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ABSTRACT The past decade has shown a surge in the use and application of machine learning and deep
learning models across various domains. One such domain is credit scoring, where applicants are scored to
assess their creditworthiness for loan applications. It is essential to ensure that no biases or discriminations are
incurred during the scoring process.Mostmachine learning and deep learningmodels are prone to unintended
bias and discrimination in the datasets. Therefore, it is imperative to explain each prediction from the models
during the scoring process to avoid the element of model bias and discrimination. Our study proposes a novel
optimization formulation that generates sparse counterfactual explanations via a custom genetic algorithm
to explain the black-box model’s predictions. We evaluated the efficacy of the proposed method on publicly
available credit scoring datasets by comparing the counterfactual explanations generated by the proposed
method with explanations from credit scoring experts. The proposed counterfactual explanation method
does not only explain rejected loan applications but also can be used to explain approved loan applications.

INDEX TERMS Credit scoring, machine learning, counterfactual explanation, explainable AI, genetic
algorithm.

I. INTRODUCTION
The pervasiveness and ubiquitous nature of machine learning
and deep learning models brings about positive change in
society with the risk of unintended consequences such as
algorithmic bias. The algorithms are not intrinsically biased
but inherit the bias from human activities captured in the data
during the training process. Thus, themodels need to be trans-
parent at all costs. The Basel Accord [1] requires explanations
for denied loan applications to ensure that transparency is
maintained in automated decisions in the financial sector.
Emerging regulations such as the European Union General
Data Protection Regulation (GDPR) [2] stipulate that, for
automated decisions, a ‘‘right to explanation’’ needs to be
maintained. Explaining predictions is crucial for high-stake
decisions, such as the presence or absence of a disease in
the healthcare sector, the rejection or acceptance of a loan
application in the finance sector, and the denial or approval of
parole in the criminal justice sector. Hence, our study focuses
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on using a counterfactual explanation technique, which is an
instance-based explanation, for explaining predictions from
black-box models. Wachter et al. [3] highlighted three key
benefits of using the counterfactual explanation, (1) to inform
and assist applicants in understanding why a certain decision
was made, (2) to give grounds to contest unfair decisions, and
(3) to understand what could be changed to attain a desired
outcome in the future. A typical example of a counterfac-
tual explanation is a loan application [4], [5]: ‘‘Imagine you
filed a credit application at a bank. Unfortunately, the bank
rejects your application. Now, you would like to know why.
In particular, you would like to know what would have to be
different so that your application would have been accepted.
A possible explanation might be that you would have been
accepted if you would earn 500$ more per month and if you
would not have a second credit card.’’

Therefore, it is imperative to explain each prediction from
the models during the scoring process to avoid the element
of model bias and discrimination. We propose a novel opti-
mization formulation that generates sparse counterfactual
explanations via a custom genetic algorithm to explain the
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black-box model’s predictions. Our contributions are as fol-
lows: 1) a novel formulation of the optimization problem
that leads to a single sparse counterfactual explanation using
a custom genetic algorithm; 2) a computationally efficient
generation of counterfactuals achieved by the normalization
of continuous features and selection of predictive features;
and 3) validation of automatically generated counterfactuals
with the credit scoring experts. Without loss of generality,
we used the terms ‘‘counterfactual’’ and ‘‘counterfactual
explanation’’ interchangeably. In addition, the words ‘‘sam-
ple’’, ‘‘instance’’ and ‘‘record’’ are used interchangeably.

The remainder of this paper is organized as follows.
Section II discusses background and related work on coun-
terfactual explanations. Section III introduces our proposed
method for generating counterfactual explanations. The
experiment setup is described in Section IV and the results
are given in Section V. Finally in Section VI, we summarize
the paper and discuss our future work.

II. BACKGROUND AND RELATED WORK
The literature has done a great amount of work on
eXplainable Artificial Intelligence (XAI), an emerging arti-
ficial intelligence branch. The main purpose of XAI is to
make deep learning and machine learning models inter-
pretable. A black-box model can be explained by either
using a post-hoc, an ante-hoc or an instance-based expla-
nation. A post-hoc explanation uses another model such
as a linear regression or a decision tree to explain the
behaviour of a black-box model (e.g. Local Interpretable
Model-Agnostic Explanation (LIME) [6]). On the other hand,
an ante-hoc explanation is an inherently interpretable model
(e.g. Bayesian Rule List [7]), and an instance-based explana-
tion uses an instance to explain the behaviour of a black-box
model (e.g. Visual Counterfactual Explanations (ViCE) [8]).
Rudin [9] posited that inherently interpretable models (i.e.
ante-hoc explanations) should be used for high-stake deci-
sions in lieu of explainable machine learning (referring to
post-hoc explanations). The study argued that explainable
machine learning generates explanations that are not faithful
to what the black-box model computes. Hence, to avoid this
shortcoming, this study proposes the use of counterfactuals
to explain black-model predictions.

