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Abstract: Autonomous driving is a research field that has received attention in recent years, with
increasing applications of reinforcement learning (RL) algorithms. It is impractical to train an
autonomous vehicle thoroughly in the physical space, i.e., the so-called ’real world’; therefore,
simulators are used in almost all training of autonomous driving algorithms. There are numerous
autonomous driving simulators, very few of which are specifically targeted at RL. RL-based cars are
challenging due to the variety of reward functions available. There is a lack of simulators addressing
many central RL research tasks within autonomous driving, such as scene understanding, localization
and mapping, planning and driving policies, and control, which have diverse requirements and
goals. It is, therefore, challenging to prototype new RL projects with different simulators, especially
when there is a need to examine several reward functions at once. This paper introduces a modified
simulator based on the Udacity simulator, made for autonomous cars using RL. It creates reward
functions, along with sensors to create a baseline implementation for RL-based vehicles. The modified
simulator also resets the vehicle when it gets stuck or is in a non-terminating loop, making it more
reliable. Overall, the paper seeks to make the prototyping of new systems simple, with the testing of
different RL-based systems.

Keywords: autonomous driving; simulators; reinforcement learning

1. Introduction

Many simulators have been developed for autonomous cars [1–7], and some of the
newer ones include support for reinforcement learning (RL) [2,4,6]. There is a focus on using
standardized methods for testing, such as using code interactions in OpenAI Gyms [6].
Some simulators focus on the realism of their environment, creating highly realistic sensors,
allowing the control of other actors in the simulation. Several of these simulators are
available for free, while others charge a fee.

One of the major issues with existing autonomous car simulators is the ease of prototyp-
ing. Most simulators are large software systems and can often have less modularity while
each part is decoupled, making them difficult to edit. Moreover, some do not use a standard
editing engine, such as the game engines Godot, Unity, or Unreal, or a robotics engine such as
MATLAB’s Automated Driving Toolbox, Gazebo, or MuJoCo. RL has proven to be successful
in tasks many consider more difficult than driving, such as cooperative games [8].

Reward hacking is a term used in RL algorithms when the agent finds an exploit,
obtaining a high reward while not carrying out the intended task. Examples include picking
up repair kits and damaging the boat in racing games, to obtain a reward equal or higher
than from driving the boat. Each environment must consider that an RL algorithm will try
to exploit the reward functions. Therefore, the reward functions must be created to stop the
algorithm from reward hacking. Testing is required to determine which reward functions
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results in the correct behavior and how to train the algorithms faster. For this, there is a
lack of exhaustively tested simulators available.

We introduce a modified simulator to aid the training of RL-based autonomous vehi-
cles, which focuses on the prototyping of systems. More specifically, the simulator allows
for testing open questions in the research of RL autonomous vehicles, such as the role of
continuously resetting the vehicle, explicit road tile rewards, and explicit road detection to
guide the vehicle. We compare the developed simulator with the existing state-of-the-art
CARLA system and show that our novel method is more suitable for RL research than the
established CARLA system.

This simulator would be a step towards testing new and innovative reward functions,
starting with those transferable to the real world, for instance, a road-detection algorithm.

This paper is organized as follows. Section 2 will focus on background information,
including information on other simulators, some implementations of RL in different fields,
and specific information on autonomous cars using RL. Section 3 explains the methods used,
the inner workings of the simulator, its states, actions, and rewards, how the implemented
sensors work, the reward functions, and how the vehicle avoids ending up in a non-
terminating loop. The subsequent section discusses the results of our work, and the final
section concludes the work and discusses future improvements.

1.1. Research Questions and Hypothesis

By developing a new simulator with RL research in mind, there are several open
questions on how a simulator can best support research, which leads us to the research
questions surrounding the environment.

As previously mentioned, testing the reward functions can verify whether the reward
functions in the simulator obtains the desired behavior.

If an RL algorithm does not reward the hack, it should behave as the programmer
intended. Currently, most simulators have somewhat different reward functions, and the
influence of each reward function is not yet known.

