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Abstract

Similar to ordinary differential equations, rough paths and rough differential equations can be formulated 
in a Banach space setting. For α ∈ (1/3, 1/2), we give criteria for when we can approximate Banach space-
valued weakly geometric α-rough paths by signatures of curves of bounded variation, given some tuning of 
the Hölder parameter. We show that these criteria are satisfied for weakly geometric rough paths on Hilbert 
spaces. As an application, we obtain Wong-Zakai type result for function space valued martingales using 
the notion of (unbounded) rough drivers.
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1. Introduction

The theory of rough paths was invented by T. Lyons in his seminal article [33] and provides a 
fresh look at integration and differential equations driven by rough signals. A rough path consists 
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of a Hölder continuous path in a vector space together with higher level information satisfying 
certain algebraic and analytical properties. The algebraic identities in turn allow one to conve-
niently formulate a rough path as a path in nilpotent groups of truncated tensor series, cf. [16] for 
a detailed account. Similar to the well-known theory of ordinary differential equations, it makes 
sense to formulate rough paths and rough differential equations with values in a Banach space, 
[31]. It is expected that the general theory carries over to this infinite-dimensional setting, yet a 
number of results which are elementary cornerstones of rough path theory are still unknown in 
the Banach setting.

In [6] the authors introduce the notion of a rough driver, which are vector fields with an irreg-
ular time-dependence. Rough drivers provide a somewhat generalized description of necessary 
conditions for the well-posedness of a rough differential equation and the authors use this for 
the construction of flows generated by these equations. The push-forward of the flow, at least 
formally, satisfies a (rough) partial differential equation, and this equation is studied rigorously 
in [4] where the authors introduce the notion of unbounded rough drives. This theory was further 
developed in [13,22,25] in the linear setting (although [13] also tackles the kinetic formulation 
of conservation laws) as well as nonlinear perturbations in [8,24,23,27,26]. Still, the unbounded 
rough drivers studied in these papers assume a factorization of time and space in the sense that 
the vector fields lies in the algebraic tensor of the time and space dependence.

Our main motivation for this paper is the observation in [10] that rough drivers can be 
constructed from rough paths taking values in the space of sufficiently smooth functions, see 
Section 3.2. Moreover, in [10] the authors needed unbounded rough drivers for which the factor-
ization of time and space was not valid, and in particular approximating the unbounded rough 
driver by smooth drivers. In finite dimensions, sufficient conditions that guarantee the existence 
of smooth approximations can be easily checked and leads to the so-called weakly geometric 
rough paths. In [10] and ad-hoc method was introduced to tackle the lack of a similar result in 
infinite dimensions. For other papers dealing with infinite-dimensional rough paths, let us also 
mention [11,2,7].

In the present paper we address the characterization of weakly geometric rough paths in Ba-
nach spaces. Our aims are twofold. Firstly, we describe and develop the infinite-dimensional 
geometric framework for Banach space-valued rough paths and weakly geometric rough paths. 
These rough paths take their values in infinite-dimensional groups of truncated tensor products. 
Some care needs to be taken in this setting, as the tensor product of two Banach spaces will 
depend on choice of norm on the product. Secondly, we characterize the geometric rough paths 
that take their values in an Hilbert space and their relationship to weakly geometric rough paths. 
Our main result is to prove the following well-known relationship for finite dimensional rough 
paths in an infinite dimensional setting. Recall that for α ∈ (1/3, 1/2), a geometric α-rough path 
is an element of the closure in signatures S2(x)st = 1 + xt − xs + ∫ t

s
(xr − xs) ⊗ dxr of curves xt

of bounded variation, while an α-rough path xst = 1 + xst + x
(2)
st is called weakly geometric if 

the symmetric part of x(2)
st equals 1

2xst ⊗ xst ; a property that holds for all geometric rough paths 
in particular by an integration by parts argument. Our main result is the following.

Theorem 1.1. For α ∈ (1/3, 1/2), let C α
g ([0, T ], G2(E)) and C α

wg([0, T ], G2(E)) denote re-
spectively geometric rough paths and weakly geometric rough paths in a Hilbert space E, defined 
on the interval [0, T ] and relative to the Schatten p-norm, 1 ≤ p ≤ ∞ on E ⊗ E. Then for any 
β ∈ (1/3, α), we have inclusions

C α
g ([0, T ],G2(E)) ⊂ C α

wg([0, T ],G2(E)) ⊂ C β
g ([0, T ],G2(E)).
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We emphasize that this result includes the Hilbert-Schmidt norm, projective tensor norm and 
injective tensor norm as respectively p equal to 2, 1 and ∞.

The structure of the paper is as follows. In Section 2 we review the infinite-dimensional frame-
work for rough paths with values in Banach spaces. In particular, we discuss good conditions for 
norms on tensor products and establish that our free nilpotent groups have L1-regularity in Re-
mark 2.7. We continue with a presentation of Banach space-valued α-rough paths for α ∈ ( 1

3 , 12 )

in Section 3. This leads to the three prerequisite assumptions in Theorem 3.3 which states when 
weakly geometric rough paths can be approximated by signatures of bounded variation path after 
some tuning of the Hölder parameter. In Section 3.2, we apply Theorem 1.1 to prove Wong-Zakai 
type results for rough flows; a rough generalization of flows of time-dependent vector fields. This 
yields a concrete application for rough paths on infinite dimensional space.

The remainder of the paper is dedicated to proving Theorem 1.1 by showing that the cri-
teria of Theorem 3.3 are indeed satisfied in the Hilbert space setting. All of these criteria 
depends on considering Carnot-Carathéodory geometry or sub-Riemannian geometry of our in-
finite dimensional groups. Section 4 first establishes the necessary prerequisite results from finite 
dimensional Hilbert spaces. In particular, we are concerned with formulas and results that are 
dimension-independent. We then do the proof of Theorem 1.1 in several steps, including a result 
in Theorem 4.6 where we prove that the Carnot-Carathéodory (CC) metric on the free step 2 
nilpotent group generated by a Hilbert space becomes a geodesic distance when restricted to 
the subset of finite distance from the identity. We emphasize that this is a proper subset as the 
CC-metric is not Lipschitz-equivalent to the usual homogeneous distance defined by the Banach 
norms for infinite dimensional spaces. We conclude the proof of Theorem 1.1 in Section 4.5.

2. The infinite-dimensional framework for rough paths

2.1. Tensor products of Banach spaces

If E and F are two Banach spaces, we write E ⊗a F for their algebraic tensor product. We 
use the convention that E⊗a0 = R. For any k ≥ 0 we endow the k-fold algebraic tensor product 
E⊗ak with a family of norms ‖·‖k satisfying the following conditions, cf. [5].

1. For every a ∈ E⊗ak, b ∈ E⊗a�, we have

‖a ⊗ b‖k+� ≤ ‖a‖k · ‖b‖�.

2. For any permutation σ of the integers 1, 2 . . . k and for any x1, . . . , xk ∈ E,

‖x1 ⊗ x2 ⊗ · · · ⊗ xk‖k = ‖xσ(1) ⊗ · · · ⊗ xσ(k)‖k.

Inductively, for k, � ∈ N we define the spaces E⊗k ⊗ E⊗� as the completion of E⊗k ⊗a E⊗�

with respect to the norm ‖·‖k+�. From the inclusions

E⊗a(k+�) ⊆ E⊗k ⊗a E⊗� ⊆ E⊗(k+�)

it follows that E⊗k ⊗ E⊗� ∼= E⊗(k+�) as Banach spaces.
153



E. Grong, T. Nilssen and A. Schmeding Journal of Differential Equations 340 (2022) 151–178
Example 2.1. The projective tensor product of Banach spaces is the completion of the algebraic 
tensor product with respect to the projective tensor norm

‖z‖π := inf
{∑n

i=1‖xi‖E‖yi‖F : z =∑n
i=1 xi ⊗ yi

}
.

It is well known that the projective tensor norm satisfies properties 1. and 2. since it is a rea-
sonable crossnorm on E ⊗a F (cf. [40, Section 6]). Similarly, the injective tensor norm, defined 
by

‖z‖ε = sup
{∣∣∑n

i=1 ϕ(xi)ψ(yi)
∣∣ : ϕ ∈ E∗,ψ ∈ F ∗,‖ϕ‖ = ‖ψ‖ = 1, z =∑n

i=1 xi ⊗ yi

}
,

satisfies 1. and 2. Its completion is the injective tensor product [40, Section 3].
If E is a Hilbert space, then we can identify E ⊗a E with finite rank operators from E to itself. 