Although counterfactuals seem to produce intuitive expla-
nation systems, some problems remain. Most counterfactual
explanation methods generate more than one counterfactual
explanation, and this problem is referred to as Rashomon
effect [5]. The generated explanations might have contradict-
ing ‘‘paths’’ on how a certain output was reached. It becomes
more difficult and unclear for the user or applicant if there
is more than one option of explanations to select from. The
other issue with counterfactual explanations is the time it
takes to generate the counterfactuals [10]. The time metric
can be measured as an average time taken over the generation
of a counterfactual for a group of records or the generation of
multiple counterfactuals for a single input record [10].

Despite these problems, the research in recent years has
shown an increase in the number of studies that focused on
explaining machine learning predictions using counterfac-
tual explanations. Grath et al. [11] proposed two weighted
approaches to produce counterfactuals for credit scoring data,
where one approach derives weights from feature impor-
tance, and the other depends on nearest neighbours. Empirical
results showed that the weights that are produced from
feature importance result in more compact counterfactuals.
Furthermore, the study produced positive counterfactuals for
accepted loan applications to assist individuals when they
make future financial decisions.

In most cases, counterfactuals are generated by using a
metaheuristic approach (i.e. an optimization approach that
is not problem/task dependent). Guidotti et al. [12] pro-
posed a method that learns a local and interpretable classifier
on a synthetic neighbourhood of a record of interest (i.e.
an instance that its prediction needs to be explained). The
synthetic neighbourhood is generated by a genetic algo-
rithm. The proposed method produces a local explanation
that consists of logical rules explaining a decision of the
instance of interest and a set of counterfactuals that suggest
changes in the instance of interest to produce a desirable
outcome. The results showed that the proposed method out-
performs previous methods with regards to the quality of
the produced explanations and the faithfulness to the black-
box model. Sharma et al. [13] proposed a unified and model
agnostic approach to address non-transparency (among other
issues) of black-box models by using counterfactuals that are
generated via a genetic algorithm. The proposed approach
achieved robustness, transparency, interpretability, and fair-
ness of black-box models. Further, the study intends to
improve the speed of genetic algorithms in their future work.
Sharma et al. [13] is the closest study to our approach.

Once the counterfactuals are generated, the next thing to
look at is the feasibility of the generated counterfactuals.
A change in a few features makes counterfactuals to be
feasible. Van Looveren et al. [14] proposed a framework
for generating sparse and in-distribution counterfactuals.
A sparse counterfactual refers to a counterfactual that
requires minimum feature changes to belong to the desired
class.

Poyiadzi et al. [15] argued that the current methods that
generate counterfactuals for explanation are not considering
the feasibility of the generated counterfactuals in the real
world. This is attributable to counterfactuals that do not rep-
resent the underlying data distribution. The study proposed a
method that generates feasible and actionable counterfactual
explanations based on the shortest path distance determined
by density-weighted metrics. The proposed approach gener-
ates counterfactuals that are logical and consistent with the
underlying data distribution, making counterfactuals feasible
and actionable. Mothilal et al. [16] posited that counterfac-
tuals should be feasible and diversified. The study proposed
a framework for generating and assessing the diversity of
counterfactuals based on a determinant of a kernel matrix.
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The proposed framework generates diverse counterfactuals as
opposed to previous methods.

Efficiency and speed are key factors when generat-
ing counterfactuals. It is better to use fewer computer
resources to speed up the computation time. Resource-
intensive methods tend to result in high computation time.
Artelt and Hammer [17] investigated how to efficiently
compute counterfactuals for prototype-based classifiers. The
study discovered that in most cases, either a set of linear or
convex quadratic programs that generate counterfactuals can
be solved efficiently. Van Looveren and Klaise [18] proposed
the use of class prototypes to speed up the generation of
counterfactuals. The class prototypes are either attained by
employing an encoder or class-specific k-d trees. Efficiency
is synonymous with the generation time of counterfactuals.