We aim to create a lightweight simulator that supports RL with minimal effort for
researchers. We would further like to investigate to what extent typical RL-based research
is possible with such a lightweight simulator, which is not possible with current simulators
such as CARLA.

1. Research Question (RQ)1: Will creating a reset system for the vehicle that stops the
car after it is stuck improve the learning speed?

2. Research Question (RQ)2: Will creating a reward for each road tile be sufficient to
inform the vehicle to stay on the road?

3. Research Question (RQ)3: Will a penalty for driving off the road decrease the number
of time steps required for learning to stay on the road?

RQ 1 is a setup in which the vehicle is reset if it gets stuck or is taken off the road for
too long. The vehicle is reset to see if it improves the speed at which the algorithm learns,
in contrast to a scenario where the vehicle is allowed to carry out several actions before
being reset. When the vehicle is stuck for a while, it is reset to not fill its memory with
actions leading to nothing and which do not inform which actions to perform.

RQ2 refers to giving a reward for each road tile that the vehicle crosses. This reward
aims to inform the vehicle of the distance it has traveled. We compare this method to one
which uses tasks, i.e., first driving straight and, after completing this task, training the
vehicle to drive straight and then turn, and so on.

RQ3 tests the effects of giving the actor a penalty for driving off the road, meaning
giving it a reward of, for example, −0.01. We then see if its performance increases over
time compared to the same implementation without this penalty. This reward function can
easily be implemented in the real world. This allows for some feedback on a real car and
includes the ability to stop an action that may be dangerous.
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1.2. Intervention

Self-driving cars using RL is a relatively new field, which has received much interest
in recent years. Training self-driving cars with simulators is a cheaper method than using
physical vehicles. These simulators generally have different built-in reward functions [2,6].
They are often less modular and more decoupled, making changing the simulator to give
the proper feedback to the vehicle difficult. Prototyping new reward functions could result
in better performance and faster training. As we have seen RL performing better than
humans in games [8–10], there is evidence that RL may benefit self-driving cars.

Our intervention is to modify a simulator by focusing on making a standardized
system that gives feedback to the vehicle, testing these out, and finding which ones inform
its actions best. This includes creating systems for resetting the vehicle when it gets into
a non-terminating loop, giving it rewards based on how far it has driven, telling it when
an episode finished, and more. Creating these systems, and being able to prototype such
systems, will open opportunities for more research in this field and create innovative
solutions for self-driving cars.

2. Background

Reinforcement learning (RL) is a rapidly growing field with some notable innova-
tions in the last few years [8,9,11,12]. Among the most innovative discoveries includes
playing games such as Atari [9] and Go while exceeding human performance [11] and
performing on an expert level in Dota 2 [8]. RL methods have shown more remarkable per-
formance compared to offline supervised learning-based methods [12]. This progress has
led to an interest in the field and an ever-growing appetite for research to make RL-based
autonomous vehicles.

An algorithm for RL self-driving cars needs a reward signal from its environment
to guide the vehicle; training in a physical environment means continuously crashing
to learn from its mistakes. Naturally, this is problematic and leads to most RL vehicle
researchers using computer-based simulations. These allow the RL algorithm to perform
many actions in a controlled environment. There are many simulation environments;
each has its advantages and disadvantages depending on the problem area. Simulators
that give a real number, representing a reward, include DeepDrive [4], PGDrive [6], and
AWS DeepRacer [2].

2.1. Reinforcement Learning-Based Autonomous Vehicles

RL works with rewards given from the environment by performing actions. There are
two main training methods: using data from human drivers and attempting to imitate them,
or training based on the algorithm’s actions. More recent implementations of self-driving
cars include RL-based implementations, with some using imitation learning [13,14], and
others performing RL from the ground up [15,16]. Imitation learning uses data from human
drivers and attempts to imitate the same actions as those performed.