In this case, the projective and injective norm of z : E → E correspond respectively to the trace 
norm and the operator norm. Moreover, this identification allows one to identify the projective 
tensor as the space of nuclear operators N (E, E) and the injective tensor product as the space of 
compact operators K(E, E), see [40, Corollary 4.8 and Corollary 4.13] for details.

2.2. Algebra of truncated tensor series

For N ∈N0, we define

AN :=
N∏

k=0

E⊗k

as the space of (truncated) formal tensor series of E.2 Elements in AN will be denoted as se-
quences (x(k))k≤N . A sequence concentrated in the k-th factor E⊗k is called homogeneous of 
degree k. The set AN is an algebra with respect to degree wise addition and the multiplication

(x(k))k≤N · (y(k))k≤N :=
( ∑

n+m=k

x(n) ⊗ y(m)

)
k≤N

.

The algebras AN turn out to be Banach algebras. We summarize the relevant results in the fol-
lowing.

Lemma 2.2. The algebra AN is a Banach algebra for N < ∞. Moreover, its group of units A×
N

is a C0-regular infinite-dimensional Lie group for any N ∈ N0.

We recall the notion of regularity of a Lie group G. For this it is necessary to endow the 
occuring function spaces with a topology. This topology is not Banach space topology (but still 
a completely metrizable topological vector space) and we have to adopt a notion of smoothness 

2 One can also consider the algebra A∞ arising as an infinite product, but this algebra is not a Banach space and we 
have no need for this generality in the present paper (but see the arXiv version of this paper or [41, chapter 8] for more 
information).
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which is called Bastiani calculus. This means that we require the existence and continuity of 
directional derivatives, see [19,28] for more information. Let now 1 denote the group’s identity 
element and L(G) its Lie algebra. Then G is called Cr -regular, r ∈ N0 ∪ {∞}, if for each Cr -
curve u : [0, 1] → L(G) the initial value problem

γ̇ (t) = γ (t) · u(t) γ (0) = 1

has a (necessarily unique) Cr+1-solution Evol(u) := γ : [0, 1] → G and the map

evol : Cr([0,1],L(G)) → G, u �→ Evol(u)(1)

is smooth. A C∞-regular Lie group G is called regular (in the sense of Milnor). Every Banach 
Lie group is C0-regular (cf. [35]). Several important results in infinite-dimensional Lie theory 
are only available for regular Lie groups, cf. [29].

Proof of Lemma 2.2. By construction of the algebra structure we have for elements of degree 
k and � that E⊗k · E⊗� ⊆ E⊗(k+�). Hence the choice of tensor norms in section 2.1 shows that 
AN is a Banach algebra, its unit group A×

N is an open subset of AN . Following [18,21] the 
submanifold structure turns A×

N into a C0-regular Banach Lie group. �
Remark 2.3. The unit group A×

N of AN is even a real analytic Lie group in the sense that the 
group operations extend analytically to the complexification.

2.3. Exponential map

Define the canonical projection πN
0 : AN → R = A0 and the closed ideal IAN

:= kerπN
0 =∏

0<k≤N E⊗k . Related to this ideal, we consider the following maps.

Lemma 2.4 (Exponential and logarithm). The exponential and logarithm series

expN : IAN
→ 1 + IAN

, X �→
∑

0≤n≤N

X⊗n

n! ,

logN : 1 + IAN
→ IAN

, 1 + Y �→
∑

0≤n≤N

(−1)n+1 Y⊗n

n
,

yield mutually inverse real analytic isomorphisms.

Proof. It suffices to note that due to the truncated multiplication, the series are given by poly-
nomials (which are analytic mappings). That they are mutually invers follows via the familiar 
argument for the exponential and logarithm series �
Remark 2.5. Due to [18, Theorem 5.6] the Lie group exponential of A×

N is

expAN
: AN = L(A×

N) → A×
N, x �→

∑ x⊗n

n! .
n∈N0
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2.4. Free nilpotent groups

Using the exponential map, we are ready to define the subgroups of A×
N we are interested in. 

Observe that AN = L(A×
N) is a Lie algebra with respect to the commutator bracket [x, y ] :=

x ⊗ y − y ⊗ x. We define inductively the space Pn
a(E) of Lie polynomials over E of degree 

n ∈N by P1
a(E) := E and

Pn+1
a (E) := Pn

a(E) + span{[x, y ] | x ∈Pn
a(E), y ∈ E} ⊆ An+1

The set of all Lie polynomials or Lie series is a Lie subalgebra of (AN, [ · , ·]), [38, Chapter 

1.2]. Since AN is a topological Lie algebra, we see that also PN(E) := PN
a (E) is a closed Lie 

subalgebra of (AN, [ · , ·]). Due to [38, Theorem 1.4], we have PN(E) ⊆ IAN
. Hence we can 

apply Lemma 2.4 and [38, Corollary 3.3] to see that the set

GN(E) := expAN
(PN(E)) = expAN

(PN(E)),

forms a closed subgroup of A×
N . Closed subgroups of Banach Lie groups are in general not Lie 

subgroups [35, Remark IV.3.17]. So indeed the next proposition is non-trivial.

Proposition 2.6. The group GN(E) is a closed submanifold of AN and this structure turns it 
into a Banach Lie group. Moreover, GN(E) is a C0-regular Lie group and the exponential map 
exp : PN(E) → GN(E) is a diffeomorphism.

Observe that the group GN(E) is a nilpotent group of step N generated by E.

Proof. The group GN(E) is a closed subgroup of the locally exponential Lie group A×
N . Due to 

Remark 2.5, the Lie group exponential of this group is expAN
. Define

L(N) := {x ∈ IAN
⊆ L(A×

N) | expAN
(Rx) ⊆ GN(E)}.

Due to construction of the closed Lie subalgebra PN(E), we have PN(E) ⊆ L(N). Conversely 
as PN(E) ⊆ IAN

and GN(E) ⊆ 1 + IAN
, we deduce from Lemma 2.4 that also L(N) ⊆ PN(E)

holds, hence the two sets coincide. It follows that GN(E) is a locally exponential Lie subgroup 
of A×

N by [35, Theorem IV.3.3].
Since PN(E) ⊆ IAN

, GN(E) ⊆ 1 + IAN
and the exponential expAN

is a diffeomorphism 
between those sets (Lemma 2.4), the Lie group exponential induces a diffeomorphism between 

Lie algebra and Lie group as exp = expAN
|GN(E)

PN(E)
due to [35, Theorem IV.3.3]. As all Banach 

Lie groups are C0-regular, so are the GN(E), cf. also Remark 2.7 below. �
Remark 2.7. The regularity of the Lie groups GN(E) can be strengthened by weakening the 
requirements on the curves in the Lie algebra. This results in a notion of Lp-regularity [20]
for infinite-dimensional Lie groups. One can show that Banach Lie groups such as GN(E) are 
L1-regular. Furthermore, as in the proof of Proposition 2.6, one sees that the limit G∞(E) is 
L1-regular. Note that L1-regularity implies all other known types of measurable regularity for 
Lie groups.
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Example 2.8 (Step 2). For the remainder of the paper, we will mostly focus on the special case of 
N = 2. In this case P2(E) is the closure in A2 of sums of elements X, Y ∧ Z = Y ⊗ Z − Z ⊗ Y

with X, Y, Z ∈ E and Lie brackets

[X +X, Y +Y ] = X ∧ Y, X,Y ∈ E,X,Y ∈ P2(E) ∩ E⊗2.

3. Applications to infinite dimensional rough paths

3.1. Rough paths and geometric rough paths in Banach space

Let us first recall the notion of a Banach-space valued rough path, see e.g. [7]. The definition 
of a rough path involves higher level components with values in a completed tensor product.

Definition 3.1. Fix α ∈ ( 1
3 , 12 ) and a tensor product completion E⊗E by a choice of a tensornorm 

‖ · ‖⊗ satisfying the assumptions from Section 2.1. An (E, ⊗)-valued α-rough path consists of a 
pair (x, x(2))

x : [0, T ] → E, x(2) : [0, T ]2 → E⊗2 = E ⊗ E

where x is an α-Hölder continuous path and x(2) is “twice Hölder continuous”, i.e.

‖xt − xs‖ � |t − s|α, ‖x(2)
st ‖2 � |t − s|2α. (3.1)

In addition, we require

x
(2)
st − x(2)

su − x
(2)
ut = (xu − xs) ⊗ (xt − xu) (3.2)

usually called Chen’s relation. The set of rough paths equipped with the metric induced by (3.1)
is denoted C α([0, T ], G2(E)).

