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The trend of consolidating network functions from specialized hardware to software running on virtualization servers brings
significant advantages for reducing costs and simplifying service deployment. However, virtualization techniques have
significant limitations when it comes to networking as there is no support for guaranteeing that network functions meet their
service requirements. In this paper, we present a design for providing service guarantees to virtualized network functions based
on rate control. The design is a combination of rate regulation through token bucket filters and the regular scheduling
mechanisms in operating systems. It has the attractive property that traffic profiles are maintained throughout a series of
network functions, which makes it well suited for service function chaining. We discuss implementation alternatives for the
design and demonstrate how it can be implemented on two virtualization platforms: LXC containers and the KVM hypervisor.
To evaluate the design, we conduct experiments where we measure throughput and latency using IP forwarders (routers) as
examples of virtual network functions. Two significant factors for performance are investigated: the design of token buckets
and the packet clustering effect that comes from scheduling. Finally, we demonstrate how performance guarantees are achieved
for rate-controlled virtual routers under different scenarios.

1. Introduction

Network function virtualization (NFV) has attained much
interest recently for its potential to reduce costs for deploy-
ment and operations in telecommunication networks and
to facilitate network service deployment [1, 2]. Based on vir-
tualization and commodity hardware, NFV shifts packet
processing from specialized hardware devices to software
running on regular computer systems. It enables the execu-
tion of multiple network functions (such as IP forwarders,
firewalls, load balancers, and WAN accelerators) on virtua-

lized computer systems, and such functional blocks can be
combined to create advanced network services. For instance,
a network operator could create multiple virtual machines
on a computer system and let each virtual machine perform
a specific packet processing task for a certain customer.

NFV has emerged as a flexible, programmable, and cost-
efficient alternative to special-purpose networking hardware.
However, there are new challenges in terms of performance
and service guarantees that come with the transition of net-
work functions from hardware to software, where network
functions are consolidated onto general-purpose servers.
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Although general-purpose servers are less costly and more
programmable as compared to hardware counterparts, how-
ever, on the other hand, it is challenging to achieve high per-
formance and service guarantees for competing network
functions on a shared server. In this work, we investigate
how service guarantees can be ensured in such a scenario.

In this paper, we consider the scenario where network
functions are implemented as virtual machines on general-
purpose servers, for instance, as containers or as guest
machines on a hypervisor host. This means that each server
simultaneously can host many virtualized network functions
that belong to different service instances and potentially even
to different customers. Therefore, the server needs to ensure
that each virtual network function is provided with the
resources it needs in order to meet its service requirements.

Network service guarantees are typically provided
through packet scheduling, where packets are dispatched
according to a certain queuing discipline, such as weighted
fair queuing, round robin, and FIFO. However, regular com-
puter systems do not provide support for controlling the
scheduling of packets onto virtual machines in such a way.
Instead, packets are dispatched to virtual machines in the
order they arrive, without any service differentiation. This
lack of resource control mechanisms may lead to resource
contention where an overloaded network function in one
virtual machine starves network functions running in other
virtual machines.

The purpose of this work is to investigate how perfor-
mance guarantees in terms of throughput, and bounded
delay can be provided for parallel running network functions
(implemented as virtual machines). We put forward a design
for service guarantees for packet processing in virtual
machines that we argue can be implemented efficiently in
current computer systems, and we demonstrate and investi-
gate two different implementations of the design in Linux.

Our design for performance guarantees has its founda-
tion in rate-controlled service disciplines [3], where traffic
is controlled through two mechanisms, rate control and
scheduling. Rate control ensures that a traffic flow conforms
to an agreed-upon traffic profile. In this context, a traffic
flow means that traffic can be distinguished from other traf-
fic based on certain packet header values. For instance,
source and destination IP address/port number might be
used to distinguish a traffic flow from another flow. For a
flow, there is an associated traffic profile, which is used to
enforce specific traffic characteristics for a flow. For
instance, delay and bandwidth bounds can be configured
as an associated traffic profile. In addition to rate control,
the other component of this design is scheduling, which is
responsible for scheduling traffic flows onto links, i.e., to
access the channel in order to reach the desired destination.
An attractive property of this design is that the traffic pro-
file is invariant: provided that the input traffic conforms to
the traffic profile, the output traffic will also conform. This
is advantageous for service function chaining, a concept
closely related to NFV, where services are composed of a
series of network functions. As each network function in a
chain preserves the traffic profile, it will be maintained also
by the whole chain.

We show how the design can be implemented in both a
container-based (LXC) [4] and a hypervisor-based (KVM)
[5] Linux virtualized system. The traffic profile is expressed
as a token bucket, with a long-term rate (average through-
put) and a burst size (for bounded packet delay), and we
use token bucket filters for rate control. We study how the
existing token bucket implementation in Linux traffic con-
trol can be used for the traffic control function. Furthermore,
we argue that due to inherent interleaving characteristics of
executing network functions in software on servers in a
time-sharing manner, virtual network functions will process
packets in clusters. The clustering effect turns out to be an
important factor that influences performance and constrains
the traffic profiles that can be supported.

Finally, we measure the overhead of adding a token
bucket filter in the packet processing path. In addition, we
investigate how the two implementations (LXC and KVM)
can guarantee throughput and latency in overload situations,
and when multiple network functions are running in parallel
on the same computer system. Our results indicate that a
rate-controlled service design ensures average throughput
and bounded delay in overload situations, which is not
achievable otherwise (default settings without rate control).

The rest of this paper is organized as follows: Section 2
gives motivation and a problem statement for our work.
Section 3 provides a background on classic rate-controlled
service discipline, and we analyze how this design can be
adapted for a computer system. In Section 4, we discuss
the requirements and implications of realizing rate-
controlled service disciplines for virtualized network func-
tions. Our implementations of the rate-controlled service
discipline in Linux (both for LXC and KVM virtual environ-
ments) are detailed in Section 5, and in Section 6, we exper-
imentally evaluate the implementations and discuss the
results. Section 7 covers related work. Finally, Section 8 con-
cludes the paper.