Not only speed and efficiency are essential when gener-
ating counterfactuals, but the safety of the black-box models.
Counterfactuals guarantee the safety of the black-boxmodels.
Sokol and Flach [19] showed that when making AI systems
explainable, there is a chance of compromising the safety and
security of the system and the possibility of data leakage.
This poses a challenge to Explainable AI systems, and the
study suggests that the security of AI systems will not be
compromised when counterfactuals are used in lieu of other
explainable AI techniques.

In general, the credit scoring literature is not extensive
when it comes to counterfactual explanations. Hence, this
study aims to expand the use of counterfactual explanations
in credit scoring to address the issue of multiple counterfac-
tuals that are generated to explain a single instance. Further,
this study aims to suggest alternative ways to deal with the
efficiency and sparseness of counterfactuals.

III. METHODOLOGY
This section outlines the methodology that is undertaken
in this study. The key design decisions were to collect
the datasets, select predictive features, calculate correlations
between the target variable and the predictors, normalize each
continuous feature of the datasets, formulate an optimiza-
tion problem that will help to generate the counterfactuals,
measure the time it takes to generate the counterfactuals,
and to compare the generated counterfactuals with experts’
opinions. Each of the above steps helped us to obtain coun-
terfactuals that are sparse, generated fast, and robustly tested.

Figure 1 shows the flowchart of our proposed methodol-
ogy. Firstly, we focus on feature selection, where we select
predictive features using a random forest model. Secondly,
we calculate Spearman’s correlation coefficient between the
target variable and the features. The aim of calculating the
correlations is to create sparse counterfactuals. This means
that we will only focus on features that are better correlated
with the target variable when generating the counterfactuals.
The feature selection together with sparsity ties back to the
feasibility of the counterfactuals, which requires a minimal
number of features to be changed. Thereafter, the dataset
is split into categorical and continuous features, and the

continuous features are normalized. The purpose of normaliz-
ing continuous features is to ensure that the features have the
same scale. This allows counterfactuals to be generated much
quicker because there is no huge varying degree of values
within each feature. We proceed by merging the categorical
and continuous features. The dataset is then split using the
K-fold cross validation and a classifier is trained and its
performance is assessed. The purpose of the K-fold cross
validation is to ensure that model robustness is maintained
during training. The final step is to generate a counterfactual
that will explain the predicted outcome for a data point that
we are interested in (i.e. a defaulted loan).

A. DATA PREPROCESSING
We selected predictive features via a random forest. The
random forest is an ensemble of decision trees. At each node
of the decision tree, a split is determined by the measure
of impurity of each feature, either by using the entropy or
the gini index. The importance or predictive power of each
feature is derived from the impurity calculation, which is
shown by either the entropy

IE = −
1∑
j=0

pj log2 pj (1)

or the gini index

IG = 1−
1∑
j=0

pj (2)

where pj represents proportion of samples in each class.
The more ‘‘pure’’ a feature is, the more important it is. The
importance of each feature is obtained from how ‘‘pure’’ a
feature is. The more the feature reduces impurity, the more
important the feature is.The final importance of the feature is
the average impurity decrease across all decision trees. Thus,
all selected features will have a maximum average impurity
decrease across all decision trees.

B. COUNTERFACTUAL SPARSITY
To ensure that the counterfactuals that are generated are
sparse, we used Spearman’s rank correlation coefficient.
Spearman’s rank correlation coefficient is based on the rank-
ings of a feature as opposed to using raw feature values. The
benefit of using rankings is that both continuous and categor-
ical features can be used to calculate the correlation. Hence,
sparsity is determined by the correlation between the target
variable (which is categorical in nature) and the predictors
(which are either categorical or continuous). Spearman’s rank
correlation coefficient is given as

ρ = 1−
6×

∑
z2i

n(n2 − 1)
(3)

where zi is the difference between two ranks of each record
and n is the number of records. The aim of calculating the
correlation is to focus only on features that are correlated with
the target variable when the counterfactuals are generated.
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FIGURE 1. The flowchart of the proposed methodology.

The statistical significance of a Spearman’s rank corre-
lation is tested by using a hypothesis testing. The test will
measure the association between the target variable and the
predictors. The null hypothesis and the alternative hypothesis
are stated as

• H0 = There is no monotonic association between
variables.

• Ha = There is a monotonic association between
variables.

The level of significance for the hypothesis test is α = 5%.
The null hypothesis H0 is rejected when the p-value < α.
If the null hypothesis is rejected, then the conclusion will
be that there is statistical evidence that there is association
between variables.