To be more precise about this distance, we write xst = 1 + xt − xs + x
(2)
st in A2, the two 

step-truncated tensor algebra over E. Chen relation (3.2) can then be rewritten as xst = xsuxut . 
Introduce a metric d on 1 + IN = {x = 1 + x + x(2) : x ∈ E, x(2) ∈ E ⊗ E}, by

|x| = max{‖x‖,‖x‖1/2
⊗ },

d(x,y) = |x−1 · y| = |(1 + x + x(2))−1 · (1 + y + y(2))|.

We then define the distance between two α-rough paths (s, t) �→ xst , yst on [0, T ]2 as

dα(x,y) = sup
0≤s<t≤T

d(xst ,yst )

|t − s|α . (3.3)

Rephrasing these properties, we can define xt := x0t = 1 + xt + x
(2)
0t = 1 + xt + x

(2)
t and regard 

t �→ xt as a α-Hölder continuous path with values in A2. The relations (3.2) tell us that xst =
x−1xt and we have the identification C α([0, T ], G2(E)) � Cα([0, T ], 1 + IN).
s
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If xt is a smooth path in E, then we can lift it to a rough path xt = 1 + xt + x
(2)
t , where 

x
(2)
st = ∫ t

s
(xr − xs) ⊗ dxr . Using integration by parts,

t∫
s

(xr − xs) ⊗ dxr +
t∫

s

dxr ⊗ (xr − xs) = (xt − xs) ⊗ (xt − xs), (3.4)

that is, the symmetric part of x(2)
st is (xt − xs) ⊗ (xt − xs). This algebraic condition is equivalent 

to xt taking values in G2(E). We note that log2(xst ) = xt − xs + 1
2

∫ t

s
(xr − xs) ∧ dxr .

Definition 3.2 (Weakly geometric and geometric rough paths). We say that α-rough path xt is 
weakly geometric if it takes values in G2(E). The set of weakly geometric rough paths can again 
can be given the structure of a metric space C α

wg([0, T ], G2(E)) with the metric dα as in (3.3)

and can be identified with Cα([0, T ], G2(E)).
The space of geometric rough paths is defined as the closure in the rough path topology of the 

set canonical lift of smooth paths and is denoted C α
g ([0, T ], G2(E)).

Since (3.4) is stable under limits, we get that the set of geometric rough paths can be regarded 
as a subspace of Cα([0, T ], G2(E)). The reversed question, namely if any x ∈ Cα([0, T ], G2(E))

can be approximated by a sequence of smooth paths is answered positively modulo some tuning 
of the Hölder parameter α given the following conditions.

We recall the definition of the Carnot-Caratheodory metric, which we will often abbreviate 
as the CC-metric. We define this metric ρ on G2(E) by ρ(y, z) = ρ(1, y−1 · z) and

ρ(1,y) = inf

⎧⎨
⎩

T∫
0

‖ẋt‖dt : x∈C([0,T ],E),x0=0, xt has bounded variation

y=S2(x)T :=1+xT +∫ T
0 xt⊗dxt

⎫⎬
⎭ .

Theorem 3.3. Write

Mcc = {z ∈ G2(E) : ρ(1, z) < ∞},

and C([0, T ], Mcc) for the space of continuous curves in Mcc with respect to ρ.
Let α ∈ ( 1

3 , 12 ) be given and let β ∈ ( 1
3 , α) be arbitrary. Assume that the following conditions 

are satisfied.

(I) For some C > 0 and any z ∈ G2(E), we have d(1, z) ≤ Cρ(1, z).
(II) The metric space (Mcc, ρ) is a complete, geodesic space.

(III) The set

Cα([0, T ],G2(E)) ∩ C([0, T ],Mcc),

is dense in Cα([0, T ], G2(E)) relative to the metric dβ .

Then for any x ∈ Cα([0, T ], G(2)(E)) there exists a sequence of bounded variation paths 
xn : [0, T ] → E such that
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xn = S2(xn) → x in C β([0, T ],E).

In particular, we have the inclusions

C α
g ([0, T ],G2(E)) ⊂ Cα([0, T ],G2(E)) ⊂ C β

g ([0, T ],E).

To explain condition (II) in more details, recall that if (M, ρ) is a metric space, then a curve 
γ : [0, T ] → M is said to have constant speed if Length(γ |[s,t]) = c|t − s| for any 0 ≤ s ≤ t ≤
T and some c ≥ 0. A constant speed curve is a geodesic if Length(γ |[s,t]) = ρ(γ (s), γ (t)) =
|t − s|ρ(γ (0), γ (T )). The metric space (M, ρ) is called geodesic if any pair of points can be 
connected by a geodesic.

If E is finite dimensional, the assumptions (I), (II) and (III) hold as ρ and d are then equivalent 
and we have access to the Hopf-Rinow theorem, see e.g. [16]. If E is a general Hilbert space, 
the Hopf-Rinow theorem is no longer available [14]. We will also show that the metrics ρ and d
will not be equivalent in the infinite dimensional case, yet assumptions (I), (II) and (III) will be 
satisfied, giving us the result in Theorem 1.1. We will prove this statement in Section 4, finishing 
the proof in Section 4.5.

Proof of Theorem 3.3. We first consider the case when x ∈ Cα([0, T ], G2(E))} ∩
C([0, T ], Mcc). As (Mcc, ρ) is a geodesic space, [17, Lemma 5.21] implies that there exists 
a sequence of truncated signatures xn = S2(xn) : [0, T ] → Mcc of bounded variation paths xn

such that

sup
t∈[0,T ]

ρ(xt ,xn
t ) → 0, for n → ∞,

and we have the uniform bound supn d(1, xn
st ) ≤ C|t − s|α . From (I), we conclude that xn con-

verges to x in C([0, T ], G(2)(E)). To show the stronger convergence in Cβ([0, T ], G2(E)) we 
perform a classical interpolation argument. Since d is left invariant we see that

d(xn
st ,xst ) ≤ d((xn

s )
−1xn

t , (xs)
−1xn

t ) + d((xs)
−1xn

t , (xs)
−1xt )

≤ 2 sup
t∈[0,T ]

d(xn
t ,xt ) ≤ 2C sup

t∈[0,T ]
ρ(xn

t ,xt ),

so that there exists a sequence of real numbers εn → 0 with

d(xn
st ,xst ) ≤ εn.

From the construction of xn we have d(1, xn
st ), d(1, xst ) ≤ C|t − s|α . Using the interpolation 

min{a, b} ≤ aθb1−θ for every a, b ≥ 0 and θ ∈ [0, 1] we have

d(xn
st ,xst ) ≤ εn ∧ C|t − s|α ≤ εθ

nC1−θ |t − s|α(1−θ)

and by choosing θ such that α(1 − θ) = β we get convergence

dβ(xn,x) = sup
d(xn

st ,xst )

|t − s|β ≤ εθ
nC1−θ → 0, n → ∞.
s,t∈[0,T ]
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Finally, from the density of Cα([0, T ], G2(E)) ∩ C([0, T ], Mcc) by (III) it follows that 
if xm ∈ Cα([0, T ], G2(E)) ∩ C([0, T ], Mcc) is a sequence converging to an arbitrary x ∈
Cα([0, T ], G2(E)) with respect to dβ , and xn,m is a sequence of truncated signatures of bounded 
variation curves converging to xm, then xm,m converge to x. This completes the proof. �
3.2. Wong-Zakai for stochastic flows

As an application of Theorem 3.3 and Theorem 1.1 we prove an approximation result for 
martingales with values in a Banach space of sufficiently smooth functions, as systematically ex-
plored in [30]. We note that the approximation is in general not of Wong-Zakai type since we are 
not constructing piecewise linear interpolation of the noise. Rather, existence of the approxima-
tion follows from our general result Theorem 1.1. Let (fk)

K
k=0 be a collection of time-dependent 

vector fields fk : [0, T ] × Rd → Rd of class Cp
b (Rd , Rd) in the x-variable for some p to be 

determined later, and let (ωt )t∈[0,T ] be a K-dimensional Brownian motion on some filtered prob-
ability space (�, F , P ). The study of the Stratonovich equation (for notational convenience we 
write ω0

t = t)

dyt =
K∑

k=0

fk(t, yt ) ◦ dωk
t (3.5)

is by now classical. The book [30] stresses the importance of considering the Cp
b (Rd , Rd)-valued 

semi-martingale

mt(ξ) :=
K∑

k=0

t∫
0

fk(r, ξ)dωk
r (3.6)

which allows for a one-to-one characterization of stochastic flows (see [30] for precise statement 
and result). Equation (3.5) is then understood as dyt = m◦dt (yt ).