When implementing artificial intelligence (AI) in autonomous vehicles, it is common
to divide the tasks into categories, namely scene understanding, localization and mapping,
planning and driving policy, and control [17]. Scene understanding on its lowest level takes
in the sensors and then tries to perceive the environment around it. An example of such an
algorithm is a semantic segmentation algorithm that divides visible objects to distinguish
between them [17]. Localization and mapping find the location of the vehicle and maps its
surroundings. An example of this is the simultaneous localization and mapping (SLAM)
algorithm, which finds the location of the vehicle in the environment and maps it [18]. The
planning and driving policy revolve around multiple processes, such as lane planning, i.e.,
finding the fastest route to a location, and motion planning algorithms. It performs this
without taking into account the constraints of the vehicle [17]. The controller defines the
speed and angle of the steering wheel and translates the actions given by the driving policy.
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2.2. Simulators

Different simulators focus on different topics; some focus on RL vehicles, others on
supervised learning-based algorithms, and others focus on realism. Finally, we provide a
brief overview of some simulators widely used in the industry and academia.

rFpro is a simulator designed to be highly realistic both in terms of its physics and
visual fidelity, at the cost of computation, storage space, and monetary cost. It is made
for supervised learning-based methods. rFpro includes a camera sensor and can purchase
realistic sensor models from other companies and allows for the realistic simulation of
sensors, with camera features such as a lens flare if the light is too bright [19]. Though the
fidelity of these sensors is very high, and their maps are the most detailed amongst the
other simulators, there is, however, no RL support for this simulator.

CARLA is a simulator made by the Computer Vision Center of Barcelona in coop-
eration with Intel and Toyota [1]. This simulator focuses on supervised learning, with a
multitude of sensors and a variety of maps [20,21]. It includes autonomous agents, among
which are vehicles, pedestrians, traffic lights, and more, giving the ability to control each
agent or just a singular agent for a different degree of complexity [22]. CARLA is mainly
focused on supervised learning (SL), not RL, with their RL-based version not being publicly
available as of when this paper was written. The maps are focused on urban areas, and
the Microsoft Windows support requires manual installation, with the recommendation
being to create a virtual Python version in the CARLA folder. CARLA includes a wide
variety of sensors, actors, and maps. Despite the description of RL [1], CARLA is missing
an established and public baseline for RL research, indicating that it is cumbersome to
implement and test RL-based vehicles. Instead, they use hard-coded agents to control
vehicles, traffic lights, and other game actors.

DYNA4 is a simulator software created by Vector, which aims to aid prototyping
and develop ADAS systems, testing, and modeling of vehicle dynamics. It includes a
few sensors, including LiDAR, RADAR, Ultrasonic, and a camera [5]. The simulations are
highly realistic, with good visual fidelity. This allows for training various ADAS algorithms,
such as a lane-departure model. DYNA4 lacks support for RL-based autonomous vehicles
with a focus on the industry and its needs.

MATLAB’s Automated Driving Toolbox includes a variety of tools for the creation of
an autonomous vehicle simulator. It includes a tool for creating a map for the vehicle to
interact with and a scenario for it to drive. The tool also includes a few sensors, such as a
camera sensor, LiDAR, and specifically a Velodyne LiDAR model [23].

Because it is a toolbox from which each programmer can create their simulator, repro-
ducibility is more complicated here, as the maps must be shared by every programmer.

PGDrive is an open-ended car simulator based on RL. It is compatible with Ope-
nAI Gym, making it easy to test with procedurally generated maps and a few premade
ones [6]. The sensors include LiDAR, RGB, minimap, NaviMark, increment steering, and
tire tension [24]. PGDrive is a simulator with rewards depending on the speed and if the
vehicle is crossing a checkpoint, if it reached the goal, or broke any traffic rules, including
collisions. The game engine used is Panda3D; the environments include a large variety of
variability, and a significantly higher number of different maps than other environments,
with a sound reward system. Due to its procedural nature, any additional systems would
have to consider this procedural generation in creating and testing their systems, which
adds complexity to the programming.