C. NORMALIZATION OF CONTINUOUS FEATURES
Let xk ∈ Rd denote a feature vector for record k , where d
represents the number of features in a dataset. The labeled
dataset is represented by X = {(xk , yk )}nk=1, where yk ∈
{0, 1} represents the target/response flag and xk = {f i}di=1
is the feature vector, and n denotes the number of records
in the dataset. Let fi represent each feature in X, ∀i ∈

{1, 2, · · · , d}. Continuous feature values were converted by
using a normalization technique

f inorm =
f i −min(fi)

max(fi)−min(fi)
, (4)

such that

f inorm ∈ [0, 1], (5)

where min(fi) and max(fi) are the minimum and the maxi-
mum values for feature i, respectively.

D. GENETIC ALGORITHM
The genetic algorithm is a heuristic search approach that is
motivated by natural evolution [20]. The genetic algorithm
searches for optimal values that can either minimize or max-
imize a certain function. Hence, genetic algorithms are used
for optimization problems. The genetic algorithm involves a
selection of individuals (i.e. parents) (based on some defined
fitness function) from an initial population for reproduction.
Individuals that are unfit for reproduction are omitted. The
parents produce an offspring that inherits their (i.e. parents)
characteristics. The offspring then gets included in the next
generation of the population. The process repeats itself until
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it converges into a solution. The genetic algorithm process
involves five phases i.e. the initial population, the fitness
function, the selection, the cross-over, and the mutation.
In the context of credit scoring, a population individual is a
feature vector and this feature vector is regarded as a counter-
factual. To select the best counterfactuals, a fitness function is
used. The fitness function in this study is the black-boxmodel
that is required to be explained by the counterfactual. The
fitness function output is probabilistic and has values in the
range [0, 1]. The quality of each counterfactual is determined
by the output of the fitness function and the distance between
the counterfactual and the feature vector of interest (i.e. a fea-
ture vector with a default response flag) should be less than
some epsilon value. Selected counterfactuals go to a mating
pool and these counterfactuals are known as parents. Every
two parents will produce two offspring (i.e. two counterfactu-
als). The mating process is a cross-over phase. The cross-over
is based on a cross-over rate which is defined as the probabil-
ity of two parents crossing over at a single point [20]. Mating
high-quality parents will generate better-quality offspring
with similar traits as the parents. This removes bad population
individuals from generating more bad individuals. Note that,
the offspring will have similar drawbacks as their parents.
To overcome the drawbacks, some changes will need to be
made to the offspring to generate new offspring. The changes
are known as the mutation phase. The mutation is responsible
for randomly changing values in the counterfactual based
on a mutation rate which is defined as the probability of
determining the number of counterfactuals that should be
mutated in a single population [21]. The main purpose of
mutation is to preserve diversity in a population, and this
prevents early convergence to a solution.

E. FORMULATION OF THE OPTIMIZATION PROBLEM
This section defines our formulation of the optimization prob-
lem which is solved via a custom genetic algorithm. Let
c∗ ∈ Rd denote a counterfactual for record x ∈ Rd and g
denote a black-boxmodel. Let g have a probabilistic cartesian
product output. Then g is given as

g : Rd
−→ A× B, (6)

where

A× B = {(a, b)|a ∈ [0, 1], b ∈ [0, 1], a+ b = 1} (7)

and a represents a probability of belonging to class 0 and b
is a probability of belonging to class 1. The aim is to find
c∗ ∈ Rd such that

c∗ = arg min
c∈Rd

gb∈[0,1](c) (8)

subject to

dist(c∗, x) < ε (9)

and

c∗,i ∈ [min(fi),max(fi)], ∀i ∈ {1, 2, · · · , d}. (10)

The main idea behind the above optimization problem is to
find optimal c∗ ∈ C (i.e. C is the set of counterfactuals)
that result in a non-default class, ensuring that the generated
counterfactual c∗ is as close as possible to the instance of
interest x and that c∗ comes from the same data distribution
as x. The output of each class (i.e. default or non-default) is

class output =

{
0, if (a, b) ∈ [0.5, 1]× [0, 0.5)
1, if (a, b) ∈ [0, 0.5)× [0.5, 1].