Consider now the tensor product on Cp
b (Rd , Rd),

(f ⊗ g)(ξ, ζ ) := f (ξ)g(ζ )T ,

which allows us to identify Cp
b (Rd , Rd)⊗2 with a subspace of Cp

b (Rd ×Rd , Rd×d). Let us define 
the iterated integral

m
(2)
st (ξ, ζ ) :=

t∫
s

(mr − ms) ⊗ ◦dmr(ξ, ζ ) (3.7)

:=
K∑

k,l=0

t∫
s

r∫
s

fl(v, ξ)fk(r, ζ )T dωl
v ◦ dωk

r ,

as a Cp
b (Rd × Rd , Rd×d)-valued random field. Checking the symmetry condition then boils 

down to checking (3.4) for this tensor product. We have, for μ, ν ∈ {1, . . . , d}
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m
(2),μ,ν
st (ξ, ζ ) + m

(2),ν,μ
st (ζ, ξ)

=
t∫

s

(mμ
r (ξ) − mμ

s (ξ)) ◦ dmν
r (ζ ) +

t∫
s

(mν
r (ζ ) − mν

s (ζ )) ◦ dmμ
r (ξ)

=(m
μ
t (ξ) − mμ

s (ξ))(mν
t (ζ ) − mν

s (ζ )) (3.8)

by the well-known integration by parts formula for the Stratonovich integral. We note that the 
particular decomposition of (3.6) and (3.7) in terms of the vector fields f and ω are not important 
for this property; only the choice of Stratonovich integration in the definition of m(2) plays a role.

The thread of [30] was picked up in the rough path setting in [6] where the authors introduce 
so-called “rough drivers”, which are vector field analogues of rough paths. Rough drivers consist
of a family of differential operators (Xst , Xst )0≤s≤t≤T such that Xst (respectively Xst ) are first-
(respectively second-) order differential operators for all 0 ≤ s ≤ t ≤ T and the following Chen’s 
relation holds true;

Xst = Xsu + Xut , Xst = Xsu +Xut + XsuXut .

A rough driver is called weakly geometric provided the second order derivative operator

Wst := Xst − 1

2
XstXst

is actually a first order derivative operator, i.e. a vector field. Additionally, we require the follow-
ing regularity:

‖Xst‖Xp(Rd ) � |t − s|α, ‖Wst‖Xp−1(Rd ) � |t − s|2α,

where Xp(Rd) denotes the set of vector fields of spatial regularity Cp.
It was noted in [10] that rough drivers can be canonically defined from infinite-dimensional, 

i.e. Cp
b (Rd , Rd), valued rough paths. In fact, the set of Cp-vector fields Xp(Rd) is canonically 

identified with Cp
b (Rd , Rd) via

C
p
b (Rd ,Rd) → Xp(Rd)

f �→ f · ∇ =∑
μ f μ ∂

∂ξμ .

Moreover, define by linearity on the algebraic tensor

C
p
b (Rd ,Rd)⊗a2 → Xp−1(Rd)

f ⊗ g �→ (f · ∇(g · ∇)) =∑
μ,ν f μ ∂gν

∂ξμ
∂

∂ξν

and denote by ∇⊗
2 the extension to Cp

b (Rd ×Rd , Rd×d). Moreover, for a matrix a we let a∇2 :=∑
μ,ν aμ,ν ∂

∂ξμ
∂

∂ξν . Then, given a rough path x ∈ C α
wg([0, T ], G2(C

p
b (Rd , Rd))), if we let

Xst (ξ) := xst (ξ) · ∇, Xst (ξ) := ∇⊗x
(2)
st (ξ, ξ) + x

(2)
st (ξ, ξ)∇2, (3.9)
2
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then X := (X, X) is a weakly geometric rough driver in the sense of [6].
In [6] the authors prove Wong-Zakai approximations of dyt = m◦dt (yt ) by using linear in-

terpolation of the Banach-space martingale m, showing that the corresponding iterated integral 
converges to m(2) in the appropriate sense and using continuity of the Itô-Lyons map, see [6] for 
details. As such, the Wong-Zakai approximation is constructed by hand. Our proposition below 
is also proved using continuity of the Itô-Lyons map and the continuity of the mapping x �→ X. 
However, let us emphasize that we do not construct the Wong-Zakai approximation by hand, but 
instead use Theorem 1.1 which guarantees the existence of a smooth approximation of the rough 
driver.

Theorem 3.4. Let x ∈ C α
wg([0, T ], G2(Hk(Rd , Rd))) for k > d

2 + p + 1 for some p ≥ 3 and 
suppose y solves dyt = Xdt (yt ) where Xt = (Xt , Xt ) is the rough driver built from x. Then there 
exists a sequence of functions xn : [0, T ] × Rd → Rd of bounded variation of t such that the 
solution yn of

ẏn
t = xn

t (yn
t )

converges to y in Cβ([0, T ], Cp(Rd, Rd)) for any β ∈ ( 1
3 , α).

Proof. Since x is weakly geometric we have

x
(2),μ,ν
st (ξ, ζ ) + x

(2),ν,μ
st (ζ, ξ) = (x

μ
t (ξ) − xμ

s (ξ))(xν
t (ζ ) − xν

s (ζ )) (3.10)

for all μ, ν ∈ {1, . . . , d} which gives x(2)
st ∇2 = 1

2 (xt − xs)(xt − xs)
T ∇2. It follows that

Xst (ξ) − 1

2
Xst (Xst )(ξ) = ∇⊗

2

(
x

(2)
st − 1

2
xst ⊗ xst

)
(ξ, ξ)

is actually a vector field (so it is a weakly geometric rough driver in the sense of [6]). From 
Theorem 1.1 we get can approximate the infinite dimensional rough path (x, x(2)) by a se-
quence of smooth paths. The result now follows from [6, Theorem 2.6] since the embedding 
Hk(Rd , Rd) ⊂ C

p
b (Rd , Rd) is continuous. �

Notice that we use the Sobolev embedding in the above proof to put ourselves in a Hilbert-
space setting and it is the reason for requiring the high spatial regularity, k > d

2 + p + 1.

4. Geometric rough paths on Hilbert spaces

4.1. Free nilpotent groups of step 2 in finite dimensions

We will first consider Carnot-Carathéodory geometry for finite dimensional, with the aim of 
proving result that are valid in the infinite-dimensional setting as well.

Let E be a finite dimensional inner product space and use the notation X∗ = 〈X, · 〉 for any 
X ∈ E. In the notation of Section 2.4, define a Lie algebra g(E) = P2(E). By Example 2.8, we 
can identify g(E) with E ⊕ ∧2E equipped with a Lie bracket structure

[X +X, Y +Y ] = X ∧ Y, X,Y ∈ E,X,Y ∈ ∧2E. (4.1)
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We identify ∧2E with the space of skew-symmetric endomorphisms so(E) by writing

X ∧ Y = X∗ ⊗ Y − Y ∗ ⊗ X. (4.2)

Consider the corresponding simply connected Lie group G2(E). For the rest of this section, we 
will use the fact that exp : g(E) → G2(E) is a diffeomorphism to identify these as spaces. Using 
group exponential coordinates G2(E) is then the space E ⊕ so(E) with multiplication

(x + x(2)) · (y + y(2)) = x + y + x(2) + y(2) + 1

2
x ∧ y, (4.3)

x, y ∈ E, x(2), y(2) ∈ so(E). With this identification, the identity is 0 and inverses are given by 
(x + x(2))−1 = −x − x(2). Recall Lemma 2.4 for relating the presentation of G2(E) as a subset 
of A2 and its representation in exponential coordinates.

An absolutely continuous curve �(t) in G2(E) with an L1-derivative is called horizontal if 
for almost every t ,

�(t)−1 · �̇(t) ∈ E.

In other words, if we write �(t) = γ (t) + γ (2)(t) with γ (t) ∈ E and γ (2)(t) ∈ ∧2E, then for 
some L1-function u(t) ∈ E, we have

γ̇ (t) = u(t), γ̇ (2)(t) = 1

2
γ (t) ∧ u(t).