AWS DeepRacer is a racing simulator for training RL-based autonomous cars. Amazon
developed this simulator, which can go from simulation to physical robots [2]. To train
an algorithm in this environment, we need to use Amazon Web Services. The reward
function is based on the location in the lane, with the highest reward being given for being
in the middle of the road. If the vehicle is further from the middle, it is given less of a
reward; if the vehicle is off the road, the vehicle receives no reward. The simulator has a
simplistic reward system and does not run on the users’ computers, instead running on the
Amazon servers.
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DeepDrive is a simulator for creating autonomous vehicles using SL or RL; it is made
in Unreal Engine, with docker environments. It has a reward function that gives rewards
and penalties based on the speed of the vehicle, the distance traveled from the last action,
the vehicle’s deviation from the center of the lane, and the G-forces felt by the vehicle [4].
It also has a reset system for the vehicle if it is not moving a lot. At the same time, the
accelerator is being pressed down, implying the vehicle is attempting to move but cannot
for multiple actions in a row. Actors can only use a camera as their sensors, so their sensor
repertoire is limited. However, they can use this data through a script that saves the sensor
data to files. Overall, the interface is standardized, and the reward system is comprehensive,
but there is a lack in its sensors, and its code is decoupled.

Our paper aims to create a simulator that improves the training speed and rewards of
an RL-based self-driving car with the ability to prototype new features quickly.

3. Method

Current simulators have large and complex codebases, which makes modifying them
difficult. Creating a simulator for the aid of RL-based vehicles implies that researchers
can test new reward functions, which may be possible to move from simulation to the real
world. This prototyping allows for a better understanding of the effects of different reward
functions, which aids training in a real-world scenario.

In order to create an RL-compatible environment, we modified and used Udacity’s
Self-Driving Car Simulator. The original simulator is made for one of Udacity’s courses and
uses the Unity game engine. Unity uses a deterministic physics engine, making replicating
results easy. The modifications include giving feedback, such as rewards for driving over
checkpoints and penalties for getting stuck or driving off the road. Other modifications are
resetting the vehicle and creating a segmented view to train segmentation algorithms. An
overview of the working of the simulator is presented in Figure 1.

Our sample follows the standard reinforcement learning experiment with a state (St),
an action (At), a reward (Rt), and a next state (St+1) per time step t. Each of the states
includes a list of images from time step t − n up to the image from the current time step t,
where n is a hyperparameter that limits the memory usage. The actions are the angles the
steering wheel moves to control the vehicle, so action 0 is −0.77, which means an angle
of −25.6 degrees. A reward is a real number, and the higher the reward, the further the
vehicle drives.

Comparing the simulation experiments to those used in the CARLA papers [1], we cre-
ate some tasks, split along the road as outlined below:

• Task 1 is to drive straight, leading to a hill.
• Task 2 requires the vehicle to drive straight and then drive up a short twisting hill and

turn the corner.
• Task 3 is to clear a steep right turn up a hill, then turn left when on top of the hill.

The road continues with twists and turns after this point.
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Yes

Reset the car

Yes

carController

Off road 
for too 
long?

Yes

Is the vehicle 
stuck? Off road?

OnSteer

RewardCalculation

No

Passed 
Checkpoint?

Yes

Figure 1. Interaction when given a steering command. The container is the function used, namely
onSteer. The rectangles represent actions, e.g., resetting the vehicle or steering the vehicle. The
rhombuses represent if statements, e.g., if the vehicle passed a checkpoint, give it a reward.

3.1. Sensors

Sensors help the AI sense its environment, locate objects, or determine what the vehicle
is doing. Without proper sensors, the vehicle is not able to maneuver in its environment.

The creation of five virtual sensors adds an ability to sense the environment, and
three of them were developed during this study. In addition, the study adopts two sensors
developed by Unity and Udacity to develop the system. The five sensors are defined below:

• Sensor 1 detects when the car drives off the road, giving a penalty for going off the
road. It was developed by the authors and was validated by manually driving in the
environment, checking when any of the tires were off the road, and confirming that
the sensor was triggered.