2. Motivation and Problem Statement

In a virtualized computer system, different virtual machines
share the system resources such as CPU, memory, and I/O
devices. However, it is well-known that the resource conten-
tion between virtual machines may lead to unpredictable
performance penalties [6–8]. For instance, an overloaded
virtual machine may consume a resource and starve other
virtual machines. In such a situation, it becomes difficult to
provide service guarantees to different virtual machines.
We demonstrated in our earlier studies how an overloaded
virtual router (a virtual machine acting as a packet for-
warder) can affect the performance of another virtual router
running in parallel [9, 10].

Consider a scenario in a multitenant cloud environment
where two virtual routers are administered by two different
customers running on a shared platform. The service-level
agreement for each virtual router is 300-kilo packets per sec-
ond (kpps). The desired performance is achieved by both
virtual routers when a load of 300 kpps is offered in parallel
on each virtual router (Table 1). However, when we overload
virtual router 1 (VR1) by increasing the load from 300 kpps
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to 1000 kpps, the performance of VR2 decreases from
300 kpps to only 55 kpps [9]. This is due to the fact that
heave packet drop occurs for VR2 due to lack of service
which leads to poor performance.

We believe that rate limiting the offered load on a system
might be useful to avoid an overloaded system, for instance,
rate limiting both VR1 and VR2 to 300 kpps in the above
scenario. We hypothesize that if we can avoid an overloaded
system, we can achieve performance objectives for multiple
virtual routers running in parallel. The idea leads us to the
study of classic rate-controlled service discipline where the
offered load on a system is rate limited (through token
bucket filters) to achieve certain performance guarantees.

Our contributions to this work are as follows:

(1) The adaptation of the theoretical rate-controlled ser-
vice design for virtualized computer systems

(2) Implementation of rate-controlled service design in
Linux for two different virtual environments (i.e.,
KVM and LXC). We demonstrate that rate-
controlled service design guarantees average through-
put and bounded delay even in overload situations

(3) We measure the performance overhead of adding
rate controllers along the packet processing path

(4) We investigate the phenomenon of packet clustering
on a virtualized computer system and how it can
affect performance guarantees in certain cases

The topic of NFV performance optimization has been
extensively studied in the literature [11–15]. There are stud-
ies where mechanisms are suggested to avoid resource con-
tention to significantly improve the performance of virtual
machines. For instance, dCat [6] suggests a dynamic CPU
cache management scheme that improves performance by
avoiding CPU cache contention between multiple virtual
machines. Similarly, VM scheduler optimization is proposed
by tableau [7] to avoid CPU contention and thus improve
performance. However, the focus of our work is a bit differ-
ent than the performance optimization where we investigate
how to provide service guarantees to network functions in
overload conditions.

To the best of our knowledge, few studies address the
topic of performance guarantees for network functions run-
ning as virtual machines. One of the few examples is XTC
(Xen Throughput Control), which uses Xen resource control
to avoid CPU contention among virtual routers [16]. XTC
assigns CPU quotas depending on the target maximum
throughput for a virtual router. Our approach advances
beyond previous work, as we aim to control latency in addi-
tion to throughput. ResQ [8] is another example where a

resource manager aims to provide efficient scheduling of
network functions while providing service guarantees. The
resource manager uses system profiling and collects resource
usage information and re-adjusts resource allocation (CPU
cache, memory) to achieve certain throughput and latency
targets. Both XTC and ResQ aim to provide service
guarantees on packets by avoiding system-level resource
contention. However, there is no direct control over packet
scheduling which makes it difficult to provide end-to-end
service guarantees for a chain of network functions in
presence of link disturbances. We believe our work is a step
forward in that direction since we directly control packets by
enabling rate-controlled service discipline and preserving
traffic profiles across chains of virtual network functions.

3. Related Work

Significant efforts have been made to improve the perfor-
mance of virtualized network functions executing on com-
modity computer hardware. Anderson et al. [11] argue that
virtualization with Docker containers [17] is well-suited for
NFV, thanks to the lightweight nature of containers, upon
which Docker is based. The work presented in [18] intro-
duces a new socket type (AF_GRAFT, i.e., socket grafting)
which enables bypassing the regular networking stack for
containers and hence improves network performance.
ClickOS [12] is an example of a Xen-based [19] virtualized
platform that has been highly optimized to improve
networking performance. NetVM [13] is a virtualization
architecture, which uses the Intel data plane development
kit (DPDK [20]) together with KVM virtualization to make
network functions. Moreover, hardware-assisted virtualiza-
tion on network interfaces through the use of SR-IOV has
been demonstrated to improve the performance of virtual
machines in a server setting [21, 22]. XDP [23] is yet another
example of high-performance networking where authors
investigate how packet forwarding performance can be
improved while using the host kernel, contrary to the I/O
bypass technologies (such as DPDK and SR-IOV) where
the host kernel is bypassed to improve performance. In
recent years, software-based packet processing solutions
are proposed using Intel DPDK while aiming for a line rate
of 40 and even 100 Gb/s [24, 25]. Indeed, packet rates
reported in these studies are much higher than the rate
reported in our study. It is because the focus of our work
is different since we aim to achieve performance guarantees
in overloaded conditions whereas the aforementioned
studies target high-speed networks. We believe that our
proposed idea applies to high-speed networks as well since
the principles of mitigating overloaded conditions (i.e.,
rate-controlled design) remain the same for the any-speed
network. We plan to evaluate our proposed solution for
high-speed networks in future work.

Some studies explore how delay guarantees can be
accomplished for a chain of network functions using net-
work calculus [26] and the mixed-integer linear program-
ming model [27]. Our work is different from these studies
since we are considering both throughput and delay as a

Table 1: Problem of performance isolation.