(11)

In Eq. (8), we ensure that b ∈ [0, 1] is minimized so that a ∈
[0.5, 1] makes the counterfactual to belong to a non-default
class. Please note that class output = 0 and class output =
1, means that x belongs to a non-default class and default
class, respectively. According to Wachter et al. [3], closeness
of c∗ to x should be measured by the L1 norm distance
divided by the mean absolute deviation (MAD). Wachter et
al. [3] showed that the L1 norm distance divided by MAD
is better than the L1 or L2 norm distances. The first part of
Equation (12) is for continuous features and the latter part
is for categorical features. Since we are treating categorical
values as discrete, hence we used the mean deviation which
is suitable for discrete values. The choice of distance in our
study is

dist(c∗, x) =
d∗∑
i=1

|c∗,i − f i|
MADi

+

d∑
i=d∗+1

|c∗,i − f i|
MDi

, (12)

whereMADi andMDi denote a mean absolute deviation and a
mean deviation for feature i, respectively, and d∗ denotes the
number of continuous features. The mean absolute deviation
for feature i is

MADi =
1
n

n∑
j=1

|f ij − f̄(i)|, (13)

where n denotes the number of records and f̄(i) denotes the
mean or average of feature i. The mean deviation for feature
i is

MDi =
1
m

m∑
l=1

ol |f il − f̃(i)|, (14)

where m is the number of categories, ol is the frequency of
each category and f̃(i) is the median of feature i.
The threshold for the chosen distance is defined by ε which

is provided by the user. The fitness function in our optimiza-
tion problem is g(c∗). To explain predictions of applicants that
are approved for loans (i.e. class output = 0), the aim is to
find optimal values of c∗ such that

c∗ = arg min
c∈Rd

ga∈[0,1](c) (15)

subject to the same constraints of Equation (8). In Eq. (15),
we ensure that a ∈ [0, 1] is minimized so that b ∈ [0.5, 1]
makes the counterfactual to belong to a default class.

The major differences between our study and that of
Sharma et al. [13] are 1) the formulation of the optimization
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problem, 2) the distance calculation for categorical features
and 3) the generation of sparse counterfactuals. Sharma et al.
[13] used the following fitness function,

fitness function =
1

dist(c∗, x)
(16)

where

dist(c∗, x) =
ncon
n

ncon∑
i=1

|c∗,i − f i|
MADi

+
ncat
n

SimpleMat(c∗cat , xcat ) (17)

and ncon and ncat denote the number of continuous and
categorical features, respectively, and c∗cat and xcat are
categorical attributes for the counterfactual c∗ and record
x, respectively. The simple matching coefficient is used in
Sharma et al. [13] to deal with categorical features and is
given as

SimpleMat =
number of matching attributes
total number of attributes

, (18)

and has values between 0 and 1.

IV. EXPERIMENTS
A. DATA
Publicly available credit scoring datasets were used in this
study, i.e. German [22] andHome Loan Equity (HMEQ) [23].
The German dataset can be accessed on the UCI reposi-
tory, and the HMEQ dataset can be accessed on Kaggle.
The German credit dataset has 20 features, where 7 of the
features are numerical and the other 13 are categorical.
The German credit dataset has features such as status
of existing checking account, duration in
month, credit history and purpose to mention
a few. The HMEQ dataset has 13 features, where 11 of
the features are numerical and the other 2 are categori-
cal. The features are the amount of loan request,
amount due on existing mortgage, value of
the current property, years at present
job, number of credit lines to mention a few. The
target variable for each of the above credit scoring
datasets is binary, i.e. applicants are classified either as
‘‘default’’ (i.e. bad applicants denoted by a 1) or ‘‘non-
default’’ (i.e. good applicants denoted by a 0).

B. DATA SPLIT, MODEL TRAINING AND
MODEL PERFORMANCE
For robustness of the classifier g, a K-fold cross valida-
tion [24] was used. The K-fold cross validation splits the data
into K equal folds D1,D2, · · · ,DK , where

K⋃
k=1

Dk = X. (19)

Each fold Dk is used as a test set and the remaining D =
{Dj}

(K−1)
j=1,j6=k folds are used for model training. The overall

performance metric for the model is

gp =
1
K

K∑
k=1

gkp (20)

and gp represents the average model performance metric, e.g.
accuracy or Area Under the Curve (AUC), and gkp is a model
performance metric in each of the test folds Dk . Note that
the remaining folds D = {Dj}

(K−1)
j=1,j6=k were used in turn for

training, we did not build K distinct models.