• Sensor 2 is the location sensor, detecting if the car is in the exact location for a more
extended period. The location sensor is similar to a GPS, in that it gives the position
relative to the world’s origin. This sensor is created by Unity and is part of the game
engine itself.

• Sensor 3 is a camera sensor made to capture RGB images of the environment the
vehicle is driving in. This sensor comes with Unity, giving an idealized view. The
version of the sensor included does not include ray tracing or any such feature, instead
relying on an overhead light, with more simplified lighting calculations.

• Sensor 4 checks if the vehicle is stuck and resets it. The sensor is also an addition from
the authors, and uses a ray cast from the tires, aims it downwards, and checks if there
is a road tile below it. This is carried out by checking the render mask of the objects
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below it, and if any of the tires are not on the road, the vehicle is reset. Combining this
with a small script developed by the authors, we check if the vehicle has been stuck,
has been by the divider, or is off-road for 300 actions. If the vehicle has carried out
any of these for 300 actions, it is reset to a checkpoint and gives feedback back to the
vehicle, telling it that the episode finished.

• Sensor 5 is a segmented camera, which is also an idealized sensor. We created it
by making changes to shaders in a duplicated world, and these shaders show the
respective color of an object, such as when the road would be a different color than
the trees. The passive data collector for the segmented camera is shown in Figure 2.
To obtain the image in the same location in both environments, we shadow the vehicle
driven by the AI algorithm. This vehicle can also be driven using a navigation mesh,
which allows for the passive collection of segmented images. An RGB and segmented
image can be found in Figure 3a.

NavMeshAgent

ShadowCar

Car

Segmentation 
Saver

Controls

Copies its
movements

Figure 2. Overview of the modifications for performing segmentation.

Figure 3 shows the segmentation photos, the tires which are off the road and the
number of times any of them have been off the road, as well as the number of times the
vehicle has been in the area. Figure 3a shows the comparison between the RGB and the
segmented image while Figure 3b shows the number of actions where the vehicle had any
of its tires off the road. The number of actions during which the vehicle was within 5 m
is shown in Figure 3c. Figure 3d shows which of the tires are on the road, with the green
letters representing tires on the road, and red representing tires off the road. The letters FL
refer to the front left tire, while the letters BR represent the back right tires.
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(a)
(b)

(c) (d)
Figure 3. Shows the segmentation photos, the tires which are off the road and the number of times
any of them have been off the road, as well as the number of times the vehicle has been in the area.

3.2. RL Feedback

The testing and validation of RL algorithms require a form of feedback to be given to
the actor. This feedback aims to tell the actor how well it performs in the environment. The
more representative a reward function is to the performance of the actor, the better. There is
also the addition of resetting the vehicle when it gets into a non-terminating loop. Stopping
a non-terminating loop is essential, as it means the vehicle can move in the environment and
not simply try to act while it is stuck. This leads us to three phases, where we experiment
with resetting the vehicle when it is in a non-terminating loop, creating a reward function
that includes checkpoints and road detection.

Experiment 1 is to explore the effects of an experiment that resets the vehicle when it
reaches an undesirable state, to speed up training. This is carried out by implementing an
RL algorithm-based experiment that resets the vehicle when it is stuck in the same area
over time or if the vehicle is consistently off the road. If the vehicle is either off the road or
in the same area for more than 300 actions, it is reset to keep training. This experiment does
not have any road tile reward. This experiment uses the RL system described in the study
presented by CARLA [1].

Experiment 2 is meant to test the effects of adding a checkpoint experiment that
includes each road tile, i.e., road tile rewards, to see if getting a reward from driving
over a road tile is better than receiving a reward for tasks such as driving straight. The
vehicle is tested on driving straight, driving around a corner, up a twisting hill, and down
a twisting slope.