Since E is a generating subspace of g(E), it follows from the Chow-Rashevskiï Theorem 
[9,37] that any pair of points in G2(E) can be connected by a horizontal curve. For any pair of 
points in x, y ∈ G2(E), define the Carnot-Carathéodory metric (CC-metric) by

ρ(x,y) =
⎧⎨
⎩

1∫
0

‖�(t)−1 · �̇(t)‖E dt : � : [0,1] → G2(E) horizontal,
�(0) = x,�(1) = y

⎫⎬
⎭ .

Note that if �(t) is horizontal, then so is x · �(t). It follows that the distance ρ is left invariant.
From e.g. [1, Section 7.3], length minimizers of ρ are all on the form,

γ (t) = x0 +
t∫

0

es�u0 ds, γ (2)(t) = x
(2)
0 + 1

2

t∫
0

γ (s) ∧ es�u0ds, (4.4)

for some constant element � ∈ so(H) and u0 ∈ E.

Example 4.1 (Heisenberg group). When E is two-dimensional, the group G2(E) is known as 
the Heisenberg group. For any choice of orthogonal frame X, Y , define Z = 1

2 (X − iY ). This 
means that we can represent any element y = aX + bY + cX ∧ Y as

y = (a + ib)Z + (a − ib)Z̄ + cX ∧ Y.
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We will use a similar notation in the rest of the paper.
If � = λX ∧ Y , u0 = u0Z + ū0Z̄, γ (t) = z(t)Z + z̄(t)Z̄ and γ (2)(t) = σ(t)X ∧ Y with 

z(t), u0 ∈C and σ(t), λ ∈R, then (4.4) becomes

z(t) = z0 +
t∫

0

eiλsu0 ds = z0 + eiλt − 1

iλ
u0 = z0 + 2 sin(λt/2)

λ
eiλ/2t u0,

σ (t) = σ0 + 1

2

t∫
0

Im(z̄(s)eiλsu0) ds

= σ0 + 2 sin(λt/2)

λ
Im

(
eiλ/2t z̄0u0

)
− 1

2

|u0|2
λ

(
t − sin(λt)

λ

)
,

where we interpret sin(λt)
λ

as t if λ = 0. If the initial point is the identity 0, we have

z(t) = 2 sin(λt/2)

λ
eitλ/2u0, σ (t) = −|u0|2

2λ

(
t − sin(λt)

λ

)
.

If the above geodesic is defined on the interval [0, 1], then it has length |u0|. In particular, we 
observe the following.

(a) A minimizing geodesic defined on [0, 1] from 0 to zZ + z̄Z̄ is given by the choice λ = 0. It 
follows that

ρ(0, zZ + z̄Z̄) = |z|.

(b) A minimizing geodesic defined on [0, 1] from 0 to σX ∧ Y is given by the choice λ = ±2π

depending on the sign of σ . Hence, we have that

|σ | = ρ(0, σX ∧ Y)2

4π
.

(c) Note that since

|z(1)| = |z| =
∣∣∣∣∣∣

1∫
0

u(t)dt

∣∣∣∣∣∣≤
1∫

0

|u(t)|dt = |u0|,

we have |z| ≤ ρ(0, zZ + z̄Z̄ + σX ∧ Y). It then also follows that

2
√

π |σ |1/2 = ρ(0, σX ∧ Y)

≤ ρ(0,−zZ + z̄Z̄) + ρ(−zZ − z̄Z̄, σX ∧ Y)

= |z| + ρ(0, zZ + z̄Z̄ + σX ∧ Y) ≤ 2ρ(0, zZ + z̄Z̄ + σX ∧ Y).
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Using this fact along with the upper bound from the triangle inequality and left invariance, 
we have

max{|z|,√π |σ |1/2} ≤ ρ(0, zZ + z̄Z̄ + σX ∧ Y) ≤ |z| + 2
√

π |σ |1/2. (4.5)

We want to generalize the inequality (4.5) to free nilpotent groups of step 2 of arbitrary dimen-
sions, but without having any dimension-dependent constants. The inequality can be concluded 
from formulas of the CC-distance to the vertical space in [39, Appendix A], but we include some 
more details here for the sake of completion and for applications to infinite dimensional vector 
spaces in Section 4.2.

Consider the case of a Hilbert space E of arbitrary finite dimension n ≥ 2. We want to intro-
duce a class of norms and quasi-norms on so(E). Any element X ∈ so(E) will have non-zero 
eigenvalues

{±iσ1, . . . ,±iσk} (4.6)

or some k ≥ 0. We order them in such a way that

σ1 ≥ · · · ≥ σk > 0.

These are also the singular values of X as |X| = √−X2 has exactly these non-zero eigenvalues, 
with each σj appearing twice. Define a sequence σ(X) = (σj )

∞
j=1 of non-negative numbers such 

that σj = 0 for j > k. For 0 < p ≤ ∞, we define

‖X‖Schp = 21/p‖σ(X)‖�p .

For p ≥ 1, these are norms called the Schatten p-norms [34, 16]. We will also introduce the 
following map

‖X‖cc = ‖σ(X)‖�1(R;N) =
∞∑

j=1

jσj .

It is simple to see that ‖ · ‖cc is not a norm when dimE > 2. However, we will show that it is 
a quasi-norm. Recall that a quasi-norm is a map satisfying the norm axioms except the triangle 
inequality which is assumed in the form ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for some K ≥ 1, [12, Section 
I.9]. From the definition of ‖ · ‖cc, we note that

1

2
‖X‖Sch1 ≤ ‖X‖cc ≤ 1

4
‖X‖Sch1/2 . (4.7)

The latter follows from the fact that for any k > 0, 
√

a + kb ≤ √
a+√

b if b ≥ 0 and a ≥ (k−1)2

4 b. 
Hence

√
σ1 + · · · + kσk ≤√

σ1 + · · · + (k − 1)σk−1 + √
σk,

since σ1 + · · · + (k − 1)σk−1 ≥ k(k−1)
σk .
2
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Define a homogeneous norm

|||x + x(2)||| = max
{
‖x‖E,

√
π‖x(2)‖1/2

cc

}
.

We then have the following result.

Theorem 4.2. Let E be an arbitrary finite dimensional Hilbert space. If ρ is the Carnot-
Carathéodory distance on G2(E), then

|||x + x(2)||| ≤ ρ(0, x + x(2)) ≤ 3|||x + x(2)|||.

We emphasize that the above inequality holds independent of dimension. If we allow con-
stants depending on dimension, then any homogeneous gauge will be equivalent, see e.g. [32, 
Proposition 10].

Proof. The minimal geodesic from 0 to x ∈ E is just a straight line in E, and hence

‖x‖E = ρ(0, x).

We will show that we also have

ρ(0, x(2)) = 2
√

π‖x(2)‖1/2
cc , x(2) ∈ so(E). (4.8)

The result then follows from similar steps as in Example 4.1.
We will use the geodesic equations in (4.4). Consider a general solution �(t) = γ (t) +γ (2)(t)

on G2(E) with �(0) = 0 and �(1) = x(2). Consider arbitrary initial values � �= 0 and u0 �= 0 for 
the geodesic equation as in (4.4). Choose an orthonormal basis X1, . . . , Xk, Y1, . . . , Yk, T1, . . . ,
Tn−k such that we can write

� =
k∑

j=1

λjXj ∧ Yj , λj > 0.

Introduce again complex notation Zj = 1
2 (Xj − iYj ) and write

u0 =
k∑

j=1

wjZj +
k∑

j=1

w̄j Z̄j +
n−k∑
j=1

cjTj , wj ∈C, cj ∈R.

We will then have

u(t) =
k∑

j=1

eiλj twjZj +
k∑

j=1

e−iλj t w̄j Z̄j +
n−k∑
j=1

cjTj , wj ∈ C, cj ∈ R.

We make the following simplifications. If wj = 0, then the value of λj has no effect on u(t). 
We may hence set it to zero and reduce the value of k. Without any loss of generality, we can 
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hence assume that every wj is non-zero. Next, if we have λj = λl for some 1 ≤ j, l ≤ k then 
eiλj twjZj + eiλktwkZk = eiλj t (wjZj + wkZk) =: eiλj t wjl

2 (Xjl − iYjl) for some orthonormal 
pair of vectors Xjl, Yjl . Hence we again obtain the same u(t) if we replace λjXj ∧Yj +λlXl ∧Yl

with λjXjl ∧ Yjl . By repeating such replacements, we may assume that all values of λ1, . . . , λk

are different.
If �(t) = γ (t) + γ (2)(t) is the corresponding geodesic, then

γ (t) =
k∑

j=1

2 sin(λj t/2)

λj

eiλj t/2wjZj +
k∑

j=1

2 sin(λj t/2)

λj

e−iλj t/2w̄j Z̄j +
n−k∑
j=1

tcj Tj .