C. EXPERIMENT SETUP
For the genetic algorithm, we ran four experiments on each
dataset to select optimal parameters based on the execution
times of the optimization problem, the resulting class output
and the distance between the record that needs to be explained
and the generated counterfactual. Table 1 shows different
parameter values that were used for the genetic algorithm.
We then measured the times in seconds for the execution of
the optimization problem, the resulting class outputs, and the
distances were also assessed and are shown in Table 1. For
German dataset, we chose ε = 4, mutation rate = 0.01,
cross-over rate = 0.40 and population size = 30, since they
are giving a least amount of execution time, the desired class
output (i.e. the non-default output), and the minimal distance.
For HMEQ dataset, we chose ε = 7, mutation rate = 0.04,
cross-over rate = 0.70 and population size = 100, since they
are giving the desired class output (i.e. the non-default output)
and the least distance. The models that were used in our study
were random forest and artificial neural networks (this was
to ensure that our approach is model-agnostic). The choice
of these models was based on our previous literature review
study [25]. The parameters for the random forest model were
set as follows, the maximum depth for each decision tree was
set to 5, and the number of decision trees was set to 100. For
the artificial neural networks, we used 3 hidden layers, the
first hidden layer had 50 neurons, and the second hidden layer
had 30 neurons and the third hidden layer had 5 neurons, with
the output layer having 2 neurons. The parameters for both
neural networks and random forest were obtained by using
a grid-search approach. To train the models, we used K-fold
cross validation, where we set K = 5.

D. EXPERIMENTS FOR CREDIT SCORING EXPERTS
Initially, we contacted about six credit scoring experts and
there were only three experts who showed interest in taking
part in the experiments of this study. It is challenging to find
credit scoring experts since they have busy schedules and
are mostly not available. The use of several experts in this
study was to ensure that we get different views from industry
experts. This will then ensure that the counterfactuals are
robustly assessed. All the experts in this study have more than
7 years of working experience in the financial sector, working
as quantitative analysts in credit scoring departments. They
all have a background in developing credit scorecards from
scratch. The experts were given a data dictionary with a
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TABLE 1. Selection of parameters for genetic algorithm based on execution times (measured in seconds), the resulting objective function and the
distance between the original feature vector and the counterfactual vector on German and HMEQ credit datasets. Legend: time (execution time for
optimization problem), func (predicted class output), dist (distance between record that needs to be explained and the counterfactual). For predicted
class output, 0 denotes non-default class and 1 denotes default class.

detailed description of each feature. The experts were asked
to identify features that they deem fit in influencing the
prediction of the record of interest (i.e. the record that belongs
to a default class) based on their domain expertise. This was
to allow credit experts to have a subjective opinion on the
features that they thought were key contributors in predicting
the class of the record of interest. The credit risk experts then
created their counterfactuals and they assessed the prediction
of their counterfactuals using an online user interface, to see
if the counterfactuals will belong to the desired class (i.e.
a non-default class). The experts were also asked to normalize
all continuous features before they use the online platform.
The online user interface can be found on this link (https://
xolani-explanation-research.herokuapp.com/). We created
this user interface from scratch and the scoring models that
were used in the user interface for predictions are the ones
that we are explaining using the counterfactuals in this study.

V. RESULTS
This section starts by looking at the features that are cor-
related with the target variable and thereafter the model
performances of the random forest classifier on German
credit dataset and the artificial neural networks classifier
on HMEQ credit dataset. Lastly, explanations from our
approach, Sharma et al. [13] approach and from the experts
are examined.

A. COUNTERFACTUAL SPARSITY
We assessed the correlations between the target variable
and the predictors. The aim is to focus only on pre-
dictors that are better correlated with the target variable
when we are generating our counterfactuals. Figure 2
and Figure 3 show correlation matrices for the German
and HMEQ credit datasets, respectively. In Figure 2, the

FIGURE 2. Spearman’s rank correlation coefficient for the German credit
dataset. The selected features are Account Balance, Payment Status
of Previous Credit and Duration of Credit (month) based on
the correlation coefficients with the Target variable. The p-values of the
correlation coefficients for all selected features are ≈ 0.

predictors that are better correlated with the target vari-
able areAccount Balance andPayment Status of
Previous Credit. Please note that by ‘‘better correla-
tion’’we mean that compared to the rest of the predictors, the
selected predictors have a ‘‘higher’’ correlationwith the target
variable. In Figure 3, the predictors that are better correlated
with the target variable are DEBTINC, DEROG and DELINQ.
Thereafter, we tested the statistical significance of the cor-
relations. All the selected features in both datasets that are
correlated with the target variable show that the associations
are statistically significant since their p-values� 5%.

B. MODEL PERFORMANCE
Table 2 shows the classifier performance results that were
reported in literature, and we compared those results to the
performances of the models that were used in our study.
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FIGURE 3. Spearman’s rank correlation coefficient for the HMEQ credit
dataset. The selected features are DEBTINC, DEROG and DELINQ based on
the correlation coefficients with the Target variable. The p-values of the
correlation coefficients for all selected features are ≈ 0.