Experiment 3 is meant to test the effect of giving the vehicle a penalty for driving off
the road. This penalty is a negative reward of −0.01 to inform the vehicle that the action it
is carrying out is not desired. In this experiment, we also include the road tile reward. An
overview of each of these experiments’ systems can be found in Table 1.

Table 1. Experiment overview with road tile rewards (RTR), off-road penalties (ORP) and CARLA’s
built-in experiments (CBIE).

Experiments RTR ORP CBIE

Experiment 1 No No Yes

Experiment 2 Yes No No

Experiment 3 Yes Yes No
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3.3. RL Algorithm

During the testing for each of the experiments, we created a Deep Q-Network (DQN)
algorithm [9]. This algorithm used a three-layer neural network, with an input layer of
200 by 66 by 3, a hidden layer of 64, and an output layer of 15 actions. These actions
determine the amount the vehicle should steer to either side, with the accelerator being
set at maximum, and the speed limit being set to 20 km/h. The accelerator is set to the
maximum because it is necessary to get up the hill, and the speed limit is slightly above the
minimum required speed.

The input state was the image and was repeated 16 times in a queue, to provide a
perspective of time.

3.4. Modifications

The simulator required quite a few modifications to start working for its purpose. We
created rewards based on checkpoints through the location of the car, as well as checking if
it has driven over a road tile. We made a couple of sensors, namely a segmented camera
and a road detection sensor. Changes could be quickly carried out by running the new
scripts in the CommandServer script, easily adding new features. This makes the simulator
easy to modify, as one only needs to call the scripts from the CommandServer, with every
other script not affecting any of the changes made.

Segmented camera The segmented camera is created by duplicating the mesh of the
world and all of the objects. Once they are duplicated, the objects have a material added
to them, which creates their color. Said material does not have any reflectiveness, making
the color closer to its RGB value no matter the shine thrown at the object. We then create
an agent who can move around the world. This agent is a simple object, and a script that
copies the main vehicle’s movements is added to it. The script copies the main vehicle’s x,
y, and z positions with an offset. This offset means that the vehicle is placed in the same
spot, but instead of being in the RGB world, it is placed inside the segmented world.

A group of cameras is added to the RGB and segmented vehicles for passive data
collection. These cameras are located at the same position in local relation to the vehicle.
When the cameras are added to the vehicle, they are used to collect segmented and RGB
images from the same position. This is carried out by taking the cameras and saving them
to a list every timestep the vehicle moves. We use a coroutine to save all the images close
to the same time (generally within one frame). Once a large number of images has been
stored, the time is stopped, and the images are saved to be filed in order. Stopping the
time can be carried out simply by setting the timescale to 0, then back to 1 after the actions
are performed. The RGB images and segmented images are saved in two separate folders.
The only difference in their naming is that one includes segImages, and the other includes
images in their path.

Off-road penalty Creating the road detection sensor requires a few steps. We take the
tires, each of which has a Boolean corresponding to either on or off the road. We then use a
raycast below the tires and see if we can find the road tiles. This is carried out by looking
for the object’s layer mask: “Road”. If the mask is there, the vehicle is on the road, and the
Boolean stays at false; otherwise, the Boolean is set to true. As this is carried out for all four
tires, we obtain an overview of which tire is off-road.

Road tile checkpoints When creating the checkpoint rewards, we add the road tiles
to a list, starting with the tile where the vehicle spawns. This list is ordered so that the
following road tile is the connected road tile in the direction the vehicle is spawned. When
the vehicle is less than 6m away from the next road tile (meaning it can be 1m off the
road), we increase the reward and set the current goal to the next road tile in the list. The
reward differs depending on whether the road tile is straight, with straight tiles giving a
lower reward.