Offered load (kpps) Throughput (kpps)
VR1 VR2 VR1 VR2

300 300 300 300

1000 300 480 55
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performance metric and also the expected effects of cluster-
ing on the performance of network functions.

Some other studies explore how the performance of
VNFs can be predicted in advance on given network infra-
structure. Profiling-based solutions collect the data (system
resources, workload, etc.) and use learning algorithms to
make predictions about the performance of VNFs. The work
presented in [28] suggests a profiling framework to accu-
rately model the performance of VNF. Similarly, the work
presented in [29] proposes a profiling-based solution that
can model the performance of a network functions chain
(multiple VNFS connected in a series). However, in
profiling-based solutions, there are chances of inaccurate
predictions. There is a continuous learning mechanism to
improve the accuracy of the performance model. In contrast,
we follow a different approach (rate-controlled service
design) where the given performance parameters are guar-
anteed through token buckets which provide direct control
over packets.

There are several studies of architectures aimed to
achieve networking performance guarantees for virtual
machines in data center environments. Gatekeeper [30] is
an example of a rate-limit approach, where Linux hierarchi-
cal token buckets are used to enforce rate limits. SENIC [31]
uses hardware-assisted rate limits at traffic sources to
improve performance of latency-sensitive applications.
Along the same lines, Silo [32] dynamically enforces rate
limits on virtual machines in order to achieve performance
guarantees. The work presented in [6] argues that CPU
cache sharing among multiple workloads in a multitenant
cloud environment may lead to poor performance isolation.
The authors propose a dynamic cache management tech-
nique (dCat) that aims to improve performance isolation
by avoiding CPU cache contention. Similarly, Tableau [7]
proposes a VM scheduling algorithm in order to avoid
CPU contention among multiple virtual machines. How-
ever, in the aforementioned studies, the virtual machines
are acting as traffic sources, which is different from the prob-
lem scenario we are addressing, namely, how to provide per-
formance guarantees for virtual network functions.

Admission control and resource allocation in NFV is an
active research area [33]. An important issue here is the
mapping of virtualized network function onto a physical
network of servers. There are several studies in that direction
[34–40]. For instance, Cohen et al. [34] argue that NFV
mapping introduces a new type of optimization problem.
An algorithm is proposed to map virtualized network func-
tions onto a physical platform. Similarly, Mijumbi et al.
[35] formulate the problem of virtual network function
mapping and compare the performance of greedy and tabu
search-based algorithms. Moens and De Turck put forward
a formal model for Virtual Network Function Placement
(VNF-P) [36], which is evaluated for a small service provider
scenario. The work presented in [37] presents an online pre-
emptive algorithm to map a chain of network functions on
an NFV platform. Similarly, Auto-3P [38] is yet another
solution based on machine learning models that suggests
the best placement for VNF. We consider these studies to
be complementary to our work, where we assume that there

exists a mechanism for mapping network functions onto vir-
tual machines.

4. Rate-Controlled Service Disciplines

In this section, we give a brief background to classic rate-
controlled service disciplines [3] and discuss how this theo-
retical model can be applied in the context of computer
communication.

4.1. Rate-Controlled Service Disciplines. Rate-controlled ser-
vice disciplines use rate control to provide guarantees on
delay and bandwidth to connections. A connection in this
context is a stream of traffic with an associated traffic profile
(for instance, delay and bandwidth bounds). For instance, a
communication session (e.g., video call) between two users
A and B over the network can be considered a connection.
Traffic control in rate-controlled service disciplines has two
parts, a rate controller and a scheduler, as shown in
Figure 1. The rate controller has several regulators, one for
each connection.

When an incoming packet arrives, the corresponding
connection is identified, and the packet is passed to the reg-
ulator for that connection. The regulator ensures that the
packet conforms to the connection’s traffic profile and places
the packet on an outbound queue. It is then the job of the
scheduler to decide the order of packet transmissions on
the egress link.

Rate-controlled service disciplines are a framework that
allows for a wide range of regulators and schedulers, and
the exact service properties depend on the choice of regula-
tor and scheduler. For our purposes, where we want to strike
a balance between implementation efficiency and service
guarantees, a token bucket regulator combined with an ordi-
nary first come, first serve (FCFS) scheduler turns out to be
(close to) a perfect match. Both components have imple-
mentation counterparts in Linux, and the resulting rate con-
troller and the scheduler can guarantee per-connection
bandwidth and delay bounds.

4.2. Token Buckets. A token bucket [41] controls a traffic
stream according to a traffic profile (r, b), where r represents
long-time bit rate and b is bucket size (also called burst size).
The token bucket regulator puts a constraint on the traffic so
that over any time interval t, the number of bits that can be
transmitted is bounded by rt + b.

The time it takes for a packet to pass through a token
bucket regulator combined with an FCFS scheduler is
bounded by the delay imposed by the regulator plus the pro-
cessing delay in the scheduler. Furthermore, for a chain of
such rate-control schedulers, the end-to-end delay is
bounded by the sum of the delays of the individual rate-
control schedulers, and the bandwidth guarantee is main-
tained across the chain.

The token bucket regulator ensures that traffic arriving
at the scheduler conforms to the traffic profile. This could
be done in two ways: traffic that does not conform to the
traffic profile could be discarded, or it could be delayed in
a queue until it is eligible for scheduling. We refer to the
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former as policing, and the latter as shaping. In our architec-
ture (which is discussed in Section 4), we use both.

4.3. Resource and Admission Control. The rate-controlled
service discipline guarantees throughput and latency for data
transmitted as a stream of bits. For computer communica-
tion, this is not directly suitable; instead, we need to express
traffic profiles in units of bytes and packets. Our reasoning is
as follows: the process of admitting a new connection
involves asserting that there are sufficient resources to grant
the connection’s service demands. In the theoretical model
of the rate-controlled service discipline, the only critical
resource is link capacity. Thus, the admission decision con-
sists of determining that the new connection can be accepted
without oversubscribing link capacity.