TABLE 2. Credit scoring model performances that are reported in the
literature.

A detailed comparison of model performances in credit scor-
ing can be found in our previous study [25]. In Table 2,
the results do not significantly differ from each other, and
this proves the efficacy of our model choice for our study.
The main purpose of our study is not to compare model
performances but to explain how amodel makes its prediction
and what actions are required to effect a desired outcome for
the loan applicant.

C. EXPLANATIONS
1) PREDICTION EXPLANATIONS FROM OUR APPROACH
AND FROM SHARMA et al. [13] APPROACH
Please note that in this study, we also implemented from
scratch, the approach that was used in [13]. The explana-
tions are given in Figure 4 and Figure 5, for German and
HMEQ credit datasets, respectively. The feature names are
on the y-axis, the x-axis represent the change between the
original feature value and the counterfactual feature value.
Please note that all continuous values in the figures were
normalized, however when providing explanations using text,
the normalized values were denormalized to make sense
out of the explanations. Using our approach on German
credit data, the applicant would qualify for the loan if the
Payment Status of Previous Credit decreases
by 3 and Account Balance decreases by 1. Using the
approach by Sharma et al. [13] on German credit data,
the applicant would qualify for the loan if the Account
Balance decreases by 1, Credit Amount increases by
15630, Duration of Credit (month) increases by
43, Purpose increases by 5 and Age (years) decreases

TABLE 3. Comparison of our approach with the approach from Sharma et
al. [13] using different metrics. Legend: time (execution time for
optimization problem measured in seconds), func (predicted class
output), dist (distance between the record that needs to be explained and
the counterfactual). For predicted class output, 0 denotes non-default
class and 1 denotes default class.

by 6. Using our approach on HMEQ credit data, the applicant
would qualify for the loan if the DEBTINC decreases by 32,
DELINQ increases by 1 and DEROG increases by 3. Using
the approach by Sharma et al. [13] on HMEQ credit data, the
applicant would qualify for the loan if the LOAN increases
by 39072, MORTDUE increases by 325939, VALUE increases
by 84791, CLAGE increases by 1051, NINQ increases by 4,
CLNO increases by 9, DEBTINC decreases by 24 and DEROG
increases by 10.

The difference between our approach and that of
Sharma et al. [13] is around the time it takes to generate a
counterfactual and the distance between the record of interest
and the generated counterfactual. The generated counterfac-
tual must not be far off from the data point of interest, this
ensures that the counterfactual is feasible. Our approach uses
sparse counterfactuals that result in small distances between
the counterfactual and the record of interest. This is illustrated
in Table 3.

2) EXPLANATIONS FROM CREDIT SCORING EXPERTS
Credit scoring experts generated their own counterfactual
explanations based on their domain knowledge. Please
refer to Figure 4 and Figure 5 to visually see the
explanations that are given in the text below. Expert
number 1 on German credit dataset, stated that the appli-
cant would qualify for the loan if the Payment Status
of Previous Credit decreases by 4, Duration of
Credit (month) increases by 10, Credit Amount
increases by 5702, Account Balance increases by 1 and
Age (years) increases by 7. Expert number 2 on German
credit dataset, suggested that the applicant would qualify
for the loan if the Duration of Credit (month)
increases by 57, Credit Amount increases by 10359 and
Purpose decreases by 1. Expert number 3 on German
credit dataset, stated that the applicant would qualify for the
loan if the Duration of Credit (month) increases
by 38, Age (years) decreases by 10 and Payment
Status of Previous Credit decreases by 3. Expert
number 1 on HMEQ credit dataset, stated that the appli-
cant would qualify for the loan if the LOAN increases by
11544,DEROG increases by 2, VALUE increases by 373079,
CLAGE increases by 456, NINQ increases by 8, CLNO
increases by 42 and DEBTINC decreases by 14. Expert num-
ber 2 on HMEQ credit dataset, stated that the applicant would
qualify for the loan if the the CLAGE increases by 362. Expert
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FIGURE 4. Explanation on German credit dataset record using our approach, Sharma et al. [13] and experts. The red bars represent a decrease in a
feature value and the green bars represent an increase in a feature value. The x-axis on each figure represent the change between the original feature
value and the counterfactual feature value.

number 3 on HMEQ credit dataset, stated that the applicant
would qualify for the loan if the the CLAGE increases by 304.