From the condition γ (1) = 0, it follows that c1, . . . , cn−k all vanish for every 1 ≤ j ≤ n − k. 
Furthermore, since we assume that wj �= 0, it follows that λj = 2πnj for some positive integers 
nj .

Computing x(2) and using that the integers n1, . . . , nk are all different, we obtain

x(2) = 1

4π

k∑
j=1

Im

⎛
⎝ |wj |2

inj

1∫
0

(1 − e2iπnj t )dt

⎞
⎠Xj ∧ Yj = − 1

4π

k∑
j=1

|wj |2
nj

Xj ∧ Yj .

It follows that the endpoint x(2) has 2k non-zero eigenvalues {±iσ1, . . . , ±iσk} with

σj = 1

4njπ
|wj |2.

In other words, any local length minimizer �(t) from 0 to the point x(2) has length

Length(�)2 =
k∑

j=1

|wj |2 =
k∑

j=1

4πnjσj .

In order to obtain the minimal value, we use nj = l if σj is the l-th largest eigenvalue. The result 
follows. �

Using the identity (4.8) we also obtain the following result.

Corollary 4.3. ‖ · ‖cc is a quasi-norm on so(E), even a 1/2-norm [12, Section I.9], in that it 
satisfies

‖X+Y‖1/2
cc ≤ ‖X‖1/2

cc + ‖Y‖1/2
cc , ‖X+Y‖cc ≤ 2(‖X‖cc + ‖Y‖cc).

4.2. Free nilpotent groups on step 2 from infinite dimensional Hilbert spaces

Let E be a real Hilbert space. We will not assume that E is finite dimensional or even sep-
arable, but our result and notation from the previous section will still be essential. We choose 
and fix a tensor norm ‖ · ‖⊗ on the algebraic tensor product E ⊗a E which is assumed to satisfy 
properties 1. and 2. from Section 2.1. Moreover, we assume that ‖ · ‖⊗ lies (pointwise) between 
167



E. Grong, T. Nilssen and A. Schmeding Journal of Differential Equations 340 (2022) 151–178
the injective and projective tensor norms (cf. e.g. [40]). As mentioned in Example 2.1, we can 
identity E ⊗a E with finite rank operators, and we can consider E ⊗ E as the closure of finite 
rank operators with respect to ‖ · ‖⊗.

In describing g(E) =P2(E) = E ⊕∧2E, through (4.2) we identify the algebraic wedge prod-
uct ∧2

aE with the space of all finite rank skew-symmetric operators, which we denote by soa(E). 
We identify g(E) with E ⊕ so⊗(E) where so⊗(E) are the skew-symmetric operators on E that 
are in the closure of soa(E) with respect to ‖ · ‖⊗ and with brackets as in (4.1). If we give g(E)

a norm

‖x + x(2)‖g(E) = max
{
‖x‖E,‖x(2)‖⊗

}
,

then it has the structure of a Banach Lie algebra.
For any compact skew-symmetric map X : E → E, define a sequence σ(X) = (σj )

∞
j=1 such 

that |X| = √−X2 has eigenvalues in non-increasing order σ1 = σ1 ≥ σ2 = σ2 ≥ · · · . For p ∈
(0, ∞], let sop(E) denote the space of compact skew-symmetric operators X with finite Schatten 
p-norm ‖X‖Schp = 21/p‖σ(X)‖�p . As p = ∞ and p = 1 correspond to respectively the injective 
norm and the projective norm, we have

so1(E) ⊆ so⊗(E) ⊆ so∞(E).

Introduce the space socc(E) as the subspace of so∞(E) of elements X such that ‖X‖cc :=∑∞
j=1 jσj is finite. Since all compact operators are limits of finite rank operators ([34, Corollary 

16.4]), all the previously mentioned inequalities from Section 4.1 still hold. In particular, we get 
that ‖ · ‖cc is a quasi-norm and that the inequality (4.7) holds for any X ∈ soa(E). It then follows 
that

so1/2(E) ⊆ socc(E) ⊆ so1(E).

We emphasize here that for so1(E), the completion of soa(E) is with respect to the norm ‖ · ‖1, 
while for so1/2(E) and socc(E), we are considering the completion with respect to the respective 
induced distances (X, Y ) �→ ‖X −Y‖1/2

1/2 and (X, Y ) �→ ‖X −Y‖1/2
cc .

The group G2(E) corresponding to g(E) can be considered in exponential coordinates as 
the set g(E) with group operation as in (4.3). We define the distance d on G2(E) by d(x, y) =
‖x−1y‖g(E). Let t �→ u(t) be any function in L1([0, 1], E), and let �u be the solution of

�u(t)
−1 · �̇u(t) = u(t), �u(0) = 0.

Recall that 0 is the identity, since we are using exponential coordinates. This curve always exists 
from the L1-regularity property of the Banach Lie group G2(E) (see [20] and also Remark 2.7). 
For any x, y ∈ G2(E), we define ρ(x, y) ∈ [0, ∞] by

ρ(x,y) = ρ(0,x−1 · y),

ρ(0,x) = inf
{
‖u‖L1 : u ∈ L1([0,1],E),�u(1) = x

}
.
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4.3. Properties of projections

Let F be a closed subspace of E. Let PrF : E → F be the corresponding orthonormal projec-
tion. We then write the map prF : G2(E) → G2(F ) for the corresponding map

prF (x + x(2)) = PrF +(PrF x(2) PrF ), x ∈ E,x(2) ∈ so⊗(E).

We then emphasize the following properties.

Lemma 4.4.

(a) prF is a group homomorphism from G2(E) and G2(F ).
(b) Let ρF denote the Carnot-Carathéodory distance defined on G2(F ). For any x, y ∈ G2(E), 

we have

ρF (prF x,prF y) = ρ(prF x,prF y) ≤ ρ(x,y).

In particular, if there is a geodesic from x to y in F with respect to ρF , then this is also the 
geodesic in G2(E) with respect ρ.

Proof. (a) follows from the definition of the definition of the group operation. Using (a), we only 
need to prove that ρ(0, prF x) ≤ ρ(0, x) to prove (b). We observe that if �(t) is a horizontal curve 
from 0 to x, then prF �(t) is a horizontal curve of less or equal length with endpoint prF x. �
Lemma 4.5. If ‖ · ‖⊗ = ‖ · ‖p is the Schatten p-norm, the following properties hold.

(a) For any closed subspace F of E and x, y ∈ G2(E), we have

d(prF x,prF y) ≤ d(x,y).

(b) For any x = x +x(2), there is a sequence of finite dimensional subspaces F1 ⊆ F2 ⊆ · · · such 
that

x ∈ Fn for any n, lim
n→0

d(x,prFn
x) = 0.

Proof. (a) Again it is sufficient to prove that d(0, prF x) ≤ d(0, x) for any x = x+x(2) ∈ G2(E). 
We see that ‖ PrF x‖E ≤ ‖x‖E and furthermore,

‖PrF x(2) PrF ‖Schp ≤ ‖x(2)‖Schp

since

σj+1(PrF x(2) PrF ) = max
rank(Ẽ)=2j+1

min
y∈Ẽ‖y‖E=1

‖PrF x(2)PrF y‖E

≤ max
rank(Ẽ)=2j+1

min
y∈Ẽ‖y‖E=1

‖x(2)y‖E = σj+1(x
(2)).
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We remark that we have here used the skew-symmetry of PrF x(2) PrF and the relationship 
between the singular values and the eigenvalues given in (4.6).

(b) Write x = x + x(2) and give the singular value decomposition

x(2) =
∞∑

j=1

σjXj ∧ Yj , σ1 ≥ σ2 ≥ · · · , (4.9)

with X1, Y1, X2, Y2, . . . all orthogonal unit vector fields. We define

F̃n = span{Xj ,Yj : j = 1, . . . , n}, Fn = span{x, F̃n}.

Then by left invariance

d(x,prFn
x) = d(0,prF⊥

n
x(2))

(a)≤ d(0,pr
F̃⊥

n
x(2)) = 21/p

⎛
⎝ ∞∑

j=n+1

σj (x
(2))p

⎞
⎠

1/p

which converge to zero by definition. �
4.4. Geodesic completeness

One of the main steps in completing Theorem 1.1 will be to establish that ρ makes a subset 
into a geodesic space.