Reset system The reset system is a simple one, with two associated scripts. These
scripts see how long the vehicle has been off the road and how long it has been within 5 m.
If the vehicle has been off the road for n number of actions, or if the vehicle has been within
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5 m of its current location within n actions, with n being a parameter set by the programmer.
To check if the vehicle is off the road, we take the Boolean from each tire, seeing if any
of them is true. Checking how long the vehicle has not moved is carried out via adding
the vehicle’s position every time it acts and comparing the location at index a and index
a+parameter. The reset function is called if the vehicle’s location is right next to it. This
reset function resets the vehicle’s position to the starting position (and slightly above the
ground), and it resets the vehicle’s velocity and acceleration, setting them to 0. The position
can be changed or even parameterized to place the vehicle at a specific location randomly.
However, this also requires that the road tile list be changed accordingly.

Passive data collector Along with the other systems, we also created a passive data
collector. The data collector consists of a few things including an agent and a script
for saving images (which can be RGB or both RGB and segmented images). The agent
is a NavMesh agent, which drives around the map collecting images for each frame.
The NavMesh agent is created by adding a NavMesh to the road surface and a value
representing the weight for the vehicle to drive on the surface. The weight for the road
is less than the weight for driving off-road, which generally causes the vehicle to stay
on the road. We then need to create its targets, which are manually placed down and
moved through some randomness to increase the variation in the vehicle’s locations. The
randomness is an added ±2.5 m in the x and z position (can be 2.5 in both positions or only
one). The vehicle then goes through its list of goals and moves from one goal to the other.
We use the same script we did for saving RGB and segmented images for storing them in
different folders (this can also be carried out when the vehicle is off or on the road).

4. Results

In this study, we have shown that introducing a lightweight simulator can support
RL research better than more complex simulators, such as CARLA. The simulator, based
on Unity, required several modifications to improve the performance of the applied RL
algorithm. We trained an RL algorithm, specifically a Deep Q-Network (DQN), to verify
this. The modifications were compared to the methodology introduced in the paper
from CARLA [1].

Figure 4 shows the number of backpropagations for experiments 1, 2, and 3 and the
respective rewards for each backpropagation. In this figure, an increase in reward indicates
that the experiment has learned the actions correctly.

Research Questions

The experiments, as previously described in Section 3, focus on the different systems
as compared to the research questions. Namely, the first experiment uses the CARLA
systems for resetting and using tasks to give feedback. The second experiment focuses on
changing this to giving feedback whenever the vehicle crosses one of the road tiles, which
make up the road, and reset the vehicle when it gets stuck. Lastly, we have an experiment
that builds on experiment 2 by adding a penalty for driving off the road.

For each research question, obtained the following results:
Research Question 1: “Will the creation of a reset system for the vehicle that stops

the car after it is stuck improve the learning speed?” Figure 4 shows that experiment 3
which, along with experiment 2, includes the system that resets the vehicle after being stuck,
performed the best. We see this in the accumulated reward for experiment 3 compared to
experiments 1 and 2. This implies that resetting the vehicle improves the training time.

Research Question 2: “Will creating a reward for each road tile be sufficient to inform
the vehicle to stay on the road?” This tests whether it is sufficient to only have road tile
rewards to guide the vehicle properly. Experiments 2 and 3, which have rewards on the
tiles, outperform system 1, indicating that the reward for driving to the next road tile
improves training. As seen in Figure 4, even though experiments 3 and 2 are significantly
faster at training than experiment 1, experiment 2 finds local optima. This discrepancy
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indicates that reward tiles by themselves are not sufficient feedback. Hence, if a road tile
reward alone turned out to be sufficient, experiments 2 and 3 would perform equally well.

Figure 4. Normalized rewards.

Research Question 3: “Will a penalty for driving off the road decrease the number of
time steps required for learning to stay on the road?”. As seen in Figure 4, experiment 3 was
the best performing experiment. The experiment shows that the penalty for driving off the
road decreases the number of time steps required for learning to stay on the road. Hence,
this indicates that the penalty for driving off the road improves the training time. Note
that the vehicle in experiment 3 should obtain fewer rewards than the other experiments
since it also receives penalties for driving off the course. This is, however, not observable in
the results (see Figure 4). The opposite is observed; the vehicle in experiment 3 receives
more rewards, further indicating that road detection and the penalty for driving off the
road improves the training time and, in a collaborative manner, improves the system.