For counterfactuals that were generated by the experts,
in some cases the features that needed to be changed over-
lapped with the features that were changed when using our
approach to generate counterfactuals. The experts select fea-
tures that are more influential in determining the output of the
model. On the other hand, our approach selects features that
are more likely to change the outcome of a prediction. Our
approach can play a key role in credit scoring for black-box
model explanations and the credit scoring experts can lever-
age off the explanations from our approach, and this can result
in a human-machine relationship.

D. MEAN OPINION SCORE (MOS)
The set of features that were used in the counterfactual expla-
nations which were generated when using our approach, were
compared to the set of features that were chosen by the credit
scoring experts. Let L denote the number of credit scoring

experts and I denote the number of features used to gener-
ate the counterfactuals when using our approach. We define
below ail which determines whether there is an overlap
between a feature from our approach and the ith-feature from
the l th-expert opinion,

ail =

{
1, if eil = mi

0, otherwise,
(21)

where eil is the l
th-expert feature opinion and mi is the feature

which is selected by our approach. Hence, the mean opinion
score is given as follows,

MOS =
1
I

I∑
i=1

1
L

L∑
l=1

ail . (22)

The MOS ranges between 0 and 1, values that are close to
1 would mean that the credit experts agree more with the
features that need to be changed for the generation of a
counterfactual using our approach. The values that are close
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FIGURE 5. Explanation of on HMEQ credit dataset record using our approach, Sharma et al. [13] and experts. The red bars represent a decrease in a
feature value and the green bars represent an increase in a feature value. The x-axis on each figure represent the change between the original feature
value and the counterfactual feature value.

to 0, it would mean that the credit experts agree less with
the values that are suggested for creating a counterfactual
using our approach. For German credit scoring dataset, the
MOS = 0.17, indicating that the credit experts agree 17%
with the features that needed to be changed to generate a
counterfactual. For HMEQ credit dataset, theMOS = 0.083,
this indicates that the credit experts agree 8.30% with the
features that needed to be changed to generate a counterfac-
tual. The low values of the MOS are due to the fact that our
approach looks at sparse counterfactuals, this results in few
features that need to be changed, whereas for credit scoring
experts there is no restriction in the number of required
features.

E. COMPARISON WITH STATE-OF-THE-ART
COUNTERFACTUAL EXPLANATION METHODS
Table 4 shows comparisons with state-of-the-art counter-
factual explanation methods. Factors such as the black-box
nature of the models, the applicability of the expla-
nation approach using different classes of models (i.e.
model-agnostic behaviour), involvement of domain experts,
the sparseness of the counterfactuals, and quantitative assess-
ments of the resulting counterfactuals, were used for compar-
ison purposes. We observed that most methods are focusing
on black-box models and model-agnostic behaviour of the
explanations, except [3], [16], [30]. Our approach looks at
all the suggested factors. The factors such as expert domain
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TABLE 4. Comparison with state-of-the-art counterfactual methods with
our approach. Legend: Q-Measured is Quantitatively Measured.

knowledge, the sparseness of counterfactual explanations,
and also the ability to quantitatively assess the generated
counterfactuals, ensure the robustness of the generated coun-
terfactual explanations. Please note that the list of sources in
Table 4 is not exhaustive.

VI. CONCLUSION AND FUTURE WORK
The non-transparent nature of machine learning and deep
learning models hampers the application of these models in
credit scoring. We address this challenge of non-transparency
by generating counterfactuals via a custom genetic algorithm
to explain model predictions. We select predictive fea-
tures and determine Spearman’s rank correlations between
the target flag and the predictors to enforce sparseness.
We normalize all continuous features to expedite the genera-
tion of counterfactuals. We show the efficacy of the proposed
approach on German and HMEQ credit scoring datasets. The
experimental results indicate that the proposed approach effi-
ciently generates sparse counterfactuals compared to similar
methods. We also test the accuracy of our approach by using
counterfactuals from credit scoring experts. Our results show
an overlap between some features selected by the credit scor-
ing experts and our approach in creating the counterfactuals.

Although the proposed method produces satisfactory
results with the default parameter settings of the genetic
algorithm, optimal parameter settings may improve the per-
formance of the counterfactual generation. Furthermore,
an optimal fitness function capturing different properties of
counterfactuals using a genetic programming approach can
enhance the performance of the proposed method. In addi-
tion, explaining the overall working mechanism of the
black-box models instead of explaining individual instances
can further improve the transparency and explainability of the
credit scoring models.
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