Theorem 4.6. Let E be a Hilbert space and define G2(E) relative to a tensor norm ‖ · ‖⊗ satisfy-
ing 1. and 2. from Section 2.1 and bounded from below by the injective tensor product ‖ · ‖Sch∞ . 
If we define G2(E) := exp(E ⊕ socc(E)), then

G2
cc(E) = {x ∈ G2(E) : ρ(0,x) < ∞}.

Furthermore, the metric space (G2
cc(E), ρ) is a complete, geodesic space and if we define

|||x + x(2)||| = max
{
‖x‖E,

√
π‖x(2)‖1/2

cc

}
,

then

|||x||| ≤ ρ(0,x) ≤ 3|||x|||. (4.10)

We will do the proof of this theorem in two parts. In the first part, we will show that G2
cc(E)

is indeed exactly the set with finite ρ-distance and that the inequality (4.10) holds. In the second 
part, we show that it is a geodesic space.

Proof of Theorem 4.6, Part I. We will begin by introducing the following notation, which we 
will use in both parts of the proof. Recall the definition of prF : G2(E) → G2(F ) ⊆ G2(E) for 
some closed subspace F from Section 4.3. Write prF,⊥ = prF⊥ and write a projection operator
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prF∧F⊥(x) = PrF x(2)PrF⊥ + PrF⊥x(2)PrF = x − prF x − prF,⊥ x, x = x + x(2).

We have already shown the result for finite dimensional spaces, so we assume that E is infinite 
dimensional.

Step 1: The CC-distance is finite on algebraic elements. Let Ga(E) = exp(E ⊕ soa(E) and 
consider an arbitrary element x = x + x(2) ∈ G2

a(E) with x(2) = ∑n
j=1 σjXj ∧ Yj being 

the singular value decomposition as in (4.9). Define the finite dimensional subspace F =
span{x, X1, Y1, . . . , Xn, Yn}. We then observe that since x ∈ G2(F ), ρ(0, x) < ∞ and there is 
a minimizing geodesic from 0 to x. Also, any element in G2

a(E) satisfies the inequality (4.10).

Step 2: Vertical elements. Consider an element x = x(2) ∈ socc(E) with σ(x(2)) = (σj ). Let 
x(2) =∑∞

j=1 σjXj ∧Yj be the singular value decomposition and define Zj = 1
2 (Xj − Yj ). Con-

sider the curve

u(t) = 2
√

π

∞∑
j=1

(jσj )
1/2(e−2πjtZj + e2πjt Z̄j ).

We see that ‖u(t)‖E = ‖u‖L1 = 2
√

π‖x(2)‖cc. Furthermore, if Fn is the span of X1, Y1, . . . , Xn, 
Yn, then by the proof of Theorem 4.2, it follows that prFn

�u is a minimizing geodesic from 0 to 
xn := ∑n

j=1 σjXj ∧ Yj . Since prFn
u converges to u in L1([0, 1], E) and xn converges to x in 

the norm ‖ · ‖g(E), it follows that �u is a minimizing geodesic from 0 to x, and in particular,

ρ(0,x) = Length(�u) = 2
√

π‖x(2)‖1/2
cc .

Step 3: The CC-distance is exactly finite on G2
cc(E). For any element x = x + x(2) ∈ G2

cc(E), we 
can construct a horizontal curve � from 0 to x by a concatenation of the straight line from 0 to x
with a minimizing geodesic from 0 to x(2) left translated by x. The result is that

ρ(0,x) ≤ Length(�) = ‖x‖ + 2
√

π‖x(2)‖1/2
cc ≤ 3|||x||| < ∞.

Conversely if x ∈ G2(E) and | | |x| | | = ∞, then using (4.10) and any sequence xn in G2
a(E) con-

verging to x in ‖ · ‖g(E), we see that ρ(0, x) = ∞. G2
cc(E) is complete with the distance ρ as it 

is complete with respect to | | | · | | | by definition. �
In order for us to complete Part II of the proof of Theorem 4.6 and show that (Gcc(E), ρ) is a 

geodesic space, we will need the following lemma.

Lemma 4.7. Let x = x + x(2) ∈ G2
cc(E) be a fixed arbitrary element with singular value decom-

position x(2) =∑∞
j=1 σjXj ∧ Yj as in (4.9). Define subspaces F0 ⊆ F1 ⊆ F2 ⊆ · · · by

F0 = span{x}, Fn+1 = span(Fn ∪ {Xn+1, Yn+1}). (4.11)

For any n ≥ 0, define prn = prF , prn,⊥ = prF⊥ and prn,∧ = prF ∧F⊥

n n n n
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(a) The set

K(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y ∈ G2
cc(E) :

For any n ≥ 0,
ρ(0,prn y) ≤√

2ρ(0,x)ρ(0,prn x)

ρ(0,prn,⊥ y) ≤√
2ρ(0,x)ρ(0,prn,⊥ x)

‖prn,∧ y‖⊗ ≤ 4
√

2ρ(0,x)3ρ(0,prn,⊥ x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (4.12)

is relatively compact in G2(E).
(b) Any minimizing geodesic from 0 to x is contained in K(x).

Proof. To simplify notation in the proof, we write ρ(x) := ρ(0, x).

(a) Define F∞ = span{x, X1, Y1, X2, Y2, . . . }. From the definition of K(x) it follows that 
prF∞ y = 0 for any y ∈ K(x). Considering the limit of prn, we also have that

‖y‖g(E) ≤ ρ(y) ≤ √
2ρ(x)

so K(x) is bounded in both G2
cc(E) and G2(E). Recall (e.g. from [15, Theorem 4.3.29]) that 

for a complete metric space, a set is relatively compact if and only if it is totally bounded, 
i.e. for every ε > 0 there is a finite set of balls of radius ε > 0 covering the set. Let B(z, r)
be the ball of radius r centered at z ∈ g(E) with respect to the ‖ · ‖g(E)-norm. We observe 
that for any y ∈ K(x), we have

‖prn y‖g(E) ≤ ρ(prn y) ≤ √
2ρ(x),

‖prn,⊥ y‖g(E) ≤ ρ(prn,⊥ y) ≤
√

2ρ(x)ρ(prn,⊥ x),

‖prn,∧ y‖g(E) = 1

2
‖prn,∧ y3‖⊗ ≤ 4

√
2ρ(x)3ρ(prn,⊥ x).

Hence, for a given ε > 0, we can choose n sufficiently large such that

max

{√
2ρ(x)ρ(prn,⊥ x),2

√
2ρ(x)3ρ(prn,⊥ x)

}
≤ ε

3
.

Choose a finite set of points z1, . . . , zN such that ∪N
j=1B(zj , ε3 ) covers the relatively compact 

set Fn ∩ B(0, ρ(x)). By our choice of n, we then have that ∪N
j=1B(zj , ε) covers all of K(x).

(b) We observe first that since prn,⊥ x is in the center of G2(E), then by left invariance

ρ(x) = ρ((prn x) · (prn,⊥ x)) ≤ ρ(prn x) + ρ(prn,⊥ x)

Let � = �u = γ + γ (2) : [0, 1] → G2(E) be any minimizing geodesic with left logarithmic 
derivative u and write un = prn u and u⊥,n = prn,⊥ u. Since u is a minimizing geodesic, then 
by reparametrization, we may assume that
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‖u(t)‖E =
√

‖un(t)‖2
E + ‖un,⊥(t)‖2

E = ρ(x), and note (4.13)

ρ(prn,⊥ x) ≤ Length(prn,⊥ �) =
1∫

0

‖un,⊥(t)‖E dt ≤ ρ(x). (4.14)

This leads to the following sequence of inequalities

ρ(x)ρ(prn x) ≥ ρ(x)
(
ρ(x) − ρ(prn,⊥ x)

)
(4.13)+(4.14)≥ ρ(x)

1∫
0

(√
‖un(t)‖2

E + ‖un,⊥(t)‖2
E − ‖un,⊥(t)‖E

)
dt

(4.13)= ρ(x)

1∫
0

⎛
⎜⎝ ‖un(t)‖2

E√
‖un(t)‖2

E + ‖un,⊥(t)‖2
E + ‖un,⊥(t)‖E

⎞
⎟⎠ dt

(4.14)≥ 1

2

1∫
0

‖un(t)‖2
E dt

Jensen≥ 1

2

⎛
⎝ 1∫

0

‖un(t)‖E dt

⎞
⎠

2

= 1

2
Length(prn �)2.

It follows that any point y on the curve � will have ρ(prn y) ≤√
2ρ(x)ρ(prn x). By a similar 

calculation, we have that ρ(prn,⊥ y) ≤√
2ρ(x)ρ(prn,⊥ x).