In a computer system, link capacity may not be the only
critical resource. Processing and storage capacity could also
be limited, for instance. In particular, there is a significant
per-packet cost in packet processing. As we will see in our
experiments, for small packets, the limiting factor is packet
processing capacity, rather than link capacity. Thus, the
packet rate should also be part of the traffic profile. Of
course, depending on the application, it might also be neces-
sary to consider other resources in admission decisions.
However, for the purposes of this paper, we limit our study
to traffic profiles expressed in terms of packet rates (i.e., kilo
packets per second). To be more specific, we use long-time
packet rate (i.e., average throughput) and packets burst size
(for the bounded delay) as traffic profiles. A token bucket
is configured to rate the limit according to this traffic profile.
For instance, a traffic profile of 100,5 for a flow means that
100 kpps to be configured as token bucket rate limit whereas
bucket size should be configured to 5 means the maximum
allowed burst size is 5 packets. The bounded packet delay
and burst size are related in this context. Since the bursty
traffic leads to unbounded packet delays, therefore, we
bound burst size (thorough token bucket size) which in turn
leads to bounded packet delay. The details of our rate-
controlled service discipline with token buckets are pre-
sented in the next section.

5. Adaptation of Rate-Controlled Service
Discipline for Virtualized Network Functions

In this section, we present how rate-controlled service disci-
pline can be adapted for a virtualized computer system (VS).
We take a virtual router (packet forwarding through a vir-
tual machine) as an example of a virtual network function
and explore how a rate-controlled service can be provisioned
in this case.

5.1. Architecture of a Virtualization System. Our aim is to
design a VS that hosts a number of virtual network func-
tions, as illustrated in Figure 2, where multiple virtual net-
work functions (exemplified by virtual routers, VRs) share
ingress and egress network links. When a packet arrives on
an ingress link, the packet is processed by the classifier.
The classifier determines, for example, based on the destina-
tion MAC address, the VR for which the packet is intended,
and places the packet on the corresponding ingress queue.
When the VR is ready to process the packet, the VR gets
the packet from the ingress queue, performs the packet pro-
cessing operations (such as packet forwarding), and finally
places the packet on the output queue of an egress link.

5.2. Performance Guarantees. Our objective is to provide
performance guarantees for the VRs. We start with a service
agreement between the user and the provider of the VR
service. The agreement specifies a traffic profile for a connec-
tion; the provider agrees to provide resources for processing
traffic according to the profile, while the user commits to
generating traffic that conforms to the profile. Hence, for
each VR, there is a corresponding traffic profile, and conse-
quently, we organize our rate-control service design so that
each VR serves one connection.

Once the classifier has identified the VR to which an
incoming packet belongs, the next step is to verify that the
arrival of the packet complies with the traffic profile for that
VR. We choose token buckets to express traffic profile char-
acteristics, so we use a token bucket filter to check that the
packet can be accepted for further processing. This is shown
as the policer function in Figure 3.
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Ingress
traffic

Link Egress
traffic

Regulator 1

Network node (server)

Scheduler

Regulator n

Rate controller

Figure 1: Rate-controlled server design.
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Having determined that the packet is within the traffic
profile, the packet is then dispatched to the corresponding
VR for processing. Since CPU resources are shared among
all VRs, this involves a CPU scheduling decision to select
the VR to execute next. How this scheduling is performed
depends on the virtualization platform and has conse-
quences for the performance of our design.

The way in which VRs are scheduled onto CPUs is impor-
tant for performance in two ways. First, there is a certain over-
head involved, so there is a cost associated with switching
contexts from one VR to another. This influences the total per-
formance of the VS. Second, due to this cost, process context
switches cannot take place too often. Typically, the context
switching rate is lower than the packet arrival rate. The result
of this is that VRs process packets in clusters. When a VR is
scheduled for execution, it is likely that there is a cluster of
packets waiting in the VR’s input queue. The VR will process
all those packets right after each other (or as many packets as
CPU scheduling permits). This packet clustering can improve
overall processing efficiency, but it comes at the expense of
increased average packet delay.

Another possible cause of packet clustering is interrupt
mitigation (also known as interrupt coalescing or interrupt
moderation). Interrupt processing is expensive, and when
the packet rate goes up, it can be more efficient to disable
interrupts in the network driver and use polling instead.
The NAPI interface in the Linux networking subsystem
dynamically switches between interrupt and polling mode
depending on packet rate [42]. This increases performance
significantly, in particular at high packet rates, but also leads
to clustering.

Clustering not only increases latency but also distorts traf-
fic profiles, since the burstiness increases. In fact, on the egress
side of a VR, the traffic may no longer conform to the agreed-
upon traffic profile. This could have serious consequences for
our rate-control service design since the end-to-end service
guarantees rely on the traffic profile to be maintained at each
intermediate step. In other words, if we want to provide service
guarantees through a chain of VRs, we need to ensure that the
output from each VR conforms to the traffic profile.

To make sure that a VR maintains a certain traffic profile,
we can use a token bucket again. At the egress side of a VR,
the traffic passes through a token bucket shaper (Figure 3)—a
queue where the departures are controlled by a token bucket.
This implies a non-work-conserving design: the link may some-
times be idle even when there is a packet to send, as transmit-
ting the packet would be in violation of the traffic profile.