Looking at Figure 4, we find that experiments 1 and 2 do not seem to be improving a
lot over time, which is likely caused by the systems finding local optima. The variations
we see in their rewards decrease as the number of random actions the DQN algorithm
performs decreases.

5. Discussion and Conclusions

The results are in line with our initial hypothesis. We tested three experiments:
an experiment similar to that of the CARLA paper (experiment 1); rewards based on
checkpoints with a reset experiment (experiment 2); and lastly, experiment 2, with an added
penalty based on road detection (experiment 3).

The scope of the study limits us from running multiple times over different seeds, and
as such, the same random seed was used for the different experiments. Using the same
random seed could decrease the variation between the experiments. This means that given
another random seed, some difference in the rewards for each experiment is likely, though
the current experiments show some benefit to the systems as the reward is higher, given
the same random seed. Experiment 1 uses the systems of CARLA, but the reward received
for completing one task is equivalent to the reward received for driving the same distance,
given the road tile reward function.
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The main expectation was that the average amount of rewards would increase from
experiment 1 to experiments 2 and 3, which is observed in the results. The average reward
increases the penalty for driving off the road or driving into the divider.

In the first two experiments, we saw that the vehicle got into a local optimum when
testing experiments 1 and 2. Experiment 2’s local optima were to drive past two of the first
checkpoints and then reset when driving off-road. For experiment 1, the vehicle managed
to get to the base of the hill only a few times in the beginning, though eventually, when it
performed fewer random actions, it drove directly into a wall or the divider on either the
right or the left side of the road, and was stuck until the reset.

Local optima may be due to randomness; as at the beginning, they perform actions at
random, according to the DQN algorithm.

Half of them steer to the right and the other half to the left when performing random
actions. The rewards in experiment 2 are higher than in 1; this may be due to experiment
2 receiving a reward for each road tile it drove past. For experiment 1, the rewards
were less frequent, with a minor penalty of −0.01 for each action, which was the main
form of feedback. When looking at experiment 3, we see significant variations in the
rewards, meaning that the experiment is exploring, ending up with a reward larger than
the other experiments.

The vehicle in experiment 3 should receive lower rewards than the other experiments
since it also receives penalties for driving off the course. Experiment 3 receiving lower
rewards is, however, not observable in the results (see Figure 4). Instead, we noticed that
the vehicle in experiment 3 receives more rewards, indicating that road detection and the
penalty for driving off the road improve the training time and collaboratively improve
the system.

We conclude that the augmented Udacity simulator has the necessary experiments
for training RL-based autonomous cars. The modified simulator developed in this study
has experiments for training the RL algorithm, giving a standardized reward function, and
resetting the vehicle when it goes off the road or ends up in a non-terminating loop. These
experiments aid the training of RL algorithms to train autonomous vehicles while giving a
standard set of reward functions for training. Evidence also shows that the checkpoint and
road detection algorithm works better than the CARLA paper’s methodology; resetting the
vehicle when it gets stuck or stays off the road for too long seems to be better than resetting
the vehicle every n number of actions. More testing and prototyping of rewards similar to
other simulators may aid the performance of algorithms trained on the developed simulator.

Additional Insight and Future Work

Several improvements can improve the simulator, such as improving the experiments
and reward mechanisms using more realistic sensors, including virtual machine containers
or OpenAI Gym compatibility. The improved reward mechanisms would give the vehicle
more information on which actions were good and bad. Realistic sensors would allow for
an easier transition from simulation to real-world environments or other more realistic
simulators. The container compatibility and gym compatibility would allow for easier
testing on servers. In addition, with gym compatibility specifically, it would allow for
standardized algorithms such as the baseline algorithms.
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