We also see that prn,∧ �(t) = prn,∧ γ (2)(t) with

prn,∧ γ (2)(t) = 1

2

t∫
0

((prn γ (s)) ∧ un,⊥(s) + (prn,⊥ γ (s)) ∧ un(s))ds.

We note that 
∫ t

0 ‖un(s)‖ dt ≤ Length(prn �), while ‖ prn γ (t)‖ ≤ ρ(prn γ (t)) ≤
Length(prn �). Since we have similar relation applying prn. We finally use that

‖pr∧ γ (2)(t)‖⊗ ≤ Length(prn �(t))Length(prn,⊥ �(t)) ≤
√

2ρ(x)3ρ(prn,⊥ x).

Hence the geodesic satisfies the pointwise bounds from the definition of K(x) and the result 
follows. �

Lemma 4.8. For any r > 0 and x0 ∈ G2(E), we have that the set

B̄ρ(x0, r) = {x : ρ(x0,x) ≤ r}

is closed in G2(E), that is, with respect to the metric d .

Proof. By left invariance, we only consider x0 = 0. Assume that yn = yn + yn,(2) is a sequence 
contained in B̄ρ(0, r) converging in G2(E) to some element y = y + y(2). We then have that
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‖y − yn‖E → 0, ‖y(2) − yn,(2)‖⊗ → 0.

In particular, we will have ‖y(2) − yn,(2)‖Sch∞ → 0 implying that if σ(y(2)) = (σj ) and 
σ(yn,(2)) = (σ n

j ), then σn
j → σj . It follows that

|||y||| ≤ ‖y‖E + √
π

∞∑
j=1

jσj = lim
n→∞‖yn‖E + √

π lim
m→∞

⎛
⎝ lim

n→∞

m∑
j=1

jσn
j

⎞
⎠≤ 2r.

Since | | |y| | | < ∞, we can conclude the following.
If y(2) = ∑∞

j=1 σjXj ∧ Yj is defined with all vectors orthonormal, we define Fm =
span{y, X1, Y1, . . . , Xm, Ym}. Then

lim
m→∞ρ(prFm

y,y) ≤ 3 lim
m→∞|||y − prFm

y||| = 0.

Using that ρ(0, prFm
y) ≤ ρ(0, y) ≤ ρ(0, prFm

y) + ρ(prFm
y, y), it follows that

lim
m→∞ρ(0,prFm

y) = ρ(0,y).

Furthermore, since

‖prFm
(y − yn)‖Sch∞ ≤ ‖y − yn‖Sch∞ ≤ ‖y − yn‖⊗,

we have that limn→∞ ‖ prFm
(y − yn)‖Sch∞ = 0. Since all left invariant homogeneous norms 

are equivalent on a finite dimensional space [32, Proposition 10], we have convergence 
limn→∞ ρ(prFm

yn, prFm
y) → 0 for any fixed m. Finally

ρ(0,y) = lim
m→∞ρ(0,prFm

y) = lim
m→∞ lim

n→∞ρ(0,prFm
yn) ≤ r,

so y ∈ B̄ρ(0, r). �
Proof of Theorem 4.6, Part II. We are now ready to complete the proof.

Step 5: Every point has a midpoint. Let x = x + x(2) = x + ∑∞
j=1 σjXj ∧ Yj ∈ G2

cc(E) be 
arbitrary and define Fn as in (4.11). If we write xn = prFn

x, then by the definition in (4.12), we 
have that K(xn) ⊆ K(x). Since xn ∈ G2

a(E), there exists a length minimizing geodesic �n from 
0 to xn, which we know is in K(x) by Lemma 4.7.

Let sn denote the midpoint of each geodesic �n. This satisfies

ρ(0, sn) = ρ(xn, sn) = 1

2
ρ(0,xn) ≤ 1

2
ρ(0,x) := r.

Write δm = ρ(xm, x), and define balls

B̄0 = {y ∈ G2(E) : ρ(0,y) ≤ r},
B̄m = {y ∈ G2(E) : ρ(x,y) ≤ r + δm}.
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By the definition of xn, we have sn ∈ B̄0 ∩ B̄m for any n ≥ m with δm → 0.
Since every sm is contained in K(x), by compactness, there is a subsequence snk converging 

to a point s in G2(E). This element hence has to be contained in B̄0 ∩ B̄m for any m ≥ 1 by 
Lemma 4.8. It follows that

ρ(0, s) = ρ(x, s) = 1

2
ρ(0,x),

i.e., s is a midpoint of x. Since (G2
cc(E), ρ) is a complete length space, it follows from left-

invariance of the metric together with [3, Theorem 2.4.16] that existence of such midpoint for 
any element is equivalent to the space being a geodesic space. This completes the proof. �
4.5. Proof of Theorem 1.1

We now come to the proof of our main result. Namely, if E is a Hilbert space and we define 
α-weak geometric rough path relative to the tensor norm ‖ · ‖Schp , 1 ≤ p ≤ ∞ on the tensor 
product, then for β ∈ (1/3, α)

C α
g ([0, T ],G2(E)) ⊂ C α

wg([0, T ],G2(E)) ⊂ C β
g ([0, T ],G2(E)).

We can prove this by showing that the conditions (I), (II) and (III) in Theorem 3.3 are satisfied. 
By Theorem 4.6 it follows that (I) and (II) are satisfied for Hilbert spaces. Hence, we only need 
to prove that condition (III) holds.

Recall the results of Lemma 4.5. Let x = x + x(2) ∈ Cα([0, T ], G2(E)) be an arbitrary 
weakly geometric α-rough path. For any fixed t , define a sequence of increasing finite subspaces 
{Ft,n}∞n=1, such that

xt ∈ Ft,n d(xt ,prFt,n
xt ) = d

(
0,prF⊥

t,n
x(2)

)
≤ 1

n
.

Consider a partition � = {t0 = 0 < t1 < t2 < · · · < tk = T } of the interval [0, T ]. Write

F�,n = span{Ft,n : t ∈ �}.

Define x�,n
t = prF�,n

xt . Since ρ and d are equivalent on the finite dimensional F�,n, it follows 

that x�,n
t is a continuous function in G2

cc(E) with respect to ρ.
Since xt is uniformly continuous, we can for each r > 0 find a number or such that

or = Osc(xt ; r) = sup
0≤s<t≤T t−s≤r

d(xs ,xt ),

with or approaching 0 as r → 0. We now see that for every t ∈ [ti , ti+1],

d(x�,n
t ,xt ) ≤ d(x�,n

t ,x�,n
ti

) + d(x�,n
ti

,xti ) + d(xti ,xt )

≤ 2d(xt ,xti ) + d(0,prF⊥
�,n

x
(2)
ti

)

≤ 2d(xt ,xti ) + d(0,prF⊥
ti ,n

x
(2)
ti

) ≤ 2o|�| + 1

n
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Defining xn
t = xn,�n

t where �n is a partition with |�n| = 1
n

, we have that d(xn
t , xt ) converges 

uniformly to 0. Note that by Lemma 4.5 (a), the sequence xn
t consist of α-Hölder curves, so by 

using this property of xn and x and an interpolation argument as in the proof of Theorem 3.3, we 
obtain that dβ(x, xn) → 0 for any β ∈ ( 1

3 , α). This completes the proof.

Remark 4.9 (Other cross-norms). As one can see from the proof in Section 4.5, what is needed 
for our result is the properties of Lemma 4.5 and Theorem 4.6. Hence, for any norm on the tensor 
product which satisfy these two results, the result in Theorem 1.1 holds.

4.6. Generalizing the result to Banach spaces

One of the central tools in our proof for geometric rough paths when E is a Hilbert space, 
is that we can use orthogonal projections PrF : E → F , which all shorten lengths and hence 
have norm 1. Such contractive projections are in general rare in Banach spaces as we have the 
following characterization from [36, Theorem 3.1].

Theorem 4.10. For a Banach space E with dim E ≥ 3, the following statements are equivalent:

(i) E is isometrically isomorphic to a Hilbert space,
(ii) every 2-dimensional subspace of E is the range of a projection of norm 1,

(iii) every subspace of E is the range of a projection of norm 1.
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