.9 99.1
15 99.7 88.4 98.4 96.3 78.0 96.3 57.2 98.6 85.2 79.0 13.3 98.2 22.5 98.4 2.6 99.0
30 99.8 82.2 99.1 95.1 46.8 99.6 30.8 100 83.9 73.2 20.5 95.0 18.2 99.3 0.4 100

cases they are trained before testing when λ = 1. The lowest TPRs for the proposed
DQN and compared CNN classifier are 82.0 % and 76.1 %, respectively when they were
trained for ITSC dataset and tested on profile 3 with a constant speed and variable loads.
The DQN classifier maintains a TPR of above 97.8 % when trained and tested for DF.
However, the TNR for the healthy case is dropping to 72.8 %. The CNN classifier improves
its TNR for the healthy case when the increasing the imbalance of the datasets . Fewer
FPs is normally a positive quality in a classifier, but TPR for the CNN drops to below 50
% when increasing the imbalance in a dataset. The accuracy trend for the CNN classifier
is reduced significantly when all samples are classified as healthy cases. The proposed
DQN clasifier, on the other hand, reduces the possibility of FN, but has overcompensated
slightly and increased FPs. Neither FP nor FN is desirable in FDI. However, both FN
and FP rates can be compensated in the proposed AL scheme by correcting relabel by
an expert, and the proposed DQN fault classifier has a second option with the weighted
reward function.

The MF case includes both DF and ITSC. Therefore, there is a possibility that this
fault case can be classified as one of those faults. This is in the context of fault classifiers,
that are trained for identifying the presence of a specific fault. The test result reveals that
both DQN and CNN classifiers, which are trained for DF, and it identifies MF as a fault.
The TPR reported under MF is lower as compared to the case, where the classifiers are
trained and tested on the same fault case. The TPR for the CNN classifier is also reduced
when increasing the imbalance in datasets. Neither DQN nor CNN classifier identifies MF





       
  

as a fault when they are trained to identify ITSC fault. This result indicates that there
is a high possibility that DF and MF may share the same fault signatures. The fault
classifier, being trained on all four-fault cases included in this study, may find it difficult
to distinguish between DF and MF.

F.5.4 Performance of four-class classifier

The proposed DQN and CNN fault classifiers are further trained with all four fault classes:
DF, ITSC, MF and NF. Figure F.6 shows the hit rates of the DQN and CNN fault
classifiers using test dataset in Profile 3. This includes the TNR and TPR, which were
discussed in Section IV.C. The overall accuracy is also added in Figure F.6. It equals the
average of the four hit rates, since the test dataset is balanced between the four classes.
The proposed DQN and CNN fault classifiers suffer from being trained for all four faults.
They start with an overall accuracy of 75 %, then decrease with respect to the imbalance
of the dataset. Note each fault class has equal λ, which is the imbalance ratio given on
the axis. The performance of the CNN is worse than the DQN, since its accuracy declines
at a larger rate with a trend towards a collapse. Its hit rate for healthy case, i.e. NF, is
increased towards 100 % due to this trend.

Each fault class can be incorrectly classified into three classes. This in total gives 12
miss for a four-class classifier. Figure F.7 plots the miss rates for both DQN and CNN
fault classifiers, which were not close to 0. The comparison still uses the test dataset from
Profile 3. It is noting that the first and last letters in the labels denote the predicted
and true classes, respectively. Figure F.7a reveals that the proposed DQN fault classifier
is confused between DF and MF, which were predicted in the analysis of the two-class
classifiers. The DQN classifier confuses ITSC with NF and MF, while NF is generally
confused with all of the other health classes. This demonstrates that the reward function
may have overcompensated and needs to be adjusted. A combine decision between fault
classifier and anomaly detector may also reduce the rate of FPs since Table F.2 reports
a high accuracy for LOF. The CNN fault classifier does not misclassify NF with any of
the fault classes. The confusion between DF and MF do decrease when increasing the
imbalance, but these fault classes starts to be predicted as NF instead. Almost all samples
from fault case ITSC are misclassified as NF.
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Figure F.6: Hit rates of DQN (top) and CNN (bottom) fault classifiers
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F.6 Conclusion

This study proposed a fault diagnosis scheme trained and tested with both transient
operating condition and mixed faults, where labelled training samples were initially un-
available. The training and testing dataset are collected by stray fluxes from the in-house
test setup. The proposed method order-normalises the spectrogram by resampling the
time-series data at a fixed angular increment to make it more robust against dynamic
operations. The rotor position is estimated with a single external stray flux sensor, which
allows for an automatic fault diagnosis of sensorless PMSM drivetrains without modifying
the existing drives. The local outlier factor anomaly detector was only trained on samples
from Profile 1, which gave a high false positive rate. Nevertheless, the proposed active
learning framework allows for improving prediction accuracy when adding new healthy
case samples. Newly discovered health classes are used to train the proposed DQN clas-
sifiers at different imbalance ratios. The comparative study shows that the DQN fault
classifier is more robust than the existing CNN fault classifier, and can even have over-
compensated the weight of the minority class.
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