Expressing the performance guarantees in terms of
worst-case delay is straightforward. Assume we have n
rate-controlled VRs mapped onto a CPU according to
Figure 3. There are two components contributing to the
delay: the waiting time TW , which is the time a packet is
waiting in the ingress queue of a VR, and the service time
TS, which is the time it takes for a VR to process a cluster
of packets. The waiting time for VR n depends on the service
time for VRs 1 to (n − 1):

Tw = 〠
n−1

i=1
TS ið Þ: ð1Þ
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Figure 2: Architecture of a virtualized system.
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The worst-case delay, dmax, experienced by a packet in
VR n is obtained by adding the service time of VR n, so that

dmax ≤ 〠
n

i=1
TS ið Þ: ð2Þ

Furthermore, TS is determined by the size of the packet
cluster, b (packets), and the processing rate g (packets per
second):

TS =
b
g
: ð3Þ

Accordingly, the worst-case delay experienced by a
packet in VR n is

dmax ≤
∑n

i=1bi
gi

: ð4Þ

5.3. Policing and Shaping. In our design, we use token
buckets in two ways (see Figure 3). At the ingress, a token
bucket is used as a policing function to make sure that the
traffic profile is maintained. Noncompliant packets are dis-
carded. The main purpose of our token-bucket policing
function is to protect against misbehaving sources and
against potential disturbances on the links so that resources
in the virtualization system are not overutilized. On the
egress side, we use a token bucket to compensate for distor-
tions to the traffic caused by imperfections of the platform
where the VR executes. Here, packets are not dropped.
Instead, they are queued until they are eligible for transmis-
sion on the egress link according to the traffic profile.

So how does our architecture relate to the regulators and
schedulers of the rate-controlled service design in Figure 1?

The purpose of the regulator in the rate-controlled ser-
vice design is to regulate the traffic to the scheduler. In our
architecture, the token bucket policing function at the
ingress is not intended for the regulator function (it is to
protect against misbehaving sources). This regulator func-
tion is actually performed by the token bucket shaper at
the egress. This means that the regulator and scheduler func-
tions are split over two systems: the regulator is located at
the egress of the first system whereas the scheduler is located
at the ingress of the next (subsequent/second) system.

To elaborate on this further, it would be possible to shift
the regulator function to the ingress side, by turning the
token bucket policer at the ingress into a token bucket
shaper. However, considering that the packet processing
may distort the traffic profile and add burstiness (i.e.,
clustering), we still need the shaping function on the egress
side to reshape the traffic back into the proper profile.
Therefore, we prefer to keep the regulator function on the
egress side and thereby make it the responsibility of the
(first) system to make sure that traffic on the output con-
forms to the profile.

6. Implementing Rate-Controlled Virtualized
Network Functions in Linux

In this section, we discuss virtualization techniques for the
VS, in the areas of computer system virtualization and I/O
virtualization. We analyze how token buckets can be added
along the forwarding path of a VR, by evaluating an existing
implementation of token bucket filters in Linux.

6.1. Computer System Virtualization. Computer virtualiza-
tion allows multiple operating systems instances to run at
the same time, as virtual machines, on the same computer.
With hypervisor-based virtualization, this is accomplished
through the virtualization of hardware resources while with
container-based virtualization, operating system resources are
virtualized (such as files, system libraries, and routing tables).

There are large differences between the two virtualiza-
tion technologies in how packet processing is performed,
which has consequences for networking performance.
Therefore, in this paper, we compare the two technologies,
with KVM as a representative for hypervisor-based virtuali-
zation [5] and LXC for containers [4]. Both KVM and LXC
are part of the main Linux kernel distribution. We analyze
how packets are scheduled in the two cases and the effects
this has on performance.

In KVM, a virtual machine runs as a regular user-
space process, which is scheduled using the “Completely
Fair Scheduler” (CFS) process [43]. The CFS uses a config-
urable weight parameter to determine the CPU share for a
process [44, 45].

One possible approach for achieving service guarantees
would be to use the CFS scheduler to mimic a weighted fair
queuing packet scheduler [46], by assigning process weights
in proportion to the rates of the connections served by the
processes. On average, this could be expected to give the
desired long-time distribution of capacity among connec-
tions. However, in order to also guarantee end-to-end delay
bounds, the connection still needs token bucket control [46].
Thus, using the support for weighted scheduling in Linux
would not eliminate the need for token buckets. In fact, as
we shall see, with token bucket rate control, there is no need
for weighted process scheduling in order to achieve our
objectives; it suffices to serve packets on a first come, first
serve basis.

LXC virtualization is done at the operating system level,
where the operating system provides different views of sys-
tem resources to different containers. For instance, separate
containers could have distinct routing tables. In contrast to
KVM, where packet processing takes place in user processes,
LXC packet processing is done by the operating system ker-
nel. The operating system kernel is shared by all containers,
so the kernel does packet processing on behalf of the con-
tainers. Therefore, packet processing in LXC can be expected
to be more efficient, as there is no involvement in user pro-
cess scheduling and context switching.

6.2. Network I/O Virtualization. In addition to computer vir-
tualization techniques as represented by KVM and LXC,
network I/O virtualization is another important component
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for virtual network functions. We will use it for directing
network traffic between network interface cards (NICs)
and VRs (the classifier function in Figure 3). The Linux soft-
ware bridge [47] and Open vSwitch [48] are examples of net-
work virtualization in Linux. Furthermore, single root I/O
virtualization (SR-IOV [49, 50]) is a hardware technique to
offload packet switching functionality onto NICs. With SR-
IOV, several input queues share the same NIC. An incoming
packet is classified on the NIC and then dispatched to the
corresponding input queue. Such hardware assistance has
been shown to significantly improve packet forwarding per-
formance [10]. Therefore, we use SR-IOV to direct incoming
packets to VRs.

6.3. Adding Token Bucket on the Packet Forwarding Path of a
Virtual Router. The first step in designing our rate-control
scheduler for Linux is to consider the token bucket policing
function, which verifies that packets conform to traffic pro-
files. First, we review the packet processing path in the oper-
ating system kernel. The path is illustrated in Figure 4. Note
that this applies to both kinds of virtualization—with LXC,
the processing takes place in the operating system kernel of
the VS (host kernel), while with KVM, it takes place in the
VR’s (guest machine) kernels.

When a packet is received on a NIC, the packet is trans-
ferred through direct memory access (DMA) to memory and
made available on an input queue organized as a ring buffer
(RX Ring) (Figure 4), and a hardware interrupt is generated.
The interrupt handler does not perform the actual packet
processing; instead, a software interrupt (SoftIRQ) is posted.
When the SoftIRQ occurs, the packet is processed by the
network device driver (we use the Intel ixgbe driver for
Ethernet NICs [51]), and the packet is then passed to the
IP forwarding module to determine the egress network
interface. Finally, the packet is placed on the egress NIC’s
queue for transmission.

Linux has support for token buckets as a traffic control
queuing discipline, “tcqdisc” [52], which we denote “TcTB,”
i.e., traffic control through the token bucket. The corre-
sponding packet processing path is illustrated in Figure 5.
It can be seen that a packet is placed on a second queue
(“Ingress qdisc”) and another SoftIRQ is posted. When this
second SoftIRQ is processed, the packet is processed by
TcTB (which is configured as a traffic policer). Later in the
forwarding path, when a packet is available on the egress
queue, it is processed by another TcTB which acts as a
shaper according to our proposed architecture.

We notice in Figure 5 that TcTB policer is located at a
later point in the processing chain. The packet first goes
through a couple of queuing operations and SoftIRQs,
before it is policed. In general, if a packet should be dropped,
it is better to drop it early in the processing chain. In a sense,
CPU cycles spent processing a packet (which is dropped
later on) are wasted cycles. Our hypothesis is that imple-
menting a token bucket policing at an earlier stage of the for-
warding path can be more efficient. As the goal of this paper
is to investigate the properties of our rate-controlled design
and its possible implementations, rather than to seek its
maximum speed, we continue our study with existing imple-

mentation of token bucket filter in Linux (i.e., TcTB policer
and shaper). However, we argue that for practical use, both
the policing and the shaping functions are better suited for
implementation in hardware on network interface cards
than for software implementations.

7. Experimental Evaluation

In this section, we evaluate the performance of two
implementations of our design of rate-controlled service:
one based on KVM and the other based on LXC. As a first
step, we evaluate the overhead of policer and shaper modules
that are added to the forwarding path of a virtual router.
After that, we analyze average throughput and latency
for rate-controlled VRs under different scenarios while
varying offered load, the number of virtual routers, and
token bucket settings.

7.1. Experimental Setup. The configuration for the experi-
mental evaluation is shown in Figure 6. We use three Linux
machines connected in a sequence. The first machine is a
traffic generator that runs the pktgen [53, 54] Linux packet
generator to provide traffic load. The next machine is the
device under test (DUT), where the virtual routers are run-
ning. The DUT is configured with two network interfaces,
eth0, and eth1. The ingress traffic is received on eth0 and
forwarded towards eth1. The traffic then arrives at the third
machine, the traffic sink, which runs the receiver side of
pktgen gathering performance statistics.

The DUT consists of an Intel i7 Quad Core 3.4GHz
processor with directed I/O support (Intel Q67 Express
chipset) and 4GB of RAM. The machine is equipped with
an Intel 82599 chipset 10 Gb/s dual-port network adapter
and runs Linux kernel net-next v. 4.6.1. For each experi-
ment, five iterations of the test are performed, and average
results are taken.

In all experiments, unless stated otherwise, we use a sin-
gle CPU core and 256-byte packets as offered load. The rea-
son for using a single CPU (although the system contains
multiple CPU cores) and small-size packets is to offer max-
imum stress to the system since our objective is to evaluate
rate-controlled service discipline in overload conditions. It
is obvious that more CPU cores can be added to improve
packet processing rates. However, it is important to mention
that the focus of our work is to evaluate rate-controlled
service discipline which is different than the topic of
performance optimization. For instance, there are studies
[24, 25] on high-performance networking where the targets
are 40 and 100 Gb/s line rates. Indeed, the results reported
in these studies are far superior to the rates reported in
our study. We believe that performance optimization tech-
niques are complementary to the work of rate-controlled
service discipline.

7.2. Experiments. We have performed three different experi-
ments to validate our rate-controlled design. The objective
and details of each experiment are given below.

7.2.1. Processing Overhead of Token Bucket Policing and
Shaping. In this experiment, we wish to assess the overhead
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of adding token bucket functionality to the packet process-
ing path. We do this by using average throughput (packet
rate) measurements where we generate traffic load and
observe the effect on maximum throughput.

We run a VR on DUT (running alone without any par-
allel load) and measure the packet forwarding performance
(i.e., throughput) of VR against the offered load. As a base-
line case, we measure the throughput of a VR without add-
ing any token bucket filter. Then we add a token bucket
filter along the forwarding path and measure the throughput
again. The performance difference between the two cases
indicates the overhead of adding a token bucket. For the

token bucket, we first add TcTB shaper only without any
policer on the ingress path (i.e., TcTB shaper only). Then
we introduce TcTB policer, so both TcTB policer and TcTB
shaper are added in this case (i.e., TcTB policer and shaper).

It is important to mention that we want token buckets
processing to take place for each packet, but without drop-
ping any packets (since packet drop results in throughput
degradation which is not desirable in this scenario). There-
fore, we need to use a token bucket rate that is above the
highest possible rate when buckets are enabled. To deter-
mine this rate, we first measure the throughput of the base-
line system without traffic control (as shown in Figure 4),
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Virtual router (guest machine) 
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Figure 4: Forwarding path of the hardware-assisted virtual router in Linux.
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and we take this throughput as the token bucket rate limit
for two token bucket cases in this experiment. The results
are shown in Figure 7(b).

For KVM, by adding the token bucket shaper on the
egress side of VR, the maximum throughput drops to
1635 kp/s as compared to the baseline throughput of
1730 kp/s. Throughput further reduces to 1451 kp/s when
we add TcTB policer as well. It shows 16% performance
drop as compared to the baseline case.

Similar curve patterns can be found in the case of LXC
but indeed with overall superior performance as compared
to KVM (as expected due to the lightweight nature of con-
tainers). For LXC, performance drops from 2052 kp/s to
1827 kp/s while moving from baseline to token bucket

(policer and shaper). It means performance drop is 11%
when both policer and shaper are added. This result indi-
cates that the performance overhead of adding token bucket
filters can be minimized to some extent by using lightweight
container virtualization. Our hypothesis is that overhead can
be further reduced by placing token bucket policer at an
early stage of the packet processing path, for instance, imple-
menting token buckets as a part of the network device driver
or even completely offloaded to NIC hardware.

7.2.2. Throughput and Latency for Varying Token Bucket
Sizes with a Single VR. The packet clustering that is an effect
of scheduling mechanisms in the operating system, such as
interrupt mitigation and process scheduling, will have an
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Figure 7: Throughput of a KVM VR (a) and an LXC VR (b) running on a single CPU core for three cases: without token bucket (Baseline),
with TcTB traffic shaper only, and with TcTB traffic policer and shaper. The rate limit is configured to baseline throughput (1730 kp/s for
KVM and 2052 kp/s for LXC), and the bucket size is 1000 packets.
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influence on traffic, and our objective in this experiment is to
study the relationship between token bucket filters and
packet clustering.

We start with a basic scenario with a single virtual router
(VR) configured with TcTB traffic policing and shaping,
where we again set the token bucket fill rates so high that
no packet drops should occur. We run the experiments on
both LXC and KVM, chose an offered load that is slightly
below the maximum throughput for the KVM configuration
(1400 kilo packets per second), and set the token bucket rate
to be the same as the offered load. We then measure
throughput and latency for five different token bucket sizes:
1, 5, 20, 50, and 100 packets. The results are shown in
Figure 8(b).

There is a significant difference in latency between LXC
and KVM, where the latency for KVM is considerably
higher. This is mainly an effect of scheduling: With KVM,
the VR runs as a user process under the control of the oper-
ating system scheduler. Scheduling decisions are made at a
lower rate compared to the packet arrival rate. Therefore,
packets will queue up in the VR’s input buffer before they
are processed by the VR, with the effect that the VR will pro-
cess packets in clusters. This leads to an increase in average
latency. In contrast, LXC packets are processed immediately

when they arrive, since LXC packet processing takes place
in the kernel of the VS. Therefore, there is no correspond-
ing queue build-up for LXC, and the average latency is
kept down.

For KVM, throughput and latency decrease for token
buckets of five packets and smaller. The explanation for this
is that there is a mismatch between the size of the token
bucket and the packet clustering caused by the Linux sched-
uling. Clusters are larger than the token bucket, and there-
fore, clusters are truncated to the size of the token bucket,
with the result that packets are discarded and the through-
put goes down. As the token bucket gets smaller, more
packets are dropped, which shortens the packet queues and
thereby lowers the average delay.

LXC, in contrast, does not exhibit such performance
characteristics, so there are no noticeable clustering effects
for LXC. For a token bucket size of one, which corresponds
to a perfect constant rate, there is a certain performance
degradation also for LXC, indicating that there are small
variations in packet processing rate.

We proceed with a separate investigation of LXC closer
to its performance limits and measure throughput and
latency as the load is gradually increased from 100 kp/s to
1800 kp/s. The results are shown in Fig. 9(b). For bucket size
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Figure 8: Average latency (a) and throughput (b) for a virtualization system with a single router for varying token bucket sizes. The offered
load is 1400 kp/s, and the token bucket rate limit is 1400 kp/s. The policing and shaping token buckets have the same configuration (rate
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20, there are no indications of packet drop, but latency
increases as the load increases. This indicates that there are
queues building up as a result of clustering, but the clusters
are small enough that they fit in the buckets. With smaller
buckets (size one and five), throughput drops as well, so then
the clusters are becoming too large for the buckets. This is
expected: at high load, NAPI operates in polling mode, and
the number of packets processed in a single poll operation
increases when the load increases, and therefore, the size of
clusters goes up. Furthermore, latency goes down for bucket
size one at an offered load of 1400 kp/s (Figure 9(b) top),
indicating that packet drops start to occur at this load. This
result indicates that bucket size should not be too small since
it may result in throughput degradation and violation of ser-
vice level agreement between customer and service provider.

7.2.3. Throughput and Latency for Varying Token Bucket
Sizes with Multiple Virtual Routers. In Section 7.2.2, we

investigated how token bucket and packet cluster sizes affect
the throughput and latency of a virtual router. This experi-
ment was performed with a single virtual router without
any parallel load on the system. As we know from the system
analysis in Section 4.2, increasing the number of virtual
routers increases the waiting for time TW (and hence cluster
size) for the virtual routers, which has implications for per-
formance. We, therefore, proceed by studying latency and
throughput for a configuration with multiple virtual routers
while varying bucket size, in a manner similar to the exper-
iments in Section 7.2.2.

We consider a scenario with eight virtual routers VR1 to
VR8. The load generated for VR1 is 900 kp/s, and its token
bucket rate limit (and desired throughput) is also 900 kp/s.
We measure throughput and latency for VR1 while varying
its bucket size between 1 and 100, in the presence of parallel
load on VR2 to VR8. A total load of 1000 kp/s is uniformly
distributed across VR2 to VR8. Each VR2 to VR8 has a token
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Figure 9: Average latency (a) and throughput (b) for an LXC-based virtual router for varying token bucket sizes. The offered load is
gradually increased up to 1800 kp/s. The token bucket rate limit is the same as the offered load. The policing and shaping token buckets
have the same values for their configuration parameters (rate limit and bucket size).
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bucket filter with a rate limit of 50 kp/s and bucket size of
1000 packets.

The results are shown in Figure 10. We notice that target
throughput is achieved for VR1 when larger token bucket
sizes are used (20, 50, and 100 packets). However, for smaller
token buckets, we again see the effect of packet clustering
due to process scheduling, where the token bucket truncates
clusters so that the throughput goes down when the bucket
size is decreased. To be more precise, it is the traffic policer
at VR1 that drops packets beyond the bucket size. Then the
question is, can we increase the bucket size of the traffic
policer to avoid packet drops, and what are the performance
implications of such a change?

In all experiments until now, we have the same token
bucket parameters for the traffic policer and the shaper (we
assume that these parameters are set according to a given
traffic profile). We could, however, have a larger bucket size
at traffic policer to allow packets beyond the traffic profile
while still maintaining the traffic profile at traffic shaper.
This means that we adjust the traffic policer to allow for traf-
fic distortions caused by the virtualization system and use
the traffic shaper to ensure that egress traffic still conforms
to the traffic profile. These settings are in accordance with
our design (Section 4.3), where the shaper is responsible

for regulating traffic, whereas the purpose of policer is to
protect against misbehaving sources and interfering activi-
ties. In other words, we sacrifice a small degree of resource
efficiency by configuring a larger bucket size at the traffic
policer in order to improve the packet forwarding perfor-
mance of VR1. For this purpose, we reconfigure the traffic
policer at VR1 to a rate limit of 900 kp/s and bucket size of
20 packets. The rate limit of the traffic shaper at VR1 is also
900 kp/s. We measure throughput and latency for VR1 while
varying its shaper bucket size from 1 to 5 packets. The rest of
the virtual routers (VR2 to VR8) are configured in the same
way as described above, and the distribution of offered load
is also the same.

Both KVM and LXC reach the target throughput of
900 kp/s at VR1 with these revised configurations. The latency
for VR1 is shown in Figure 11. We notice that the latency is
increased in comparison to Figure 10. This is expected, due
to the fact that excessive packets now are queued at the shaper
(instead of being dropped at the policer). It results in long
queues at the traffic shaper and hence higher latency, but tar-
get throughput is achieved on the other hand. This result indi-
cates a tradeoff between average throughput and latency.

It is also important to mention that the other virtual
routers (VR2 to VR8) are rate-limited successfully to the
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Figure 10: Average latency (a) and throughput (b) for VR1 in presence of 7 rate-controlled VRs. The offered load is 900 kp/s at VR1 and the
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desired throughput of 50 kp/s. We notice that even though
the aggregate offered load on the system (1900 kp/s on all
virtual routers) is higher than the processing capacity of
the system, the system still achieves performance guarantees
for all competing virtual routers. It is due to the fact that
resource contention is avoided through rate limits and
excessive offered load is dropped. As a result, we see strong
performance isolation between virtual routers which was
not the case for the scenario presented earlier without rate
limits in Section 2 (Table 1).

7.3. Summary and Discussion. The purpose of our
experiments is to investigate the performance properties of
the rate-controlled service discipline, where we wish to study
the trade-offs involved in adding rate control functionality to
the packet processing path. Certainly, there is some perfor-
mance overhead of adding token bucket filters along the
packet processing path. However, on the other hand, we guar-
antee performance according to configured traffic profiles.

When we compare LXC and KVM implementation of
our design, we find that LXC has considerably lower latency
and higher throughput. This is not surprising, since there are
fundamental differences between KVM and LXC that have
far-reaching implications when it comes to realizing a rate-
controlled service discipline. With KVM, as with most other
hypervisor-based virtualization technologies, packet pro-
cessing takes place in user processes. That means that before
a packet can be processed, the corresponding user process
needs to be scheduled for execution. Process context switch-
ing occurs with a frequency that is much lower than the
packet arrival rate, which leads to queue build-up so that
packets are processed in clusters. LXC, as a representative
of container-based virtualization, does not add latency in
this way. With LXC, packets are processed immediately
when they arrive on the network interface; packet processing
takes place in the operating system kernel, not in user-space
processes, so there is no process scheduling involved. Over-
all, our results indicate that it is possible to maintain a given
target throughput and low (bounded) average packet latency

both for KVM and LXC. The results support our hypothesis
that a rate-controlled server can offer performance guaran-
tees in a virtual environment.

8. Conclusions and Future Work

In this paper, we investigate how throughput guarantees and
bounded delay can be provided for virtualized network func-
tions running as virtual machines on a regular computer sys-
tem. Our work is based on design, implementation, and
experimental evaluation. We put forward an architectural
design of a virtualization system using a rate-controlled ser-
vice discipline based on token bucket regulators combined
with first come, first served scheduling. We demonstrate that
our solution can provide service guarantees in a context with
multiple virtual machines competing for resources, as well as
under overload conditions. Moreover, we investigate the
effects of packet clustering that stem from executing virtua-
lized network functions in software. Finally, we present
experimental evaluations of our design, implemented using
two different virtualization techniques in Linux: the KVM
hypervisor and LXC containers. Our results show that our
design provides high rate limit accuracy and that it behaves
well in overload situations, in particular when using LXC
virtualization.

In this work, we have evaluated rate-controlled service
design for an IP forwarder which is one example of virtua-
lized network function. In future, we plan to add more net-
work functions (such as firewall, NAT) and evaluate our
design for a chain of network functions. More complex
scenarios can also be envisioned by considering parallel
running network function chains on a multicore platform.
It would be interesting to examine the scalability of the
solution. For instance, one interesting question is how many
parallel network function chains can be enabled on a single
server? Furthermore, how the proposed architecture can be
extended to a large NFV setup where the underlying
infrastructure is based on a cluster of commodity servers
and switches?
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